
8

NEW DEVELOPMENTS OF THE
GRAPH TRAVERSER
JAMES DORAN
EXPERIMENTAL PROGRAMMING UNIT
DEPARTMENT OF MACHINE INTELLIGENCE AND PERCEPTION
UNIVERSITY OF EDINBURGH

INTRODUCTION

This paper describes some recent experiments with a computer program which
is capable of useful, or at least interesting, application to a number of different
problems. The program, the Graph Traverser, has been described in detail
in a previous paper (Doran & Michie 1966). However, we shall here need to
view the basic algorithm from a rather more general standpoint, correspond-
ing to an actual extension in the flexibility of the program, so that a restate-
ment of what the program can do is desirable.
The Graph Traverser, which is written in Elliott 4100 Algol, is potentially

applicable to problem situations which can be idealised in the following way
(see for comparison Newell and Ernst 1965). There is given a set of 'states',
which are connected by a set of 'transformations', or, as I shall call them,
'operators'. An operator will be applicable to some, but not necessarily all,
of the states and two distinct operators applied to either the same or distinct
states may each give the same state as end-product. Most of the concepts to
be used here which are related to the use of operators were discussed in a
paper by Michie (1967).
This type of problem situation is represented in Fig. 1 by a graph (in the

mathematical sense) to which have been added various labels. In this repre-
sentation states correspond to nodes of the graph, and operators to labelled
arcs—a, b, c in this quite arbitrary case. Notice that associated with each
node (or state) is a triad of integers. These represent the way in which the

119

MACHINE LEARNING AND HEURISTIC PROGRAMMING

program handles the 'structure' that is typically associated with a state, for

with each node it holds an integer matrix, the dimensions of which will

depend upon the particular problem. It is this structure which embodies the

additional information which the program uses to carry out a heuristically
directed search for a solution rather than a systematic search.
What 'idealised' problems can be posed in this context? It is convenient to

recognise two types (for a fuller classification see Doran & Michie 1966).
These we may call informally 'state-search' problems and 'path-search'
problems. In a state-search problem we wish to find a state with some parti-
cular property. For example, and this will be relevant later on, we might seek

the state for which some associated cost was smallest. In Fig. 1 we might seek

(2j,1)
•

•

(3,3,3)

(1l0)
•

•

(4,1,2)

FIG. 1. An example of a problem graph. The nodes correspond to
problem states, and the arcs to operators (transformations).

the node for which the sum of the triad of integers was least. In a path-search
problem we seek a path between two states, that is, a sequence of operators
which tate us from one state to another. Referring again to Fig. 1, we might
require a path from the node (3, 3, 3) to the node (1, 1, 0). A solution would
be (a, a, c). Note that the sequence of states (3, 3, 3), (4, 1,2), (1,3, 1), (1, 1,0)

does not immediately give the corresponding operators (though the converse
is true) and thus is a solution of a weaker kind. To appreciate this point the
reader must realise that although in Fig. 1 he can see the whole of the problem
graph laid out before him, the program must work from the definitions of

the states and the operators, and the application of the latter to the former.
Before describing the Graph Traverser search method, it must be emphasised

that these problems are always to be regarded from a practical rather than a

theoretical standpoint. Actual solutions must be found to actual problems

within a reasonable search time. A further point is that in a given problem

situation the way in which the states and operators are defined is likely to be

of great importance. Although this aspect of the matter is outside the present
program schema, it must not be overlooked. In particular, for a state-search

problem, the definition of the operator set may be an important part of the

method of solving a problem, rather than of the problem situation itself.
120

DORAN

THE GRAPH TRAVERSER SEARCH METHOD

The program proceeds by selecting an initial state either as directed or at ran-
dom or, in a path-search problem, from the specification of the problem, and
then by applying operators to this state and to the new states it thus generates,
until the fragment of the problem graph which it has built up provides the in-
formation needed to find the solution. The structure which is constructed by
the program is a 'tree', since although the program may generate a state more
than once, it will only store it once, and will only remember one path to it.
When growing its search tree the program repeatedly encounters two

problems. The first is to decide to which state next to apply operators. The
second is, having chosen a state, to decide which operators actually to apply.
The program's reaction to the first problem involves the 'evaluation function',
and to the second the 'develop procedure'.

