Collaborating Authors


Thinking about 'ethics' in the ethics of AI


Ethics and Information Technology 20 (1): 1-3. 9 -- Page 2 of reference [8] 10 -- See: Winfield, A., Michael, K., Pitt, J., & Evers, V. (2019) Machine ethics: the design and governance of ethical AI and autonomous systems.

Machine ethics: The robot's dilemma


The fully programmable Nao robot has been used to experiment with machine ethics. In his 1942 short story'Runaround', science-fiction writer Isaac Asimov introduced the Three Laws of Robotics -- engineering safeguards and built-in ethical principles that he would go on to use in dozens of stories and novels. They were: 1) A robot may not injure a human being or, through inaction, allow a human being to come to harm; 2) A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law; and 3) A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws. Fittingly, 'Runaround' is set in 2015. Real-life roboticists are citing Asimov's laws a lot these days: their creations are becoming autonomous enough to need that kind of guidance.

Thinking About 'Ethics' in the Ethics of AI – Idees


Therefore, it is essential, in thinking about'ethics', to look beyond the capacities for ethical decision-making and action and the moments of ethical choice and action and into the background of values and the stories behind the choice and action. Similar arguments have been made to affirm the role of social and relational contexts in limiting ethical choices and shaping moral outcomes, and thus the importance to account for them in our ethical reflection.

AI Laws Are Coming


The pace of adoption for AI and cognitive technologies continues unabated with widespread, worldwide, rapid adoption. Adoption of AI by enterprises and organizations continues to grow, as evidenced by a recent survey showing growth across each of the seven patterns of AI. However, with this growth of adoption comes strain as existing regulation and laws struggle to deal with emerging challenges. As a result, governments around the world are moving quickly to ensure that existing laws, regulations, and legal constructs remain relevant in the face of technology change and can deal with new, emerging challenges posed by AI. Research firm Cognilytica recently published a report on Worldwide AI Laws and Regulations that explores the latest legal and regulatory actions taken by countries around the world across nine different AI-relevant areas.

Implementations in Machine Ethics: A Survey Artificial Intelligence

Increasingly complex and autonomous systems require machine ethics to maximize the benefits and minimize the risks to society arising from the new technology. It is challenging to decide which type of ethical theory to employ and how to implement it effectively. This survey provides a threefold contribution. Firstly, it introduces a taxonomy to analyze the field of machine ethics from an ethical, implementational, and technical perspective. Secondly, an exhaustive selection and description of relevant works is presented. Thirdly, applying the new taxonomy to the selected works, dominant research patterns and lessons for the field are identified, and future directions for research are suggested.

Ten Ways the Precautionary Principle Undermines Progress in Artificial Intelligence


Artificial intelligence (AI) has the potential to deliver significant social and economic benefits, including reducing accidental deaths and injuries, making new scientific discoveries, and increasing productivity.[1] However, an increasing number of activists, scholars, and pundits see AI as inherently risky, creating substantial negative impacts such as eliminating jobs, eroding personal liberties, and reducing human intelligence.[2] Some even see AI as dehumanizing, dystopian, and a threat to humanity.[3] As such, the world is dividing into two camps regarding AI: those who support the technology and those who oppose it. Unfortunately, the latter camp is increasingly dominating AI discussions, not just in the United States, but in many nations around the world. There should be no doubt that nations that tilt toward fear rather than optimism are more likely to put in place policies and practices that limit AI development and adoption, which will hurt their economic growth, social ...

Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities Artificial Intelligence

Autonomous Vehicles (AVs) are increasingly embraced around the world to advance smart mobility and more broadly, smart, and sustainable cities. Algorithms form the basis of decision-making in AVs, allowing them to perform driving tasks autonomously, efficiently, and more safely than human drivers and offering various economic, social, and environmental benefits. However, algorithmic decision-making in AVs can also introduce new issues that create new safety risks and perpetuate discrimination. We identify bias, ethics, and perverse incentives as key ethical issues in the AV algorithms' decision-making that can create new safety risks and discriminatory outcomes. Technical issues in the AVs' perception, decision-making and control algorithms, limitations of existing AV testing and verification methods, and cybersecurity vulnerabilities can also undermine the performance of the AV system. This article investigates the ethical and technical concerns surrounding algorithmic decision-making in AVs by exploring how driving decisions can perpetuate discrimination and create new safety risks for the public. We discuss steps taken to address these issues, highlight the existing research gaps and the need to mitigate these issues through the design of AV's algorithms and of policies and regulations to fully realise AVs' benefits for smart and sustainable cities.

The 2018 Survey: AI and the Future of Humans


"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.