Goto

Collaborating Authors

Results


Leveraging Multi-Source Weak Social Supervision for Early Detection of Fake News

arXiv.org Machine Learning

Social media has greatly enabled people to participate in online activities at an unprecedented rate. However, this unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation. Given the rapidly evolving nature of news events and the limited amount of annotated data, state-of-the-art systems on fake news detection face challenges due to the lack of large numbers of annotated training instances that are hard to come by for early detection. In this work, we exploit multiple weak signals from different sources given by user and content engagements (referred to as weak social supervision), and their complementary utilities to detect fake news. We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances. Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.


SAFE: Similarity-Aware Multi-Modal Fake News Detection

arXiv.org Machine Learning

Effective detection of fake news has recently attracted significant attention. Current studies have made significant contributions to predicting fake news with less focus on exploiting the relationship (similarity) between the textual and visual information in news articles. Attaching importance to such similarity helps identify fake news stories that, for example, attempt to use irrelevant images to attract readers' attention. In this work, we propose a $\mathsf{S}$imilarity-$\mathsf{A}$ware $\mathsf{F}$ak$\mathsf{E}$ news detection method ($\mathsf{SAFE}$) which investigates multi-modal (textual and visual) information of news articles. First, neural networks are adopted to separately extract textual and visual features for news representation. We further investigate the relationship between the extracted features across modalities. Such representations of news textual and visual information along with their relationship are jointly learned and used to predict fake news. The proposed method facilitates recognizing the falsity of news articles based on their text, images, or their "mismatches." We conduct extensive experiments on large-scale real-world data, which demonstrate the effectiveness of the proposed method.


Fake News Detection with Different Models

arXiv.org Machine Learning

Problem: The problem we intend to solve is modelled as a binary classification problem. We intend to find the relation in the words and the context in which the words appear within the text and how it could be used to classify texts as real (negative cases) or fake (positive). High-level description: Many news sources contain false information and are therefore "fake news." Because there is a lot of "fake news" articles and fabricated, misleading information on the web, we would like to determine which texts are legitimate (real) and which are illegitimate (fake). To solve this as a binary classification problem, we investigate the effectiveness of different Natural Language Processing models which are used to convert character based texts into numeric representations such as TFIDF, CountVectorizer and Word2Vec models and find out which model is able to preserve most of the contextual information about the text used in a fake news data set and how helpful and effective it is in detecting whether the text is a fake news or not.


Generating Representative Headlines for News Stories

arXiv.org Artificial Intelligence

Millions of news articles are published online every day, which can be overwhelming for readers to follow. Grouping articles that are reporting the same event into news stories is a common way of assisting readers in their news consumption. However, it remains a challenging research problem to efficiently and effectively generate a representative headline for each story. Automatic summarization of a document set has been studied for decades, while few studies have focused on generating representative headlines for a set of articles. Unlike summaries, which aim to capture most information with least redundancy, headlines aim to capture information jointly shared by the story articles in short length, and exclude information that is too specific to each individual article. In this work, we study the problem of generating representative headlines for news stories. We develop a distant supervision approach to train large-scale generation models without any human annotation. This approach centers on two technical components. First, we propose a multi-level pre-training framework that incorporates massive unlabeled corpus with different quality-vs.-quantity balance at different levels. We show that models trained within this framework outperform those trained with pure human curated corpus. Second, we propose a novel self-voting-based article attention layer to extract salient information shared by multiple articles. We show that models that incorporate this layer are robust to potential noises in news stories and outperform existing baselines with or without noises. We can further enhance our model by incorporating human labels, and we show our distant supervision approach significantly reduces the demand on labeled data.


Ginger Cannot Cure Cancer: Battling Fake Health News with a Comprehensive Data Repository

arXiv.org Machine Learning

Nowadays, Internet is a primary source of attaining health information. Massive fake health news which is spreading over the Internet, has become a severe threat to public health. Numerous studies and research works have been done in fake news detection domain, however, few of them are designed to cope with the challenges in health news. For instance, the development of explainable is required for fake health news detection. To mitigate these problems, we construct a comprehensive repository, FakeHealth, which includes news contents with rich features, news reviews with detailed explanations, social engagements and a user-user social network. Moreover, exploratory analyses are conducted to understand the characteristics of the datasets, analyze useful patterns and validate the quality of the datasets for health fake news detection. We also discuss the novel and potential future research directions for the health fake news detection.


