Collaborating Authors


Ibeo's LiDAR systems to provide higher autonomy to autonomous vehicles - Geospatial World


Germany's Ibeo Automotive Systems, which specializes in lidar systems for autonomous driving, has signed a contract to provide China's Great Wall Motor Company (GWM) with its latest solid-state design. Ibeo said that it has commissioned key partner ZF Friedrichschafen – which in 2016 acquired a major stake in Ibeo – to produce the sensors and control unit for the "Level 3" system, which will provide partial autonomy. GWM has contracted one of its own subsidiaries to develop the system, which will be based around vertical cavity surface-emitting lasers (VCSELs) produced by Austria's AMS. Ibeo points out that, after signing a letter of intent in 2019, it has already been in pre-development with GWM for a year. Officially, the project started with the signing of an additional contract by the two parties last month.

Know About Data Annotation


Data annotation consists, text annotation, image annotation, and video annotation using the various techniques as per the project requirements and machine learning algorithms compatibility. Data annotation is done to create the training data sets for AI and ML while image annotation is a very important type of image annotation. A task of marking and outlining objects and entities on an image and offering various keywords to classify it which is readable for machines. Presently, Image annotation is growing very fast as image annotation is a very important task as this data helps to create accurate datasets that help computer vision models work in a real-world scenario and get effective results. We annotate & tag images with respective labels & keywords for easy and accurate categorization & help you in creating your customized image annotation services.

How AI can create self-driving data centers


Most of the buzz around artificial intelligence (AI) centers on autonomous vehicles, chatbots, digital-twin technology, robotics, and the use of AI-based'smart' systems to extract business insight out of large data sets. But AI and machine learning (ML) will one day play an important role down among the server racks in the guts of the enterprise data center. AI's potential to boost data-center efficiency – and by extension improve the business – falls into four main categories: Put it all together and the vision is that AI can help enterprises create highly automated, secure, self-healing data centers that require little human intervention and run at high levels of efficiency and resiliency. "AI automation can scale to interpret data at levels beyond human capacity, gleaning imperative insights needed for optimizing energy use, distributing workloads and maximizing efficiency to achieve higher data-center asset utilization," explains Said Tabet, distinguished engineer in the global CTO office at Dell Technologies. Of course, much like the promise of self-driving cars, the self-driving data center isn't here yet.

Hyundai unveils its self-driving car company Motional that will launch as robotaxis by 2022

Daily Mail - Science & tech

Self-driving cars often use a combination of normal two-dimensional cameras and depth-sensing'LiDAR' units to recognize the world around them. However, others make use of visible light cameras that capture imagery of the roads and streets. They are trained with a wealth of information and vast databases of hundreds of thousands of clips which are processed using artificial intelligence to accurately identify people, signs and hazards. In LiDAR (light detection and ranging) scanning - which is used by Waymo - one or more lasers send out short pulses, which bounce back when they hit an obstacle. These sensors constantly scan the surrounding areas looking for information, acting as the'eyes' of the car.

Autonomous Self-driving Cars Working Principles 3D Animation


Self-driving cars rely on hardware and software to drive down the road without user input. The hardware collects the data; the software organizes and compiles it.This animation explains the basic operation of self-driving vehicles. Self-driving cars combine a variety of sensors to perceive their surroundings, such as radar, lidar, sonar, GPS, odometry and inertial measurement units. The challenge for driverless car designers is to produce control systems capable of analyzing sensory data in order to provide accurate detection of other vehicles and the road ahead. Modern self-driving cars generally use Bayesian simultaneous localization and mapping (SLAM) algorithms,[63] which fuse data from multiple sensors and an off-line map into current location estimates and map updates.

Data Annotation- Types, Tools, Benefits, and Applications in Machine Learning


In this article, we have mentioned what data annotation or labeling is, and what are its types and benefits. Besides this, we have also listed the top tools used for labeling images. The process of labeling texts, images, and other objects help ML-based algorithms to improve the accuracy of the output and offer an ultimate user experience. A reliable and experienced machine learning company holds expertise on how to utilize these data annotations for serving the purpose an ML algorithm is being designed for. You can contact such a company or hire ML developers to develop an ML-based application for your startup or enterprise. Read More: How does Machine Learning Revolutionizing the Mobile Applications?

Ethical AI- 10 Crimes that Artificial Intelligence May Encourage


Artificial intelligence (AI) may play an increasingly essential role in criminal acts in the future. From a possibility of fraud to deepfakes AI-driven manipulation may cause harm as well. Neural processing engines (NLPs) can help AI take the darker side if they are deployed for all the wrong means. The infamous case of global celebrities caught in the web of deep fakes is not hidden. With non-ethical hackers gaining funds from the dark web and the underworld, the probability of deepfakes only grow larger.

Weekly Brief: Levandowski – Once Upon Today in America – TU Automotive


Former Waymo and Uber self-driving car-whiz kid, Anthony Levandowski was sentenced last week to 18 months in federal prison for stealing trade secrets. Levandowski will also pay a $95,000 fine and $756,499.22 in restitution to Waymo. He co-founded Google's self-driving car program, now Waymo, in 2009 and served as the program's technical lead until January 2016, when he left to co-found self-driving truck start-up Otto. Seven months later Uber acquired Otto for $680M and named Levandowski the head of its self-driving car division. He was on top of the tech world. He appeared in Wired Magazine as the go-to voice in Silicon Valley for self-driving cars and LiDAR technology.

The role of self-driving vehicles in transforming agriculture


In the near future, autonomous vehicles and artificial intelligence (AI) will play a larger role in how your food is grown. Farming is as old as civilization itself, but with industrialization, modern agriculture grew in scale and sophistication to degrees never seen before in history, especially during the Green Revolution of the 1950s-60s. The sector may be poised to go through another comparable evolutionary step with machines doing important jobs in the fields. The United Nations projects the global population will increase to 9.73 billion people by 2050. While 60 percent of the global population lived in rural areas 35 years ago, about 54 percent now live in urban ones.

Council Post: Not Just The Sprinkles On Top: Baking Ethics Into AI Design


Chief Marketing Officer at Interactions, a conversational AI company, where he oversees all aspects of communications, sales and marketing. Let's face it: When a company develops artificial intelligence (AI) that can offer us a medical diagnosis, care for our elderly grandparents or autonomously drive a vehicle, ethics aren't the flashiest elements to focus on. It's tempting for companies to get caught up in the excitement of creating the latest cutting-edge technology and vow to sort out ethical considerations after the fact. That works just as well, right? Late last year, I had a conversation with Thomas Arnold, a research associate at Tufts' Human-Robot Interaction Lab, for my company's podcast.