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ABSTRACT

The selection of what to do next is often the hardest part of resource-limited problem solving. In
planning problems, there are typically many goals to be achieved in some order. The goals interact
with each other in ways which depend both on the order in which they are achieved and on the
particular operators which are used to achieve them. A planning program needs to keep its options
open because decisions about one part of a plan are likely to have consequences for another part.

This paper describes an approach to planning which integrates and extends two strategies termed the
least-commitment and the heuristic strategies. By integrating these, the approach makes sense of the
need for guessing; it resorts to plausible reasoning to compensate for the limitations of its knowledge
base. The decision-making knowledge is organized in a layered control structure which separates
decisions about the planning problem from decisions about the planning process. The approach,
termed meta-planning, exposes and organizes a variety of decisions, which are usually made
implicitly and sub-optimally in planning programs with rigid control structures. This is part of a course
of research which seeks to enhance the power of a problem solvers by enabling them to reason about
their own reasoning processes.
Meta-planning has been implemented and exercised in a knowledge-based program (named

MOLGEN) that plans gene cloning experiments in molecular genetics.

I. Introduction

Method consists entirely in properly ordering and arranging the things to
which we should pay attention. Descartes, OEuvres, vol. X, p. 379; "Rules
for the Direction of the Mind," from Polya [17].

Verily, as much knowledge is needed to effectively use a fact as there is in
the fact, de Kleer et al. [5].

Problem solvers repeatedly decide what do do. A problem solver has goals and
a repetoire of possible actions. It decides when the actions can be applied and
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how they should be combined. In computational systems, such decisions about
actions are called control and a framework for organizing these decisions is
called a control structure.
A sophisticated control structure should provide flexibility for decision-

making—so that a problem solver can take advantage of new information,
make guesses, and correct mistakes. It should be able to recognize when an
approach is succeeding (even by serendipity), and also recognize when it is
failing. In substantial planning problems, there are too many possibilities to try
everything, so a planner must exercise control by deciding what to try. To plan
effectively, a planner must know when to make commitments and when to
wait. These capabilities place a premium on flexibility and raise challenges for
finding ways to use information effectively.
This paper considers the control of decision making in planning. A computer

program, named MOLGEN, has been implemented and used as a vehicle for
studying planning. This is the second of two papers about MOLGEN. The first
paper [231 considers experiment design as a hierarchical process and charac-
terizes planning decisions in terms of operations on constraints. This paper
focusses on the control of those planning decisions.

Experimentation with flexible control structures is of increasing significance
in knowledge-based problem solvers for which we have an apparent wealth of
information in knowledge bases and increased ambitions for intelligent
behavior. Almost 20 years ago, Newell [15] surveyed several organizational
alternatives for problem solvers. Only a few substantial experiments have been
done in the intervening years. The elaboration of the principles for creating
effective control structures is hindered by the substantial effort involved in
building systems that use them. Most experiments consider only one control
structure and a small set of control issues.
This paper describes a control structure, termed mew-planning, which

enables a planner to reason (to some degree) about its own reasoning process.
Meta-planning provides a framework for partitioning control knowledge into
layers so that flexibility is achieved without the complexity of a large monoli-
thic system. The rationale for this is discussed in Section 2. The implementation
of MOLGEN's layered control structure is presented in Section 3. The final
sections consider the conceptual ties of this work to other research on layered
control and show how additional capabilities not implemented in MOLGEN
increase the need for flexible control.

2. The Rationale for Layers

This section presents the rationale for organizing problem solving knowledge as
a control hierarchy. It begins with a discussion of the shortcomings of monoli-
thic agenda systems.
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2.1. The trouble with agendas

The idea of organizing a problem solver around an agenda, that is, around a
queue of competing processes, is currently popular as a flexible control
structure [2, 8, 131. The agenda control structure is a generalization of the
fetch-execute cycle that is used in the hardware of most digital computers (see
Fig. 1). In the fetch-execute cycle, instructions are retrieved by a processor and
executed. Execution of the instructions causes changes in memory and
(presumably) brings the system closer to the completion of a problem. In
agenda systems (see Fig. 2), the tasks are similar to instructions except that
they are usually more complicated than machine instructions and the retrieval
and selection criteria are richer. Still, the basic organization is the same and the
potential for programming the system by altering the tasks and selection
criteria is appealing.

Processor Loop

1. Fetch Instruction

2. Execute Instruction

Memory

Instructions

Instruction-1

Instruction-2

Instruction-3
• • •

Data

Intermediate Computations

Results

PIG. 1. The Fetch-Execute Cycle. Instructions are retrieved by a processor and executed. Execu-
tion of the instructions causes changes in memory and (presumably) brings the system closer to the
completion of a problem.

In the basic agenda organization the knowledge for selecting tasks is con-
tained in the interpreter. Hayes [II] has argued that this approach is a return to
the 'uniform black-box problem solver':

We have now come full circle, to a classical problem-solving
situation. How can the interpreter decide what order to run
the processes in? It doesn't know anything about any parti-

cular domain, so it can't decide. So we have to be able to tell
it.. . . This is exactly the situation which ... the proceduralists
attacked. In removing the decision to actually run from the
code and placing it in the interpreter, advocates of [agenda
systems] ... have re-created the uniform black-box problem-
solver.

Inter. reter

1. Select Task

2. Execute Task

Task-1

Task-2

Task-3

Memory (Semantic Network)

Data

Intermediate Computations

Results

FIG. 2. The agenda control struc ure. This control structure has essentially the same architecture as
a digital computer tasks except that tasks are usually more complicated than machine instructions,
and the retrieval and selection criteria are richer. The memory in agenda systems is often
structured as a semantic network.

Several modifications in this scheme have been proposed to simplify the
interpreter by removing the task selection criteria. One approach is to provide
an initial set of tasks and arrange that new tasks are created by earlier tasks as
they are run. Tasks are run in a standard order, such as the order in which they
were created. This approach limits the amount of scheduling information in the
interpreter by the drastic expedient of eliminating it altogether. The priority
queue approach (see Fig. 3), which recognizes that some tasks are more
important than others, is to assign priorities to tasks and select those with the
highest priorities.

