
24

Purposive Understanding

R. C. Schank and G. DeJong
Computer Science Department
Yale University, USA

1. INTRODUCTION

For the past ten years we have been working on the problem of getting a com-

puter to understand natural language. In the beginning, work centred on the

problem of parsing. We built an early version of a parser that mapped from

English into a language-free representation of the meaning of input sentences

(Schank and Tesler, 1969). Simultaneously we worked on the meaning represen-

tation itself. We developed Conceptual Dependency which represents meaning

as a network of concepts independent of the actual words that might be used to

express those concepts (Schank, 1969).
Over the years the parser and the representation evolved as we began to

understand the complexity of the problem with which we were dealing. Con-
ceptual Dependency began to rely more on underlying primitives for the repre-
sentation of the similarities in meaning that transcend the particular words of
a language (Schank, 1975). Similarly, our parser developed into a program that
relied less on syntactic information to aid it than on predictions that could be
obtained by exploiting the properties of the conceptual representation into
which we were mapping (Riesbeck, 1975).

We began at this point to worry about the possible use of the conceptual
parse that we were producing. We built an inference program (Schank and Rieger,
1974) that exploited the properties of the primitive concepts uncovered by the
parser and derived new information from them. These inferences then added
information to the conceptual content extracted by the parser. One problem
with the inferencer was that it was hard to control. It made inferences without
regard for their need. This was part of Rieger's (1975) theory of inferences,
but its effect on our programs was to make them rather purposeless and slow.

At this point we developed a theory of understanding of connected text.
Part of the problem that we had with controlling inference was due to the fact
that we had been working on sentences taken out of context. Sentences con-

459

NATURAL LANGUAGE

sidered in the context of the rest of the text in which they were contained in a

sense pointed the way towards the appropriate and necessary inferences. Thus,

an inference was considered to be crucial if it helped to tie together the sentences

of a text. The end product of such an inference procedure was a connected
causal chain of events that represented the implicit and explicit information in a

text (Schank, 1974).
At this point we began to program a computer understanding system that

would attempt to process input texts. An item crucial to our ability to accomplish

this task was what we called a script. A script is a frequently repeated causal
chain of events that describes a standard situation. In understanding, when it is

possible to notice that one of these standard event chains has been initiated,

then it is possible to understand predictively. That is, if we know we are in a
restaurant then we can understand where an "order" fits with what we just
heard, who might be ordering what from whom, what preconditions (menu,
sitting down) might have preceded the "order", and what is likely to happen

next. All this information comes from the restaurant script.
The method of processing text outlined above is analgous to that used in

parsing. Once we have a well-defined idea of what belongs in the conceptual
representation we can determine what is missing and go back into the text to

look for it. Thus in both parsing and script application, processing is bottom up
until enough information is available to allow the switch to top down.

The program we built to understand texts by the use of scripts is called
SAM and is described in Schank et al. (1975), Schank and Abelson (1977) and

Cullingford (1977). The program works on the domain of newspaper stories.
It does a tremendous amount of detailed processing including inferencing,
reference specification, disambiguation, and memory simulation. The program
can produce summaries, long paraphrases, translations into other languages as

well as answer questions about the input story.
SAM is a very complicated program. It attempts to understand exhaustively

and completely. Because of this SAM has two major problems: First, it is rather
slow. Although there are ways in which it could be speeded up, it is not at this
point the kind of program one would want to have running all the time on one's
system. Second, it is a bad simulation of how people actually read newspapers.
We built SAM to test out our ideas about how people read as well as to attempt
to get a program to read. Obviously there are many kinds of texts besides news-
papers, but there is a common basis to reading that transcends what you read.
However, we began to wonder if there wasn't something special about newspaper
reading that we could exploit so as to build a faster and thus more useful program.

One obvious thing is that people tend to read newspapers with a purpose.
They do not read every article nor do they read every word of the articles
that they choose to read. People skim until they decide to read in detail.

It seemed reasonable to us to attempt to model this skimming process, using
what we had learned about the process of understanding in general. In other
words we set out to build a program that would be an extremely top down

460

SCHANK AND DeJONG

system. It would know what it wanted to know or what it was interested in and
go out and look for it. Finding what it wanted would cause it to generate new
goals to find related information that would amplify what it had found. This
purposive understanding program we named FRUMP for Fast Reading and
Understanding Memory program.

UNDERSTANDING WITH A PURPOSE
Although there undoubtedly are people who read every word in their daily
newspaper, most people do not. The usual procedure is to scan the paper for

items of interest, perhaps by starting in a relevant section of the paper, or else

by starting randomly. When an interesting headline is found then the reader

begins to read. He may read in several modes:

(1) If the story is a completely new one, he may read every word until he

becomes tired or the article is finished.
(2) If the story is an update of a currently running story, he may scan for

the new information present in the story.
(3) If the story is of a generally continuing nature, he may go quickly

through it, looking for items relevant to his particular interests.
(4) If the story is in the reader's domain of special interest, he may read

every word and make all possible inferences.

These four modes of reading exemplify four very different processes. Com-
pletely new stories occur somewhat less frequently than the others. Examples
might be earthquake reports, plane crashes, assassinations, the introduction of
a new bill in the legislature, a special announcement by a political figure. Mode
1 stories have usually a "one-time-only" nature, or else they are the beginning
of a continuing story.

Mode 2 stories usually contain little if any new information for someone
who has kept up to date on the story. Newspapers are written in such a fashion
that people who have not kept up can still figure out what was going on. Thus,
for example, recent long-running stories in the news such as the Patty Hearst
kidnapping or the Philadelphia Legionaires' disease, continually retell the initial
setup of the story in each subsequent report. Readers who already know these
facts skim them to search for new developments. Often these developments
are told in the headline and lead paragraph, and readers will stop there.

