
4

Computational Logic:
The Unification Computation

J. A. Robinson
College of Liberal Arts
Syracuse University

People who write papers on theorem proving have unfortunately tended to
ignore the practical computational questions which arise when a program is
to be written to do deduction on an actual machine with real money. The
present writer is to his shame an example of this.
Yet if computational logic* is to develop into a genuinely useful science it is

precisely the computational issues which have to be given the most attention.
There is already a growing number of applications, within the field of
artificial intelligence, of computational logic: in question-answering, program-
writing, proving programs correct, robot control, and so on. These applica-
tions are exposing the sadly weak deductive power of current deduction
algorithms — at any rate of those realizations of them which have been in use.
One possible way to improve matters is for everyone in the field to bring

out into the open forum his ideas on how programs should be written, with
specific proposals on such 'hard engineering' details as representation of
data objects, layout of store, and the like. At least, such public discussion
will, one would hope, eventually unearth the best techniques which actually
exist and are in use somewhere, for implementing the various subprocesses
involved in mechanical deduction. It is of course also to be hoped that open
discussion will stimulate the discovery of new and better techniques. We
certainly want to advance the art; but at present we appear to have only the
dimmest notion of what the state of the art is.
In the spirit of ‘these observations, this paper describes and discusses a

program for computing unification substitutions. The unification computa-
tion occurs at the very heart of most modern deduction algorithms. Whatever
else goes on during a deduction calculation, an enormous amount of unifica-
tion computation has to be done. It is the 'addition and multiplication' of

* Surely a better phrase than 'theorem proving', for the branch of artificial intelligence
which deals with how to make machines do deduction efficiently?

63



MECHANIZED REASONING

deduction work. There is accordingly a very strong incentive to design the
last possible ounce of efficiency into a unification program. The incentive is
very much the same as that for seeking maximally efficient realizations of the
elementary arithmetic operations in numerical computing — and the problem
is every bit as interesting.

Whether the program about to be described is as efficient as it is possible

to be, is doubtful. It is very hard even to give a precise meaning to claims of
efficiency in computing, let alone to demonstrate their truth. Nevertheless

the author thinks the program is very close to maximal efficiency, and offers

it as a challenge. He will be delighted to be defeated.

The unification algorithm has as input a finite collection P= P„}
of finite sets of expressions. Each finite set Pi is made up of either terms or
atoms (in the sense of the first-order predicate calculus). Each expression
therefore either (a) consists of a (relation- or function-) symbol and a list of
terms as arguments, the length of the list (which might be zero) being the
'arity' of the symbol; or (b) is a variable. For example, the following are
expressions, written in the conventional fashion:

f(x, g(x, y))

P(k(h(a, b)), f(a, g(x, y))).

The object of the unification algorithm is to calculate (if one exists) a
substitution 0 which 'unifies' P, or to indicate (if such be the case) that there
is no substitution which unifies P.
When we say that 0 unifies P we mean that, for each i, i= 1,. . n, 0 turns

each expression in Pi into the same expression; or what is the same, that
Pi0 is a singleton. A substitution is an operation which can be performed on
expressions (and, by an 'abuse of language', as above, on sets of expressions)
whereby every occurrence within an expression of each of a given list of
distinct variables (x1, . x„) is replaced by the corresponding member of an
equally long given list of (not necessarily distinct) terms (t1, t„). One
writes E0 for the result of performing the substitution 0 on the expression E,
and if S is a set of expressions, then SO is the set: {EC/1E in S} .

It is usual to write { ..., tn/x„} for the substitution in which each
occurrence of xi is replaced by one of t The number n is the substitution's
size.
For example, if 0 is {p(r(a))1a, pa)1 x, g(a, b)/y) then:

f(x, g(x, y))0=f(p(a), g(p(a), g(a, b))).

As an example of the phenomenon of unification, consider the system

P={Pi,P2} where:

= (f(x, g(x, y)), z}

P2= (h(z, y), h(f(a, b), f(d, c))} .