To Transfer or Not to Transfer: Misclassification Attacks Against Transfer Learned Text Classifiers

arXiv.org Machine Learning

Transfer learning --- transferring learned knowledge --- has brought a paradigm shift in the way models are trained. The lucrative benefits of improved accuracy and reduced training time have shown promise in training models with constrained computational resources and fewer training samples. Specifically, publicly available text-based models such as GloVe and BERT that are trained on large corpus of datasets have seen ubiquitous adoption in practice. In this paper, we ask, "can transfer learning in text prediction models be exploited to perform misclassification attacks?" As our main contribution, we present novel attack techniques that utilize unintended features learnt in the teacher (public) model to generate adversarial examples for student (downstream) models. To the best of our knowledge, ours is the first work to show that transfer learning from state-of-the-art word-based and sentence-based teacher models increase the susceptibility of student models to misclassification attacks. First, we propose a novel word-score based attack algorithm for generating adversarial examples against student models trained using context-free word-level embedding model. On binary classification tasks trained using the GloVe teacher model, we achieve an average attack accuracy of 97% for the IMDB Movie Reviews and 80% for the Fake News Detection. For multi-class tasks, we divide the Newsgroup dataset into 6 and 20 classes and achieve an average attack accuracy of 75% and 41% respectively. Next, we present length-based and sentence-based misclassification attacks for the Fake News Detection task trained using a context-aware BERT model and achieve 78% and 39% attack accuracy respectively. Thus, our results motivate the need for designing training techniques that are robust to unintended feature learning, specifically for transfer learned models.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Learning from Fact-checkers: Analysis and Generation of Fact-checking Language

arXiv.org Artificial Intelligence

In fighting against fake news, many fact-checking systems comprised of human-based fact-checking sites (e.g., snopes.com and politifact.com) and automatic detection systems have been developed in recent years. However, online users still keep sharing fake news even when it has been debunked. It means that early fake news detection may be insufficient and we need another complementary approach to mitigate the spread of misinformation. In this paper, we introduce a novel application of text generation for combating fake news. In particular, we (1) leverage online users named \emph{fact-checkers}, who cite fact-checking sites as credible evidences to fact-check information in public discourse; (2) analyze linguistic characteristics of fact-checking tweets; and (3) propose and build a deep learning framework to generate responses with fact-checking intention to increase the fact-checkers' engagement in fact-checking activities. Our analysis reveals that the fact-checkers tend to refute misinformation and use formal language (e.g. few swear words and Internet slangs). Our framework successfully generates relevant responses, and outperforms competing models by achieving up to 30\% improvements. Our qualitative study also confirms that the superiority of our generated responses compared with responses generated from the existing models.


Detecting Deception in Political Debates Using Acoustic and Textual Features

arXiv.org Artificial Intelligence

ABSTRACT We present work on deception detection, where, given a spoken claim, we aim to predict its factuality. While previous work in the speech community has relied on recordings from staged setups where people were asked to tell the truth or to lie and their statements were recorded, here we use real-world political debates. Thanks to the efforts of fact-checking organizations, it is possible to obtain annotations for statements in the context of a political discourse as true, half-true, or false. Lab, which was limited to text, we performed alignment to the corresponding videos, thus producing a multimodal dataset. We further developed a multimodal deep-learning architecture for the task of deception detection, which yielded sizable improvements over the state of the art for the CLEF-2018 Lab task 2. Our experiments show that the use of the acoustic signal consistently helped to improve the performance compared to using textual and metadata features only, based on several different evaluation measures. We release the new dataset to the research community, hoping to help advance the overall field of multimodal deception detection.


What is this Article about? Extreme Summarization with Topic-aware Convolutional Neural Networks

Journal of Artificial Intelligence Research

We introduce "extreme summarization," a new single-document summarization task which aims at creating a short, one-sentence news summary answering the question "What is the article about?". We argue that extreme summarization, by nature, is not amenable to extractive strategies and requires an abstractive modeling approach. In the hope of driving research on this task further: (a) we collect a real-world, large scale dataset by harvesting online articles from the British Broadcasting Corporation (BBC); and (b) propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans on the extreme summarization dataset.