
8

A Theory of Advice

bonald Michie
Machine Intelligence Research Unit
University of Edinburgh

Machine intelligence problems are sometimes defined as those problems
which

(i) computers can't yet do, and
(ii) humans can. •

In a try for a less ad hoc formulation we shall say that a machine intelligence
problem is one whose solution program

(i)
(ii)

is time-infeasible if minimally represented, but
can be made time-feasible by a feasible memory extension contain-
ing "advice."

We shall further consider how much "knowledge" about a finite mathemati-
cal function can, on certain assumptions, be credited to a computer program.
Although our approach is quite general, we are really only interested in programs
which evaluate "semi-hard" functions, believing that the evaluation of such
functions constitutes the defining aspiration of machine intelligence work. If a
function is less hard than "semi-hard," then we can evaluate it by pure algorithm
(trading space for time) or by pure look-up (making the opposite trade), with no
need to talk of knowledge, advice, machine intelligence, or any of those things.
We call such problems "standard." If however the function is "semi-hard," then
we will be driven to construct some form of artful compromise between the two
representations: without such a compromise the function will not be evaluable
within practical resource limits. If the function is harder than "semi-hard," i.e. is
actually "hard," then no amount of compromise can ever make feasible its
evaluation by any terrestrial device.

"Hard" problems

In a recent lecture Knuth (1976) called attention to the notion of a "hard"
problem as one for which solutions are computable in the theoretical sense but

151

MEASUREMENT OF KNOWLEDGE

not in any practical sense. For illustration he referred to the task, studied by

Meyer and Stockmeyer, of determining the truth-values of statements about

whole numbers expressed in a restricted logical symbolism, for example

Vx Vy(y.>-x+2 z(x<z A z<y)), or

VS(3x(xeS) 3y(yeS A Vz(zeS y S z)))

Thanks to a theorem of Bilchi it is known that a device could in principle be
constructed capable of evaluating the truth or falsehood of any valid input
expression in this symbolism in a finite number of steps. But is the problem
nevertheless in some important sense "hard?"

Meyer and Stockmeyer showed that if we allow input expressions to be as
long as only 617 symbols then the answer is "yes," reckoning "hardness" as
follows: find an evaluation algorithm expressed as an electrical network of gates
and registers such as to minimise the number of components; if this number
exceeds the number of elementary particles in the observable Universe (say,
10125), then the problem is "hard." A consequence follows that any representa-
tion of the same algorithm as a computer program for any sequential machine
either would entail for some inputs too many computational steps for solution
within feasible time, or would contain too many symbols to be accommodated

in any feasible store, or both. In drawing my attention to this consequence my
colleague David Plaisted related it to recent combinational complexity studies
(see Schnorr, 1975, Fischer, 1975).

Our defmition of "semi-hard" adopts computer programs as the sole repre-

sentational form for solution algorithms, and explicitly recognises both cate-

gories of resource-bound, namely time (e.g. number of computational steps) and
space (number of store-bits). For each given finite function we consider two
different representations:
(1) space-minimal: the shortest program which will evaluate the function for

all inputs, no concern being given to the number of computational steps

required, nor to possible work-space requirements during the course of a compu-

tation.
(2) time-minimal: the program which requires the least number of steps for

worst-case evaluation, no concern being given to the program's length or work-
space.

Questions of differential weighting for different kinds of computational step
are neglected. Such questions are related to a valid objection to the effect that

criteria (1) and (2) cannot anyway be applied without a complete specification
of the machines on which the programs are to run. In a recent outline of work in
algorithmic information theory, Chaitin (1975) considers this objection in an
essentially similar context and dismisses it as quantitatively unimportant. The
real point here is that problems in which we are likely to be interested typically
exceed our arbitrary boundary lines by such large margins that the arbitrariness
hardly matters. Differences introduced by envisaging one rather than another
machine specification are as irrelevant to the main thrust as would be a decision

152

MICHIE

in the earlier example to credit the Universe with 10120 or 10130 elementary
particles instead of 10125.

Here are some boundary lines, scaled down for coziness from Universal to
planetary dimensions.
A "semi-hard" problem is not "hard"; yet any space-minimal solution-

program written for any envisageable sequential machine would for some inputs
require a running time greater than the age of the Earth, and any time-minimal

solution-program written for any envisageable sequential machine would require
a store too large to be accomodated on the Earth's surface.

But surely a problem as hard as that must be "hard" in the full sense of
Knuth, that it "will never be solved in our lifetime, regardless of how clever
people become or how many resources are committed to the project?" Not so!
Here indeed is the whole joy of the phenomena of human cognition and of
cognitive engineering, that a loop-hole for compromise can exist between the
two criteria of minimality. How do we know, for a given "semi-hard" problem,
that we cannot devise a representation which, although not minimal, is still
acceptably short and has a non-minimal but acceptable running time? Let us do
some calculations around this thought, taking our "semi-hard" function from
the game of chess.
A function f links each legal chess position to its game-theoretic value; that is,

it maps onto the set (1, 0, -1) corresponding to outcomes which are "won,"
"drawn" or "lost" from the standpoint of the opening player. What might be a
space-minimal representation of this particular f? Strictly speaking we do not
know. But we can show that such a representation must be very short, for an
upper bound to the minimal length is given by the iterated minimax algorithm
for computing f by (i) looking ahead along allpossible continuation paths from
the given position, (ii) using the rules of chess to assign outcome values to all the
terminal positions of the lookahead tree, and then (iii) backing these values up
the game-tree using the minimax rule until the root position has been labelled. A
minimum-length implementation of this as a program requires of the order of
104 bits only. Hence either