The substitution:

0 = {x 1 a, f(d, c)ly,f(x, g(x, f(d, c)))1z, g(x, f(d, c))/b}

64



ROBINSON

unifies P. Indeed, we have:

Pi0= {f(x, g(x,M, c)))1
P20= {h(f(x, g(x,f(d, c))),f(d, c))} .

On the other hand, the system P = (F1), where

Pi= {Q(x, f(x)), Q(f(x), x)}

cannot be unified by any substitution.
The theory of unification is discussed in Robinson (1965), where the

unification algorithm is given and proved correct. Here we shall be concerned
only with the practical implementation of the abstract algorithm.
The idea of the abstract algorithm is to attempt to 'shrink' the given

system P to a set of singletons, by means of successive substitutions of size one.
Each substitution 'equates' two corresponding subexpressions which must
be made identical if P is to be unified. The algorithm has to locate these two
subexpressions, and then perform the necessary substitution, each time
through its cycle. The following description sets forth the abstract algorithm
in a systematic way.
Step 1. Given P={P1, . . P„} as input, set

j= 0,

00=8 (the identity substitution),

and go to step 2.
Step 2. (for j> 0): if Pi0j is a singleton for each i, 1=1, . . n, STOP, with
0=0i as output. Otherwise, go to step 3.
Step 3. Let k be the earliest number .4.n such that PO j is not a singleton.
Let E, F be any two expressions in PkOi. Scan E and Fin parallel, from left to
right, and locate the leftmost position in which E and F do not have identical
symbols. Let e and f be the subexpressions respectively of E and F which
begin in that position. If neither e nor f is a variable, STOP. Otherwise,
go to step 4.
Step 4. If one of e,f is a variable which is properly contained in the other,
STOP. Otherwise, go to step 5.
Step 5. Choose x and t so that {x, t}.{e,f} . Set 0J+1=0,/{t/x}, add 1 to j,
and go to step 2.
End.

If the algorithm stops in either 3 or 4, the given P cannot be unified.
Since, for each k, 1 <k<n,

PIA/14= (Pk0 j){fix)

we can, at the end of each cycle, update the sets

Pi0j, P„0.1

simply by performing the substitution { t/x} on them. This means locating
each occurrence of x in each expression, and replacing it by an occurrence of
t. It might seem that the amount of work required to do this would be pro-
portional to the size of t and the number of occurrences of x. As we shall see,

65



MECHANIZED REASONING

however, the amount of work required can be limited to a very small constant,
independent both of the number of occurrences of x and of the size of t.

In designing an actual realization of the unification algorithm the first
question which arises is how best to represent the expressions in the computer
store. We want to minimize the amount of scanning, copying, and re-
arranging which will have to be done during the computation. It must be as
simple and fast a process as possible to detect differences between expressions.
A representation using strings of symbols seems out of the question. The
applicative structure of an expression would then have to be recomputed
(essentially by parsing it) each time it was referred to. Some list- or tree-
oriented organization is wanted, so that we can immediately access the
immediate subexpressions of an expression. On the other hand, if we use a
general-purpose list-processing framework of representation then we incur a
certain amount of superfluous structure and unwanted overhead. For example,
to locate the ith element of a list we have to 'chain' our way to it from the
start of the list. The representation we use should be as 'close to the machine'
as possible, so that if necessary the algorithm can be written directly in
machine language yet not become unduly complex.

Accordingly, the following representation is used.
We have a collection of tables: symbol, args, vble, arity, subst, term,

equals, and part, each of which has the same number N of rows. The number
N is the number of expressions in the set we are representing. All the tables
have one column, with the exception of args; and args has as many columns
as the arity of that symbol, in the expressions being represented, whose arity
is largest.
The way in which expressions are represented by the tables is best explained

by defining the function expression. Intuitively, each row of the tables
represents an expression, and in particular row i represents expression(i).
The definition is:

expression(i)= if subst (i) then expression (term (i))

else

symbol(i)I arglist (i, arity(i))

where:
arglist(i, j). if j = 0 then empty

else

arglist (i, j — 1)1 expression(args (I, j)).