Mode 3 stories are probably the most common type of newspaper story.
Continuing situations such as the Middle East situation or the energy shortage
are problems about which there are usually one or two new developments per
week in peak periods, drifting down to a few items a month in slower periods.
Some of these kinds of updates occur only once or twice a year in a situation
that is very long-term, for example, stories about high taxes and socialism in
Sweden.

To read a mode 3 story, a reader must have an interest in the situation in
general, along with one or more specific interests related to the situation. Thus

461

NATURAL LANGUAGE

a businessman might be interested in the possibilities for trade with Israel and
nothing else about the Middle East. Similarly, a socialist might want to read
only about the successes of the government in Sweden and care little about
party infighting, for example. Such a goal-oriented reader is easier to simulate
than a more passive reader. If we know what we are looking for, we can go in
and find it. We need not be disturbed by the complications involved in reading
where we have no interest. An obvious advantage for computers here is that we
also need not put in all possible knowledge for a situation, where situation is

defined very broadly. Rather, by limiting our domains of reading ability to
those that coincide with what we are interested in, we solve both the problem
of too broad domains causing unbounded amounts of knowledge to be needed
and the problem of having to do a lot of useless work to read stories or parts
of stories in which we have no interest.

Mode 4 corresponds most to what we normally assume to be the process
of reading. However, as we have been arguing, this "normal" reading mode
may not occur all that often in newspaper reading. It might occur for reading
columnists, or reports of a game in which a favourite team is playing, or other
special interest kinds of things.

The four modes correspond to our programs as follows:

mode 1 — this is what SAM does
mode 2 — this is what FRUMP does in update mode
mode 3 — this is what we are designing FRUMP to do
mode 4 — this is what the ultimate reading program would do.

An important point here is that there is a class of stories that we described

as being mode 1 that are best read by a FRUMP-type program rather than by a
SAM-type program. That is, new events such as car accidents or earthquakes
need not always be read for all the detail they contain. Thus, we decided that
FRumP's first task would be in the area of mode 1 stories. Next we worked on
updating those stories by quick skimming (mode 2). We are aiming eventually
for mode 3 ability in FRUMP.

THE GENERAL STRATEGY

We will assume that a reader should approach a newspaper story as follows:

1. Reading headlin■
We have four options here:

(a) quit and forget
(b) quit and remember
(c) go on in a careful detailed manner
(d) go on and skim.

2. Skimming

(a) old story recognized: fill in and update information

462

SCHANK AND DeJONG

(b) new story: scan for concepts predicted by the domain of the story
(c) any story: scan for key concepts of special interest.

3. Updates

(a) look for the continuation of a previously instantiated script

(b) look for unfulfilled expectations from the last reading

(c) look for update-specific problems (for example, the death toll mounts

in an earthquake each day).

4. Special interest concepts

(a) instantiate scripts specific to special interest
(b) begin reading carefully when a key concept is found.

A FRUMP RUN

With the above in mind we began to build FRUMP. FRUMP was designed to

work on mode 1 and mode 2 kinds of news stories. In theory, when it becomes

interested is something it could send control to SAM; however, we have not

actually tried to implement this.
To demonstrate its understanding, FRUMP produces summaries of what it

has read. Since its basis is language-free Conceptual Dependency type scripts, its

summaries can come out in any language, thus Russian and Spanish summaries

are produced in addition to English ones. FRUMP's scanning ability is based on
abstracting out the principles behind SAM. It is by no means a key-word parser.

Its parser is connected to the scripts that it has which describe news situ-
ations. It only looks at what it is interested in, ignoring the rest. It is thus a
very fast program. FRUMP can understand and produce a brief summary of a
150-word news article taken directly from a newspaper in about 5 seconds of
CPU time on a DEC KA10 processor.

To give an idea of FRUMP'S capabilities we will now show an example of
a run of FRUMP:

Sample run of FRUMP

INPUT:

10-11 CHIHUAHUA, MEXICO, — A PASSENGER TRAIN

CARRYING TOURISTS, INCLUDING SOME AMERICANS, COLLIDED

WITH A FREIGHT TRAIN IN THE RUGGED SIERRA MADRE OF

NORTHERN MEXICO, KILLING AT LEAST SEVENTEEN PERSONS
AND INJURING 45, THE POLICE REPORTED TODAY.

THEY SAID THAT AT LEAST FIVE OF THE INJURED WERE
AMERICANS, AND THERE WERE UNOFFICIAL REPORTS THAT ONE
OF THE DEAD WAS FROM NEW YORK CITY.

SOME OF THE PASSENGERS WERE TRAVEL AGENTS, MOST
FROM MEXICO CITY, MAKING THE TRIP AS PART OF A TOURISM
PROMOTION, THE POLICE SAID.

463

NATURAL LANGUAGE

THE AMERICAN SOCIETY OF TRAVEL AGENTS HAD BEEN
MEETING IN GUADALAJARA, THOUGH IT WAS NOT KNOWN
WHETHER ANY OF THE GROUP WERE ABOARD THE TRAIN.

ONE OBSERVATION CAR ON THE RAILROAD TO THE PACIFIC
TUMBLED INTO A 45 FOOT CANYON WHEN THE PASSENGER TRAIN
SMASHED INTO THE FREIGHT YESTERDAY AFTERNOON NEAR
THE VILLAGE OF PITTOR REAL ABOUT 20 MILES WEST OF
CHIHUAHUA CITY AND 200 MILES SOUTH OF THE UNITED STATES
BORDER, THE POLICE SAID.

