Collaborating Authors


Real World Games Look Like Spinning Tops Machine Learning

This paper investigates the geometrical properties of real world games (e.g. Tic-Tac-Toe, Go, StarCraft II). We hypothesise that their geometrical structure resemble a spinning top, with the upright axis representing transitive strength, and the radial axis, which corresponds to the number of cycles that exist at a particular transitive strength, representing the non-transitive dimension. We prove the existence of this geometry for a wide class of real world games, exposing their temporal nature. Additionally, we show that this unique structure also has consequences for learning - it clarifies why populations of strategies are necessary for training of agents, and how population size relates to the structure of the game. Finally, we empirically validate these claims by using a selection of nine real world two-player zero-sum symmetric games, showing 1) the spinning top structure is revealed and can be easily re-constructed by using a new method of Nash clustering to measure the interaction between transitive and cyclical strategy behaviour, and 2) the effect that population size has on the convergence in these games.

When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey Artificial Intelligence

With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability simultaneously, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when an trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy and transferability to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image super-resolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation and person re-identification. Then, we further review the performance of RL and meta-learning from the aspects of accuracy and transferability in autonomous systems, involving robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems.

Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey Artificial Intelligence

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Jelly Bean World: A Testbed for Never-Ending Learning Artificial Intelligence

Machine learning has shown growing success in recent years. However, current machine learning systems are highly specialized, trained for particular problems or domains, and typically on a single narrow dataset. Human learning, on the other hand, is highly general and adaptable. Never-ending learning is a machine learning paradigm that aims to bridge this gap, with the goal of encouraging researchers to design machine learning systems that can learn to perform a wider variety of inter-related tasks in more complex environments. To date, there is no environment or testbed to facilitate the development and evaluation of never-ending learning systems. To this end, we propose the Jelly Bean World testbed. The Jelly Bean World allows experimentation over two-dimensional grid worlds which are filled with items and in which agents can navigate. This testbed provides environments that are sufficiently complex and where more generally intelligent algorithms ought to perform better than current state-of-the-art reinforcement learning approaches. It does so by producing non-stationary environments and facilitating experimentation with multi-task, multi-agent, multi-modal, and curriculum learning settings. We hope that this new freely-available software will prompt new research and interest in the development and evaluation of never-ending learning systems and more broadly, general intelligence systems.

Q-Learning for Mean-Field Controls Machine Learning

Multi-agent reinforcement learning (MARL) has been applied to many challenging problems including two-team computer games, autonomous drivings, and real-time biddings. Despite the empirical success, there is a conspicuous absence of theoretical study of different MARL algorithms: this is mainly due to the curse of dimensionality caused by the exponential growth of the joint state-action space as the number of agents increases. Mean-field controls (MFC) with infinitely many agents and deterministic flows, meanwhile, provide good approximations to $N$-agent collaborative games in terms of both game values and optimal strategies. In this paper, we study the collaborative MARL under an MFC approximation framework: we develop a model-free kernel-based Q-learning algorithm (CDD-Q) and show that its convergence rate and sample complexity are independent of the number of agents. Our empirical studies on MFC examples demonstrate strong performances of CDD-Q. Moreover, the CDD-Q algorithm can be applied to a general class of Markov decision problems (MDPs) with deterministic dynamics and continuous state-action space.

On the Measure of Intelligence Artificial Intelligence

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms Artificial Intelligence

Recent years have witnessed significant advances in reinforcement learning (RL), which has registered great success in solving various sequential decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively long history, and has recently re-emerged due to advances in single-agent RL techniques. Though empirically successful, theoretical foundations for MARL are relatively lacking in the literature. In this chapter, we provide a selective overview of MARL, with focus on algorithms backed by theoretical analysis. More specifically, we review the theoretical results of MARL algorithms mainly within two representative frameworks, Markov/stochastic games and extensive-form games, in accordance with the types of tasks they address, i.e., fully cooperative, fully competitive, and a mix of the two. We also introduce several significant but challenging applications of these algorithms. Orthogonal to the existing reviews on MARL, we highlight several new angles and taxonomies of MARL theory, including learning in extensive-form games, decentralized MARL with networked agents, MARL in the mean-field regime, (non-)convergence of policy-based methods for learning in games, etc. Some of the new angles extrapolate from our own research endeavors and interests. Our overall goal with this chapter is, beyond providing an assessment of the current state of the field on the mark, to identify fruitful future research directions on theoretical studies of MARL. We expect this chapter to serve as continuing stimulus for researchers interested in working on this exciting while challenging topic.

IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks Artificial Intelligence

The IKEA Furniture Assembly Environment is one of the first benchmarks for testing and accelerating the automation of complex manipulation tasks. The environment is designed to advance reinforcement learning from simple toy tasks to complex tasks requiring both long-term planning and sophisticated low-level control. Our environment supports over 80 different furniture models, Sawyer and Baxter robot simulation, and domain randomization. The IKEA Furniture Assembly Environment is a testbed for methods aiming to solve complex manipulation tasks. The environment is publicly available at

A Narration-based Reward Shaping Approach using Grounded Natural Language Commands Artificial Intelligence

While deep reinforcement learning techniques have led to agents that are successfully able to learn to perform a number of tasks that had been previously unlearnable, these techniques are still susceptible to the longstanding problem of reward sparsity. This is especially true for tasks such as training an agent to play StarCraft II, a real-time strategy game where reward is only given at the end of a game which is usually very long. While this problem can be addressed through reward shaping, such approaches typically require a human expert with specialized knowledge. Inspired by the vision of enabling reward shaping through the more-accessible paradigm of natural-language narration, we develop a technique that can provide the benefits of reward shaping using natural language commands. Our narration-guided RL agent projects sequences of natural-language commands into the same high-dimensional representation space as corresponding goal states. We show that we can get improved performance with our method compared to traditional reward-shaping approaches. Additionally, we demonstrate the ability of our method to generalize to unseen natural-language commands.

Autonomous Industrial Management via Reinforcement Learning: Self-Learning Agents for Decision-Making -- A Review Artificial Intelligence

Industry has always been in the pursuit of becoming more economically efficient and the current focus has been to reduce human labour using modern technologies. Even with cutting edge technologies, which range from packaging robots to AI for fault detection, there is still some ambiguity on the aims of some new systems, namely, whether they are automated or autonomous. In this paper we indicate the distinctions between automated and autonomous system as well as review the current literature and identify the core challenges for creating learning mechanisms of autonomous agents. We discuss using different types of extended realities, such as digital twins, to train reinforcement learning agents to learn specific tasks through generalization. Once generalization is achieved, we discuss how these can be used to develop self-learning agents. We then introduce self-play scenarios and how they can be used to teach self-learning agents through a supportive environment which focuses on how the agents can adapt to different real-world environments.