Several embellishments are possible on the priority queue approach. One
embellishment is to raise or lower priorities to reflect changing conditions. For
example, the reasons for running a task may lose validity if other tasks have
been executed between the time that a task is created and the time that it
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Interpreter

1. Select Task

2. Execute Task

Agenda

Task-1 99

Task-2 85

Task-3 78

• • •

Memory (Semantic Network)

Data

Intermediate Computations

Results

FIG. 3. Priority Queue. The task description in agenda control structures can be augmented to
include priority information to represent the idea that some tasks are more important than others.
This begs the question of where to put the knowledge for setting the priorities.

reaches the top of the agenda. Some programs distinguish between activation-
conditions and pre-conditions to handle this case. In programs like Lenat's AM
a task may increase in importance as reasons for running it accumulate.

Task-centered scheduling is an augmentation of the priority queue idea that
associates priority-estimating functions with , each of the tasks, instead of
numeric priorities (see Fig. 4). However, the treatment of complexity is not
necessarily much improved. If the problem solver has multiple goals, each
priority-estimating function must potentially know about all of them. In the
worst case, the priority-estimating functions for each task need to take into
account all of the other possible tasks. Unfortunately, the number of possible
interactions grows rapidly with the number of tasks. Even if we consider only
pairwise interactions, their number is proportional to the square of the number
of tasks; if we count interactions between groups of tasks, the number of
possible interactions grows exponentially with the number of tasks.
While the worst case does not usually hold in practice, this shows how the

control knowledge can become unmanageably complicated in a monolithic
organization. The fix for the complexity problem is not simply a choice
between a centralized or decentralized organization. In the absense of some
other kind of simplifying organization, we have only a choice between (1)
maintaining an arbitrarily complex central function, or (2) maintaining a set of
interacting task-centered functions.

Inter. reter

1. Select Task

2. Execute Task

Agenda

Task-1 Scheduler-1

Task-2 Scheduler-2

Task-3 Scheduler-3

• • •

Memory (Semantic Network)

Data Goals

Intermediate Computations

Results

FIG. 4. Task-centered compu ation of priorities. In some tasks, priorities (or even applicabilities)

change as conditions change. To account for this, some systems associate functions with tasks to

compute the current priority on demand. Unfortunately, if there are many possible goals, each

function must be able to take all of them into account.

2.2. Recognizing the meta-problem

Continuing with Hayes's argument:

A somewhat more sophisticated idea is to allow descriptors for
subqueues and allow processes to access these descriptors....
But none of these ideas seem very convincing. And we have
now moved down another level, to the interpreter of the
interpreter-writing language of the representation language.
The only way out of this descending spiral is upwards. We

need to be able to describe processing strategies in a language
at least as rich as that in which we describe the external
domains, and for good engineering, it should be the same
language.

This argument is supported by the observation that many of the important
actions, goals, and constraints can be characterized as being on a meta-level.
For example, in the classical Missionaries and Cannibals puzzle, a first-level
action would be a trip across the river specifying various occupants of the boat.
The first-level goal is to get the people across the river safely and the first-level
constraints relate to the eating habits of the people. Introspection while trying
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to solve the puzzle suggests that much of the thought process is actually on a
meta-level, that is, it is about the process of solving the puzzle. For example,
higher level actions would include (1) generating plausible sequences of first-
level actions to find a solution, or (2) describing possible intermediate states in
the boating plan, or (3) changing the representation of the first-level problem.
The meta-level goal is to find a solution to the puzzle; limitations on the
availability of computational resources are examples of meta-level constraints.
In general, any choices or evaluation criteria which relate to the process of
problem solving can be characterized as meta-level considerations.
That many planning decisions are about the meta-problem explains the

source of the combinatorially explosive number interactions in monolithic
organizations. If the tasks in the agenda refer only to first-level actions, then
the scheduling functions must take into account not only the applicability

Interpreter

Interpreter

1. Select Meta-Task

2. Execute Meta-task

Memory

Agenda

Meta-Task-1

Meta-Task-2

Meta-Task-3

• • •

Task-1

Task-2

Task-3

Memory (Semantic Network)

Data Goals

Intermediate Computations

Results

F)G. 5. Layered Agenda Structures. The original interpreter can be replaced by another agenda-
based problem solver dedicated to the scheduling problem. The higher problem solver should
represent the control concepts necessary for solving the original problem. Tasks in the higher
problem solver select and execute tasks in the original problem.

considerations of the first-order problem, but also the problem-solving con-

siderations of the meta-problem. If the meta-level tasks are not represented

explicitly and are not hidden in a 'black box interpreter', then the higher-level

considerations will surface in a confusing way as task interactions on the first

level. The basic difficulty with all of the monolithic agenda approaches is that

they provide no hierarchical framework for complex control. They provide no

meta-level concepts or global perspectives to bear on scheduling and arbitra-

tion.
How then might this knowledge be organized? One approach is to extend

the agenda idea to a multiple-layered structure with a separate problem solver

for the meta-problem. We can replace the complex interpreter in the original

agenda structure with a second agenda-based problem solver dedicated to the

meta-problem (see Fig. 5). In this multiple-layered system, the interpreter of
each agenda is essentially another agenda-based system. Tasks in the second

layer act collectively as the interpreter of the lower agenda system by creating,

ordering, and running the lower tasks.
The layering idea is not limited to two layers; it can be applied recursively.

To reduce the apparent complexity of a system, layers can be created until the

knowledge remaining in the uppermost interpreter is trivial.
The use of layers has been essential to the creation of computer systems for

many years. Most computer programs are built on a succession of layers (or
virtual machines)—through hardware, firmware, operating system calls, pro-
gramming languages, and application software. This practice reduces the
amount of expertise that is needed to program a system by providing layers of
concepts appropriate for the application. This paper argues for the use of such
layers for organizing the control knowledge in a problem solver.

2.3. Advice and control

Many books about problem solving contain advice. For example, the following
advice was offered by Polya [18]:
(1) Think on the end before you begin. • • • Let us inquire from what

antecedent the desired result could be derived.
(2) Examine your guess. • Don't let your suspicion, or guess, or con-

jecture grow without examination till it becomes ineradicable.
(3) A wise man changes his mind, a fool never does.
(4) Look around when you have got your first mushroom or made your first

discovery; they grow in clusters.
It is generally conceded by researchers in AI (artificial intelligence) that

there is a considerable gap between advice such as this and its realization in
problem solving programs. As Mostow and Hayes-Roth [141, have observed,
considerable knowledge is sometimes required in order to interpret such
advice. Another part of the difficulty is that there is often no apparent place to
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put advice in a problem solver. Heuristics like these deal essentially with
control concepts, so the absence of an explicit vocabulary of control concepts
necessarily impedes the representation of such advice. This research takes
some first steps towards defining a vocabulary of control concepts and suggests
that layers of control can provide a useful framework for representing them.

