Collaborating Authors


GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.

Industry News


Find here a listing of the latest industry news in genomics, genetics, precision medicine, and beyond. Updates are provided on a monthly basis. Sign-Up for our newsletter and never miss out on the latest news and updates. As 2019 came to an end, Veritas Genetics struggled to get funding due to concerns it had previously taken money from China. It was forced to cease US operations and is in talks with potential buyers. The GenomeAsia 100K Project announced its pilot phase with hopes to tackle the underrepresentation of non-Europeans in human genetic studies and enable genetic discoveries across Asia. Veritas Genetics, the start-up that can sequence a human genome for less than $600, ceases US operations and is in talks with potential buyers Veritas Genetics ceases US operations but will continue Veritas Europe and Latin America. It had trouble raising funding due to previous China investments and is looking to be acquired. Illumina loses DNA sequencing patents The European Patent ...

Surgical robots, new medicines and better care: 32 examples of AI in healthcare


Artificial intelligence simplifies the lives of patients, doctors and hospital administrators by performing tasks that are typically done by humans, but in less time and at a fraction of the cost. One of the world's highest-growth industries, the AI sector was valued at about $600 million in 2014 and is projected to reach a $150 billion by 2026. Whether it's used to find new links between genetic codes or to drive surgery-assisting robots, artificial intelligence is reinventing -- and reinvigorating -- modern healthcare through machines that can predict, comprehend, learn and act. Check out these 32 examples of AI in healthcare. In 2015, misdiagnosing illness and medical error accounted for 10% of all US deaths. In light of that, the promise of improving the diagnostic process is one of AI's most exciting healthcare applications.

A Question-Entailment Approach to Question Answering Artificial Intelligence

One of the challenges in large-scale information retrieval (IR) is to develop fine-grained and domain-specific methods to answer natural language questions. Despite the availability of numerous sources and datasets for answer retrieval, Question Answering (QA) remains a challenging problem due to the difficulty of the question understanding and answer extraction tasks. One of the promising tracks investigated in QA is to map new questions to formerly answered questions that are `similar'. In this paper, we propose a novel QA approach based on Recognizing Question Entailment (RQE) and we describe the QA system and resources that we built and evaluated on real medical questions. First, we compare machine learning and deep learning methods for RQE using different kinds of datasets, including textual inference, question similarity and entailment in both the open and clinical domains. Second, we combine IR models with the best RQE method to select entailed questions and rank the retrieved answers. To study the end-to-end QA approach, we built the MedQuAD collection of 47,457 question-answer pairs from trusted medical sources, that we introduce and share in the scope of this paper. Following the evaluation process used in TREC 2017 LiveQA, we find that our approach exceeds the best results of the medical task with a 29.8% increase over the best official score. The evaluation results also support the relevance of question entailment for QA and highlight the effectiveness of combining IR and RQE for future QA efforts. Our findings also show that relying on a restricted set of reliable answer sources can bring a substantial improvement in medical QA.

Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities Machine Learning

New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions. These dimensions include myriad properties describing genome, epigenome, transcriptome, microbiome, phenotype, and lifestyle. No single data type, however, can capture the complexity of all the factors relevant to understanding a phenomenon such as a disease. Integrative methods that combine data from multiple technologies have thus emerged as critical statistical and computational approaches. The key challenge in developing such approaches is the identification of effective models to provide a comprehensive and relevant systems view. An ideal method can answer a biological or medical question, identifying important features and predicting outcomes, by harnessing heterogeneous data across several dimensions of biological variation. In this Review, we describe the principles of data integration and discuss current methods and available implementations. We provide examples of successful data integration in biology and medicine. Finally, we discuss current challenges in biomedical integrative methods and our perspective on the future development of the field.

AI in Precision Medicine in 2018


The Precision Medicine World Conference will be one of the most exciting conferences focused on AI in healthcare in 2018. CEOs of cutting edge companies from around the world will come together to discuss how they are using techniques such as computer vision, deep learning and machine learning to make big advances in medicine from drug discovery to patient diagnosis and treatment. The program will traverse innovative technologies and clinical case studies that enable the translation of precision medicine into direct improvements in health care. Attendees will have an opportunity to learn about the latest developments in Precision Medicine and cutting-edge new strategies that are changing how patients are treated.