Briefly, the evaluation function must assign to each state encountered a
value based on its structure. When a state must be selected for development
(i.e., application of operators) that with the smallest value (smallest rather
than largest since in path-search problems the value may often be identified
with estimated distance from the 'goal') is chosen, avoiding states which have
already been fully developed.
When a state has been chosen for development the develop procedure must

decide two things, (i) which operators of those applicable actually to apply (this
is the process of operator selection) and then having applied them (ii) whether
or not to mark the state as fully developed. If a state is marked as fully
developed then it will never be chosen for development again. If it is not so
marked then the program leaves itself the option of taking up development
of that state again. A state such as this which is neither quite undeveloped
nor fully developed we call partially developed.
Perhaps the simplest thing to do when developing a state is to apply all

possible operators and be done with it. The earliest work with the Graph
Traverser used this approach, which does not involve partial development.
At the other extreme, at most one operator may be applied in a development,
the order of application being fixed but arbitrary, and the state being con-
sidered as partially developed until the last operator has been applied. This
approach, which has an important application to be discussed later in the
paper, is illustrated in Fig. 2, which shows the program searching the problem
graph of Fig. 1. The arrows are reversed corresponding to the actual structure
of the search tree. The task is to find the node the sum of whose integers is least.
The program arbitrarily selects (4, 1, 2) as its starting point. As indicated
above it applies just one operator during a development, and will not mark a
node fully developed until all the operators which are applicable there have
actually been applied. The order of application is always a, b, c. The value
assigned to a node by the evaluation function is just the sum of its integers.
The letters U, P, F indicate the status of a node—undeveloped, partially
developed, or fully developed.

121

MACHINE LEARNING AND HEURISTIC PROGRAMMING

It is a consequence of this algorithm that the program carries out repeated

developments of a node until either a "descendant" node of lower value is

found, or no more applicable operators are available. In the latter event a

"disconnected" development will ensue. Notice in (f) of Fig. 2 that when a

(a) e (4,1,2)
U7

(b)
U5

P7

(c)
U4

P7

(d)

F4

(f)

(g)

P7

F4

U3

F4

P7 F3

P7

Fib. 2. The Graph Traverser searching the graph of Fig. I. Successive diagrams
show successive developments. The node from which the search starts is ringed for
clarity. The letters U, P, F indicate the status of a node—undeveloped, partially
developed, or fully developed. The figures give the values calculated for the nodes.
The arcs are reversed since in the search tree the program stores a pointer to the ancestor

of a node, not pointers to its descendants.

node already on the tree is generated its regeneration is ignored. Had the new

encounter provided a shorter path to the node than that already known, the

tree would have been modified accordingly. The search ultimately succeeds,

but whether the best node would be found in practice depends upon the

particular rule used to decide when to terminate the search.
122

DORAN

This brings us to the most important point that these various decisions
which the program must make depend heavily upon guidance from the user
in a particular problem situation, although ways of making the program
itself improve its decisions have been suggested elsewhere (Doran 1967,
Michie 1967). In practice the develop and evaluate procedures, and any other
routines which need to be respecified, are programmed for each application
and embedded within the program proper.

THE TRAVELLING SALESMAN PROBLEM

The Travelling Salesman is one of the best known problems of operations
research. It is very simply stated. A salesman, starting at a given city must
visit n — 1 other cities, each just once, before returning to base. There is a
fixed distance to travel between any particular pair of cities and he wishes
the whole tour to be as short as possible. The problem is to specify an efficient
way for him to find the shortest tour. The word 'efficient' here is crucial. One
can find the shortest tour by calculating the length of all possible tours. But

if there are n cities, there are

possible tours, so that this approach is

usually much too laborious.
This version of the problem corresponds to marking a score or so points

on a piece of paper, and connecting them up so that the tour goes through
each just once, and is as short as possible in length. More generally, we stop
thinking in terms of cities or points on a plane surface, and simply say that
a cost is assigned to travelling between each pair of 'cities' (independent of
direction) in some way which does not concern us.

