Goto

Collaborating Authors

Results


The AI Index 2021 Annual Report

arXiv.org Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.


Imitating Interactive Intelligence

arXiv.org Artificial Intelligence

A common vision from science fiction is that robots will one day inhabit our physical spaces, sense the world as we do, assist our physical labours, and communicate with us through natural language. Here we study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment. This setting nevertheless integrates a number of the central challenges of artificial intelligence (AI) research: complex visual perception and goal-directed physical control, grounded language comprehension and production, and multi-agent social interaction. To build agents that can robustly interact with humans, we would ideally train them while they interact with humans. However, this is presently impractical. Therefore, we approximate the role of the human with another learned agent, and use ideas from inverse reinforcement learning to reduce the disparities between human-human and agent-agent interactive behaviour. Rigorously evaluating our agents poses a great challenge, so we develop a variety of behavioural tests, including evaluation by humans who watch videos of agents or interact directly with them. These evaluations convincingly demonstrate that interactive training and auxiliary losses improve agent behaviour beyond what is achieved by supervised learning of actions alone. Further, we demonstrate that agent capabilities generalise beyond literal experiences in the dataset. Finally, we train evaluation models whose ratings of agents agree well with human judgement, thus permitting the evaluation of new agent models without additional effort. Taken together, our results in this virtual environment provide evidence that large-scale human behavioural imitation is a promising tool to create intelligent, interactive agents, and the challenge of reliably evaluating such agents is possible to surmount.


The Geometry of Distributed Representations for Better Alignment, Attenuated Bias, and Improved Interpretability

arXiv.org Artificial Intelligence

High-dimensional representations for words, text, images, knowledge graphs and other structured data are commonly used in different paradigms of machine learning and data mining. These representations have different degrees of interpretability, with efficient distributed representations coming at the cost of the loss of feature to dimension mapping. This implies that there is obfuscation in the way concepts are captured in these embedding spaces. Its effects are seen in many representations and tasks, one particularly problematic one being in language representations where the societal biases, learned from underlying data, are captured and occluded in unknown dimensions and subspaces. As a result, invalid associations (such as different races and their association with a polar notion of good versus bad) are made and propagated by the representations, leading to unfair outcomes in different tasks where they are used. This work addresses some of these problems pertaining to the transparency and interpretability of such representations. A primary focus is the detection, quantification, and mitigation of socially biased associations in language representation.


Explaining Deep Neural Networks

arXiv.org Artificial Intelligence

Deep neural networks are becoming more and more popular due to their revolutionary success in diverse areas, such as computer vision, natural language processing, and speech recognition. However, the decision-making processes of these models are generally not interpretable to users. In various domains, such as healthcare, finance, or law, it is critical to know the reasons behind a decision made by an artificial intelligence system. Therefore, several directions for explaining neural models have recently been explored. In this thesis, I investigate two major directions for explaining deep neural networks. The first direction consists of feature-based post-hoc explanatory methods, that is, methods that aim to explain an already trained and fixed model (post-hoc), and that provide explanations in terms of input features, such as tokens for text and superpixels for images (feature-based). The second direction consists of self-explanatory neural models that generate natural language explanations, that is, models that have a built-in module that generates explanations for the predictions of the model.


The Future of AI Part 1

#artificialintelligence

It was reported that Venture Capital investments into AI related startups made a significant increase in 2018, jumping by 72% compared to 2017, with 466 startups funded from 533 in 2017. PWC moneytree report stated that that seed-stage deal activity in the US among AI-related companies rose to 28% in the fourth-quarter of 2018, compared to 24% in the three months prior, while expansion-stage deal activity jumped to 32%, from 23%. There will be an increasing international rivalry over the global leadership of AI. President Putin of Russia was quoted as saying that "the nation that leads in AI will be the ruler of the world". Billionaire Mark Cuban was reported in CNBC as stating that "the world's first trillionaire would be an AI entrepreneur".


Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases

arXiv.org Artificial Intelligence

Equipping machines with comprehensive knowledge of the world's entities and their relationships has been a long-standing goal of AI. Over the last decade, large-scale knowledge bases, also known as knowledge graphs, have been automatically constructed from web contents and text sources, and have become a key asset for search engines. This machine knowledge can be harnessed to semantically interpret textual phrases in news, social media and web tables, and contributes to question answering, natural language processing and data analytics. This article surveys fundamental concepts and practical methods for creating and curating large knowledge bases. It covers models and methods for discovering and canonicalizing entities and their semantic types and organizing them into clean taxonomies. On top of this, the article discusses the automatic extraction of entity-centric properties. To support the long-term life-cycle and the quality assurance of machine knowledge, the article presents methods for constructing open schemas and for knowledge curation. Case studies on academic projects and industrial knowledge graphs complement the survey of concepts and methods.


Applications of Deep Neural Networks

arXiv.org Artificial Intelligence

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network structures, Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adversarial Networks (GAN), and reinforcement learning. Application of these architectures to computer vision, time series, security, natural language processing (NLP), and data generation will be covered. High-Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction to mathematical foundations. Readers will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this book; however, familiarity with at least one programming language is assumed.


Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning Systems

arXiv.org Artificial Intelligence

Recent successes combine reinforcement learning algorithms and deep neural networks, despite reinforcement learning not being widely applied to robotics and real world scenarios. This can be attributed to the fact that current state-of-the-art, end-to-end reinforcement learning approaches still require thousands or millions of data samples to converge to a satisfactory policy and are subject to catastrophic failures during training. Conversely, in real world scenarios and after just a few data samples, humans are able to either provide demonstrations of the task, intervene to prevent catastrophic actions, or simply evaluate if the policy is performing correctly. This research investigates how to integrate these human interaction modalities to the reinforcement learning loop, increasing sample efficiency and enabling real-time reinforcement learning in robotics and real world scenarios. This novel theoretical foundation is called Cycle-of-Learning, a reference to how different human interaction modalities, namely, task demonstration, intervention, and evaluation, are cycled and combined to reinforcement learning algorithms. Results presented in this work show that the reward signal that is learned based upon human interaction accelerates the rate of learning of reinforcement learning algorithms and that learning from a combination of human demonstrations and interventions is faster and more sample efficient when compared to traditional supervised learning algorithms. Finally, Cycle-of-Learning develops an effective transition between policies learned using human demonstrations and interventions to reinforcement learning. The theoretical foundation developed by this research opens new research paths to human-agent teaming scenarios where autonomous agents are able to learn from human teammates and adapt to mission performance metrics in real-time and in real world scenarios.


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Future of AI Part 5: The Cutting Edge of AI

#artificialintelligence

Edmond de Belamy is a Generative Adversarial Network portrait painting constructed in 2018 by Paris-based arts-collective Obvious and sold for $432,500 in Southebys in October 2018.