THEY SAID THAT RESCUE WORKERS WERE STILL TRYING TO
PRY APART THE CAR'S WRECKAGE TO REACH PASSENGERS
TRAPPED INSIDE. THE RESCUE SQUADS COULD NOT USE CUTTING
TORCHES ON THE WRECKAGE BECAUSE SPILLED DIESEL FUEL
MIGHT IGNITE, THE POLICE REPORTED.

SELECTED SKETCHY SCRIPT $VEHACC1DENT

DONE PROCESSING
SATISFIED REQUESTS:

((<=> ($DATEL1NE LOC &DLOC MONTH &MON DAY &DAY)))
&DLOC

CLASS (*LOCATION)
LOCALE (*MEXICO*)
SATISFIED ((10) (11))

&M ON

&DAY

NUMBER (10)
SATISFIED (NIL (11))
CLASS (*NUMBER)

NUM BER (11)
SATISFIED (NIL NIL)
CLASS (#NUMBER)

((<=> ($VEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC)))
&VEH

&OBJ

CLASS (*PHYSOBJ)
TYPE (*VEHICLE*)
SROLE (&TRAIN)
SCRIPT ($TRA1N)
SATISFIED ((10) (11))

CLASS (*PHYSOBJ)
TYPE (*VEHICLE*)
SROLE (&TRAIN)
SCRIPT ($TRA1N)
SATISFIED ((10) (11))

464

&LOC
CLASS
LOCALE
SATISFIED

((ACTOR &DEADGRP
&DEADGRP

NUMBER
SATISFIED
CLASS

((ACTOR &HURTGRP
&HURTGRP

NUMBER
SATISFIED
CLASS

SCHANK AND DeJONG

(#LOCATION)
(*MEXICO*)
((10) (11))

TOWARD (*HEALTH* VAL (-10))))

(17)
((10) (11))
(#PERSON)

TOWARD (*HEALTH* VAL (—LT10))))

(45)
((10) (11))
(#PERSON)

CPU TIME = 7.522 SECONDS

SUMMARY:
17 PEOPLE WERE KILLED AND 45 WERE INJURED WHEN A TRAIN
CRASHED INTO A TRAIN IN MEXICO.

HOW FRUMP WORKS

The basis of FRUMP is the script. However, rather than using a script like

SAM'S, FRUMP uses what we call a sketchy script. The crucial difference is
that sketchy scripts have far fewer conceptual dependency representation (only
those corresponding to the most important events in SAM's scripts) and more
often than not, the causal connections between conceptualizations are not
included. The result is that F RUMP understands most of what is important to
understand in news articles and works very much faster than SAM. The article
of several paragraphs that takes SAM a quarter of an hour to understand can be
processed by FRUMP in under ten CPU seconds.

When FRUMP begins to read a newspaper story, it already knows what
facts it wants to find. For each type of newspaper story, FRUMP has a list of
expected facts that it wants to see. These expectations are called "requests". The
collection of all the requests for one type of story makes up the "sketchy script"
for that story type. In the remainder of the paper, when we refer to a script we
will mean FRUMP'S sketchy scripts, not S Am's scripts unless otherwise noted.

In understanding an article, FRUMP must select a script and then try to
find occurrences in the article of the facts represented by the requests. Requests
are in Conceptual Dependency format and contain unfilled slots. These slots are
called "script variables". Understanding an article consists of finding the infor-
mation corresponding to a request in the text and filling in the slots (binding
the script variables) in that request. When an instance of one of the requests is

465

NATURAL LANGUAGE

found in the text and the script variables have been bound, that request is
said to be satisfied. The process of satisfying the requests of a script is called
instantiating that script. The number of requests in each script is small. The
requests correspond to the most important information in a particular type of
story. For example, the vehicle accident script used in the sample run above
contains four requests. The first request in the vehicle accident script will be
satisfied when FRUMP finds the type of vehicle in the accident, the object that
the vehicle collided with, and the location of the accident. FRUMP can satisfy
the second request by finding the number of people killed; the third by the
number injured, and the fourth by who was at fault in the accident. When all
of these requests are satisfied by a story. FRUMP knows all that it wants to
know about that news event. The rest of the article will be ignored.

When FRUMP is given a new article to understand it skims the first para-
graph for identifying information. This information is used to find the appro-
priate script to use to understand the article. Once the script is identified,
FRUMP begins skimming the article.

FRUMP is composed of two conceptually different parts: a parser and a
script applier. The parser FRUMP employs was inspired by Becker's phrasal
lexicon (Becker, 1975) which was presented at the TINLAP conference in 1975
but unfortunately was not actively pursued by him after that. The parser parses
phrases from the text into Conceptual Dependency representations. The script
applier then matches these conceptual representations against the requests in
the script. When a match is found, the fillers in the parser representation are
used to bind the script variables occurring in the request.

FRUMP uses the same language-free system of representation as is used
by Riesbeck's parser (Riesbeck, 1974) which is used in SAM. Yet FRUMP'S
parser is very different from the parser in the SAM system. The Riesbeck parser
parses an entire sentence at a time. There is very little communication allowed
with the script applier of SAM during parsing; FRUMP'S parser is concerned
only with parsing parts of a sentence. In SAM the parser and script applier are
very distinct. As a result, each does its thing with little influence over the other.
FRUMP, however, is much more integrated. The parser and script applier do
different tasks, but the precise division between the two is fuzzy. The advantage
of the fuzziness is that the two modules can communicate with each other
freely. This allows the script applier to control parsing to an extent not possible
in SAM. FRUMP'S script applier can tell the parser which of several interpre-
tations is correct or even to stop trying to parse the current input text.