Linear programming and dynamic programming methods can be applied
to the Travelling Salesman problem but only with difficulty, particularly if
the number of cities involved is more than 20, say. Yet the problem is one of
real importance, and in modified and disguised forms occurs repeatedly in
industrial and economic situations. We may, for example, think of ships
visiting ports, or less obviously, of an automatic press punching a series of
holes in specified locations in pieces of sheet metal.
Shen Lin (1965) and G. M. Roe (1966) have recently explored with con-

siderable success heuristic search methods which provide near-optimal tours,
but avoid spending much time trying to turn a near-optimal tour into an
optimal tour. By an 'optimal tour' I mean any tour with least possible cost.

Lin's approach, which is the one I shall discuss here (Roe's is broadly
similar), defines for the Travelling Salesman problem a certain set of, in our
terminology, operators. These are called (using Roe's terminology now) 'cuts'.
The set of all n-cuts is the set of all possible ways of breaking any n links of a
given tour and putting it together again, as a single loop, in some other way.
In particular, a 2-cut involves reversing the direction in which a sequence of
the cities is visited, and a 3-cut involves removing a sequence of cities from the
tour and then reinserting this sequence, possibly reversed, at the same or some
other point. If there are, say, 20 cities in a tour then there are 170 possible

123

MACHINE LEARNING AND HEURISTIC PROGRAMMING

2-cuts, and about 5000 possible 3-cuts. Lin uses 3-cuts (his experiments

indicate that 3 is the best value of n for this purpose) to convert the set of all

possible tours into a problem graph in the Graph Traverser sense, and then

adopts an algorithm now to be described.
Lin's algorithm involves a number of 'searches'. In each search an initial

tour is selected at random, and the 3-cuts are systematically checked until

one which will generate a new tour with lower cost has been found. This is

then applied. The process is repeated with the new tour until an improvement

Randomly
selected
tour

Shen Lin algorithm

Randomly
selected
tour

1047

Modified Shen Lin algorithm

Fici. 3. Shen Lin's algorithm for solving the Travelling Salesman problem, and a modification
of this to permit three new tours to be generated at each development. The nodes correspond
to possible tours, and the figures give the corresponding costs. The blocked arcs indicate
3-cuts which do not reduce the cost. Both algorithms terminate when a tour is encountered

which no 3-cut improves (a 3-opt tour).

is again obtained, and so on until ultimately a tour is reached which no 3-cut
improves (Fig. 3). This tour is then the 'locally optimal tour' or '3-opt' tour

associated with the initial random starting configuration. In all tens of searches

will be made. Experiment shows that for all except the smallest problems,
not all, and possibly none, of the 3-opt tours obtained will be optimal, nor

in general will they be all distinct.
However, as Lin points out, after some experience with the algorithm it is

possible to estimate in advance for an unsolved problem of particular size

the probability that a search will give an optimal tour. It is then possible to

calculate how many searches are necessary to reduce to a level low enough to
be negligible the probability that an optimal tour still has not been discovered.

In this situation it is not necessary to push on with an individual search until
an optimal tour has definitely been located—a process likely to be both

124

DORAN

inconclusive and very time consuming. Lin's program is for an IBM 7094 11,
and is very fast, most relevant times being measured in seconds.

Lin also employs various techniques to use information collected in the
earlier searches to cut computation in the later. These techniques will not
concern us here but are interesting and important.

APPLICATION OF THE GRAPH TRAVERSER TO THE
TRAVELLING SALESMAN PROBLEM

The Graph Traverser has been applied to the Travelling Salesman problem
with two main objectives:

(i) to establish that it is applicable to this situation, and that all the basic
results obtained by Lin can be obtained using the Graph Traverser,
though in practice at a slower rate since the Graph Traverser aims at
generality rather than speed; and

(ii) to use the flexibility and facilities of the Graph Traverser to explore the
worth of other search methods more complex than that used by Lin.