3. A Model for Planning

This section presents the layers of control (termed planning spaces) that are
used to model hierarchical planning in MOLGEN. The main features of the
implementation are
(1) a trivial finite-state machine as the top-level interpreter,
(2) the factoring of the knowledge for using plausible and logical reasoning

from the planning operations, and
(3) the development of a vocabulary of operators and concepts for hierar-

chical planning with constraints.
MOLGEN uses three layers and an interpreter as shown in Fig. 6. The three

spaces have parallel structure: each space has operators and objects and steps.
Each layer controls the creation and scheduling of steps in the layer below it.
The spaces are described here starting with the bottom or domain space:

Focus
Resume
Guess
Undo

InterI reter

Strategy Steps

Strategy Space

Meta. Planning

Refine-Operator fr
Propose-Goal Design Steps
Propagate-Constraint

Design Space

Difference
Constraint
Refinement
Tuple

\ort
Screen
Merge
Transform

Planning

•
Lab Steps

Laboratory Space 
Gene
Bacterium
Enzyme
Antibiotic

FIG. 6. MOLGEN's planning spaces. The design space plans by selecting and executing laboratory
steps; the strategy space meta-plans by selecting and executing design steps.

(1) Laboratory space (or domain space)—knowledge about the objects and
operations of a genetics laboratory. The operators in this space represent
actions that can be performed by a laboratory technician; the objects are the
things that can be manipulated in the genetics laboratory. (Laboratory space
also contains abstractions of these objects and operators.) Steps (i.e., tasks) in
laboratory space are executed in order to simulate a real genetics experiment.
This bottom space is not a control level at all; it represents knowledge about
genetics. Laboratory space describes what can be done in the laboratory, but not
when to do it in an experiment.
(2) Design space—knowledge about designing plans. This space defines a set

of operators for sketching plans abstractly and for propagating constraints
around in a laboratory plan as it is refined. These operators model the actions
of an experiment designer. Steps are executed in design space in order to create
and refine the laboratory plan.
(3) Strategy space—knowledge about strategy. This space has two problem-

solving approaches: heuristic and least-commitment. Steps are executed in
strategy space in order to create and execute the steps in the design space.
(4) The Interpreter—this program is MOLGEN's outermost control loop. It

creates and executes steps in the strategy space.
The design operators plan by creating and scheduling laboratory steps; the

strategy operators ̀ meta-plan' by creating and scheduling design steps.

3.1. Control messages

The stratification of control knowledge introduces some organizational
requirements:
(1) The operators in a meta-level need to be able to create and schedule

first-level tasks.
(2) Meta-level operators should be able to reference and describe first-level

entities.
(3) For convenience in a changing knowledge base, an interface between the

spaces should isolate the meta-level operators from trivial name changes in the
first-level space.

In MOLGEN, the translation of domain-level information into design-level
concepts was implemented using an object-centered approach (see Bobrow and
Winograd [2]). MOLGEN's operators were represented as 'objects' (called
units) that communicated by passing standardized messages. This enabled
operators in a meta-space to look up information in a lower space and to
communicate uniformly with the operators in the lower space. A message
passing protocol was implemented using facilities provided by the Units Pack-
age representation language [25]. No claim is made that a message-passing
protocol is essential for implementing a layered control structure. Indeed, more
sophisticated methods for insulating problem solving layers and translating
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between vocabularies are possible, but were not implemented in MOLGEN.
The following sections discuss the vocabulary and rationale for each of the

planning spaces. For concreteness, the operators in each planning space will be
described in terms of the message-passing protocols that were used. The
specific messages will be introduced as needed.

3.2. Laboratory space

Laboratory space is MOLGEN's model of the objects and actions relevant to
gene cloning experiments. It was described in the companion paper and will be
summarized here briefly. Laboratory space defines the set of possible labora-
tory experiments by describing the allowable laboratory objects and operators.
The objects in laboratory space represent physical objects that can be

manipulated in the genetics laboratory. They include such things as antibiotics,
DNA structures, genes, plasmids, enzymes, and organisms. Seventy-four
different generic objects are represented in total. The knowledge base includes
annotations which indicate which of these objects are available 'off the shelf'.
The operators in laboratory space represent physical processes that can be

carried out in the genetics laboratory. They are organized into four groups
depending on whether they
(1) combine objects together (Merge),
(2) increase the amount of something (Amplify),
(3) change the properties of something (React), or
(4) separate something into its components (Sort).
Collectively, these abstract (or generic) operators are called the 'MARS'

operators. Thirteen specific operators are represented as specializations of
these. For example, Cleave is a React operator which cuts a DNA molecule
with a restriction enzyme; Screen is a Sort operator which removes unwanted
bacteria from a culture by killing them with an antibiotic.

Steps in laboratory space describe the application of (possibly abstract)
genetics operators to genetics objects. When MOLGEN runs (i.e., executes) a
step in a higher level space, the step is said to have been done and correspond-
ing changes in the plan structure are made. MOLGEN can not actually run the
laboratory steps in the sense of doing them in the laboratory; executing the
code is interpreted as simulating the laboratory step.

Laboratory space does not contain the knowledge about how to effectively
plan experiments, that is, how to arrange laboratory steps to achieve experi-
mental goals. This knowledge is organized in the design and strategy spaces.

3.3. Design space

Design space is MOLGEN's first control space. It contains operators for
planning, that is, for creating and arranging steps in laboratory space. This
section discusses the concepts and operations of meta-planning in enough detail

to give a sense of how MOLGEN worked. No claim is advanced that the
particular operators described here are universally applicable in problem
solving, or that the partitioning of functionality is ideally chosen. Rather, this
description is offered as an example of the kinds of operations that can be
treated explicitly in problem solving, and it is hoped that the example will
provoke the kind of careful thinking that will lead to defining and organizing
control information in other systems.
The main idea in organizing MOLGEN's design space is that planning can be

viewed as operations on constraints. Three operations on constraints are
important: formulation, propagation, and satisfaction. Constraint formulation is
the dynamic creation of constraints that set limits on the acceptable solutions.
Constraints correspond to commitments in planning. By formulating con-
straints about abstract objects (variables), MOLGEN creates partial descrip-
tions of the objects and postpones complete instantiation until later. Constraint
propagation performs communication by passing information between nearly
independent subproblems. Constraint satisfaction refines abstract entities into
specific ones. It pools the constraints from the nearly independent problems to
work out solutions. The operations on constraints are an important subset of
MOLGEN's design operators. These operators provide a repertoire of possible
actions that MOLGEN can use to plan hierarchically. Fig. 7 gives an outline of
the objects and operators in MOLGEN's design space.