THE CONCEPTUAL FRAGMENT PARSER

FRUMP'S 'parser is very top down. It is driven by the high-level requests of
the sketchy scripts and works very closely with the script applier. The parsing
strategy is to find conceptual fragments from the input text being skimmed that
will satisfy all or part of some script request. Important properties of the actual
conceptual referents in the text are then copied to variables in the conceptual

466

SCHANK AND DeJONG

representation from FRUMP'S dictionary. Finally, this conceptual representation
of the meaning of the input text is returned as the parse. Dictionary entries for
each word are made up of a list of meaning fragments in conceptual dependency
format. For each different meaning there is a series of context tests that must be
satisfied before this meaning can be realized as the parse. There are also instruc-
tions on how to bind variable role fillers in the conceptual dependency repre-
sentation. FRUMP has two dictionaries: one is the conceptual fragment dictionary
described below; the other contains information about objects and forms and
tenses of entries in the other dictionary.

The following is the conceptual fragment dictionary entry for "strike".

((BKWRDS (MI (TYPE (*VEHICLE*))))

(FRWRDS (M2 (CLASS (#PHYSOBJ))))

((MERGE PI MI) (MERGE P2 M2))

((<=> ($VEHACCIDENT VEH PI OBJ P2))))

The context tests are arranged in two lists which search backward and
forward respectively from the entry word for words that will satisfy the context
tests. If a context test is a single word, that word must be present in the input
text. If the context test is a list, it is satisfied by finding a word in the input
text that has all the properties specified, and copying them to a temporary
variable. For example, the first line in the above dictionary entry searches
backward from a form of the word "strike" for a vehicle. If it finds one, all the
properties of that vehicle are copied to the temporary variable MI, and the
forward tests are evaluated. The forward tests require that the word "strike" be
followed by a physical object. If all the context tests are satisfied, the properties
of the temporary variables are copied to the role fillers in the conceptual
representation. This representation is then returned as the parse.

The output of FRUMP'S parser is not modified English as it is in Colby's
system (Parkinson, Colby, and Faught, 1976), but a language-free conceptual
representation. The advantage of a language-free representation is that different
phrases with the same meaning will be parsed into the same representation.
This in turn means that the test to see if a request is satisfied by a parse is very
efficient. It also makes generating summaries in different languages no harder
than generating the summary in English.

EXAMPLE OF A SKETCHY SCRIPT

One of the scripts that FRUMP has is a vehicle accident script. All vehicle
accidents, whether they are train wrecks, boat collisions, plane crashes etc., have
many things in common. In a vehicle accident story there is always a vehicle and
there is always an object that it collides with. There is always the possibility that
a number of people are killed or injured. In addition, in newspaper stories, the
cause of the collision is often reported. These are the important points of a
vehicle accident, and these are what FRUMP tries to find out when reading a
vehicle accident article. There are, of course, many other things that can happen

467

NATURAL LANGUAGE

in a collision. For example, the injured people are often taken to a hospital, for
auto crashes there is often a policeman called to the scene etc. These are less
important facts, and unless there is some special reason for noticing them, a
human skimming the article will usually miss them. FRUMP also ignores these
lesser points. The vehicle accident script currently consists of four requests at
three important levels.

Request RI
value: (((<=> ($VEHACC1DENT VEH &VEH OBJ &OBJ LOC &LOC)))

((EQU (<=>) $VEHACC1DENT))
(PROP (<=> VEH) *VEHICLE* TYPE)
(PROP (<=> OBJ) #PHYSOBJ CLASS)
(PROP (<=> LOC) *LOCATION CLASS))

importance: 0

Request R2
value: (((ACTOR &DEADGRP TOWARD (*HEALTH* VAL (-10))))

((EQU (TOWARD) *HEALTH*)
(EQU (TOWARD VAL) —10))
(PROP (ACTOR) #PERSON CLASS))

importance: 1

Request R3
value: (((ACTOR &HURTGRP TOWARD (*HEALTH* VAL (—LTIO))))

((EQU (TOWARD) *HEALTH*)
(EQU (TOWARD VAL) —LTIO))
(PROP (ACTOR) #PERSON CLASS))

importance: 1

Request R4
value: (((<=> ($FAULT ACTOR &ACTOR)))

((EQU (<=>) $FAULT))
(PROP (<=> ACTOR) #PERSON CLASS))

importance: 2

Before FRUMP'S processing can be understood in detail, one must under-
stand the requests of its sketchy scripts. As a typical example of FRUMP's
requests consider request R2 above. The first line of the request is the Con-
ceptual Dependency representation of the request. &DEADGRP is one of
variables of the vehicle accident script. (*HEALTH* VAL (-10)) is the Con-
ceptual Dependency representation for dead. When the variable &DEADGRP
is bound to something, the meaning of this Conceptual Dependency repre-
sentation is that the something it gets bound to is dead. The next three lines
are constraint tests that are applied to the output of FRUMP'S parser. If the
parser yields a representation that passes all of these tests, the script variables
contained in the request are bound to the corresponding conceptual role fillers
in the parser representation, and the request is satisfied. The first test in the

468

SCHANK AND DeJONG

example request checks that the filler of the TOWARD role in the parser repre-

sentation is *HEALTH*. The second test checks that the filler of the VAL

slot in the filler of the TOWARD slot is —10. The third test checks that the

filler of the ACTOR slot (that is the thing that the parser proposes should be

bound to &DEADGRP in the request) is of conceptual type PERSON. This

means that the only thing that can be bound to &DEADGRP is a person or

group of people. In fact the parser is set up so that only groups will be generated

in this slot. One of the important properties of groups is the number of things

in them. When &DEADGRP is bound to something, all of its properties are copied

over to the script variable &DEADGRP. Therefore one of the pieces of infor-

mation available from this request after it is satisfied (and indeed the most

important datum of this request) is the number of people who were killed.

