Collaborating Authors


Spatiotemporal transcriptomic divergence across human and macaque brain development


Improved understanding of how the developing human nervous system differs from that of closely related nonhuman primates is fundamental for teasing out human-specific aspects of behavior, cognition, and disorders. The shared and unique functional properties of the human nervous system are rooted in the complex transcriptional programs governing the development of distinct cell types, neural circuits, and regions. However, the precise molecular mechanisms underlying shared and unique features of the developing human nervous system have been only minimally characterized. We generated complementary tissue-level and single-cell transcriptomic datasets from up to 16 brain regions covering prenatal and postnatal development in humans and rhesus macaques (Macaca mulatta), a closely related species and the most commonly studied nonhuman primate. We created and applied TranscriptomeAge and TempShift algorithms to age-match developing specimens between the species and to more rigorously ...