Design-Object
Constraint
Difference
Refinement
Tuple

Design-Operator
Comparison

Find-Unusual-Features
Check-Prediction

Temporal-Extension
Propose-Operator
Propose-Goal
Predict-Results

Specialization
Refine-Operator
Propagate-Constraint
Refine-Object

FIG. 7. Outline of the objects and operators in design space.

3.3.1. Design operators

MOLGEN has three categories of design operators:
(1) Comparison operators that compare goals and compute differences,
(2) Temporal-extension operators that extend a plan forwards or backwards

in time, and
(3) Specialization operators that make an abstract plan more specific.
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3.3.1.1. Comparison operators
Comparison is a fundamental operation in planning. The results of comparison
are represented as differences. Differences are represented as objects in
MOLGEN's design space. Other design objects include constraints,
refinements, and tuples. Examples of these objects are given in the planning
trace in the previous paper. Thus, unlike the objects in laboratory space which
represent physical objects, the objects in design space represent conceptual
objects.

Typically, MOLGEN chooses laboratory operators that can reduce specific
differences. This basic formulation goes back to the Logic Theorist program
and has appeared in many planning programs. MOLGEN has two comparison
operators: End-Unusual-Features and Check-Prediction.
End-Unusual-Features is a design operator that examines laboratory goals.

Sometimes a good way to select abstract operators to synthesize objects in
cloning experiments is to find features in which the objects are highly speci-
alized or atypical, and then find operators that act on those features. Find-
Unusual-Features does this by comparing objects (e.g., Bacterium-1) with their
prototypes (e.g., Bacterium). End-Unusual-Features searches recursively
through units representing the parts of an object and stops when it has found
differences at any depth of processing.
Check-Prediction is a design operator that compares the predictions from

simulation of a laboratory step with the forward goal for the step. This
operator is useful for detecting cases where a plan needs to be adjusted
because the predicted results of a laboratory step do not quite match the goals.
MOLGEN discovers this mismatch after simulating the laboratory step when
the knowledge in its simulation model is more complete than the knowledge
that was used for selecting the laboratory operator.

3.3.1.2. Temporal-extension operators
A design operator that extends a pla9 forwards or backwards in time is called a
temporal-extension operator. MOLGEN has three such operators: Propose-
Operator, Propose-Goal, and Predict-results.
Propose-Operator proposes abstract laboratory operators to reduce

differences. It is activated when new differences appear in the plan and it
creates partially instantiated units to represent laboratory steps. It is respon-
sible for linking the new laboratory steps to the neighboring laboratory steps
and goals. Propose-Operator must determine which of the abstract laboratory
operators (i.e., the MARS operators) are applicable. Propose-Operator takes
advantage of the hierarchical organization of the laboratory operators by
considering only the most abstract operators. It sends an apply? message to
each of the abstract laboratory operators. Each laboratory operator has a
procedure for answering the message that determines whether the operator is
applicable (given a list of differences and constraints). If more than one

laboratory operator is applicable, Propose-Operator puts the list of candidates
in a refinement unit and suspends its operation pending messages from strategy
space.
The Propose-Goal design operator creates goals for laboratory steps. It uses

messages to access specialized information for laboratory operators. For
example, when it sends a make-goals message to the Merge operator, a local
procedure creates goals for each of the parts being put together.
Predict-Results is the design operator for simulating the results of a proposed

laboratory step. It activates a simulation model associated with each laboratory
operator. In the case that the information in the laboratory step is too incomplete
for simulation at this stage of planning, Predict-Results suspends its execution
pending messages from strategy space.

3.3.1.3. Specialization operators
A hierarchical planner first makes plans at an abstract level and then adds
details to its plans. MOLGEN's specialization operators all add details to
partially specified plans. The design operators for this are Refine-Operator,
Propagate-Constraint, and Refine-Object.

Refine-Operator is the design operator that replaces abstract domain opera-
tors (i.e., the MARS operators) in laboratory steps with specific ones. Refine-
Operator is invoked when there are laboratory steps that have their goals and
inputs specified but have abstract specifications of the laboratory. operator (i.e.,
Merge). The inputs to laboratory steps are usually incompletely specified when
the operator is chosen. For example, the input may be a 'culture of bacteria'
without being precise about the type of bacteria. Because laboratory operators
often have specific requirements, the process of refinement is accompanied by
the introduction of specific constraints on the input. These constraints make the
requirements of the laboratory operator specific, without requiring a full
specification of the input at the same time. Like other operators in the design
space, Refine-Operator uses several messages in the design space/laboratory
space interface to retrieve information about specific laboratory operators.

Propagate-Constraint creates new constraints from existing constraints in the
plan. It is organized around the observation that even long-distance pro-
pagations can be decomposed into a series of one-step propagations through
individual laboratory steps. Propagate-Constraint is invoked when a new con-
straint appears in the plan. While constraints can, in principle, be propagated in
either a forward or backward direction in a plan, only the backward direction
(in time) is implemented in MOLGEN. Propagate-Constraint is activated
whenever new constraints appear in the plan. After trying to propagate a
constraint, the design task is suspended for possible reactivation if some new
laboratory steps appear in the plan. These tasks are cancelled if a constraint is
marked as replaced in the plan.

Refine-Object is MOLGEN's constraint satisfaction operator. It is activated
when new constraints appear in the plan. Constraint satisfaction involves a 'buy
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or build' decision in MOLGEN.' MOLGEN first tries to find an available
object that satisfies the constraints. If this fails, the constraint is marked as
failed and the refinement task is suspended. If the constraint is never replaced
by a different constraint and MOLGEN runs out of things to do, it may guess
that it should make a subgoal out of building the object—thus making the build
decision.

Refine-Object evaluates constraints (Lambda expressions) using objects from
the knowledge base as arguments. The solutions are pooled with those of other
constraints on the same objects in design objects called 'tuples' that keep track
of the sets of solutions. Sometimes a new constraint will include objects that
are included in disjoint tuples; in such cases Refine-Object combines the
subproblems by integrating the tuples into a new tuple with intersected
solutions. When enough constraints have been found to make the solution for
any abstract variable unique, that variable is anchored to the solution.

3.3.2. Interface to laboratory space

Fig. 8 summarizes the messages that were used in MOLGEN. Each laboratory
operator includes a procedure to respond to each kind of message. This

Message

APPLY?

REFINE

MAKEGOALS?

MAKEGOALS

SIMULATE?