The actual mapping process which takes Lin's algorithm into that of the
Graph Traverser has already been indicated. A state of the problem graph
corresponds to a possible complete tour (not to a city), and an operator to a
3-cut as already described. All the 3-cuts are applicable to any tour, but the
develop procedure when called only actually applies one 3-cut—the first one
which it considers which will, it calculates, generate a cheaper tour. The cuts
are considered in an arbitrary but fixed order. To implement Lin's strategy,
the develop procedure then marks the tour as fully developed. The effect of
this is that when a 3-opt tour is encountered, so that no new undeveloped
tour is generated before the current tour is declared fully developed, the
search must terminate (Fig. 3).

Using the Lin algorithm which is an example of a 'conditional choice
strategy' (see Michie 1967) the Graph Traverser was applied to randomly
generated problems involving up to 20 cities, and to two published problems,
the 20-city problem of Croes (1958), and the 25-city problem of Held and
Karp (1962). The results obtained were consistent with those obtained by Lin.
For the Croes problem Lin quotes 13 out of 40 for the proportion of successful
searches, and for the Held and Karp problem 26 out of 40. The corresponding
figures using the straightforward Graph Traverser implementation of Lin's
algorithm were 3 out of 10 and 13 out of 16. A typical search on the 20-city
problem involved developing about 45 tours, and on the 25-city problem
about 70 tours. These results indicated that the first research objective had
been achieved. An Elliot 4120 processor was used to obtain these and the
other results described in this paper.

MODIFICATION OF SHEN LIN'S ALGORITHM

How can Lin's algorithm be improved? From the standpoint of the Graph
Traverser program it is a rather simple strategy, and presents a number of
opportunities for modification.

125

MACHINE LEARNING AND HEURISTIC PROGRAMMING

The first modification which suggested itself was to require the develop
procedure to produce, where possible, more than one cheaper tour. Since the
cost of a tour is being used as its value, the program will always select the
cheapest descendant tour for the next development. This trades the extra
computation time required for each development against, hopefully, a more
successful search. In practice, three descendant tours were generated at each
development (see Fig. 3). Table 1, which refers to the Croes problem, shows

TABLE I

Costs of 3-opt tours obtained with the Graph Traverser for a
particular Travelling Salesman problem. The three algorithms used
are described in the text. In every case tours with the same cost are

identical.
CROES 20-CITY PROBLEM

OPTIMAL TOUR HAS COST 246

Random starting Modified Graph Traverser
tour Lin algorithm Lin algorithm algorithm
A 246 246 246
B 251 246 251
C 252 252 246
D 252 252 246
E 252 255 246
F 246 252 246
G 246 252 246
H 252 246 246
I 252 252 246
J 251 252 246

Occurrences of
optimal tour 3 3 9
Approximate time
for each search
in minutes 15-20 20 30

that each search took rather longer with no noticeable improvement in the
results. This agrees with Lin's remark that 'Attention should be directed to
finding improvements with a minimum amount of computation rather than
to making the maximum improvement possible at each step'. What seems to
be happening is that there are only a very few 3-opt tours, all quite similar,
and which of these is encountered during any particular search depends only
upon the final 'direction' of approach to the critical region. What happens
earlier is quite irrelevant.
The mutual proximity of the 3-opt tours, in the sense that one can be

converted into another by a very few 3-cuts (not, of course, by just one)
suggests that terminating a search as soon as a 3-opt tour is encountered
may be premature, and that a certain amount of additional investigation
might be worthwhile—even though such additional investigation is likely to
be very costly in time. Roe suggests something along these lines.

It seems appropriate to invoke the Graph Traverser's ability to partially
develop tours, leaving them available for further development at a later time.

126

DORAN

This process was illustrated in detail in Fig. 2. Specifically, instead of the
develop procedure applying the first 3-cut it encounters which will reduce
the tour cost, and then marking the tour as fully developed, this latter step is
omitted unless there exists no unused beneficial operator at all. In conse-
quence, when a 3-opt tour is found, the search does not terminate, but
continues by restarting the development of the tour from which the 3-opt

Randomly
selected
tour

277

The Graph Traverser
algorithm

Fie. 4. Shen Lin's algorithm augmented by the use of the Graph Traverser's partial develop-
ment facility. A search is continued beyond the discovery of a 3-opt tour by continuing the
development of the best partially developed tour. The branches are explored from left to
right, and the search is terminated when the program has been forced to 'retreat' a specified

number of times.

tour was itself generated (Fig. 4). The search is continued in this way until
some fixed number of tours has been fully developed. Since each full develop-
ment corresponds to the program finding itself forced to 'retreat' to a tour of
greater cost, this is a convenient and reasonable way to terminate a search.
Of course, the 'result' of such a search is the cheapest tour encountered, not
merely the last encountered.

