Goto

Collaborating Authors

Results


Examining Undergraduate Computer Science Participation in North Carolina

Communications of the ACM

Former U.S. President Obama put forth the initiative'CSForAll' in order to prepare all students to learn computer science (CS) skills and be prepared for the digital economy. The'ForAll' portion of the title emphasizes the importance of inclusion in computing via the participation and creation of tools by and for diverse populations in order to "avoid the consequences of narrowly focused AI (computing and other) applications, including the risk of biases in developing algorithms, by taking advantage of a broader spectrum of experience, backgrounds, and opinions."10 Throughout this report, the Obama administration highlighted the number one priority, and challenge, of the field of CS: to equip the next generation with CS knowledge and skills equitably in preparation for the currency of the digital economy. An increase in government funding is part of the initiative for CSForAll. Of the $4 billion pledged in state funding, only $100 million is sent directly to the K–12 school system.17 The rest of the funding is set aside for research and initiatives involving policymakers to help expand CS opportunities. In just one year, the National Science Foundation (NSF) and Corporation for National and Community Service (CNCS) were called to make $135 million in CS funding available.17 The initiative also called for "expanding access to prior NSF supported programs and professional learning communities through their CS10k that led to the creation of more inclusive and accessible CS education curriculum including "Exploring CS and Advanced Placement (AP) CS Principles."


Why Computing Belongs Within the Social Sciences

Communications of the ACM

Fully appreciating the overarching scope of CS requires weaving more than ethics into the reigning curricula.