The observant reader will have realized that the first two tests in the request are

set off from the third one by parentheses. This is to group the tests by whether

or not they involve one of the script variables. The first two tests in the example

do; the third does not. The grouping makes the understanding process more

efficient. This will become clear in the next section.

HOW FRUMP UNDERSTANDS

Once FRUMP has the correct script to use, it starts to scan the article, looking

for conceptual fragment words. When it finds one, it retrieves the dictionary

entry for that word. Recall that the dictionary entry consists of a list, each
element of which contains context tests and a representation that corresponds

to one meaning. FRUMP tries to realize each meaning one at a time until all the
context tests are satisfied or the dictionary list is exhausted.

The processing of each dictionary word sense or possible meaning consists

of first making a list of all the outstanding requests the conceptual repre-
sentation of this meaning might satisfy. This is done to avoid evaluating all of
the context tests of a word sense that has no chance of satisfying a request,
and to limit the number of requests that the parse needs to be matched against.
A request is included in the list only if all of the first group of role-filler tests of
this request are satisfied. Remember that the first group role-filler tests are all
tests that do not reference one of the script variables. Therefore these tests can
be made before the script variables or the variables in the context tests are
bound. For example, if while processing a vehicle accident story, the parser
found a word that indicated ((ACTOR P1 TOWARD (*HEALTH* VAL (-10))))

might be a parse, the list of possible requests would be just (R2). The tests

that do not look at script variables require that the <=> filler for RI be
$VEHACC1DENT, the filler of the VAL slot in the TOWARD slot must be

—LT10 for R3, and the <=> slot in R4 must be filled with $FAULT. Thus
the only request that might be satisfied is R2. If the list is empty, there is no
need to evaluate any of the context tests; it cannot satisfy a high-level request.
At this point, none of the context tests have been evaluated, so that this word
sense might not be correct. However, the list is very cheap to create and usually

469

NATURAL LANGUAGE

cuts down on processing later. This is the reason for separating the request
tests that reference script variables from those that do not. If the list contains
at least one element, the context tests for this meaning are evaluated one at a
time. If there is at least one context test that fails, this sense is not a proper
reading of the text. If all the word sense fail, the word that was found was a
false alarm, and FRUMP reverts to the original scan. If all the context tests
are satisfied, the conceptual representation is filled out with the variables bound
while evaluating the context tests. This representation is then matched against
elements of the list of potentially satisfiable requests made earlier. If one
matches, the script variables in that request are bound to the role fillers of the
representation, the request is marked with the date of the article, and it is
marked as satisfied. At this point, FRUMP can dynamically modify the sketchy
script. Associated with each script variable can be a set of demons which are
checked when the script variable is satisfied. They can make arbitrary tests and
load or delete requests. Thus, it is possible, for example, to have FRUMP look
for aid to a country if it is hit by a severe earthquake but not if it was a mild
quake. This amounts to high-level inferencing and makes FRUMP much more
efficient by eliminating the need to process large numbers of very specialized
requests, the specialized requests are not loaded until they are needed. After
processing the satisfied request, FRUMP continues its scan for conceptual
fragment words. If no request fulfils the detailed match, FRUMP reverts
to the original text scan. Notice that there were three ways in which parsing
can be discontinued; in these cases FRUMP does just enough work to realize
it is working on a bad parse. This is in a large way responsible for FRUMP's
efficiency in processing and is directly attributable to the broad communication
between the parser and the control structure that makes up the script applier.

When FRUMP has finished processing an article, some requests will have
been satisfied but, very likely, others will not. The script has been partly
instantiated. This partly instantiated script is then stored on a disk file. If
FRUMP should later come across an article updating this news event, it can
then retrieve this partly instantiated script and continue satisfying requests
where it left off.

DECIDING ON A SCRIPT

Presented with an article FRUMP chooses one of three following ways to
process it. First, it can decide that the article is an update of a news event
that it has previously processed and select the partly instantiated script from
that article to understand with. Second, it can decide that it is the first article
of a news event and select the appropriate virgin script. Third, it can fail to
recognize the article as one of the types of events for which there exists a
script, in which case it will ignore the entire article. The choice is made from
information gleaned from a preliminary scan of the article's first paragraph.
This scan is made with a special set of active requests.

There is for each script one key request which, if satisfied in the text,

470

SCHANK AND DeJONG

strongly indicates that its script is appropriate to understand the article.

For example, the key request for the vehicle accident script is ((<=>

($VEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC))): here &VEH,.&OBJ,

and &LOC are script variables which get bound to the vehicle, the object

collided with, and the location of the accident respectively. Furthermore, owing

to the style of newspaper writers, this request seems always to be satisfied in

the first paragraph (and usually the first sentence). The special set of requests

is therefore composed of the key request from each virgin script that FRUMP

has.
The first paragraph is skimmed until one key request is satisfied. FRUMP

now knows which script type the story is and also some information about

the story. In the case of the vehicle accident it knows what the vehicle and

object are and where the accident occurred. This information is used to decide

if the current article refers to a previous news event or a new one. After a
sketchy script is partly instantiated by the first article of an event, it is stored

away. The type of script it is and the key information about the event are

stored specially. After a new article's first paragraph is skimmed, the key

information gained is matched against all stored scripts of the same type. If a

stored, partly-instantiated script is found that matches, it is brought into core

and used to understand the new article. If no previous script is matched, a

virgin script with no requests satisfied is used to understand the story. When

it is finished, FRUMP writes this partly instantiated script out on the disk

file so that any update articles that it finds will have access to it.

