Goto

Collaborating Authors

Reinforcement Learning


DeepMind & Google Are Betting Big On Reinforcement Learning

#artificialintelligence

Recently, researchers from DeepMind and Google introduced methods for choosing the best policy in offline reinforcement learning (ORL) known as offline hyperparameter selection (OHS). It uses logged data from a set of many policies that are trained using different hyperparameters. Reinforcement learning has become one of the most critical techniques in AI which has been used to attain Artificial General Intelligence. Offline reinforcement learning has now become a fundamental approach for deploying RL techniques in real-world scenarios. According to this blog post, offline reinforcement learning can assist in pre-training a reinforcement learning agent using the existing data.


Training a Deep Reinforcement Learning Agent to Play Snake

#artificialintelligence

Those of us who have ever used a Nokia mobile phone two decades ago will remember the Snake game that was first introduced on the Nokia 6110. An adaption of an arcade game from 1976, it eventually found itself on 400 million phones. Indeed, there is even a "World Snake Day" for nostalgic fans to remember this bygone era. But can you train a deep reinforcement learning agent to play the game? Data scientist Hennie de Harder decided to find out and chronicled her journey of pitting an agent against a Python version of the game in a blog post on Towards Data Science. One of three basic machine learning paradigms, reinforcement learning is an area of machine learning concerned with software agents that take action based on maximizing predefined rewards.


Anomaly Detection through Reinforcement Learning

#artificialintelligence

As Artificial Intelligence is becoming a mainstream and easily available commercial technology, both organizations and criminals are trying to take full advantage of it. In particular, there are predictions by cyber security experts that going forward, the world will witness many AI-powered cyber attacks1. This mandates the development of more sophisticated cyber defense systems using autonomous agents which are capable of generating and executing effective policies against such attacks, without human feedback in the loop. In this series of blog posts, we plan to write about such next generation cyber defense systems. One effective approach of detecting many types of cyber threats is to treat it as an anomaly detection problem and use machine learning or signature-based approaches to build detection systems.


Army advances learning capabilities of drone swarms

#artificialintelligence

Army researchers developed a reinforcement learning approach that will allow swarms of unmanned aerial and ground vehicles to optimally accomplish various missions while minimizing performance uncertainty.Swarming is a method of operations where multiple autonomous systems act as a cohesive unit by actively coordinating their actions.Army researchers said future multi-domain battles will require swarms of dynamically coupled, coordinated heterogeneous mobile platforms to overmatch enemy capabilities and threats targeting U.S. forces.The Army is looking to swarming technology to be able to execute time-consuming or dangerous tasks, said Dr. Jemin George of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory."Finding optimal guidance policies for these swarming vehicles in real-time is a key requirement for enhancing warfighters' tactical situational awareness, allowing the U.S. Army to dominate in a contested environment," George said.Reinforcement learning ...


Automated Quantification of CT Patterns Associated with COVID-19 from Chest CT

#artificialintelligence

To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning. The first measure of (PO, PHO) is global, while the second of (LSS, LHOS) is lobe-wise. Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States collected between 2002-Present (April 2020).


Deep Reinforcement Learning 2.0

#artificialintelligence

Online Courses Udemy - Deep Reinforcement Learning 2.0, The smartest combination of Deep Q-Learning, Policy Gradient, Actor Critic, and DDPG Created by Hadelin de Ponteves, Kirill Eremenko, SuperDataScience Team English [Auto] Students also bought Unsupervised Deep Learning in Python Deep Learning: Advanced Computer Vision (GANs, SSD, More!) Data Science: Natural Language Processing (NLP) in Python Recommender Systems and Deep Learning in Python Cutting-Edge AI: Deep Reinforcement Learning in Python Ensemble Machine Learning in Python: Random Forest, AdaBoost Preview this course GET COUPON CODE Description Welcome to Deep Reinforcement Learning 2.0! In this course, we will learn and implement a new incredibly smart AI model, called the Twin-Delayed DDPG, which combines state of the art techniques in Artificial Intelligence including continuous Double Deep Q-Learning, Policy Gradient, and Actor Critic. The model is so strong that for the first time in our courses, we are able to solve the most challenging virtual AI applications (training an ant/spider and a half humanoid to walk and run across a field). To approach this model the right way, we structured the course in three parts: Part 1: Fundamentals In this part we will study all the fundamentals of Artificial Intelligence which will allow you to understand and master the AI of this course. These include Q-Learning, Deep Q-Learning, Policy Gradient, Actor-Critic and more.


"What's that? Reinforcement Learning in the Real-world?"

#artificialintelligence

Reinforcement Learning offers a distinctive way of solving the Machine Learning puzzle. It's sequential decision-making ability, and suitability to tasks requiring a trade-off between immediate and long-term returns are some components that make it desirable in settings where supervised-learning or unsupervised learning approaches would, in comparison, not fit as well. By having agents start with zero knowledge then learn qualitatively good behaviour through interaction with the environment, it's almost fair to say Reinforcement Learning (RL) is the closest thing we have to Artificial General Intelligence yet. We can see RL being used in robotics control, treatment design in healthcare, among others; but why aren't we boasting of many RL agents being scaled up to real-world production systems? There's a reason why games, like Atari, are such nice RL benchmarks -- they let us care only about maximizing the score and not worry about designing a reward function.


Quantile Reinforcement Learning

#artificialintelligence

I've been exploring reinforcement learning that takes advantage of uncertainty. In particular, I have implemented a basic version of QR-DQN-1 from Distributional Reinforcement Learning with Quantile Regression. Doing so required filling in some practical details from the paper, which I'm going to explain here. The approach is an extension of Deep Q-learning, which involves attempting to learn the value of being in a given state and taking an action to maximize this value (for more background, see this post). We think of the value of being in a state as a random variable drawn from some unknown distribution.


Decentralized Reinforcement Learning

#artificialintelligence

Many associations in the world like the biological ecosystems, government and corporations are physically decentralized however they are unified in the sense of their functionality. For instance, a financial institution operates with a global policy of maximizing their profits, hence appearing as a single entity; however, this entity abstraction is an illusion, as a financial institution is composed of a group of individual human agents solving their optimization problems with our without collaboration. The policy function parameters are fine-tuned depending on the gradients of the defined objective function. This approach is called the monolithic decision-making framework as the policy function's learning parameters are coupled globally solely using an objective function. Having covered a brief background of a centralized reinforcement learning framework, let us move forward to some promising decentralized reinforcement learning frameworks.


Ensemble Machine Learning in Python: Random Forest, AdaBoost

#artificialintelligence

Created by Lazy Programmer Inc. English [Auto-generated] Created by Lazy Programmer Inc. In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever.