Goto

Collaborating Authors

Results


Future of AI Part 5: The Cutting Edge of AI

#artificialintelligence

Edmond de Belamy is a Generative Adversarial Network portrait painting constructed in 2018 by Paris-based arts-collective Obvious and sold for $432,500 in Southebys in October 2018.



Alphabet's Next Billion-Dollar Business: 10 Industries To Watch - CB Insights Research

#artificialintelligence

Alphabet is using its dominance in the search and advertising spaces -- and its massive size -- to find its next billion-dollar business. From healthcare to smart cities to banking, here are 10 industries the tech giant is targeting. With growing threats from its big tech peers Microsoft, Apple, and Amazon, Alphabet's drive to disrupt has become more urgent than ever before. The conglomerate is leveraging the power of its first moats -- search and advertising -- and its massive scale to find its next billion-dollar businesses. To protect its current profits and grow more broadly, Alphabet is edging its way into industries adjacent to the ones where it has already found success and entering new spaces entirely to find opportunities for disruption. Evidence of Alphabet's efforts is showing up in several major industries. For example, the company is using artificial intelligence to understand the causes of diseases like diabetes and cancer and how to treat them. Those learnings feed into community health projects that serve the public, and also help Alphabet's effort to build smart cities. Elsewhere, Alphabet is using its scale to build a better virtual assistant and own the consumer electronics software layer. It's also leveraging that scale to build a new kind of Google Pay-operated checking account. In this report, we examine how Alphabet and its subsidiaries are currently working to disrupt 10 major industries -- from electronics to healthcare to transportation to banking -- and what else might be on the horizon. Within the world of consumer electronics, Alphabet has already found dominance with one product: Android. Mobile operating system market share globally is controlled by the Linux-based OS that Google acquired in 2005 to fend off Microsoft and Windows Mobile. Today, however, Alphabet's consumer electronics strategy is being driven by its work in artificial intelligence. Google is building some of its own hardware under the Made by Google line -- including the Pixel smartphone, the Chromebook, and the Google Home -- but the company is doing more important work on hardware-agnostic software products like Google Assistant (which is even available on iOS).


A Time Series Approach To Player Churn and Conversion in Videogames

arXiv.org Machine Learning

Players of a free-to-play game are divided into three main groups: non-paying active users, paying active users and inactive users. A State Space time series approach is then used to model the daily conversion rates between the different groups, i.e., the probability of transitioning from one group to another. This allows, not only for predictions on how these rates are to evolve, but also for a deeper understanding of the impact that in-game planning and calendar effects have. It is also used in this work for the detection of marketing and promotion campaigns about which no information is available. In particular, two different State Space formulations are considered and compared: an Autoregressive Integrated Moving Average process and an Unobserved Components approach, in both cases with a linear regression to explanatory variables. Both yield very close estimations for covariate parameters, producing forecasts with similar performances for most transition rates. While the Unobserved Components approach is more robust and needs less human intervention in regards to model definition, it produces significantly worse forecasts for non-paying user abandonment probability. More critically, it also fails to detect a plausible marketing and promotion campaign scenario.


The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence

arXiv.org Artificial Intelligence

Recent research in artificial intelligence and machine learning has largely emphasized general-purpose learning and ever-larger training sets and more and more compute. In contrast, I propose a hybrid, knowledge-driven, reasoning-based approach, centered around cognitive models, that could provide the substrate for a richer, more robust AI than is currently possible.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Questions to Guide the Future of Artificial Intelligence Research

arXiv.org Artificial Intelligence

The field of machine learning has focused, primarily, on discretized sub-problems (i.e. vision, speech, natural language) of intelligence. While neuroscience tends to be observation heavy, providing few guiding theories. It is unlikely that artificial intelligence will emerge through only one of these disciplines. Instead, it is likely to be some amalgamation of their algorithmic and observational findings. As a result, there are a number of problems that should be addressed in order to select the beneficial aspects of both fields. In this article, we propose leading questions to guide the future of artificial intelligence research. There are clear computational principles on which the brain operates. The problem is finding these computational needles in a haystack of biological complexity. Biology has clear constraints but by not using it as a guide we are constraining ourselves.


The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design

arXiv.org Machine Learning

The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore's Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today.


Dynamic Search -- Optimizing the Game of Information Seeking

arXiv.org Artificial Intelligence

This article presents the emerging topic of dynamic search (DS). To position dynamic search in a larger research landscape, the article discusses in detail its relationship to related research topics and disciplines. The article reviews approaches to modeling dynamics during information seeking, with an emphasis on Reinforcement Learning (RL)-enabled methods. Details are given for how different approaches are used to model interactions among the human user, the search system, and the environment. The paper ends with a review of evaluations of dynamic search systems.


Machine learning python

#artificialintelligence

With modern technology, such questions are no longer bound to creative conjecture. You have just found Keras. Today i will give a brief introduction over this topic which created headache for me when i was learning this. All video and text tutorials are free. I use Anaconda package that almost wraps up all the Python packages including Jupyter notebook.