UPDATING STORIES

There are three main types of update that FRUMP must handle. These types

correspond to pieces of information and not to articles, so that an update

article can cause more than one type of update to be made. The update types

differ from one another by how the new information is added to the partly
instantiated sketchy script.

In the first kind of update, information is only added to a sketchy script.
That is, a new article is found to refer to the same news event as previous articles

and it supplies information that satisfies a request that was never before satisfied.

This is the simplest type of update and is handled as follows: After FRUMP
finishes an article, the sketchy script is written out to a, file with the key

identifying information discussed above. Some of the requests will have been

satisfied and some will not. All the requests, whether satisfied or not, are written

on the file. When this partly instantiated script is read back into core, the

unsatisfied requests are, of course, still active. On reading the update article

then, this type of update is treated exactly as if it were a virgin script. When a

previously unsatisfied request is satisfied, it is marked as satisfied and tagged

with the date of the newspaper.

In the second type of update, the information in the update article replaces

471

NATURAL LANGUAGE

the information in an already satisfied request. In this type, generally only one
request is changed at a time, and the change is a direct modification of one
or more role-fillers of the request. All requests, whether satisfied or not, are
processed during understanding as if they are not. When the role-fillers of a
request are to be bound, the date that they were last bound is compared to
the date of the current article. If the current article is later, the fillers are
updated. If not, the information from the current article is thrown away.

The third type of update is the most complicated. There are many news
event types where an arbitrary number of similar sub-events can occur. These
sub-events themselves may be rather complex. For example, an earthquake
may be followed by any number of aftershocks. Each aftershock may cause
death and injury. The recent fighting in Lebanon was made up of a number of
individual clashes. Oil from a leaking tanker can wash ashore in several places
at different times, each causing different kinds and varying degrees of damage
to the shoreline. There are three things to notice about such updates. First, they
add new rather than replace old information. Therefore, they must be pro-
cessed by as yet unsatisfied requests. Second, the structure of each sub-event
can be complex so that it cannot be represented by one request alone. Third,
since the initial requests for each sub-event must be the same, there is the
possibility for any number of copies of the same request to exist in a script
each satisfied by a different sub-event. For example, an earthquake and two
of its aftershocks may all cause people to be killed. In this earthquake script,
then, there will be three copies of the request ((ACTOR &DEADGRP <=>
(*HEALTH* VAL (-10)))) each satisfied with a different &DEADGRP.

The solution to these problems of the third update type is to organize the
requests corresponding to sub-events into bundles. The script will always have
one fresh copy of the bundle active and completely uninstantiated. When a bundle
is about to be partly instantiated (that is, when at least one of its requests is
to be satisfied) a copy of the uninstantiated bundle is made and these new
requests are added to the script. Then F RUMP continues instantiating the bundle.
This enables FRUMP to understand any number of the sub-events. Of
course, an article could update an update article (for example, revising the death
toll caused by an aftershock of an earthquake). If one of the requests in a
particular bundle has to be changed, FRUMP must first identify the bundle.
After that the update can be handled exactly as the type two updates above.

Bundles are subsections or scenes of scripts. They are very similar to scripts
in many ways. In particular, they can always be differentiated by key infor-
mation. This key information is often simply the date or location of the sub-
event. For example, a newspaper report might update the death toll from
last Thursday's aftershock of the earthquake that struck Eastern Turkey five
days ago. Five days ago, Eastern Turkey, and the fact that it is an earthquake,
are used to find the original script. Within this script, FRUMP then finds the
bundle of requests for the proper aftershock by matching the date of each
to the date last Thursday. When it finds the correct bundle, FRUMP finds the

472

SCHANK AND DeJONG

request corresponding to the number of people killed and updates the proper
script variable.

More FRUMP output

The following news stories were taken directly from the New York Times and
the NewHaven Register. The Spanish summarizer was written by Jaime Carbonell
and the Russian summarizer by Anatole Gershman.

INPUT:
2 — 4 ITALY — —A SEVERE EARTHQUAKE STRUCK

NORTHEASTERN ITALY LAST NIGHT, COLLAPSING ENTIRE

SECTIONS OF TOWNS NORTHEAST OF VENICE NEAR THE

YUGOSLAV BORDER, KILLING AT LEAST 95 PERSONS AND

INJURING AT LEAST 1000, THE ITALIAN INTERIOR MINISTRY

REPORTED.

IN THE CITY OF UDINE ALONE, A GOVERNMENT SPOKESMAN

SAID THEY FEARED AT LEAST 200 DEAD UNDER THE DEBRIS.

THE CITY, ON THE MAIN RAILROAD BETWEEN ROME AND VIENNA,

HAS A POPULATION OF ABOUT 90000.

THE SPOKESMAN FOR THE CARIBINIERI, THE PARAMILITARY

NATIONAL POLICE FORCE, SAID THERE HAD BEEN REPORTS OF

SEVERE DAMAGE FROM HALF A DOZEN TOWNS IN THE

FOOTHILLS OF THE ALPS, WITH WHOLE FAMILIES BURIED IN

BUILDING COLLAPSES. COMMUNICATIONS WITH A NUMBER OF

POINTS IN THE AREA WERE STILL OUT.