EXPERIMENTAL RESULTS

Table 1 shows results obtained by this revised algorithm. For this problem,
of which Lin remarks that it 'seems harder to solve than most 20 city prob-

127

MACHINE LEARNING AND HEURISTIC PROGRAMMING

lems', it almost uniformly succeeds in finding the best tour when the Lin
algorithm fails. A search was terminated at the fourth retreat, which roughly
doubled the time required for it.
Thus, although the average effectiveness of the searches has been increased,

the time required for each has also risen. To decide whether there has been
an overall improvement in performance we look at the matter in terms of the
question 'How long must we run the program on this problem to achieve
some selected probability that we have obtained an optimal tour?' Using the
Lin algorithm the best estimate of the probability that a particular randomly
initiated search will produce an optimal tour is clearly pi =03. It follows
that the number of searches required to ensure a probability of 0.05 or less,
say, that an optimal tour has not been found is found by solving the inequality
in NI

(0.7)Ni < 0.05

This gives Ar1> 9. Supposing unit time for each search, the time required
is 9 units.
Using the Graph Traverser strategy the estimated probability of a search

succeeding is p2= 0.9. The corresponding calculation gives N2 2. Since the
search time doubles, the time required is 4 units. Thus the time required is
reduced by a factor of more than 2. The reader will easily see that this factor
is broadly independent of the probability of error initially specified.
Thus the conclusion to be drawn from this admittedly very small quantity

of evidence is that the partial development extension of Lin's algorithm is
worthwhile.

Further investigation of this conclusion required results gathered from a
range of problems. However this led to a snag. Fairly difficult problems
were required, for otherwise Lin's basic strategy leaves little room for improve-
ment. Suitably difficult problems were too large, however, for the limited
machine store size immediately available.
An experiment was therefore carried out using 15 city problems defined

by randomly generated cost matrices, and using 2-cuts as operators rather
than 3-cuts. The 2-cuts are a smaller, less drastic set of operators which Lin
found to be less powerful in practice even allowing for the sharp reduction
in the time required for each search when using them. Thus small problems
which would otherwise be too easy are made suitably difficult by reducing
the effectiveness of the operator set.

Eleyen random 15-city problems were generated, and ten searches were
carried out on each, each search being continued until the 30th retreat
occurred. Table 2 summarises the results obtained. The following points are
important:

1. Column 2 gives the average number of cuts applied or considered for
application by the program before reaching the nth retreat in the search,
where n is indicated by the figure in column I. Just over 300 operations are
needed to reach the first retreat—the point at which Lin's search would

128

DORAN

terminate—and thereafter just under 100 are on average needed to reach each
successive retreat. These figures are effectively a measure of time.
2. Column 3 gives the mean cost of the best tour obtained up to the nth

retreat and column 4 the observed probability that an optimum cost tour
has already been found. What was the cheapest cost was decided by inspection
of all the results obtained for the given problem. In no case was the matter
in doubt. We see that the probability that a Lin search would be successful is
about 0-09.
Note that there appears to be a sharp improvement if the search is carried

only a little beyond the point where Lin terminates.

TABLE 2

Results obtained by applying the Graph Traverser algorithm to
eleven randomly generated 15-city problems. The means are calcu-
lated over 110 searches in all. The final column refers to a 'typical'
problem of this type and envisages several searches each terminating
after a fixed number of retreats. The basic Lin algorithm would

halt at the first retreat.