SIMULATE

BKWD-PROPAGATE

FWD-PROPAGATE

Meaning

Asks a lab operator whether it is applicable to
reducing a list of differences given a set of
constraints.

Instructs a lab operator that it has been chosen as a
refinement in the plan. Returns a list of new
constraints.

Asks a lab operator whether it needs to modify the
goals of a step.

Instructs a lab operator to modify the goals of a
laboratory step as needed.

Asks a lab operator whether the input to a lab step is
specified precisely enough to do a detailed
simulation of the lab step.

Instructs a lab operator to provide a detailed
simulation of laboratory step.

Instructs a laboratory operator to propagate a
constraint backwards (in time) from its forward goals
to its input.

Instructs a laboratory operator to propagate a
constraint forwards (in time) from its input to its
forward goals. (This message was not implemented
in MOLGEN.)

FIG. 8. Message-protocol interface to laboratory space. These messages are sent by design space
operators to control and retrieve information from laboratory space.

I Post-thesis examination of MOLGEN's logic has revealed some gaps and confusions in the
implementation of this 'buy or build' decision. Some aspects of this are discussed in Section 5.

approach redundantly represents the knowledge about the laboratory opera-
tors, since the queries can be about redundant information and there is a
separate attached procedure provided for each kind of query from the design
space. A direction for future research is to develop an approach for stating the
information declaratively once, and then possibly compiling it into the pro-
cedures like these.

14. Strategy space and its interpreter

The distinction between least-commitment and heuristic approaches to problem
solving is the key to the organization of the knowledge in MOLGEN's strategy
space. A least commitment approach requires the ability to defer decisions
when they are under-constrained. It relies on a synergistic relationship between
subproblems, so that constraints from different parts of a problem can be
combined before decisions are made. A heuristic approach utilizes plausible
reasoning, to make tentative decisions in situations where information is
incomplete.
MOLGEN's strategy space is organized as four strategy operators: Focus,

Resume, Guess, and Undo as described in the next section. Fig. 9 shows how

Start

Least-Commitment Cycle

Heuristic Cycle

TUnder-Constrained & Stuck

1

Over-Constrained 1

FIG. 9. Least-commitment and heuristic cycles. This diagram shows how the strategy operators are
controlled by MOLGEN's interpreter. The least-commitment cycle makes conservative changes in
the plan, depending on synergy between subproblems (and constraint propagation) to keep going.
When MOLGEN runs out of least-commitment steps, it resorts to guessing using the heuristic
cycle.
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the strategy operators are controlled by a simple finite state machine, the
interpreter, which is composed of two main parts. Section 3.4.2 describes the
message-passing protocol that interfaces these operators with the design space.
The significance of these ideas is discussed in Section 3.4.3.

3.4.1. Strategy operators

The four strategy operators partition the knowledge about logical and plausible
reasoning out of the design operators that create the experimental plans. This
section describes MOLGEN's strategy operators and how their control of
design space is implemented.

3.4.1.1. Focus
The Focus strategy operator is used to create and execute new design tasks.
Focus sends a find-tasks message to every design operator. This causes the
procedures associated with the design operators to search for work in the
current plan and to report back where they can be applied. These procedures
mark the places where they have looked in the plan, so that they can avoid
redundant checking. The application points are recorded in design steps and
the design steps are put into an agenda. In the simplest case, only one design
step is ready at any given time. When several design steps are ready simul-
taneously (usually from different parts of the plan). Focus has to choose one of
them to go first. In MOLGEN, priorities were assigned to the design operators
as described in the following paragraphs. These priorities were used by the
Focus and Resume operators to schedule design steps when several were
simultaneously ready.
Focus executes a design task by sending it a simulate message. A task may

terminate in any of four possible states: done, failed, suspended, or cancelled.
Focus iterates through its agenda. After each execution, it sends out the
find-tasks message again. As long as steps are successful or are suspended due
to being under-constrained. Focus continues through the agenda. However, if a
design-step is over-constrained. Focus stops processing and returns to the
interpreter with the status over-constrained. (This causes the Undo operator to
be invoked.)
The priorities for scheduling competing design tasks are shown in Fig. 10.

They reflect a bias towards performing comparison before temporal-extension.
and temporal-extension before specialization. This was intended to encourage
MOLGEN to look first for differences, then to use them to sketch out an
abstract plan, and finally to refine to specific objects and operators. Given such
a control scheme, it is interesting to ask whether it was effective or necessary.
While no comprehensiv e set of measurements was done, an experiment was
performed accidentally. The original versions of the Focus and Resume opera-
tors had a bug which caused them to use the priorities precisely backwards, so
that the design operators with the lowest priority were tried first. Interestingly,

Operator Class Design Operator Priority

Comparison

Check- Prediction
Find-Unusual-Features

Temporal-Extension

Propose-Goal
Propose-Operator
Predict Results

Specialization

9
9

6

Refine-Operator 4
Propagate-Constramts 3
Refine-Object 2

FIG. IJ. Priorities of the design operators. When the strategy operators have more than one design
task that seems applicable in the least-commitment cycle, these priorities are used to order the
tasks. They reflect a bias towards extending a plan in time before extending it in depth.

MOLGEN was still able to plan correctly, except that it did a lot of un-
necessary work. Design tasks were scheduled, and immediately suspended
because of insufficient information. Although this buggy version of MOLGEN
never completed a plan, it seemed to make the correct decisions, but only after
a great deal of fuss; starting tasks, suspending them, and picking them up later.

3.4.1.2. Resume
Resume is the strategy operator that restarts suspended design steps. A design
step may be suspended because it is under-constrained, or because there is
potentially additional work to be found later. Resume works very much like
Focus in that it creates an agenda and uses priorities to schedule design tasks
when more than one is ready. It differs from Focus in that it does not look for
new work to do, only old work to start up again. It sends a resume? message to
every suspended design-step telling it to indicate if it is ready to run again.
Resume reactivates the design steps that are ready to run by sending them a
resume message.

Fig. 11 shows an example from a cloning experiment where the Resume
operator was used to activate a design step. The design step in this case is the
Propagate-Constraint step shown in the right center portion of the figure. This
step was activated when the constraint (dark box) was added to the plan. The
constraint required that the enzyme corresponding to the sticky-ends of the
vector should not cut the desired gene (rat-insulin) that it carries. At the time
of formulation, there was no place to propagate the constraint, because the
Cleave step in the plan had not yet been added to the plan. Later, other design
steps proposed and instantiated the Cleave step, and the suspended Propagate-
Constraint design step could be resumed.