THE EARTHQUAKE WAS RECORDED AT 6.3 ON THE RICHTER

SCALE, WHICH MEASURES GROUND MOTION. IN POPULATED

AREAS, A QUAKE REGISTERING 4 ON THAT SCALE CAN CAUSE

MODERATE DAMAGE, A READING OF 6 CAN BE SEVERE AND A

READING OF 7 INDICATES A MAJOR EARTHQUAKE.

SELECTED SKETCHY SCRIPT $EARTHQUAKE

DONE PROCESSING
SATISFIED REQUESTS:

((<=> ($DATEL1NE LOC &DLOC MONTH &MON DAY &DAY)))
&DLOC

CLASS (#LOCATION)
LOCALE (*ITALY*)

SATISFIED ((2) (4))

&MON

&DAY

NUMBER

SATISFIED
CLASS

NUMBER

SATISFIED

CLASS

(2)

(NIL (4))
(#NUMBER)

(4)

(NIL NIL)

(#N UMBER)

473

NATURAL LANGUAGE

((<=> ($EARTHQUAKE LOC & LOC SEVERITY &RIC)))

&LOC

CLASS (#LOCATION)

LOCALE (*ITALY*)

SATISFIED ((2) (4))

&RIC

NUMBER (6.3)

SATISFIED ((2) (4))

CLASS (#NUMBER)

((ACTOR &DEADGRP TOWARD (*HEALTH* VAL (-10))))

&DEADGRP

NUMBER (95)

SATISFIED ((2) (4))
CLASS (#PERSON)

((ACTOR &HURTGRP TOWARD (*HEALTH*) VAL (-LT10))))
&HURTGRP

NUMBER (1000)

SATISFIED ((2) (4))
CLASS (#PERSON)

CPU TIME = 9.440 SECONDS

RUSSIAN SUMMARY:
ZEMLETRYASENIE SREDNEI SILY PROIZOSHLO V ITALII. CILA

ZEMLETRYASENIYA OPREDELENA V 6.3 BALLA PO SHKALE

RIKHTERA. PRI ZEMLETRYASENII 95 CHELOVEK BYLO UBITO I

1000 RANENO.

SPANISH SUMMARY:

HUBO 95 MUERTOS Y 1000 HERIDOS EN UN TERREMOTO FUERTE

EN ITALIA. EL TERREMOTO MIDIO 6.3 EN LA ESCALA RICHTER.

ENGLISH SUMMARY:

95 PEOPLE WERE KILLED AND 1000 WERE INJURED IN A SEVERE

EARTHQUAKE THAT STRUCK ITALY. THE QUAKE REGISTERED

6.3 ON THE RICHTER SCALE.

INPUT:

11 - 29 KATHEKANI, KENYA,'- AT LEAST 12 PEOPLE WERE

REPORTED KILLED EARLY TODAY WHEN AN EXPRESS TRAIN RAN

ONTO A FLOODED BRIDGE WHOSE RAILS HAD BEEN SWEPT AWAY,

CRASHED THROUGH IT AND PLUNGED INTO A RIVER IN KENYA.

THE OFFICIAL PRESS AGENCY REPORTED THAT THE DEATH

TOLL WAS AT LEAST 12 AND THAT 70 WERE INJURED IN WHAT

RAILROAD OFFICIALS CALLED THE WORST PASSENGER TRAIN

DISASTER IN EAST AFRICAN HISTORY.

474

SCHANK AND DeJONG

SELECTED SKETCHY SCRIPT $VEHACC1DENT

DONE PROCESSING

SATISFIED REQUESTS:

((<=> ($DATELINE LOC &DLOC MONTH &MON DAY &DAY)))

&DLOC
CLASS

LOCALE

SATISFIED

&MON

&DAY

NUMBER

SATISFIED

CLASS

NUMBER

SATISFIED

CLASS

(#LOCATION)

(*KENYA*)

((11) (29))

(11)

(NIL (29))

(*NUMBER)

(29)
(NIL NIL)

(#NUMBER)

((<=> (SVEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC)))

&VEH

&OBJ

&LOC

CLASS
TYPE

SROLE
SCRIPT

SATISFIED

CLASS

CONENT

CPRPS

SATISFIED

CLASS

LOCALE

SATISFIED

(#PHYSOBJ)

(*VEHICLE*)

(&TRAIN)

($TRAIN)

((11) (29))

(#PHYSOBJ)

(*RIVER*)

(*WATER*)

((11) (29))

(#LOCATION)

(*KENYA*)

((11) (29))

((ACTOR &DEADGRP TOWARD (*HEALTH* VAL (-10))))
&DEADGRP

NUMBER (12)

SATISFIED ((11) (29))

CLASS (#PERSON)

((ACTOR &HURTGRP TOWARD (*HEALTH* VAL (—LT10))))
&HURTGRP

NUMBER (70)
SATISFIED ((11) (29))
CLASS (#PERSON)

475

NATURAL LANGUAGE

CPU TIME = 9.539 SECONDS

RUSSIAN SUMMARY:

V ZHELEZNODOROZHNOI KATASTROFE V KEN!! 12 CHELOVEK

BYLO UBITO I 70 RANENO.

SPANISH SUMMARY:

HUBO UN ACCIDENTE DE FERROCARRIL EN KENYA QUE RESULTO

EN 12 MUERTOS Y 70 HERIDOS.

ENGLISH SUMMARY:

A TRAIN CRASH CLAIMED 12 LIVES AND INJURED 70 IN KENYA.

INPUT:

3 -4 PISA, ITALY - OFFICIALS TODAY SEARCHED FOR THE

BLACK BOX FLIGHT RECORDER ABOARD AN ITALIAN AIR FORCE

TRANSPORT PLANE TO DETERMINE WHY THE CRAFT CRASHED

INTO A MOUNTAINSIDE KILLING 44 PERSONS.