A. 104 bits does indeed measure the space-minimality of chess ("complexity"
in Chaffin's terminology, "co-complexity" in ours (Michie, 1976)), or

B. fs space-minimal representation is even shorter than this.
Case B keeps alive the possibility that chess is not even "semi-hard," since this

hypothetical shortest representation might turn out to be so fast-running as to
evade the time-bound horn of the dilemma. This would be the case if some
sweeping mathematization of chess were discovered, analogous to the parity rule
for the game of Nim.

Case A, which says that we are not going to get a shorter rule than iterated
minimax, corresponds to many people's intuitions. We shall assume it here for
purposes of expounding the "semi-hard" idea. Note that we are not turning aside
from the possibility of a compact mathematical rule for chess, but only from the
more remote possibility that such a rule might be shorter even than iterated
minimax.

153

MEASUREMENT OF KNOWLEDGE

We first re-state our essential position.
A "semi-hard" problem is a non-"hard" problem whose space-minimal solu-

tion exceeds practical bounds of time and whose time-minimal solution exceeds
practical bounds of space.

Assuming Case A, chess meets the first half of the definition. The expected

waiting time for evaluating f, according to a calculation of Shannon's (1950),
would exceed 1090 years on a machine able to calculate one variation per
micro-micro-second. Let us turn then to fs time-minimal representation.

Restricting ourselves, as we have deliberately done, to computer programs for
sequential machines, we adopt the look-up table as the time-minimal representa-
tion. We make any necessary assumptions concerning the relative speeds of
look-up operations versus other operations so as to ensure that this representa-
tion comes out time-minimal in all cases. Determining the space requirement is
then equivalent (disregarding the space-occupancy of the look-up program itself)
to calculating the information-content of a message which encodes the exten-
sional form of f, i.e. the sequence of symbols taken from fs co-domain Y
corresponding with an ordering of the set X of size N which is fs domain. This
information-content, I(f) = -NEp(y)log2p(y), tells us the length of the shortest

such message and hence the theoretical minimum number of store-bits required
to hold the look-up table. The choice of ordering for the domain is treated as
arbitrary, in the sense that the encoding may not exploit it to achieve additional
compression, although of course free to exploit the first-order frequencies of the
different y-values in the message.

On this basis the look-up table for f would require something between 1045
and 1050 bits of store, corresponding roughly to the range of the various esti-
mates which have been made of the number of different legal chess positions. A
store of this size, for any conceivable advance in micro-miniaturization, could not
be assembled on the surface of the Earth. Chess, then, even in the restricted
sense of recognising the game-theoretic value of a position, qualifies as at least
"semi-hard."

At this point the task of evaluating f may seem a matter for despair. But all
that we have so far indicated for chess is that the space-minimal solution my
not be time-feasible and that the time-minimal solution is not space-feasible; not
that no solution-program/of any kind could combine the two feasibilities. Only
this last case corresponds to the (unproved) hypothesis that chess is "hard."

To clarify the definition of feasibility, and to recapitulate the ideas so far
discussed, Figure 1 presents "trade-off curves" for a series of hypothetical
functions: two "semi-hard" functions and a "hard", function. If position-evalua-
tion in chess is like f then error-free performance at least under correspondence
chess conditions is feasible. If it is like g, then any given position can be eval-
uated, but at the expense in the worst case of.a year's continuous running-time
using a 1015-bit random-access store. If it is like h, then no amount of time and
memory-space within terrestrial limits would be sufficient.

154

Evaluation-

time (sec.)

105°

1 0 0

1010 1020 1030 1040 1050

MICHIE

Memory
space (bits)

FIG. 1. Store-time trade-off curves for hypothetical finite functions f, g and h. Each has
the same information-content (1050 bits) and the same w-complexity (104 bits). Time-
feasibility and space-feasibility limits have somewhat arbitrarily been placed at 1010 secs.
and 1015 bits respectively. Time-acceptability is set at 105 secs, indicated by p. The hatched
rectangle is the "zone of feasibility," through which curves f and g pass. Only f passes
through the cross-hatched time-acceptability sub-zone. The five upward arrows mark respec-
tively: the w-complexity of f, g and h; the (3-complexity of f; the p-complexity of g; the
$3-complexity of h; the information-content of f, g and h. f is "semi-hard," and since its
13-complexity is less than the space-feasibility bound it is "not too difficult." g is "semi-
hard" and "too difficult." h is "hard," which renders it a fortiori "too difficult."

