Goto

Collaborating Authors

Results


The Value of Nullspace Tuning Using Partial Label Information

arXiv.org Machine Learning

In semi-supervised learning, information from unlabeled examples is used to improve the model learned from labeled examples. But in some learning problems, partial label information can be inferred from otherwise unlabeled examples and used to further improve the model. In particular, partial label information exists when subsets of training examples are known to have the same label, even though the label itself is missing. By encouraging a model to give the same label to all such examples, we can potentially improve its performance. We call this encouragement \emph{Nullspace Tuning} because the difference vector between any pair of examples with the same label should lie in the nullspace of a linear model. In this paper, we investigate the benefit of using partial label information using a careful comparison framework over well-characterized public datasets. We show that the additional information provided by partial labels reduces test error over good semi-supervised methods usually by a factor of 2, up to a factor of 5.5 in the best case. We also show that adding Nullspace Tuning to the newer and state-of-the-art MixMatch method decreases its test error by up to a factor of 1.8.


Learning from Positive and Unlabeled Data with Arbitrary Positive Shift

arXiv.org Machine Learning

Positive-unlabeled (PU) learning trains a binary classifier using only positive and unlabeled data. A common simplifying assumption is that the positive data is representative of the target positive class. This assumption is often violated in practice due to time variation, domain shift, or adversarial concept drift. This paper shows that PU learning is possible even with arbitrarily non-representative positive data when provided unlabeled datasets from the source and target distributions. Our key insight is that only the negative class's distribution need be fixed. We propose two methods to learn under such arbitrary positive bias. The first couples negative-unlabeled (NU) learning with unlabeled-unlabeled (UU) learning while the other uses a novel recursive risk estimator robust to positive shift. Experimental results demonstrate our methods' effectiveness across numerous real-world datasets and forms of positive data bias, including disjoint positive class-conditional supports.


Estimating Training Data Influence by Tracking Gradient Descent

arXiv.org Machine Learning

We introduce a method called TrackIn that computes the influence of a training example on a prediction made by the model, by tracking how the loss on the test point changes during the training process whenever the training example of interest was utilized. We provide a scalable implementation of TrackIn via a combination of a few key ideas: (a) a first-order approximation to the exact computation, (b) using random projections to speed up the computation of the first-order approximation for large models, (c) using saved checkpoints of standard training procedures, and (d) cherry-picking layers of a deep neural network. An experimental evaluation shows that TrackIn is more effective in identifying mislabelled training examples than other related methods such as influence functions and representer points. We also discuss insights from applying the method on vision, regression and natural language tasks.


A Survey on Causal Inference

arXiv.org Artificial Intelligence

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.


An interpretable semi-supervised classifier using two different strategies for amended self-labeling

arXiv.org Machine Learning

In the context of some machine learning applications, obtaining data instances is a relatively easy process but labeling them could become quite expensive or tedious. Such scenarios lead to datasets with few labeled instances and a larger number of unlabeled ones. Semi-supervised classification techniques combine labeled and unlabeled data during the learning phase in order to increase classifier's generalization capability. Regrettably, most successful semi-supervised classifiers do not allow explaining their outcome, thus behaving like black boxes. However, there is an increasing number of problem domains in which experts demand a clear understanding of the decision process. In this paper, we report on an extended experimental study presenting an interpretable self-labeling grey-box classifier that uses a black box to estimate the missing class labels and a white box to make the final predictions. Two different approaches for amending the self-labeling process are explored: a first one based on the confidence of the black box and the latter one based on measures from Rough Set Theory. The results of the extended experimental study support the interpretability by means of transparency and simplicity of our classifier, while attaining superior prediction rates when compared with state-of-the-art self-labeling classifiers reported in the literature.


Intelligence, physics and information -- the tradeoff between accuracy and simplicity in machine learning