(The vertical stroke denotes concatenation, and empty is the empty expres-
sion.)
The arrays vble and subst are boolean arrays. If subst(1). F for all i,

1<i<N, the representation is said to be 'normal'. We always arrange matters
so that in a normal representation, distinct rows represent distinct expressions,
i.e., so that

if expression(0=expression(j) then i=j.

66



ROBINSON

By ignoring subst, we accordingly get what is called the 'normal' reading of
the tables, in which row i represents the expression:

norma/expression (i). symbol (i)I normalarglist (i, arity(i))
where:

normalarglist (i, j). if j= 0 then empty else normalarglist (i, j —1)1
normalexpression(args(i, j))

Thus a normal representation is one which satisfies:

expression(i)= normalexpression (i).

The system which is to be unified is represented in the array part. The method
is this: part(i) is an integer satisfying:

1 <part (0‘,i

and having the meaning that normalexpression(i) is to be made identical
with normalexpression(part (0) by the substitution which is to be computed.
If part (1)= i then of course this is vacuously accomplished.

symbol args arity vble subst term equals part

1
2
3
4
5
6
7
8
9
10
11
12
13

Ii

a

2 3

2 4

5 4
8 11
9 10

12 13

2

2

2
2
2

2

.r.1
 I

II 
'II
 

tt
l 

,11
 

R3
 

2
3
4
5
6
7
8
9
10
11
12
13

2
3
4

6
6
8
9
10
11
12
13

13

Figure 1

During the computation, the array equals is modified in such a way that it
always has the meaning:

if equals (i)= equals (j) then expression (i). expression (j).

Note that, in general, in order to determine whether expression (i)= expression
(j), it is necessary to 'scan the two expressions in parallel' by recursively
evaluating expression at I and at j; whereas it can be determined whether
equals (i). equals (j) by two read-references to the tables, and one comparison.

It follows that in a normal representation, all entries of equals must be
distinct. We adopt the convention that the 'normal' setting of equals is given
by:

equals (i)= 1.

To illustrate these ideas, we give in figure 1 the tables comprising the normal
representation of the input for the example given earlier, in which the system
to be unified is:

67



MECHANIZED REASONING

Pi= {f(x, g(x, y)), z} ,

P2={h(z, y), h(f(a, b), f(d, c))} .

In a normal representation, the entries in term are irrelevant, and so are left
blank in the figure.
We are now ready to explain the computation. It is carried out by executing

the function unify. This function yields T or F as result, according as the
system represented in the tables is or is not unifiable. In the former case, the

tables are modified as a side-effect of the computation. Where subst(i)=T,

it is then expression(term(i)) which is to be substituted for the variable

normalexpression(i). The function unify itself is very simple. It consists of
computing equate (j, part (j)) for each row j:

function unify; vars j; 1-+j;

A: if j> N then true

elseif part (j)=j then j+ 1 -tj; goto A

elseif equate(j, part (j)) then j +1-4j; goto A

else false close end;

The function equate has either T or F as its value, and it has an important
side-effect. If the value of equate (i, j) is T, then in the course of its being
evaluated the tables will have been so modified that, after evaluation is

completed, expression(i). expression (j). In addition, equals will have been

modified as explained earlier. The function equate is defined as follows:

function equate if;
A: if equals (i)= equals(j) then true
elseif subst(i) then term(i)-4; goto A
elseif subst(j) then term (j)-j; goto A
elseif symbol (i). symbol (j) then equateargs (i, j)
elseif vble (i) then

if occur(i, j) then false else
true -+ subst (i); term (i) ; identify (I, j); true close

elseif vble(j) then
if occur C], i) then false else
true-osubst(j); i-term(j); identify(i, j); true close

else false close end;

This function is the heart of the program. Its auxiliary functions are defined

as follows:

function equateargs if; vars k; arity(0-4;
A: if k= 0 then identify(i, j); true
elsei f equate(args(i, k), args(j, k)) then k -1-4k; goto A
else false close end;
function occur if;
A: if subst(j) then term (j)-j; goto A
elseif arity(j)=0.then i=j

68



ROBINSON

else occurinargs(i, j) close end;
function occurinargs if; vars k; arity(j)--gc;
A: if k=0 then false
elseif occur (1, args(j, k)) then true
else k-1-4; goto A close end;

function identify if; vars k e f;
equals (j)--■ e ; equals (i)—f; 1 — • k ;
if e =f then exit;
A: if k>N then exit;
if equals (k)= e then equals (k);
k goto A close end;

We have written these function programs in Pop-2 in the expectation that
readers of these Workshop volumes will readily understand them, and can
run them, exactly as given here, if they have access to a Pop-2 system. If
not, the routines are quite simple and transparent enough to write out in
another programming language.
Execution of unify with the store arranged as in figure 1 produces the

value true and leaves subst, term and equals as shown in figure 2. The other
tables are 'read only', and remain unchanged. The entries shown in paren-
thesis are the original entries, unchanged during the computation. Thus we
see that only rows 4, 5, 9, and 10 of subst and term are changed during the
computation: and they are changed only once. In equals it is rows 1, 2, 3, 5, 6,
and 11 which are changed during the computation. In general, the entries in
equals may be changed several times before reaching their final values.

subst term equals

(F) 8
2 (F) 9

3 (F) 10

4 11 (4)
1 a

6 (F) 7

7 (F) (7)
8 (F) (8)

9 2 (9)
10 3 (10)
11 (F) 4
12 (F) (12)
13 (F) (13)

Figure 2

The number of entries in subst which are changed to T during the computa-
tion — four, in our example — is the same as the number of cycles of the
abstract unification algorithm needed for the problem. Each entry corres-
ponds to the making of a substitution {t/x} throughout the entire set of
expressions —indeed x is symbol(i) and t is expression(term(i)), where i

69



MECHANIZED REASONING

is the number of the row in which the entries to subst and term are made.
Thus we see that, to represent the result of making the substitution { t/x}
throughout all the expressions, we make only two write-references to the
tables, regardless of the complexity of the term t and of the number of occur-
rences of the variable x in the various expressions in the set. This feature is
very important for the speed of the program.

It will be seen that the final state of the tables subst, term, together with
the remaining tables, as given in figures 1 and 2, represents the set of expres-
sions into which the computed substitution transforms the original expres-
sions. The transformation is summed up in figure 3, which shows tables of
values of the functions normalexpression and expression, computed from the
final representation.

i „normal expression (0

1
2
3
4
$
6
7
8
9
10
11
12
13

f(x, g(x, .Y))

g(x, Y)

h(z, y)
h(f(a, b), f(d, c))
f(a, b)
a

f(d, c)

expression (i)

f(x, g(x, f(d, c)))

g(x, f(d, c))
f(d, c)
f(x, g(x, f(d, c)))
h(f(x, g(x, f(d, c))), f(d, c))
h(f(x, g(x, f(d, c))), f(d, c))
f(x, g(x, f(d, c)))

g(x, f(d, c))
f(d, c)

Figure 3

To reset the tables to normal after a computation it suffices to execute
true -4 subst (i); equals (i);

for 1=1, . . ., N. This extremely fast reset feature is considerably important
in situations where unify is being executed repeatedly for a series of distinct
partitions of the same set of expressions — a very common situation in
applications.
A somewhat subtle feature of the method of representation used here

involves the treatment of variables. It turns out that two occurrences of
variables are occurrences of the same variable if, and only if, they are
represented by pointers to the same row. It is not the case that if we have,
e.g., symbol(i)='x' and symbol(j)='x', with i0j, then an 'occurrence of x'
is equally well represented by putting an i or a j in the appropriate args cell.
No; in fact we would here have two variables, not one, despite the coincidence
of their written appearances. This is simply the well-known phenomenon of
'bound' or 'apparent' variables. In the formulas VxP(x) and VxQ(x), for
example, the 'x' of the first formula is a different variable from the 'x' of the
second formula.