Figure 2 depicts a special kind of "hard" function and reveals a twist in our
formulation. In his paper Gregory Chaitin discusses the function which maps
from major-league baseball games to their scores. "In this case" he remarks "it is
most unlikely that a formula could be found for compressing the information
into a short message (contrast the iterated-minimax formula for chess—D.M.); in
such a series of numbers each digit is essentially an independent item of informa-
tion, and it cannot be predicted from its neighbours or from some underlying
rule. There is no alternative to transmitting the entire list of scores." Now
suppose that there are so many major-league results (1050 if you like; never
mind the time taken to accumulate them!) that any solution program for this
function, even though time-feasible, would necessarily be space-infeasible, con-
sisting indeed merely of a giant look-up table. The function, if we did not
already know it to be "hard," would then fail to satisfy the first limb of our
definition which says that a "semi-hard" problem's space-minimal solution is
time-infeasible. As we progressively scale down the hardness of a problem of this

155

MEASUREMENT OF KNOWLEDGE

Evaluation.

time (sec.)

105°

1o40

ton

1020

1010

Memory
1010 1020 1030 1040 1050

space (bits)

FIG. 2. Function v (open circle in the diagram) is "hard," and it cannot be compacted.
Like Chaitin's "baseball" function it is devoid of internal structure and hence offers no
trade-offs. Function u is of an opposite type. Its representation can be compressed into a
highly compact solution program which (in contrast to iterated minimax in chess) is not
appreciably slower-running than look-up. An example might be position-evaluation in games
of Nim starting with, say, 17 heaps of 1000 pieces each.

type by gradually decreasing the domain size, the transition from "hard" to
"standard" occurs abruptly without passing through a zone of "semi-hardness."
Possessing no exploitable structure, such problems offer no hand-holds to
machine (or any other) intelligence. The, Figure also shows, for contrast, a
"standard" problem of the super-exploitable "Nim" type.

Our definition may not seem entirely satisfactory, since it catches in its net
problems which we have come to regard informally as not so difficult, for

example sorting a list. It may well be that the space-minimal solution of the
sorting problem is none other than the simpleton program which repeatedly

traverses the whole list, swapping neighbour pairs whenever the sort relation

shows them to be the wrong way round—time-infeasible for quite a modest list

size. Hence even though numerous fast methods are known today which would
make light work of it, sorting such a list shows up as "semi-hard" on our

definition. So be it. We often forget how difficult a problem really is once it has

succumbed to an intensive search for good solution methods (see also the recent
appearance of sr ting as a domain for machine intelligence work, as in Barstow

and Green, this volume). .
We now turn to "advice," seen as an approach to the solution of semi-hard

problems.

I 56

MICHIE

Advice

Suppose that we have a space-minimal program, or indeed any short naive
program which is time-infeasible, and we want to make it feasible. Two con-
trasted paths. offer themselves, the path of the Great Leap Forward and the path
of Incremental Advice.

Great Leap Forward. We scrap our naive program. Then after profound
analysis of the problem we write a somewhat longer program expressing a funda-
mentally new algorithm. Here are three examples.

1. Sorting large lists. A naive program sorts by next-neighbour swapping.
Hoare then creates Quicksort.

2. Factorizing large integers (like 2128 + 1). A naive program counts up the
number series doing divisions, first into the input number, then into the divisor
and quotient found by successful division and so on. Solution times for a super-
fast machine would be measured in thousands of years. Brillhart and Morrison
(cited by Knuth) devise a program to do it in an hour or two -"by a combina-
tion of sophisticated methods, representing a culmination of mathematical
developments which began about 160 years earlier."

3. Chess. A naive program executes the iterated-minimax rule, with a running
time in the region of 1090 years. Some genius yet unborn devises a formula for
identifying positions according to their game-theoretic value. Let us suppose that
the new formula, unlike the Nim rule, is bulkier to represent than iterated
minimax, but that it is nonetheless reasonably compact, and time-feasible.

The Great Leap Forward is without doubt the path of honour. Possibly
progress towards solution of most "semi-hard" problems can and should be
made in this way. Sometimes, however, we cannot wait for someone to make the
Leap; or quite simply we are impressed by the fact that human expert per-
formers in the given domain compute quite good solutions (as in chess) by
methods which give no evidence at all of the kind of unitary insight associated
with a Great Leap Forward. Also, there is the risk that we might have to wait
forever, since some of the intellectual skills of man may owe their mosaic quality
not to the limitations of their possessors but to lack of any deep structure in the
given problem-domain for mathematical insight to seize upon.

Incremental Advice. We retain our naive program essentially unaltered, but
from time to time we add to the store new materials which do not of themselves
perform any computations necessary to evaluation but which act solely to
expedite the operations of the naive evaluation program. This catalytic material
is "advice." To illustrate we now consider the prime-counting function, which,
given an integer, returns the number of primes less than that integer. The evalua-
tion of this function is not the kind of problem normally associated with
machine intelligence work. But Watterberg and Segre have analysed this straight-
forward and classical numerical problem in such a way as to display the Incre-
mental Advice idea in a peculiarly simple and compelling fashion. They also
nicely demonstrated a special advantage of the "advice" approach, namely that
it directly lends itself not only to incremental additions by the user but also by

•157

MEASUREMENT OF KNOWLEDGE

the program itself ("learning"). Tlie following account is excerpted from their
own report of the work (Watterberg and Segre, 1976).

