Goto

Collaborating Authors

Results


What is emotion AI and why should you care? - KDnuggets

#artificialintelligence

By Natalia Modjeska, MBA, PhD, helps organizations make sense of AI/ML. Recently I had the opportunity to attend the inaugural Emotion AI Conference, organized by Seth Grimes, a leading analyst and business consultant in the areas of natural language processing (NLP), text analytics, sentiment analysis, and their business applications. The conference was attended by about 70 people (including presenters and panelists) from industry and academia in the US, Canada, and Europe. Given the conference topic, what is emotion AI, why is it relevant, and what do you need to know about it? Read on to find out (warning: this is a long-ish article), but first, some background. We humans are highly emotional beings, and emotions impact everything we do, even if we are not, for the most part, aware of it.


Future of AI Part 5: The Cutting Edge of AI

#artificialintelligence

Edmond de Belamy is a Generative Adversarial Network portrait painting constructed in 2018 by Paris-based arts-collective Obvious and sold for $432,500 in Southebys in October 2018.


Python may get pattern matching syntax

#artificialintelligence

The creators of the Python language are mulling a new proposal, PEP 622, that would finally bring a pattern matching statement syntax to Python. The new pattern matching statements would give Python programmers more expressive ways of handling structured data, without having to resort to workarounds. Pattern matching is a common feature of many programming languages, such as switch/case in C. It allows one of a number of possible actions to be taken based on the value of a given variable or expression. While Python has lacked a native syntax for pattern matching, it has been possible to emulate it with if/elif/else chains or a dictionary lookup. Supported pattern match types include literals, names, constant values, sequences, a mapping (basically, the presence of a key-value pair in the expression), a class, a mixture of the above, or any of those plus conditional expressions.


Top Artificial Intelligence Books to Read in 2020

#artificialintelligence

A Modern Approach, 3e offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. In this mind-expanding book, scientific pioneer Marvin Minsky continues his groundbreaking research, offering a fascinating new model for how our minds work. He argues persuasively that emotions, intuitions, and feelings are not distinct things, but different ways of thinking. Introduction to Artificial Intelligence presents an introduction to the science of reasoning processes in computers, and the research approaches and results of the past two decades.


A Representation System User Interface for Knowledge Base Designers

AI Magazine

A major strength of frame-based knowledge representation languages is their ability to provide the knowledge base designer with a concise and intuitively appealing means expression. The claim of intuitive appeal is based on the observation that the object -centered style of description provided by these languages often closely matches a designer's understanding of the domain being modeled and therefore lessens the burden of reformulation involved in developing a formal description. To be effective as a knowledge base development tool, a language needs to be supported by an implementation that facilitates creating, browsing, debugging, and editing the descriptions in the knowledge base. We have focused on providing such support in a SmallTalk (Ingalls, 1978) implementation of the KL-ONE knowledge representation language (Brachman, 1978), called KloneTalk, that has been in use by several projects for over a year at Xerox PARC. In this note, we describe those features of KloneTalk's displaybased interface that have made it an effective knowledge base development tool, including the use of constraints to automatically determine descriptions of newly created data base items.


Towards a Taxonomy of Problem Solving Types

AI Magazine

Our group's work in medical decision making has led us to formulate a framework for expert system design, in particular about how the domain knowledge may be decomposed into substructures. We propose that there exist different problem-solving types, i.e., uses of knowledge, and corresponding to each is a separate substructure specializing in that type of problem-solving. Each substructure is in turn further decomposed into a hierarchy of specialist which differ from each other not in the type of problem-solving, but in the conceptual content of their knowledge; e.g.; one of them may specialize in "heart disease," while another may do so in "liver," though both of them are doing the same type of problem solving. Thus ultimately all the knowledge in the system is distributed among problem-solvers which know how to use that knowledge. This is in contrast to the currently dominant expert system paradigm which proposes a common knowledge base accessed by knowledge-free problem-solvers of various kinds. In our framework there is no distinction between knowledge bases and problem-solvers: each knowledge source is a problem-solver.


Artificial Intelligence Research at General Electric

AI Magazine

General Electric is engaged in a broad range of research and development activities in artificial intelligence, with the dual objectives of improving the productivity of its internal operations and of enhancing future products and services in its aerospace, industrial, aircraft engine, commercial, and service sectors. Many of the applications projected for AI within GE will require significant advances in the state of the art in advanced inference, formal logic, and architectures for real-time systems. New software tools for creating expert systems are needed to expedite the construction of knowledge bases. Further, new application domains such as computer -aided design (CAD), computer- aided manufacturing (CAM), and image understanding based on formal logic require novel concepts in knowledge representation and inference beyond the capabilities of current production rule systems. Fundamental research in artificial intelligence is concentrated at Corporate Research and Development (CR&D), with advanced development and applications pursued in parallel efforts by operating departments.


Precisiated Natural Language (PNL)

AI Magazine

This article is a sequel to an article titled "A New Direction in AI -- Toward a Computational Theory of Perceptions," which appeared in the Spring 2001 issue of AI Magazine (volume 22, No. 1, 73-84). The concept of precisiated natural language (PNL) was briefly introduced in that article, and PNL was employed as a basis for computation with perceptions. In what follows, the conceptual structure of PNL is described in greater detail, and PNL's role in knowledge representation, deduction, and concept definition is outlined and illustrated by examples. What should be understood is that PNL is in its initial stages of development and that the exposition that follows is an outline of the basic ideas that underlie PNL rather than a definitive theory. A natural language is basically a system for describing perceptions. Perceptions, such as perceptions of distance, height, weight, color, temperature, similarity, likelihood, relevance, and most other attributes of physical and mental objects are intrinsically imprecise, reflecting the bounded ability of sensory organs, and ultimately the brain, to resolve detail and store information.


Project Halo: Towards a Digital Aristotle

AI Magazine

Project Halo is a multistaged effort, sponsored by Vulcan Inc, aimed at creating Digital Aristotle, an application that will encompass much of the world's scientific knowledge and be capable of applying sophisticated problem solving to answer novel questions. Vulcan envisions two primary roles for Digital Aristotle: as a tutor to instruct students in the sciences and as an interdisciplinary research assistant to help scientists in their work. As a first step towards this goal, we have just completed a six-month pilot phase designed to assess the state of the art in applied knowledge representation and reasoning (KR&/R). Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications.