Collaborating Authors


New Hybrid Neuro-Evolutionary Algorithms for Renewable Energy and Facilities Management Problems Machine Learning

This Ph.D. thesis deals with the optimization of several renewable energy resources development as well as the improvement of facilities management in oceanic engineering and airports, using computational hybrid methods belonging to AI to this end. Energy is essential to our society in order to ensure a good quality of life. This means that predictions over the characteristics on which renewable energies depend are necessary, in order to know the amount of energy that will be obtained at any time. The second topic tackled in this thesis is related to the basic parameters that influence in different marine activities and airports, whose knowledge is necessary to develop a proper facilities management in these environments. Within this work, a study of the state-of-the-art Machine Learning have been performed to solve the problems associated with the topics above-mentioned, and several contributions have been proposed: One of the pillars of this work is focused on the estimation of the most important parameters in the exploitation of renewable resources. The second contribution of this thesis is related to feature selection problems. The proposed methodologies are applied to multiple problems: the prediction of $H_s$, relevant for marine energy applications and marine activities, the estimation of WPREs, undesirable variations in the electric power produced by a wind farm, the prediction of global solar radiation in areas from Spain and Australia, really important in terms of solar energy, and the prediction of low-visibility events at airports. All of these practical issues are developed with the consequent previous data analysis, normally, in terms of meteorological variables.