The work was done using a Digital Equipment Corporation
PDP-11/35 running the UNIX timesharing operating system. All the
programs were written in either PDP-11/35 assembly language or the
UNIX system language, "C." Due to the nature of the UNIX time-
sharing system, the machine specification, S, on which the test pro-
gram were executed, is simply a PDP-11/35 with 26K bytes of core
memory. For information on instruction times and core cycle times,
see the PDP-11/35 reference manual and the PDP-11/35 peripherals
handbook.

Three different function evaluation programs were written. Each
had a different level of advice and/or learning ability. A short
description of each follows.

Program 1. Pure algorithmic

In order to evaluate the function this program considers each
integer from 2 to the function argument (P) minus 1 as a prime-
candidate. Each candidate is tested for "primeness" by a division
algorithm with the integers from 2 to sqrt(P) as the divisors. The
prime-testing function is iterative and has no memory of any pre-
vious calls to it.

Program 2. Advice

Identical to Program 1 with advice added. The advice provided is
an extension of the obvious fact that (apart from 2) even integers are
not prime. If the multiples of 3 and the multiples of 5 are also
removed from consideration, 8 integers in 30 remain as prime
candidates as follows:

Any integer can be expressed as

30n + k, 0 k < 30.

Since 30 is divisible by 2, 3, and 5, the only integers that might be
prime are those for which k is not divisible by 2, 3, or 5, i.e. k = 1, 7,
11, 13,17, 19, 23, 29.

This advice was implemented as a gap table (consisting of the 8
gaps) which kept track of how much to add to the last prime-
candidate to obtain the next prime-candidate. Note that this advice
is also of use in the prime-testing routine since only those 8 in 30
numbers need be used as divisors.

Program 3. Advice and Rote Learning

Identical to Program 2 with a rote dictionary added. The rote
dictionary contains ordered pairs of integers remembered from pre-
vious calls to the program. The rote dictionary is consulted before
computation begins to find the largest ordered pair less than P. This
value of the co-domain is used as a starting point for further compu-

158

MICHIE

Program 3

g Program 1 Program 2 (25 trials) (250 trials)

10 secs. 2050 6 560 74,213 399,487

X 20 secs. 3630 11,160 125,201 676,589

30 secs. 5100 15,200 166,159 903,589

L 5.15 X 103 7.0 X 103 12.1 X 103 26.5 X 103

TABLE 1. Data from Watterberg and Segre's programs 1, 2, and 3. X is the
largest x for which the program could evaluate the function within /3 seconds. L
is the store-occupancy of the given program. The last two columns relate to
"learning" periods of 25 and 250 trials respectively. These experiments were run
with a helpful tutor, i.e. the questions were put to the program in an order
which maximised its learning rate.

tation. A more efficient scheme would have required one half the
rote storage by finding the closest ordered pair and counting up or
down to the desired value.

Table 1 shows a sample of their tabulated results for programs, 1, 2 and 3
using three different time cut-offs for the experiment, namely 10, 20 and 30

seconds, i.e. for the purpose of this scaled-down laboratory study the criterion
"time-feasible" was replaced by time cut-offs fixed at these levels. The first two

columns of the Table make plain that a relatively small increment of advice to

the store (raising the core-occupancy from 5,150 to 7,000 bits) yields a rela-

tively large gain in the performance of the system, roughly tripling the range

over which the prime-counter can be evaluated within the time-limit. The last
two columns show the even more dramatic gains obtained by adding to the fixed

advice a program-incrementable dynamic dictionary of rote-knowledge.

Rote-knowledge is of course the lowliest and least interesting of all forms of

knowledge. Watterberg and Segre go on to speculate whether, retaining the

"naive program versus advice" dichotomy, higher-level concepts could in
principle be incorporated in the advice, even to the level of Hardy and Wright's

(1938) "prime number theorem": lim
f(x) = 1, where f(x) = number of

x–>007711-1 x
primes less than x.

Formalising "knowledge"

This same dichotomy between naive program and advice has been made the
basis of a package, ALI, for generating chess end-game strategies from Tables.
Preliminary accounts are available elsewhere (e.g. Michie, 1976a). The present
concern is that this style of conveying human knowledge to programs demands
more precise and quantitative ways than are at present available for talking

159

MEASUREMENT OF KNOWLEDGE

about the knowledge-content of programs and adjoined advice. As we build and
unbuild the advice, adding, modifying, or deleting rote-entries, descriptions,
heuristics, theorems and the rest, we would like to be able to say of each
separate item just what benefit it confers in terms of added knowledge and what
is its cost in terms of added store-occupancy. A method of cost-benefit analysis
will be sketched. But first it is desirable to have a clean-cut basis for definition
and measurement of "knowledge." When this ground has been cleared, the
philosophy can be forgotten.

Philosophers of the knowledge problem have always agreed that at least those
facts which are explicitly and retrievably stored in memory are "known." What
of facts which are stored implicitly, retrievable only by deduction? The earliest
treatment of the problem seems to be the opening passage of Aristotle's
Analytica Posteriora. He recognizes three levels:

universal knowledge of the class of facts implicit in the stored premisses (e.g.
that all triangles have angles equal to two right angles);

virtual knowledge of every particular such fact which is deducible from the
universal but has not yet either been deduced or acquired directly from sense-
impression (e.g. that some particular triangle, which we have not yet encoun-
tered, has angles equal to two right angles);

unqualified knowledge of a particular fact which has been so acquired (e.g.
that some particular triangle, which we have encountered, recognized, and
thought about, has angles equal to two right angles).