3.4.1.3. Guess
Occasionally during planning, information is not adequate for making any
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Not
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FIG. 11. Example of resuming. The Propagate-constraints design step was created when the
constraint was created, but was suspended until enough of the plan had evolved to create a place
for propagating the constraint.

irrevocable decision. When MOLGEN has run out of least-commitment
changes to a plan, it looks for a plausible commitment that will allow it to
continue with the design process. This is recognized by MOLGEN when the
Focus and Resume strategy operators have nothing to do.
The Guess operator sends a guess? message to the operator of every

suspended design step. These design steps represent under-constrained
decision points in planning. The guess? message causes each suspended step to
examine its options and to compute a numerical estimate of the utility of
commiting to one of its choices. Guess then activates the task with the highest
rating by sending it a guess message. After making a single guess, the Guess
operator returns to the interpreter and another Focus step is started.

3.4.1.4. Undo
Undo is the strategy operator for backtracking when a plan has become

over-constrained. It is the least developed of the strategy operators in this

research. Other researchers have developed a more comprehensive approach

to dependency-directed backtracking than has been done for MOLGEN; most

of the effort in this research has gone towards avoiding backtracking. In

Section 3.4.3 it is argued that it is not always feasible to avoid revoking

decisions made in planning.
For the record, MOLGEN's (primitive) Undo operator works as follows.

First it picks a candidate design step to undo. It begins by making a list of

design steps that were guessed and searches this list for a step whose output

was the input of the over-constrained design step. If Undo finds such a step, it

sends it an undo message. This tells the design step to remove the effects of its

execution from the plan. The design step is then marked as undone. If Undo

finds no candidate, it prints out an apology and quits. Undo, as implemented in

MOLGEN, is not capable of tracking down all of the consequences of a

decision to be undone and does not check that the undoing actually alleviates

the over-constrained situation.

3.4.2. The interface to design space

The preceding account of the strategy operators has discussed a number of

messages that are sent from the strategy space to the design space. These

messages provide an interface to design space that is analogous to the message

interface between design space and laboratory space. The interface provides a

way for the strategy operators to communicate with the design operators

uniformly. They enable strategy operators to invoke design procedures without

knowing the names of the procedures. The interface messages in the current

implementation are shown in Fig. 12.

Message Meaning

FIND-TASKS

SIMULATE

RESUME?

RESUME

GUESS?

GUESS

UNDO

Instructs the design task to search for new work to do.
Returns a list of tasks to do.

Causes a design task to be executed.

Asks a suspended design task whether it is ready to be re-
Started.

instructs a suspended design task to resume execution.

Asks a suspended design task whether it can make a
plausible guess. Returns a numetic rating of the guess.

Instructs a suspended design task to make its best gues.

Instructs a finished (guessed) design task to undo the effects
of its execution.

FIG. 12. Message-protocol interface from strategy space to design space.
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3.4.3. Significance of the strategy space

The heuristic and least commitment cycles are reminiscent of two earlier Al
programs, HACKER (Sussman [26]) and NOAH (Sacerdoti [20]), respectively.
These programs epitomize two points on a spectrum of time of commitment.
HACKER epitomizes heuristic early commitment and NOAH epitomizes late
(or least) commitment. HACKER guesses its way to a solution using debugging
to fix things when the assumptions are bad; NOAH defers decisions and invites
the possibility that information will become available later that narrows the
possibilities. After NOAH successfully and optimally solved some of the
problems that were troublesome for HACKER, Sacerdoti [20] observed that

HACKER does a lot of wasted work. While the problem
solver will eventually produce a correct plan, it does so in
many cases by iterating through a cycle of building a wrong
plan, then applying all known critics to suggest revisions of the
plan, then building a new (still potentially wrong) plan.

The bugs arose, in Sacerdoti's view, from premature and inappropriate
decisions by the problem-solver. By delaying judgment, a problem-solver can
achieve a considerable savings in computational effort.2 Sussman and later
Goldstein disagreed on the power of the least-commitment principle. Bugs in a
design are to be expected; they result from heuristically justifiable but incorrect
inferences in the design process. Goldstein [10] observed that

Many bugs are just manifestations of creative thinking—the
creation and removal of bugs are necessary steps in the normal
process of solving a complex problem.

The formulation of strategy knowledge in MOLGEN integrates and extends
the two earlier approaches to planning. By integrating the least commitment
cycle with the heuristic cycle in strategy space, MOLGEN makes sense of the
need for guessing: we can guess, but only when we have to. Bugs are
inevitable, but only when we guess. The amount of guessing is a measure of
missing knowledge; the more we know (and are able to use what we know), the
less we need to guess. Guessing is used to compensate for the limited
knowledge of a problem solver. With increased expertise we expect reduced
guessing and backtracking. By increasing MOLGEN's knowledge about con-
straint formulation and propagation, we decrease its need to revoke decisions.
The least commitment approach is conservative reasoning; the heuristic ap-
proach is plausible reasoning.
The appeal of the least commitment cycle is that it uses a monotonic

approach towards a solution; as long as MOLGEN stays in this cycle, it is

2 Barstow [I] illustrated this in an example of program refinement when abstraction trees are
skinny at the top, and bushy at the bottom. He cited a case where delaying a choice reduced the
number of rule applications in half.

guaranteed to make no wrong moves. The Focus operator calls on new design
operators to make infallible (i.e., irrevocable) changes in the developing plan;
the Resume operator re-starts any suspended design operators which have
received additional information. The power of this cycle derives trom the
ability of the various design tasks to reinforce each other in their decisions. The
operators can be suspended when they have insufficient information and
restarted when it becomes available. Reinforcement is a consequence of
constraint propagation, which passes partial results between subproblems. As
long as there are new things to do in the plan or suspended things to restart,
MOLGEN stays in the least-commitment cycle. If MOLGEN runs out of things
to do (and the plan is incomplete), the plan is said to be under-constrained and
it calls upon the Guess operator to make some tentative decision that will
enable planning to continue. The Guess operator calls again upon the design
operators to make moves that are plausible, even if they cannot be guaranteed.
If MOLGEN discovers at any point that the plan is over-constrained, it calls on
the Undo operator to revoke some of the design decisions, typically undoing a
choice that was guessed.

4. Relationships to Other Work

This section considers other problem-solving programs with layered control
structures. While the idea of layered control was reported as early as 1963,
programs which substantially utilize this idea have appeared only recently.
Several researchers (e.g., de Kleer et al. [5] and Georgeff [9]) have -proposed
approaches for controlling inference; this section will consider only approaches
that are layered.