Retreat at
which search

ends

Mean number
of operations
per search

Mean cost of
cheapest tour
found in search

Observed
probability that
optimal-cost
tour has been

found in search

Total number of
operations needed

to give 0.99
probability of
optimal tour

1 317 201 0.09 15316
2 416 193 0.22 7783
3 517 190 0.31 6439
4 605 187 0.34 6795
5 704 186 0.36 7172
6 798 185 0.36 8130
7 902 184 0.38 8636
8 995 183 0.43 8221
9 1090 182 0.47 7842
10 1176 181 0.49 8021
15 1651 179 0.55 9643
20 2105 178 0.60 10579
25 2570 177 0.65 11413
30 3025 177 0.68 12165

3. The last column attempts to combine columns 2 and 4 to discover if
the loss in time is balanced by the gain in power. The figures give the number
of operations, that is the number of inspections or applications of 2-cuts,
needed to give a probability of 0-99 that an optimum tour has been located,
assuming that we are faced with a new 15-city problem generated in the same
way. The total number of operations required with termination on the rth
retreat is — 24/log(1 —pr) where pr is the estimated probability that an opti-
mum tour will be found during a search thus terminated (column 4), and
where ir is the observed average number of inspections up to the rth retreat
(column 2). These figures are artificial in two ways. First they assume that a
non-integral number of searches is meaningful, in effect some smoothing has

129

MACHINE LEARNING AND HEURISTIC PROGRAMMING

been carried out, and secondly, and more important, it is assumed that all

the problems generated by the random process are of equal difficulty. This

latter assumption is certainly false. However, there is no reason to think

that this will cause the figures to be misleading for our purposes.

N.cv 8 o .E
IQ

•—, ..-.. g

R cd g

-

.4

N

5

I. a) • ̀12 =

gl
1'

:•

E g
gi o 2 .

0,-.F.,
& t •8

-o .—■

✓ -§

,-= f., "iti m 8 40... s

0
2

V M t a Op •a

✓ ? 1... ..,N .
1;. ...--..

.= aE r,2
9

4.) ,•-■ 0,
.5 0 ■-• sl0

co
N

(.0

•

C6
1.0

/ f. R g
,..,
N 2

•

0 ••>..,
..,.=i 6.4 -■

..-

0 01 CO 1". / N •-• 0 cr) co CO it) / N
N .

Fig. 5 shows the required number of operations plotted against the length
of search permitted. Again there is striking evidence in favour of continuing
searches beyond the point at which Lin would terminate, and we see that the
best results are obtained when a search is terminated at the third retreat.
The apparently rhythmic fluctuation has no significance.

130

DORAN

To sum up, although work is required on larger and more varied problems,
it does appear that the Graph Traverser search method is capable of improv-
ing significantly Lin's already very successful algorithm. The improvement is
obtained by continuing a search beyond the moment at which the first retreat
occurs, that is, spending time searching the neighbourhood of locally optimal
tours and proportionately reducing the total number of searches carried out.
Put another way, which may be more illuminating, the modification to

Lin's algorithm is to start a proportion of the searches (as he defines them)
from tours already known to be good, rather than always to start searches
from randomly generated tours. This follows from the fact that when a
retreat occurs, and development of an already partially developed tour is
restarted, this is virtually equivalent to beginning a new search from that
tour.

ON-LINE COLLABORATION WITH THE GRAPH TRAVERSER

It seems probable that in the foreseeable future problem-solving programs
will be designed to interact with the user, rather than operate in isolation,
when they are really intended to be useful. Such an arrangement permits the
user to support the program in those aspects of the problem-solving procedure
where it cannot cope adequately by itself. I shall therefore end this paper
with a discussion of a version of the Graph Traverser adapted for such
collaboration in the context of two simple sliding block puzzles, the Eight-
puzzle and the Fifteen-puzzle, and with some more general remarks.
The Eight- and Fifteen-puzzles have been described in detail elsewhere

(e.g., Doran & Michie 1966, Schofield 1967). Briefly, the Eight-puzzle consists
of eight unit square pieces in a 3 x 3 frame, the pieces being numbered from
1 to 8, and there being one empty cell. The problem is to convert one con-
figuration of the pieces into another by sliding the pieces around. Thus we
might seek a sequence of moves, where a move means sliding one piece into
the adjacent space, which converts

7 5 4 1 2 3
1 0 8 into 8 0 4
2 6 3 7 6 5

Provided that the two configurations regarded as permutations of the
digits 0 to 8 have the same parity, at most 30 moves will be required.
The Fifteen-puzzle is the same puzzle scaled up to a 4 x 4 frame, and with

the pieces numbered from 1 to 15. For this puzzle, although the same parity
rule holds, the maximum number of moves needed to convert one configura-
tion into another is not known.