In respect of his "virtual" category, Aristotle brings up some particular cases
of difficulty, including the following. Consider a student's "knowledge" of the
results of evaluating the predicate "having angles equal to two right angles" for
an individual member of the class "triangle." The evaluation is conceived as
proceeding in three stages:

(1) the instance is presented;
(2) it is recognized as belonging to the class "triangle;"
(3) the conclusion is drawn that the predicate is true of this particular

instance.

Aristotle comments: "For example, the student knew beforehand that the
angles of every triangle are equal to two right angles; but it was only at the
actual moment at which he was being led on to recognize this as true in the
instance before him that he came to know 'this figure inscribed in the semi-
circle' to be a triangle.. . Before he was led on to recognition or before he
actually drew a conclusion, we should perhaps say that in a manner he knew, in
a manner not.

"If he did not in an unqualified sense of the term know the existence of this
triangle, how could he know without qualification that its angles were equal to
two right angles? No: clearly he knows not without qualification but only in the
sense that he knows universally..." For consistency with context we must read
the last sentence as though it continued, "... that this is true of the class

160

MICHIE

Case A Case B Case C

Question asked:

Stage of transition
from virtual to
unqualified knowledge
en route to stage (5)

Is 19 prime?

(3)

Is 199 prime?

(4)

Is 19,999,999 prime?

In practice never

TABLE 2. Three cases of the attempt to retrieve facts about the primeness of
numbers. The numbers in parentheses refer to labelled stages in the text.

of triangles, and hence knows virtually that it is true of this triangle."
Aristotle's notion of a state of knowledge as capable of evolving dynamically

under the sole influence of internal operations is a suitable point of departure
for computational approaches, such as the present theory or I.J. Good's
"dynamic probability" (this volume). But Aristotle's definitional system is a
little too restrictive and we shall now test it to destruction by dropping in-
creasingly heavy weights upon his "virtual" category. Then we re-build it so as to
explicate knowledge in an unrestricted computational framework.

Aristotle remarked on the virtual category as being in some sense ambiguous
and seemed unhappy with it. Any sense of dissatisfaction or unclearness
(" . . . we should perhaps say that in a manner he knew, in a manner not") was,
we propose, rooted in his unfamiliarity with computational ideas, in particular
the notion that some facts may require impracticably lengthy calculations for
their demonstration.

Turning from triangles to integers, consider again the predicate "prime." We
shall suppose that the student evaluates it for a given integer,n by testing for
divisibility by unit increments of i where 1 <i2 < n. We shall also suppose that
the student possesses rote knowledge of a few primes. Now consider the fol-
lowing stages:

(1) he noted that a candidate instance has been presented;
(2) he recognizes it as belonging to the class "integer;"
(3) he matches it against rote memory and if successful he goes to (5);
(4) he attempts to deduce (by evaluating "prime") that the predicate is

true of this particular instance;
(5) he gives the answer.

For three superficially similar questions the student's responses might be as
shown in Table 2.

Unless our student is a rare calculating prodigy we shall in case C eventually
weary of waiting for his answer. So how can we ever credit him with "unquali-
fied" knowledge that 19,999,999 is prime? Not until he has completed his
calculation, which in practical terms he never does.

161

MEASUREMENT OF KNOWLEDGE

Aristotle's system of inference involved only computationally light syllogistic

forms. If he had clearly envisaged the possibility that some straightforward
questions might so draw out the calculative chains as to preclude an answer

within the questioner's lifetime he would surely not have allowed the "primes"
student the same knowledge status as the "triangles" student. Neither shall we.

Instead we sub-divide the facts which a man "virtually" knows into (case B)
those which are both virtually and practically known and (case C) those which

are virtually but not practically known. In Our system the former will be
accepted as "known" but the latter are definitely not known. Such facts might

subsequently achieve "known" status either through a modification of the
knowledge-base which sufficiently shortens their derivation chains (e.g. addition

of a key lemma), or by modification of the system of inference itself in the
direction of improved efficiency so that some previously impracticable deriva-

tions become practicable, or by independent acquisition from an external

source.
The "known" is thus equated to what can (practically) be retrieved, and

Aristotle's "in a manner he knew, in a manner not" is replaced by "if able to

answer with acceptable speed he knew, otherwise not."
Now we tie this down to specifics, and propose a workable calculus for

measuring the knowledge-content of computer programs and associated bodies

of advice.
Numerical measurement of knowledge

We interpret knowledge as the ability to answer questions, and we equate

question-answering to the evaluation of finite functions. All questions in our

system are expressible in the form "What is the value of f(x)?" All "answers"

take the form "y", where y is an element of f's co-domain. We diverge from

Aristotle in supposing that for some x's in X the given evaluation device (whose

"knowledge" of f we are concerned to measure) may deliver the corresponding

y-value in acceptable time but for other x's not. This time-bound, which is set by

the questioner, is denoted by the symbol P.
p need not be of the cosmological magnitudes which we earlier used to

dramatise the notion of "time-infeasibility": for example in the context of speed

chess the user might set 13 to a few seconds.
It now becomes meaningful, having specified a machine, a program, and a

particular value of (3 (expressed either in time-units, or in number of computa-

tional steps) to speak about some given fin the following fashion:

f is P-evaluable for x1;
f is P-evaluable for x2;
f is not (3-evaluable for x3;
f is 13-evaluable for x4;
f is not 13-evaluable for xs;

•
•
•

etc.