4.1. GPS

The idea of layers of control with problem-solving operators was anticipated in
1963 by Simon [22] in his experiments with the-heuristic compiler in the GPS
framework:

It should ... be feasible, by modifying the top-level programs,
to bring the Heuristic Compiler into a form which would allow
its problem-solving processes to be governed by GPS 
That is, GPS would first be applied to the task environment of
the General Compiler; applying an operator in this environ-
ment would consist in applying GPS to the task environment.

This suggestion anticipates the use of problem-solving operators that are
distinct from the domain operators. The idea for the Heuristic Compiler was
recursive in that it used an instantiated version of GPS as an operator in the
difference tables of a higher version of GPS.
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4.2. TEIRESIAS

TEIRESIAS (Davis [3,4]) with its meta-rules also used a layered control
structure. TEIRESIAS was developed in the context of MYCIN (Shortliffe
[211), a medical-consultation system. MYCIN performs an exhaustive goal-
directed search through a diagnostic AND/OR tree. At each stage of the
diagnosis, MYCIN retrieves the set of production rules which conclude about a
premise of interest. In TEIRESIAS, the system was modified so that object-
level production rules could be reordered and pruned according to explicit
criteria in meta-rules. These criteria were used by TEIRESIAS to shorten or
re-order the list of potentially applicable rules considered. The idea of higher
order meta-rules (e.g., meta-meta-rules) that would act on other meta-rules was
also considered, but the medical domain offered no examples.

4.3. HEARSAY-like systems

Several recent AT programs with layered control structures have been based on
ideas from the unlayered HEARSAY!! program [6] for speech understanding.
The architecture of HEARSAY-II incorporated three main ideas which have
influenced the design of the later programs:
(1) Hierarchical hypothesis structure. Each level was more abstract than the

level below it. The hypotheses were kept on a global data structure termed the
blackboard.
(2) Knowledge Sources. Operators termed KSs (for Knowledge Sources)

made hypotheses at the different abstraction levels.
(3) Focus of attention. A centralized control mechanism was used to focus

attention on parts of the hypothesis space and to coordinate the KSs.

4.3.1. SU-X and SU-P

In 1977, Nii and Feigenbaum [16] described two computer programs, SU-X and
SU-P, that did signal interpretation tasks. SU-X interpreted instrument signals
in a military context and SU-P (also known as CRYSALIS) interpreted X-ray
crystallography data to determine protein structure. These programs extended
the HEARSAY-II architecture as follows:
(1) HEARSAY-II's single-layered control structure (the hypothesize and

test paradigm) was extended to multiple layers and
(2) HEARSAY-II's blackboard was partitioned into distinct areas.
The control layers in both programs were called hypothesis-formation, hypo-

thesis-activation, and strategy. KSs on the first layer formed hypotheses from
the incoming signal. The two operators on the second layer, the hypothesis-
activation layer, were called the event-driver and the expectation-driver. They
corresponded to data-driven and goal-driven policies for activating KSs on the
first layer. The KSs on the third or strategy layer decided (1) how close the
system was to a solution and (2) how well the KSs on the second level were

performing and (3) when and where to redirect the focus of attention in the
data space.
The control layers in MOLGEN are an adaptation of the control layers used

in the SU-X and SU-P programs; the differences reflect MOLGEN's more
elaborate concern about coordination of subproblems. MOLGEN's explicit
management of the communication between nearly independent subproblems
led to many more operators on the second level. Thus, the strategy level in
SU-X had only to mediate between two analysis operators: goal-driven and
event-driven analysis; MOLGEN's strategy operators mediate between eight
design operators. Another source of complexity is MOLGEN's ability to save
partial results of computations. Operators in SU-X merely succeed or fail

without saving partial results; operators in MOLGEN can be suspended with
partial results on under-constrained problems and can be restarted with in-
structions to try again, guess, or undo these steps.

4.3.2. The Hayes-Roth planning model

A cognitive model for an errand planning task has been developed by
Barbara and Frederick Hayes-Roth [12] that is intended to model the mixture
of goal-driven and data-driven behavior observed in human planners. The
Hayes-Roths' model proposes pattern-directed invocation and resource al-
location as the basic control concepts. Planning knowledge is factored into KSs
that suggest decisions about how to approach a problem, what knowledge to
use, and what actions to try.
MOLGEN research has paralleled the Hayes-Roths' work and there has

been a considerable sharing of ideas. The Hayes-Roths' model evolved from
the analysis of human problem-solving behavior in protocols taken from an
errand-running task. It characterizes planning as follows:

Our first assumption is that people plan opportunistically 
[This] implies that the decisions they make can occur at
non-adjacent points in the planning space A decision at a
given level of abstraction specifying action to be taken at a
given point in time may precede and influence decisions at
either higher or lower levels of abstraction ... [or] at either
earlier or later points in time.

This characterization is consistent with the behavior of MOLGEN using
constraint posting.

Like SU-X and SU-P, the Hayes-Roths' model extends the HEARSAY!!
model by partitioning the blackboard into separate planes. In their model, an
executive plane corresponds roughly to MOLGEN's strategy plane; a meta-
plan plane corresponds to the design plane, and the three remaining planes
correspond to the domain plane factored into intermediate states of planning in
the errand running task. Resource allocation is governed by procedures in the
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executive plane. The separation of domain and control knowledge in the
Hayes-Roths' model, however, is not rigorously enforced. For example, both
domain-level facts and meta-level operations for setting goals appear on the
Knowledge-Base plane.

Although the authors describe planning behavior as the result of the 'un-
coordinated actions' of KSs acting opportunistically, the KSs in their com-
putational model are far from uncoordinated. Specific KSs, such as middle-
management and referee, perform critical control functions by determining
focus, setting priorities, and establishing policies. While there is no explicit
grouping of productions to make layered interpreters, some productions serve
mainly as control functions. Unlike MOLGEN, the operators (production rules)
in the model are organized as a monolithic set invoked by pattern invocation.
Control is achieved by pattern-directed invocation from records placed in the
blackboard planes. Some records represent control information, such as priori-
ties and scheduling policies. The shift in attention from the problem to the
meta-problem is controlled by the specification of flags in the planes; these
flags are mentioned by the preconditions of the productions and tested by the
interpreter. This practice invites the mixing of meta-level and first-level con-
siderations in the rules.
The Hayes-Roths describe two planning paradigms: hierarchical and oppor-

tunistic. The hierarchical model is characterized as a systematic top-down
exploration of possible plans. This differs from our use of the term hierarchical
planning. For our purposes, the important feature of hierarchical planning is
the use of planning islands, that is, a simplified planning model. While the
direction of hierarchical planning is generally top-down, it need not be
explored breath-first. Any planning model which makes use of abstractions
would be termed hierarchical.