arXiv.org Machine Learning

How can we enable machines to make sense of the world, and become better at learning? To approach this goal, I believe viewing intelligence in terms of many integral aspects, and also a universal two-term tradeoff between task performance and complexity, provides two feasible perspectives. In this thesis, I address several key questions in some aspects of intelligence, and study the phase transitions in the two-term tradeoff, using strategies and tools from physics and information. Firstly, how can we make the learning models more flexible and efficient, so that agents can learn quickly with fewer examples? Inspired by how physicists model the world, we introduce a paradigm and an AI Physicist agent for simultaneously learning many small specialized models (theories) and the domain they are accurate, which can then be simplified, unified and stored, facilitating few-shot learning in a continual way. Secondly, for representation learning, when can we learn a good representation, and how does learning depend on the structure of the dataset? We approach this question by studying phase transitions when tuning the tradeoff hyperparameter. In the information bottleneck, we theoretically show that these phase transitions are predictable and reveal structure in the relationships between the data, the model, the learned representation and the loss landscape. Thirdly, how can agents discover causality from observations? We address part of this question by introducing an algorithm that combines prediction and minimizing information from the input, for exploratory causal discovery from observational time series. Fourthly, to make models more robust to label noise, we introduce Rank Pruning, a robust algorithm for classification with noisy labels. I believe that building on the work of my thesis we will be one step closer to enable more intelligent machines that can make sense of the world.


Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training

arXiv.org Machine Learning

Magnetic Resonance Imaging (MRI) of the brain can come in the form of different modalities such as T1-weighted and Fluid Attenuated Inversion Recovery (FLAIR) which has been used to investigate a wide range of neurological disorders. Current state-of-the-art models for brain tissue segmentation and disease classification require multiple modalities for training and inference. However, the acquisition of all of these modalities are expensive, time-consuming, inconvenient and the required modalities are often not available. As a result, these datasets contain large amounts of \emph{unpaired} data, where examples in the dataset do not contain all modalities. On the other hand, there is smaller fraction of examples that contain all modalities (\emph{paired} data) and furthermore each modality is high dimensional when compared to number of datapoints. In this work, we develop a method to address these issues with semi-supervised learning in translating between two neuroimaging modalities. Our proposed model, Semi-Supervised Adversarial CycleGAN (SSA-CGAN), uses an adversarial loss to learn from \emph{unpaired} data points, cycle loss to enforce consistent reconstructions of the mappings and another adversarial loss to take advantage of \emph{paired} data points. Our experiments demonstrate that our proposed framework produces an improvement in reconstruction error and reduced variance for the pairwise translation of multiple modalities and is more robust to thermal noise when compared to existing methods.


Deep Hyperedges: a Framework for Transductive and Inductive Learning on Hypergraphs

arXiv.org Machine Learning

From social networks to protein complexes to disease genomes to visual data, hypergraphs are everywhere. However, the scope of research studying deep learning on hypergraphs is still quite sparse and nascent, as there has not yet existed an effective, unified framework for using hyperedge and vertex embeddings jointly in the hypergraph context, despite a large body of prior work that has shown the utility of deep learning over graphs and sets. Building upon these recent advances, we propose \textit{Deep Hyperedges} (DHE), a modular framework that jointly uses contextual and permutation-invariant vertex membership properties of hyperedges in hypergraphs to perform classification and regression in transductive and inductive learning settings. In our experiments, we use a novel random walk procedure and show that our model achieves and, in most cases, surpasses state-of-the-art performance on benchmark datasets. Additionally, we study our framework's performance on a variety of diverse, non-standard hypergraph datasets and propose several avenues of future work to further enhance DHE.


Weakly Supervised Attention Networks for Fine-Grained Opinion Mining and Public Health

arXiv.org Machine Learning

In many review classification applications, a fine-grained analysis of the reviews is desirable, because different segments (e.g., sentences) of a review may focus on different aspects of the entity in question. However, training supervised models for segment-level classification requires segment labels, which may be more difficult or expensive to obtain than review labels. In this paper, we employ Multiple Instance Learning (MIL) and use only weak supervision in the form of a single label per review. First, we show that when inappropriate MIL aggregation functions are used, then MIL-based networks are outperformed by simpler baselines. Second, we propose a new aggregation function based on the sigmoid attention mechanism and show that our proposed model outperforms the state-of-the-art models for segment-level sentiment classification (by up to 9.8% in F1). Finally, we highlight the importance of fine-grained predictions in an important public-health application: finding actionable reports of foodborne illness. We show that our model achieves 48.6% higher recall compared to previous models, thus increasing the chance of identifying previously unknown foodborne outbreaks.


Generate More Training Data When You Don't Have Enough

#artificialintelligence

Computers outperform humans in image and object recognition. Big corporations like Google and Microsoft have beat the human benchmark on image recognition [1, 2]. On average, human makes an error on image recognition tasks about 5% of the time. As of 2015, Microsoft's image recognition software reached an error rate of 4.94%, and at around the same time, Google announced that its software achieved a reduced error rate of 4.8% [3]. This was possible by training deep convolutional neural networks on millions of training examples from ImageNet dataset which contains hundreds of object categories [1].