1 62

MICHIE

Consider now the partial function fK:X-*Y, which is defined only for arguments
in that sub-set of X, XK, for which f is 13-evaluable, i.e. in the above example
(xi, x2, X4,.. .). fic corresponds to the known part off. We can write it, in the
terms of the above example, as ((xi ,y1),(x2,y2),(x4,y4) ,) Taking the
ordering of X as given, the string y1y2y4 conveys the identical informa-
tion. To determine the information-content of this string viewed as a classical
information-theoretic message, we regard the constituent symbols as having been
sampled from an alphabet consisting of the set Y with probabilities given by the
relative frequencies with which the various symbols appear as right-hand ele-
ments of f's function table: ((xi ,y1),(x2,y2), ...(xN,yN)). [Remember that for
a many-one function, size (Y)<size(X) and hence yi = yj for some (ij)'s. For
example, f might be a Boolean function.] Earlier we wrote

= - N p(y)log2p(y) (1)

for the information-content of f, where the expression p(y) is to be evaluated
exactly as we have just described. But for the information-content of a desig-
nated fragment of f, such as its "known part" fK , this expression is not suitable.

The trouble is that - p(y)log2p(y) is an average, namely the average informa-

tion-content per symbol. This average is then multiplied by N to obtain the
entire message's information-content. If we want to deal in fragments we need a
formula which associates with each constituent symbol its own proper informa-
tion-content. The information-content of any sub-message whatsoever can then
be found simply by summing directly over its constituent symbols.

The information-content of an individual symbol has been termed by Samson
(1951) its "surprisal." For the message's rth symbol it is -log2p(yr). We accord-
ingly re-write I(f) as a sum of N surprisals, thus:

I(f) = - E log2p(yi) (2)
i=1

It now follows naturally that the information-content associated with Ps known
part, fK, should be

NK
1og2p(yi) + N* (3)

i=1

Where the successive values i = 1, 2, 3, index the right-hand elements of the
1st, 2nd, 3rd, members of fK (not of f)., p(yi)'is reckoned as before from
the frequency of the symbol yi in Ps function table (not fK's). We thus arrive at
a definition of the amount of knowledge about f as equal to the information-
content associated with f's known part, i.e.

IC(f) = I(fK) (4)

This identification can be criticised on the grounds that the simple summa-

*IV is the number of bits required to specify the binary condition "known/unknown" for
each of the N members of f's domain.

163

MEASUREMENT OF KNOWLEDGE

tion of surprisals attaches equal weight to each, whereas the answers to some

questions may be more useful to the questioner than the answers to others.

From this standpoint a program for evaluating the chess function should surely

not receive credit for its knowledge of the game-theoretic values of the
"obvious" cases, which occupy most of the state space, on a scale equal to the

knowledge which it displays when questioned on "interesting" positions of the

kind which might arise in actual play. We meet this objection by refining (4)

above, replacing it with
NK

K(f) E uilog2p(h) (5)
i=1

where the ui's are utilities, normalised to have unit mean.
Finally, we relate benefit, in the form of useful knowledge as just defined, to

the bit-cost of storing the program, L(f), and obtain the program's "computa-

tional advantage".

K(f)
C(f) = (6)

L(f)

Note that for a time-minimal representation as a minimally encoded look-up

table, C(f) is equal to unity, (since if fic = f then K(f) = I(f) = L*(f), where L* is
the bit-cost of the minimally (non-redundantly) represented table).... In what

follows we drop the constant argument f and for convenience write K, L,...
etc.

Knowledge-content of advice: a worked example

Our purpose in setting up this formalism is to be able to say, when a given

body of advice PB is added to the store and enabled to communicate with a

naive solution program PA, whether the advice has done some good, and how
much good. To determine this we measure the cost-benefit parameters K and L

both for the augmented program PA plus PB, and for PA alone. The differences

give us KB, the amount of p's knowledge about f relative to PA, and LB, the

bit-cost of PB- KB/LB is then a cost-benefit ratio associated with the given body

of advice. We refer to it as the system's "advisory advantage."
Actually it is a little more complicated than has just been suggested, because

we must also take account of the cost-benefit parameters of an unavoidable

"extra," namely the control program pc needed to mediate communication

between PA and PB. Strictly, the measurements of K and L for the unadvised

program must be made with pc loaded, and it is the measurements on PA plus

Pc which are to be subtracted to arrive at the final quantities for PB. The

relevant relations are
K = KA + KB + Kc (overall knowledge) (7)
L = LA + LB + L (overall store cost) (8)

