Goto

Collaborating Authors

Results


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Deep Learning for Asset Bubbles Detection

arXiv.org Machine Learning

We develop a methodology for detecting asset bubbles using a neural network. We rely on the theory of local martingales in continuous-time and use a deep network to estimate the diffusion coefficient of the price process more accurately than the current estimator, obtaining an improved detection of bubbles. We show the outperformance of our algorithm over the existing statistical method in a laboratory created with simulated data. We then apply the network classification to real data and build a zero net exposure trading strategy that exploits the risky arbitrage emanating from the presence of bubbles in the US equity market from 2006 to 2008. The profitability of the strategy provides an estimation of the economical magnitude of bubbles as well as support for the theoretical assumptions relied on.


Deep Learning for Financial Applications : A Survey

arXiv.org Machine Learning

Computational intelligence in finance has been a very popular topic for both academia and financial industry in the last few decades. Numerous studies have been published resulting in various models. Meanwhile, within the Machine Learning (ML) field, Deep Learning (DL) started getting a lot of attention recently, mostly due to its outperformance over the classical models. Lots of different implementations of DL exist today, and the broad interest is continuing. Finance is one particular area where DL models started getting traction, however, the playfield is wide open, a lot of research opportunities still exist. In this paper, we tried to provide a state-of-the-art snapshot of the developed DL models for financial applications, as of today. We not only categorized the works according to their intended subfield in finance but also analyzed them based on their DL models. In addition, we also aimed at identifying possible future implementations and highlighted the pathway for the ongoing research within the field.


Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019

arXiv.org Machine Learning

Financial time series forecasting is, without a doubt, the top choice of computational intelligence for finance researchers from both academia and financial industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers came up with various models and a vast number of studies have been published accordingly. As such, a significant amount of surveys exist covering ML for financial time series forecasting studies. Lately, Deep Learning (DL) models started appearing within the field, with results that significantly outperform traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting research, there is a lack of review papers that were solely focused on DL for finance. Hence, our motivation in this paper is to provide a comprehensive literature review on DL studies for financial time series forecasting implementations. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, commodity forecasting, but also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Long-Short Term Memory (LSTM). We also tried to envision the future for the field by highlighting the possible setbacks and opportunities, so the interested researchers can benefit.


Risk Management via Anomaly Circumvent: Mnemonic Deep Learning for Midterm Stock Prediction

arXiv.org Machine Learning

Midterm stock price prediction is crucial for value investments in the stock market. However, most deep learning models are essentially short-term and applying them to midterm predictions encounters large cumulative errors because they cannot avoid anomalies. In this paper, we propose a novel deep neural network Mid-LSTM for midterm stock prediction, which incorporates the market trend as hidden states. First, based on the autoregressive moving average model (ARMA), a midterm ARMA is formulated by taking into consideration both hidden states and the capital asset pricing model. Then, a midterm LSTM-based deep neural network is designed, which consists of three components: LSTM, hidden Markov model and linear regression networks. The proposed Mid-LSTM can avoid anomalies to reduce large prediction errors, and has good explanatory effects on the factors affecting stock prices. Extensive experiments on S&P 500 stocks show that (i) the proposed Mid-LSTM achieves 2-4% improvement in prediction accuracy, and (ii) in portfolio allocation investment, we achieve up to 120.16% annual return and 2.99 average Sharpe ratio.


Compound Probabilistic Context-Free Grammars for Grammar Induction

arXiv.org Machine Learning

We study a formalization of the grammar induction problem that models sentences as being generated by a compound probabilistic context-free grammar. In contrast to traditional formulations which learn a single stochastic grammar, our context-free rule probabilities are modulated by a per-sentence continuous latent variable, which induces marginal dependencies beyond the traditional context-free assumptions. Inference in this grammar is performed by collapsed variational inference, in which an amortized variational posterior is placed on the continuous variable, and the latent trees are marginalized with dynamic programming. Experiments on English and Chinese show the effectiveness of our approach compared to recent state-of-the-art methods for grammar induction from words with neural language models.


Deep Reinforcement Learning

arXiv.org Machine Learning

We discuss deep reinforcement learning in an overview style. We draw a big picture, filled with details. We discuss six core elements, six important mechanisms, and twelve applications, focusing on contemporary work, and in historical contexts. We start with background of artificial intelligence, machine learning, deep learning, and reinforcement learning (RL), with resources. Next we discuss RL core elements, including value function, policy, reward, model, exploration vs. exploitation, and representation. Then we discuss important mechanisms for RL, including attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn. After that, we discuss RL applications, including games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art. Finally we summarize briefly, discuss challenges and opportunities, and close with an epilogue.


Non-Markovian Control with Gated End-to-End Memory Policy Networks

arXiv.org Machine Learning

Partially observable environments present an important open challenge in the domain of sequential control learning with delayed rewards. Despite numerous attempts during the two last decades, the majority of reinforcement learning algorithms and associated approximate models, applied to this context, still assume Markovian state transitions. In this paper, we explore the use of a recently proposed attention-based model, the Gated End-to-End Memory Network, for sequential control. We call the resulting model the Gated End-to-End Memory Policy Network. More precisely, we use a model-free value-based algorithm to learn policies for partially observed domains using this memory-enhanced neural network. This model is end-to-end learnable and it features unbounded memory. Indeed, because of its attention mechanism and associated non-parametric memory, the proposed model allows us to define an attention mechanism over the observation stream unlike recurrent models. We show encouraging results that illustrate the capability of our attention-based model in the context of the continuous-state non-stationary control problem of stock trading. We also present an OpenAI Gym environment for simulated stock exchange and explain its relevance as a benchmark for the field of non-Markovian decision process learning.


Deep Modeling Complex Couplings within Financial Markets

AAAI Conferences

The global financial crisis occurred in 2008 and its contagion to other regions, as well as the long-lasting impact on different markets, show that it is increasingly important to understand the complicated coupling relationships across financial markets. This is indeed very difficult as complex hidden coupling relationships exist between different financial markets in various countries, which are very hard to model. The couplings involve interactions between homogeneous markets from various countries (we call intra-market coupling), interactions between heterogeneous markets (inter-market coupling) and interactions between current and past market behaviors (temporal coupling). Very limited work has been done towards modeling such complex couplings, whereas some existing methods predict market movement by simply aggregating indicators from various markets but ignoring the inbuilt couplings. As a result, these methods are highly sensitive to observations, and may often fail when financial indicators change slightly. In this paper, a coupled deep belief network is designed to accommodate the above three types of couplings across financial markets. With a deep-architecture model to capture the high-level coupled features, the proposed approach can infer market trends. Experimental results on data of stock and currency markets from three countries show that our approach outperforms other baselines, from both technical and business perspectives.