THEY SAID THE WEATHER WAS CALM AND CLEAR, EXCEPT

FOR SOME GROUND LEVEL FOG, WHEN THE UIS MADE HERCULES

C130 TRANSPORT PLANE HIT MT. SERRA MOMENTS AFTER

TAKEOFF THURSDAY.
THE PILOT, DESCRIBED AS ONE OF THE COUNTRY'S MOST

EXPERIENCED, DID NOT REPORT ANY TROUBLE IN A BRIEF

RADIO CONVERSATION BEFORE THE CRASH.

SELECTED SKETCHY SCRIPT $VEHACCIDENT

DONE PROCESSING

SATISFIED REQUESTS:

((<=> ($DATELINE LOC &DLOC MONTH &MON DAY &DAY)))

&DLOC

CLASS (#LOCATION)

LOCALE (*ITALY*)

SATISFIED ((3) (4))

&MON

NUMBER (3)
SATISFIED (NIL (4))

.CLASS (#NUMBER)

&DAY
NUMBER (4)

SATISFIED (NIL NIL)

CLASS (#NUMBER)

((<=> (SVEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC)))

476

&VEH

&OBJ

&LOC

CLASS (#PHYSOBJ)

TYPE (*VEHICLE*)
SROLE (&AIRPLANE)

SCRIPT ($A1RPLANE)
SATISFIED ((3) (4))

CLASS (#PHYSOBJ)

CONENT (*MOUNTAIN*)
SATISFIED ((3) (4))

SATISFIED ((3) (4))
CLASS #LOCATION

LOCALE (*ITALY*)

SCHANK AND DeJONG

((ACTOR &DEADGRP TOWARD (*HEALTH*) VAL (-10))))
&DEADGRP

NUMBER (44)

SATISFIED ((3) (4))

CLASS (#PERSON)

CPU TIME = 6.778 SECONDS

RUSSIAN SUMMARY:

V AVIATSIONNOI KATASTROFE V ITALII 44 CHELOVEK BYLO

UBITO.

SPANISH SUMMARY:

HUBO 44 MUERTOS CUANDO UN AVION CHOCO CONTRA UN

MONTANA EN ITALIA.

ENGLISH SUMMARY:
44 PEOPLE WERE KILLED WHEN AN AIRPLANE CRASHED INTO A
MOUNTAIN IN ITALY.

CONCLUSION

We are now hooking up FRUMP to the United Press International wire service.
We intend to produce a system that will know about the interests of the users
logged in to it and will provide them with summaries of events that they care
about as soon as they happen.

Our intention is to produce a practical working Artificial Intelligence
program. We do not see FRUMP as the solution to all the complexities of
language understanding. It is certainly not a replacement for SAM in anything
except an immediate practical sense. However, it does have some theoretical
validity of its own. When people skim they use some but not all of the reading
techniques available to them. FRUMP, in a sense, has abstracted out the essence

477

NATURAL LANGUAGE

of SAM. Viewed in that way it is analogous to how skimming abstracts out the
essence of reading. That is, FRUMP both works and tests out a theory. We view
it as a success.

Acknowledgements

The research described in this paper was supported by the Advanced Projects Agency of the
Department of Defence and monitored by the Office of Naval Research under Contract
N0014-75-C-1111.

REFERENCES

Becker, J. (1975). The phrasal lexicon. Proc. Theoretical Issues in Natural Language Pro-
cessing Workshop, pp. 70-73. Cambridge, Mass.: Bolt, Beranek and Newman:

Cullingford, R. E. (1977). Organizing World Knowledge for Story Understanding by Com-
puter. Ph.D. thesis. Department of Engineering and Applied Science, Yale University.

Parkinson, R., Colby, M., and Faught, W. (1976). Conversational Language Comprehension
Using Integrated Pattern-Matching and Limited Parsing. Technical Report, UCLA
Psychiatry Department, Los Angles, California.

Rieger, C. J. (1975). Conceptual memory and inference. Conceptual Information Pro-
cessing, pp.157-268 (ed. R. C. Schank). Amsterdam: North Holland Publishing
Company.

Rieger, C. K. (1975). Conceptual analysis. In Conceptual Information Processing, pp.
83-155 (ed. Schank, R. C.). Amsterdam: North Holland Publishing Company.

Riesbeck, C. K. (1974). Computational Understanding: Analysis of Sentences and Context
Ph.D. thesis. Stanford University. Also Al Memo AIM-238. Stanford: Artificial Intelli-
gence Laboratory, Stanford University.

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding: An
Inquiry into Human Knowledge Structures. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Schank, R. C. and Yale, A. I. (1975). Project. SAM — A Story Understander. Research
Report 43, Computer Science Department, Yale University.

Schank, R. C. (1975). Conceptual Information Processing. Amsterdam: North Holland
Publishing Company.

Schank, R. C. (1974). Understanding Paragraphs. Technical Report. Castagnola, Switzerland:
Instituto per p,li studi Semantici e Cognitivi.

Schank, R. C. and Tesler, L. (1969). A conceptual parser for natural language. Proceedings
of the International Joint Conference on Artificial Intelligence, Washington D.C., pp.
569-578 (eds. D. E. Walker and L. M. Norton). Bedford, Mass.: The Mitre Corporation.

Schank, R. C. (1969). A Conceptual Dependency Representation for a Computer-oriented
Semantics. PhD. thesis. University of Texas.

Schank, R. C. and Rieger, C. K. (1974). Inference and the computer understanding of
natural language. Artificial Intelligence, Vol. 5, pp. 373-412.

478