Extensive results have already been published from the application of the
Graph Traverser to these puzzles (Doran & Michie 1966, Doran 1967,
Michie 1967). The problem is of the 'path-search' variety, unlike the Travell-
ing Salesman application, and the evaluation function plays a much more
important role, for it has the difficult task of estimating how close con-

131

MACHINE LEARNING AND HEURISTIC PROGRAMMING

figurations generated in the search are to the target configuration. As a result
of this earlier work, fairly good evaluation functions are available for the
puzzles.
A very simple way to bring a human solver into the scheme is to arrange

that he takes over the function of the develop procedure, and this has been
implemented. Every time the program wishes to develop a configuration the

L.9

1 7 3
605
2 4 8

1 7 3
604 1120
285

783 1 73
1 04 920 204
625 665

723
1 04 640
8 65

263 1 7 2
704 920 4 0 3
1 8 5 865

Start

0

1520

840

920

1 57
603 1680
246

1 57
4 03 1600
6 2 8

1 7 3
4 0 5 1440
6 2 8

1 3 4
205 780
876

1 23
804
7 6 5

0
Target

Flo. 6. The search tree constructed collaboratively by the Graph Traverser and the
author to solve a particular Eight-puzzle configuration. The ringed figures give the
order of development, and the unringed figures the values assigned by the evaluation
function. Notice that after the fifth development the program rejects both the macro-
moves suggested by the author in favour of a continuation previously itself rejected.

human solver is presented with it, and asked to specify sequences of moves
(operators) which he suggests be applied. Once he has suggested all the moves
or move sequences he thinks reasonable, he indicates this, the moves are
implemented, and the configuration is henceforth regarded as fully developed.
Thus there is no partial development.
From the user's point of view the sequence of events is as follows. The

program asks whether it is the Eight-puzzle or the Fifteen-puzzle which is
to be solved. Given the answer that it is the Eight-puzzle, say, the program
then types out the standard goal configuration and asks the user to type the

132

DORAN

starting configuration. This done, the program asks the solver what moves he
suggests for this configuration. The solver might suggest three possible
sequences of moves, and then type ALL. The.program implements the moves,
decides which of the three resulting configurations it favours, and presents
this to the user for more moves to be suggested. This continues until either
the goal is located, when the program will output the solution path with
relevant statistics, or the solver types RESIGNS. The program will ignore
impossible moves or typing errors.
The configuration selected by the program for 'human' development will

not necessarily be the outcome of one of the moves or move sequences last
suggested by the solver. As always with the Graph Traverser, disconnected
developments are possible. That is, if none of the current suggestions of the
solver is sufficiently attractive, the program will return to an earlier possible
continuation not thought the best at the time. This point is illustrated in
Fig. 6, which shows the search tree built up by the author and the 'on-line'
Graph Traverser to solve a particular Eight-puzzle configuration. The nodes
correspond to configurations and are labelled with the value assigned to them
by the program, and with an integer indicating the order in which the
developments occurred. The final solution path involved 26 basic moves,
compared with a minimum possible of 22. In a parallel attempt on this
configuration not making use of the program the author required 36 moves
to solve it. Indeed, although no serious experimentation has been attempted,
the author usually seems to benefit from the program's assistance, although
whether the converse is true is less clear!