K KA + KB + Kc
C = = (overall computational advantage) (9)

L LA + LB + Ic

164

A

Pr
og

ra
m

1
Pr
og
ra
m
2

A
+
B
+
C

Pr
og

ra
m
3

(
2
5
 tr

ia
ls

)
(
2
5
0
 tr

ia
ls

)

1
0
 s
ec

s.
1
7
 X
 1
03

45
.3
 X
 1
03

—
.
3
 X
 1
03

6
2
 X
1
0
3

.9
5
X
 1
06

6.
0
X
 1
06

2
0
 s
ec

s.
3
3
 X
 1
03

85
.5

 X
 1
0
3

—.
5
X
 1
03

1
1
8
 X
1
03

1.
74
 X
 1
06

10
.7

 X
 1
06

3
0
 s
ec

s.
4
7
 X
 1
03

11
6.
0
X
 1
03

—
1
.
0
 X
 1
03

1
6
2
 X
 1
03

2.
38
 X
 1
06

14
.6

 X
 1
06

5.
15
 X
 1
03

.2
5
X
 1
03

1.
6
X
 1
03

7.
0
X
 1
03

12
.1

 X
 1
03

26
.5
 X
 1
0
3

1
0
 s
ec

s.
3.
3

18
1

8.
8

7
8

2
2
6

K
/
L

2
0
 s
ec

s.
{

6.
4

3
3
0

16
.9

1
4
4

4
0
2

3
0
 s
ec

s.
9.
2

4
6
4

23
.1

1
9
6

5
4
9

T
A
B
L
E
 3
.
Kn

ow
le

dg
e,

 bi
t-
co

st
s
a
n
d
 c
om

pu
ta

ti
on

al
 a
dv
an
ta
ge
 m
ea

su
re

me
nt

s
fo

r
Wa
tt
er
be
rg
 a
n
d
 S
eg
re
's
 p
ro

gr
am

s
1
,
 2
,
 a
n
d

3.
 C
o
l
u
m
n
s
 B
 a
n
d
 C
 w
er

e
ob

ta
in

ed
 b
y
 r
un
ni
ng
 p
ro
gr
am
 2
 w
it
h
n
o
 a
dv
ic
e,
 su

bt
ra

ct
in

g
f
r
o
m
 c
o
l
u
m
n
 A
+
B
+
C
 t
o
ob
ta
in
 c
o
l
u
m
n

B
 a
n
d
 s
ub
tr
ac
ti
ng
 c
o
l
u
m
n
 A
 t
o
ob

ta
in

 c
o
l
u
m
n
 C
 (s

ee
 t
ex
t)
.

MEASUREMENT OF KNOWLEDGE

Kc is always negative, and can be thought of as the "knowledge-overhead"

associated with pc. It is measured by running PA with and without pc and
taking the difference between the amounts of knowledge measurable in the two
cases.

Returning to the experiment of Watterberg and Segre we reproduce in Table

3 the values of these quantities as measured for the "prime counter" program
with and without various increments of advice.

The tabulation brings out very clearly the feisibility and attractions of parti-
tioning knowledge and costs parameters among different subdivisions of store,

according to the "Incremental Advice" approach discussed earlier. In the last
columns of the Table the impact can be noted of enabling the program to

increment its own advice as part of an elementary rote-learning scheme. A finer

partitioning of advisory knowledge and cost (not shown here) into components

specifically associated with the rote-dictionary as distinct from the fixed body of

advice reveals that the transition from 25 to 250 learning trials, although con-

ferring almost a threefold further increase in overall computational advantage is

approaching a point of diminishing returns: the computational advantage

associated strictly with the rote-dictionary starts to fall. For details the reader is

referred to the original paper.
As an aid to gaining an intuitive grasp, we should briefly consider the meaning

of the IC/1., ratio when it characterises a body of advice, or an increment added

to an existing body of advice. Clearly the ratio relates the amount of additional
knowledge to the additional store-cost. But there is another way of looking at it
which may possibly be illuminating. KB/LB is actually a ratio, of compression. It

tells us how muth less store is consumed by adding the given knowledge to the
system in the form of the given advice than would be consumed lithe same

knowledge were added in the form of a minimally (non-redundantly) coded

lookup table for the partial function B. fB of course consists of just those

additional (x,y) pairs which become "known" when PB is added to the system,

these not having been "known" before.

Measuring a problem's "difficulty"

The earlier discussion of "semi-hard" problems did not extend to the quanti-

tative measurement of degrees of hardness for such problems. The formalism
which we have sketched now places us in a good position to do this. For a given

f we consider the length of the shortest program possessing complete knowledge

of the function: not, be it noted, the shortest program possessing complete
information about the function; this would be equivalent to the function's
Chaitin-Solomonoff-Kolmogorov "complexity" (see Chaitin, 1975), and since
we have seen that for chess this quantity comes out to a mere 104 bits it plainly
will not do as an index of hardness. Instead we take the function's 13-complexity,
i.e. the minimum bit-cost of a program possessing complete knowledge off, I(f)
in amount, and we call it Ps "difficulty." If it comes to a very large number,
corresponding to an infeasible store size, we say that f is "too difficult" for the

166

MICHIE

given a. Note that a "semi-hard" problem may be "too difficult" or it may be
"not too difficult." Observations on the performance of chessmasters, and calcu-
lations as to the largest LB that could be input to the human brain in a lifetime
within the known limits to rates of information-transfer within the nervous
system, encourage the hope that chess may turn out after all to be "not too
difficult."