70



symbol args wily vble

ROBINSON

clause length

1 2 3 4 3 1 5 8 10 4
2 0 2 11 15 18 20 4
3 0 3 21 1
4 0 4 25 1
5 3 6 7 3 5 29 1
6 0
7 0
8 2 7 9 3 sign
9 0
10 4 6 9 3 1 FFFT

11 12 13 14 3 2 FFFT
12 0 3 T
13 0 4 T
14 0 5 F
15 13 16 17 3
16 0
17 0
18 14 16 19 3
19 0
20 12 17 19 3
21 22 23 24 3
22 23 24 2
23 0
24 0
25 26 27 28 3
26 a 0
27 26 28 2
28 0
29 30 31 30 3
30 31 1
31 0

Figure 4

This feature of our system of representation is quite crucial for the overall
efficiency of a resolution-based computational logic. For in such a case we
have to deal with collections of atoms grouped together into so-called
clauses (and afflicted each with a sign — positive or negative — representing
the affirmation or denial of the atom). These groups are thought of as the
universally quantified disjunctions of their members. It is vital that, when two
clauses are to be resolved, no variable occurs in both clauses — i.e., that each
clause have its 'own' variables. In programs employing resolution of clauses
as an inference principle, it is usually necessary to introduce a step in the
computation of 'standardization' of variables, in order to make sure, prior
to resolving two clauses, that their variables are 'separated', in this sense.
In our system, this step is completely unnecessary. The different clauses

automatically have their 'own' variables by virtue of the fact that we never

71



MECHANIZED REASONING

put (in the normal representation) the same atom in more than one clause. To
illustrate this point, we give in figure 4 the tables representing the clauses:

P(x, y, u)P(y, z, v)P(x, v, w)P(u, z, w) (1)
P(x, y, u)P (y, z, v)P (u, z, w)P(x, v, w) (2)
P(g(r, s), r, s) (3)
P (a, h(a, b), b) (4)
P (k(t), t, k(t)). (5)

Although clauses (1) and (2) contain apparently similar atoms, this is only
apparent. In the representation, because of the way in which the variables
are treated, the clauses (1) and (2) have no variables in common, even though
they do have variables whose 'print-names' are visually indistinguishable.
The table representation will enjoy this useful 'separation of variables'

property if we make each new clause, as it is added to those already repre-
sented in the tables, 'occupy' its own new set of rows. For instance, in the
representation shown in figure 4, clause (1) occupies rows 1 to 10; clause (2)
occupies rows 11 to 20; clause (3) occupies rows 21 to 24; clause (4) occupies
rows 25 to 28; and clause (5) occupies rows 29 to 31.
In a sequel to this paper, a further program will be presented which

extends the ideas given here to one higher level in a hierarchy of programs,
the top level of which is a complete proof procedure for the predicate
calculus of first order with equality. The next level program accepts as
input a set of tables like those in figure 4, and detects a unifiable partition P
(if one exists) modulo which the given clauses are contradictory (unsatisfiable
in the 'ground' sense). If no such P exists, the program detects this fact and
reports it. This computation is exceedingly interesting, and is a finite combina-
torial process whose efficiency can be made far greater than previous ex-
perience with it may have suggested.

Acknowledgements

I would like to express my gratitude for the helpful suggestions and comments from my
colleagues Pat Hayes, Isobel Smith, Bruce Anderson and Rod Burstall of the University
of Edinburgh, and John Reynolds of Syracuse University, concerning the topic of this
paper. I should also like to thank the Science Research Council for financial support.

REFERENCE

Robinson, J.A. (1965) A machine-oriented logic based on the resolution principle.
J. Ass. comput. Mach., 12, 23-41.

72