Courses bring field sites and labs to the small screen

Science

> Science's COVID-19 coverage is supported by the Pulitzer Center. In a normal summer, Appledore Island, a 39-hectare outcrop 12 kilometers off the coast of Maine and New Hampshire, becomes a classroom. Students from high school to graduate level live in close quarters, eat in a communal dining hall, and work shoulder to shoulder to explore the biology of the shore and waters in 18 courses organized by the Shoals Marine Laboratory. But this summer, with the pandemic surging, students have stayed home. Instead, a skeleton staff on Appledore is streaming field trips and dissections of fish and invertebrates and setting up cameras to gather data for students. Rather than leading students around the island, coastal restoration ecologist Gregg Moore from the University of New Hampshire (UNH), Durham, hauls a backpack full of equipment: “a dual modem with two different cellular carriers, a signal-boosting directional antenna, and a large DC power source,” he says. The equipment allows him to teach 12 remote students—twice the course's usual enrollment—basic techniques of coastal ecology. Moore's is just one of hundreds of lab and field courses forced online by COVID-19—“a seismic shift for those who were not already involved in distance or online education,” says Martin Storksdieck, a science education researcher at Oregon State University, Corvallis. Some researchers worry students will miss out on certain practical and problem-solving skills and won't be able to judge whether the hands-on work of a scientist is a good fit for them. But instructors are developing high-tech ways to simulate the field and lab experiences. “I would say [these courses] are not virtual,” says Jennifer Seavey, director of the Shoals lab. “They are real.” And some advantages are emerging. By lowering geographical and financial barriers, Seavey says, “Virtual field courses are democratizing fieldwork.” The shift has taken ingenuity. “Professors must get creative and use a combination of what is available,” including online videos and free or commercially available online labs, says Mildred Pointer, a physiologist at Howard University who is working on a fall course in general biology. No single tool meets all their needs, Pointer says. As the pandemic gained momentum, emails flew among the leaders of the National Association of Geoscience Teachers. Many U.S. geology majors must take a “capstone” field course to graduate. The cancellation of more than three-quarters of these courses jeopardized graduation for many majors. So the association invited instructors to develop learning objectives that did not depend on students doing fieldwork. It also compiled online exercises to help the 29 field courses that have moved online this summer. Lessons range from “Orienteering in Minecraft” to “Geology of Yosemite Valley,” which includes a 43-stop Google Earth tour with photos and embedded text. Like Moore, geoscientist Jim Handschy wanted to give remote students “as close to the real experience as possible.” He runs Indiana University's Judson Mead Geologic Field Station in Montana, which had enrolled 60 students before classes were canceled in March. He and a few instructors visited each outcrop in their course plan, filmed the rocks and landscape, and captured magnified views of samples. Each week, the class delves deeper into the rock layers and their history. For their final project, students digitally map a 3100-hectare landscape. Shannon Dulin, a geologist at the University of Oklahoma, Norman, who just finished teaching a field course, sees the value of learning how to survey a landscape without setting foot on it. On their class evaluations, her students said they gained unexpected skills. “And these are skills they are going to need on the job,” she adds, as geologists are increasingly being asked to evaluate sites they don't visit. In other fields, hands-on learning takes place in labs. Typically, students work in pairs and share equipment, “so there are a lot of issues about virus transmission,” says Heather Lewandowski, a physicist at the University of Colorado (CU), Boulder. At her university this fall, lab exercises as diverse as building an electrical circuit or analyzing solar flare data will most likely be completely remote. Luckily, physics already had a foot in the virtual lab world—especially at CU. There, back in 2002, Nobel laureate Carl Wieman developed the Physics Education Technology (PhET) Interactive Simulations project to provide “games” that teach students basic physics concepts. The PhET web portal now has 106 physics-based simulations and another 50 or so for other disciplines. It became a go-to place this spring for faculty shifting to online teaching; traffic increased fivefold, says Director Katherine Perkins. In addition, several universities have adopted a handheld device called the iOLab that rents for $50 a semester. With it, students can measure magnetism, light intensity, acceleration, temperature, gravity, and atmospheric pressure, and do basic physics experiments at home. “They like that we trust them and are not just giving them instructions,” says iOLab inventor and physicist Mats Selen at the University of Illinois, Urbana-Champaign. Lewandowski and her colleagues surveyed physics instructors and students about their experiences and posted their findings on arXiv, the physics preprint server, on 2 July. Respondents said online labs work best when projects are open-ended, and online class meetings are kept small. They complained about technical difficulties, students having unequal access to the internet and materials, and longer prep times for both students and instructors. But they reported they could meet most key learning objectives, Lewandowski says, even though “there are lots of things we can't replicate in remote experiments,” such as such as building vacuum chambers or troubleshooting equipment. Some institutions decided this spring that virtual just wouldn't do. The Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, simply canceled its summer courses. “MBL courses are world-renowned for the intensity of the hands-on nature of the lab work,” says Director Nipam Patel. Students spend long hours with famous faculty and do their own projects using organisms collected locally. “We felt that it would be exceedingly difficult to replicate these experiences as a virtual lab course.” Other institutions will try for a mix of in-person and virtual labs. Suely Black, chemistry chair at Norfolk State University, expects only half of his students will be in lab each week this fall, while the other half will be in online classes analyzing data and writing reports. “The crisis has caused us to more critically evaluate what activities students must experience in the lab setting,” he says. Similarly, this fall, organic chemistry students at the University of Michigan (UM), Ann Arbor, will rotate into the lab in small groups, giving each a taste of the hands-on experience. Personal protection equipment is standard for this course and all the work is done in hoods with excellent air exchange, so “they are really fully protected,” says UM biochemist Kathleen Nolta. Storksdieck, an advocate of online learning, questions the value of smelling fumes or using a pipette. “We have to ask whether all the hands-on taught so far was all that great,” he says. Dominique Durand, a biomedical engineer at Case Western Reserve University, says after he put a master's program in biomedical engineering completely online 5 years ago, he concluded that solving problems was more important than hands-on experience. And University of California, Santa Cruz, ecologist Erika Zavaleta thinks virtual courses will open fieldwork to far more students. “There are things you can do online that you can't do in person,” she adds, such as visiting more places than possible by driving. Even so, Handschy laments that his geology students will not have the 12-hour-a-day immersive interactions with each other and faculty that past classes have had. Natalie White, a rising junior at UNH who took Moore's course on Appledore last year, agrees: “You don't have all the time in between when you walk around the island and can ask impromptu questions.” Appledore Island is the source of some her fondest memories. “I think they are missing out on the community.”


500+ Free Online Programming & Computer Science Courses You Can Start Right Away

#artificialintelligence

How To Create a Website in a Weekend! (Project-Centered Course) from State University of New York


Teaching physics to neural networks removes 'chaos blindness'

#artificialintelligence

Researchers from North Carolina State University have discovered that teaching physics to neural networks enables those networks to better adapt to chaos within their environment. The work has implications for improved artificial intelligence (AI) applications ranging from medical diagnostics to automated drone piloting. Neural networks are an advanced type of AI loosely based on the way that our brains work. Our natural neurons exchange electrical impulses according to the strengths of their connections. Artificial neural networks mimic this behavior by adjusting numerical weights and biases during training sessions to minimize the difference between their actual and desired outputs.