Opportunistic planning in the Hayes-Roth model is described as bi-direc-
tional (i.e., top-down and bottom-up) and heterarchical. This allows subplans to
be developed independently, possibly at different levels of abstraction, for
eventual incorporation into a final plan. The opportunistic idea is manifested in
the constraint posting behavior of MOLGEN. Both approaches move the focus
of planning activity between fruitful subproblems; both approaches work with
constraints and nearly-independent subproblems. For example, the protocols in
the Hayes-Roth model reveal time constraints: groceries perish, people get
hungry at lunch time, the auto mechanic finishes with the car late in the day. In
both cases, success depends on viewing plans as structured objects rather than
action sequences.
The Hayes-Roths' cite examples of how the bottom-up level observations

and decisions can trigger changes in higher-level activity in planning. There is
an important distinction to be made here — that has been muddled somewhat in
their discussion: the distinction between (1) bottom-up processing and (2)
feedback of information to the meta-level. The behavior of a planning program

without goals would seem very erratic; similarly a planning program with no
event-driven component can have no feedback and can make no advz.ntage of
observation. In both cases, it is the behavior of the planner that is under
scrutiny. This problem -solving behavior is controlled by the meta-level, so
information relevant to changing problem-solving behavior must be utilized
here.

In the Hayes-Roths' model, there seem to be no explicit planning operators
for dealing with constraints. Constraints are simply mixed together with other
records in the blackboard and somehow it all works. There are also no formal
hierarchical planning operators and no differentiation of guessing or undoing,
as in MOLGEN's heuristic cycle. These differences reflect the different inter-
ests of the researchers: the Hayes-Roths want to model human problem-solving
as observed in their protocol studies, and are less interested in studying
organizations of problem-solving knowledge.

S. Limitations and Further Research

This paper has argued for the use of a multi-layered organization as an
antedote for the complexities of a monolithic control structure. Of course, this
research has barely scratched the surface in considering the capabilities and
organizations of planning systems. Several ideas and issues that go beyond the
present work are listed below. This section argues that they expose an even
greater need for factoring the knowledge used in a control structure.
(1) Guessing and Solution Density. When the solution space contains many

solutions, almost any plan would probably work. In such situations, it would be
reasonable to guess early, before performing all of the bookkeeping entailed in
least-commitment approaches. This is related to the allocation of effort to
thinking versus thinking about thinking in that cost/benefit estimates could be
associated with the cost of computation and the risk of guessing incorrectly.
MOLGEN's conservative approach is based on a view of genetics experi-

ment planning as a sparse solution space. Random experiments are unlikely to
work. In general, the density of solutions varies with the particulars of the
problem. It is possible to create additional layers of control to account for this.
For example, a second layer of strategy could allow more sophisticated
switching between the least-commitment and heuristic cycles. To speed up the
planning process, it could recommend, for example, (1) that MOLGEN should
play a sufficiently strong hunch instead of waiting until it knows that the
problem is under-constrained or (2) that MOLGEN should debug (partially
undo) some existing plan if its goals are sufficiently similar to those in the
current problem.
(2) Incorporating new information. Experiments involving real-world feed-

back push the pjanning technology in several ways. For example, to do
execution-monitoring of experiments, MOLGEN would need to inquire about
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the success of laboratory steps. It would need to make judgments about what
to observe, and what to do when steps violate expectations. Potentially, it
would need to recognize when an unexpected event is a research opportunity
and to decide (at a meta-level) whether to pursue it (see Feitelson and Stefik
[71). This would provide a setting to study the balance between planning before
execution and planning during execution, that is, between goal-driven and
event-driven planning. The ability to defer some of the planning until execution
would reduce the burden of planning for all possible contingencies.
(3) Reasoning about theories. MOLGEN has no sense of the scientific

method, which guides the creation of experiments to test hypotheses. A
full-fledged experiment planner should be able to plan experiments in order to
disambiguate and extend a theory. This enterprise would require a system to
balance its efforts between proposing, modifying, and testing theories.
(4) Reasoning about scenarios. There is currently a research opportunity to

combine the ideas of `truth maintenance' and hierarchical reasoning about
scenarios. Such a program might reason about a future that depends in part on
its own commitments and activities. It would need to consider events caused by
its own actions as well as those caused by other actors. The consideration of
other actors considerably increases the complexities of planning.
(5) Reasoning about failures. A geneticist observing MOLGEN would dis-

tinguish between the following reasons for not finding a plan to an experiment:
(1) conflicting constraints in the problem statement, (2) incompatible con-
straints introduced during problem solving, (3) incomplete knowledge of the
objects and materials available in the laboratory, (4) incomplete knowledge
about how to plan an experiment.; MOLGEN does not currently distinguish
between these possible causes for failure. Knowledge about sources of failure
and about the completeness of its knowledge base could be used by MOLGEN
to discriminate between these types of failure.
The need for partitioning control knowledge into layers is even more acute in

resource-limited problem solvers which must balance these additional issues
during computation.

6. Summary

Many of the actions, goals, and constraints that are important in planning can
be best understood as belonging on meta-levels. That is, some of the decisions
and goals refer to the process of problem solving, and not to the particulars of
the problem at hand. This paper argues that the organization of a problem
solver can be simplified by partitioning problem solving knowledge into layers.
Monolithic organizations provide no distinction for meta-level considerations.
By factoring out the meta-level considerations, we can reduce the apparent
complexity of the interactions between first-level tasks.
MOLGEN is organized into laboratory, design, and strategy spaces. The

laboratory space represents MOLGEN's knowledge about objects in the
laboratory and operators that can be used to manipulate them to achieve
laboratory goals. The design space provides an explicit repertoire of operators
for hierarchical planning. The organizational idea behind this space is that
hierarchical planning can be understood as operations on constraints. Tasks in
the design space are created and executed by the strategy space. The organiza-
tional idea behind the strategy space is the distinction between least-commit-
ment and heuristic modes of reasoning. MOLGEN's strategy space relies on
the synergy between subproblems (via constraint propagation) to stay in the
least commitment cycle as tong as it can, and to resort to guessing only when it
has to. The design operators plan by creating and scheduling laboratory steps;
the strategy operators meta-plan by creating and scheduling design steps.
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