Knuth discusses the strategy when faced with a hard problem of accepting an
evaluation mechanism with a bounded level of error. Extensions of the
formalism presented here deal with certain forms of erroneous evaluation, and
also with the notion that some degree of knowledge can be attached to a
computation which is truncated by the a cut-off before completion and yet has
succeeded during that time in shrinking the set of candidate answers. These and
other details and elaborations will be found in the full account of the theory
(Michie, 1976).

Note on 'semi-hard" problems

It will reasonably be objected that the definition of "semi-hard" is needlessly
disabled from corresponding with most people's idea of a machine intelligence
problem, as a result of its critical dependence on concepts of "space-minimality"
and "time-minimality." No one in the real world tries to make his program the
shortest possible, nor would a sane man cling to time-minimality at the expense
of a huge look-up table if by a small relaxation in running times he could obtain
major savings of store. Problems may therefore exist which are easily soluble by
conventional programming approaches, yet which can be made to look hor-
rendous by rigid application of our definitions.

The remedy is to allow whoever wishes to use these definitions the freedom
to blur their edges. Let him substitute "almost minimal" for "minimal" where
he pleases, together with whatever tolerance in approximating the minimal
(within a factor of 2, within a factor of 10, etc.) seems to him appropriate.
Obviously the spirit of "semi-hard" is not met (nor does the need arise in such a
case to assemble in store large bodies of advice) by a function whose trade-off
curve is such as to permit reasonably fast evaluation by a near-minimal program,
but for which an abrupt transition to time-infeasibility occurs as soon as the
program is required to be actually minimal. We cannot ignore the possible prev-
alence and practical importance of such functions. Strictly, then, a definition
which aims to be useful should filter them out.

Future work

The game of chess offers a domain which is finite, formally defined, at least
"semi-hard," possibly "hard," and (most important) readily decomposable into
sub-domains which can be isolated for separate study and measurement. Evalua-
tion mechanisms exist in the brains of Grandmasters. Although not infallible,
these can evaluate chess positions over most of the domain with an impressively
low level of error. Studies by cognitive psychologists have shown these mech-

167

MEASUREMENT OF KNOWLEDGE

anisms to be "advice-driven" rather than "search-driven" and a massive literature
has accumulated over centuries in which the masters have attempted to describe
this advice. A challenge exists here to the machine intelligence specialist to
translate and elaborate chess advice into machine representations which are
precise and complete by the test of correct play against masters. A pure look-up
(and correspondingly bulky) program for King, Rook and Pawn versus King and
Rook written by Arlazaroff was recently validate in such a test, adjudicated by
Grandmaster Awerbach (see Firbush News 6, (ed. J.E Michie), Univ. of Edin-
burgh). Store-occupancy was of the order of a thousand megabytes. Systematic
application to this domain of the framework which we have developed might be
rewarding, proceeding backwards from the end of the game through the "foot-
hills" as it were, i.e. via KRK, KPK, KQK, KQKR, KPKR, etc., these being
specimen sub-domains into which 1CRPKR decomposes by loss or promotion.
The thrust should be towards numerically characterising information-content
and difficulty-bounds of individual sub-games, and measuring parameters relating
to knowledge, cost and store-compression for each incremental component of
advice. A number of examples and discussions of "foothill studies" have been
brought together by M.R. Clarke in a recent book (Advances in Computer Chess
1 (ed. M.R. Clarke), Edinburgh University Press).

REFERENCES

Chaitin, G.J. (1975) Randomness and mathematical proof. Scientific American, 232,47-52
(May, 1975).

Clarke, M.R. (ed.) Advances in Computer Chess I, Edinburgh: Edinburgh University Press,
1977.

Fischer, M.J., reviews relevant network complexity results in MAC Memorandum No. 65,
M.I.T., 1975.

Hardy, G.H. and Wright, E.M. (1938) An Introduction to the Theory of Numbers. Oxford
University Press.

Knuth, D.E. (1976) Mathematics and computer science: coping with finiteness. STAN-CS-
76-541. Stanford University.

Michie, D. (1976) Measuring the knowledge-content of programs. Technical Report

UIUCDCS-R-76-786. University of Illinois, Computer Science Depattment.
Michie, D. (19764.• ALI: a package for generating strategies from tables. SIGART Newsletter

No. 59, 12-14.
Samson, LW. (1951) Fundamental natural concepts of information theory. Report E5079,

Air Force Cambridge Research Station.
Schnorr, C.B. (1975) The network complexity of equivalence and other applications of

network complexity. Fachbereich Mathematik, Universitat Frankfurt.
Shannon, C.E. (1950) Programming a computer for playing chess. Phil. Mag. 41, 256-275.
Watterberg, P. and Segre, C. (1976) Knowledge measurement. CS397DM Group Report,

University of Illinois, Computer Science Department.

168