Abolish the #TechToPrisonPipeline

#artificialintelligence

The authors of the Harrisburg University study make explicit their desire to provide "a significant advantage for law enforcement agencies and other intelligence agencies to prevent crime" as a co-author and former NYPD police officer outlined in the original press release.[38] At a time when the legitimacy of the carceral state, and policing in particular, is being challenged on fundamental grounds in the United States, there is high demand in law enforcement for research of this nature, research which erases historical violence and manufactures fear through the so-called prediction of criminality. Publishers and funding agencies serve a crucial role in feeding this ravenous maw by providing platforms and incentives for such research. The circulation of this work by a major publisher like Springer would represent a significant step towards the legitimation and application of repeatedly debunked, socially harmful research in the real world. To reiterate our demands, the review committee must publicly rescind the offer for publication of this specific study, along with an explanation of the criteria used to evaluate it. Springer must issue a statement condemning the use of criminal justice statistics to predict criminality and acknowledging their role in incentivizing such harmful scholarship in the past. Finally, all publishers must refrain from publishing similar studies in the future.


The Data Science Life Cycle

Communications of the ACM

Victoria Stodden (vcs@stodden.net) is a statistician and associate professor at the University of Illinois at Urbana-Champaign, IL, USA. This material is based upon work supported by National Science Foundation Award #1941443.


How 'Learning Engineering' Hopes to Speed Up Education - EdSurge News

CMU School of Computer Science

This story was published in partnership with The Moonshot Catalog. In the late 1960s, Nobel Prize-winning economist Herbert Simon posed the following thought exercise: Imagine you are an alien from Mars visiting a college on Earth, and you spend a day observing how professors teach their students. Simon argued that you would describe the process as "outrageous." "If we visited an organization responsible for designing, building and maintaining large bridges, we would expect to find employed there a number of trained and experienced professional engineers, thoroughly educated in mechanics and the other laws of nature that determine whether a bridge will stand or fall," he wrote in a 1967 issue of Education Record. "We find no one with a professional knowledge in the laws of learning, or the techniques for applying them," he wrote. Teaching at colleges is often done without any formal training. Mimicry of others who are equally untrained, instinct, and what feels right tend to provide the guidance. Reading back over a textbook or taking lecture notes with a highlighter at the ready is often done by students, for instance, but these practices have proven of limited merit, and in some cases even counterproductive in aiding recall. And while many educators believe that word problems in math class are tougher for students to grasp than ones with mathematical notation, research shows that the opposite is true.


Top 10 Data Science Experts to Follow on Twitter

#artificialintelligence

The application of artificial intelligence (AI) and machine learning to the business and IT, from intelligent IT operations (AIOps) to service management to software testing, is keeping the data revolution moving at lightning speed. That's why data science remains a popular concentration for computer science students who have the talent for math and analytics. And it's why more organizations are clamoring for data scientists who can help make decisions faster and put their businesses ahead of competitors. In today's age data science expertise with desirable knowledge in relatable fields is rare to find and therefore we have enlisted top 10 data science experts who you can follow in Twitter. Hilary is the Founder of Fast Forward Labs, a machine intelligence research company, and the Data Scientist in Residence at Accel.


Online app to visualize, interpret spatial data for forest planning and conservation

#artificialintelligence

The Intelligent GeoSolutions (IGS) team at the University of Maine's Center for Research on Sustainable Forests (CRSF) has released a free interactive mapping tool, the Forest Ecosystem Status a … Trends (ForEST) app, to provide online decision support to private and public forest managers, natural resource agencies, conservation organizations and other stakeholders. With the current outbreak of eastern spruce budworm expanding south from Quebec, up-to-date information about resource conditions and near-term risk are needed to coordinate mitigation actions in response to the outbreak and related market conditions. The ForEST app is the culmination of three years of research and software development by the IGS team in partnership with UMaine's Advanced Computing Group. The interdisciplinary project supported two graduate students in the School of Computing and Information Science, each of whom served as lead developer, as well as undergraduate computer science students who worked as team programmers. The interactive web interface is designed to provide near real-time information about changing forest landscape conditions resulting from the spruce budworm outbreak and ongoing management.