DISCUSSION

This example of a collaborative use of the Graph Traverser is of no great
importance in itself, but it does serve to introduce some further ideas. Dr
Donald Michie has pointed out to me that Travelling Salesman problems
could be solved by an analogous collaborative approach. The user would be
presented with a tour to which he would suggest modifications, and the pro-
gram would next present either a tour generated by one of the suggested
modifications, or a tour generated earlier in the search, but not then judged
sufficiently attractive to be followed up.
More generally, a version of the program might be prepared in which the

function of both the develop procedure and the evaluate procedure were taken
over by an on-line user. Since all other aspects of the program's behaviour
can be controlled by setting parameters, which even in the current version of
the program can be done on-line, such a program would be capable of being
applied, without additional programming, to a wide range of problems
certainly including both of the puzzles mentioned and the Travelling Sales-
man. However, although this would certainly achieve generality, so much
of the work load would have been transferred to the user and progress would

be so slow, that the arrangement is unattractive.
What facilities would an on-line user of the Graph Traverser ask for?

133

MACHINE LEARNING AND HEURISTIC PROGRAMMING

Certainly he will not wish to do any preparatory programming. He will wish
to enter the program, to specify to it the task, to give it such guidance as he
can, and then either to withdraw entirely or to remain on hand to answer
questions which the program may ask. He will often wish to monitor the
program's progress and to change the problem specification, or to give
additional guidance where appropriate. In Graph Traverser terms this means
that the user must at least be able initially to specify the operator set, that is
the develop procedure, and the evaluation function, and then to change his
specification at will. Some kind of on-line problem-oriented programming
language, however primitive, seems essential. This could be provided within
Algol, but neither easily nor efficiently. It seems obvious that such a version
of the Graph Traverser should be wholly written in a language designed for
on-line usage. POP-1, created by R. J. Popplestone and described elsewhere
in this volume, is attractive given the ease with which it permits the construc-
tion of a library of sub-routines.

Other papers already mentioned have suggested ways in which the Graph
Traverser might itself improve its search apparatus, usually by some form
of parameter optimisation, and thus be a more 'intelligent' problem-solver.
D. Vigor, in his stimulating paper included in this volume, emphasises
another aspect of intelligence by stressing the importance not of the way in
which a program attacks a problem (or general game) situation, but of the
way in which the program represents the situation. He suggests that very often
this is the most important step in the solution process, and outlines a method
for seeking the most efficient problem representation. I mention this because
it indicates an aspect of problem-solving which, although unrecognised by
the present Graph Traverser, must surely be important in future work.

ACKNOWLEDGEMENTS
The research described in this paper is sponsored by the Science Research
Council. I am greatly indebted to Dr Donald Michie for many discussions
on the topics covered by this paper and, in particular, for his original sugges-
tion that the Graph Traverser might be applicable to the Travelling Salesman
in the manner described.

REFERENCES
Croes, G. A. (1958). A method for solving Traveling Salesman problems. Opera-

tions Research, 6, 791-812.
Doran, J. E. (1967). An approach to automatic problem-solving. Machine

Intelligence 1, pp. 105-123. Collins, N. L., and Michie, D. (eds.). Edinburgh:
Oliver & Boyd.

Doran, J. E., & Michie, D. (1966). Experiments with the Graph Traverser program.
Proc. R. Soc. (A) 294, 235-259.

134

DORAN

Held, M., & Karp, R. M. (1962). A dynamic programming approach to sequencing
problems. J. Soc. Ind. App!. Math. 10, No. 1, 196-210.

Lin, S. (1965). Computer solutions of the Travelling Salesman problem. Bell
System Tech. J., 44, 2245-2269.

Michie, D. (1967). Strategy-building with the Graph Traverser. Machine Intelli-
gence 1, pp. 135-152. Collins, N. L., and Michie, D. (eds.). Edinburgh: Oliver
and Boyd.

Newell, A., & Ernst, G. (1965). The search for generality. In Information Proces-
sing 1965: Proceedings of IF1P Congress 1965. Vol. 1, pp. 17-24. Wayne A.
Kalenich (ed.). London: Macmillan.

Roe, G. M. (1966). Three fast, suboptimal procedures for the Traveling Salesman
problem. General Electric report No. 66-C-051.

Schofield, P. (1967). Complete solution of the Eight-puzzle. Machine Intelligence
1, pp. 125-133. Collins, N. L., and Michie, D. (eds.). Edinburgh: Oliver and
Boyd.

135

