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Abstract

In this paper, we develop the algorithm, given in Plotkin (1970), for finding
the least generalization of two clauses, into a theory of inductive generaliza-
tion.
The types of hypothesis which can be formed are very simple. They all

have the form: (x)Pxm Qx.
We have been guided by ideas from the philosophy of science, following

Buchanan (1966). There is no search for infallible methods of generating
true hypotheses. Instead we define (in terms of first-order predicate calculus)
the notions of data and evidence for the data. Next, some formal criteria are
set up for a sentence to be a descriptive hypothesis which is a good explanation
of the data, given the evidence. We can then look for the best such hypothesis.
Although this problem is insoluble in general, some soluble subcases can be

distinguished. We programmed one of these and tried some examples.

INTRODUCTION

Suggesting inductive hypotheses is one of the fundamental problems of
artificial intelligence and has been attempted in such domains as finite-state
machines, context-free grammars, number sequences, propositional logic,
and the predicate calculus. We are concerned with the last of these.
The work presented here originated with a suggestion of R. J. Popplestone

that since unification is useful in automatic deduction by the resolution
method, its dual might prove helpful for induction. The dual of the most
general unifier of two literals is called their least general generalization; it is
a literal of which they are both instances and is itself an instance of any
other such literal, for example, P(x, f(y)) is the least general generalization
of P (a, f(c)) and P(b, f(b)). If the latter two literals form part of some data
to be explained, then P(x, f(y)) is the least general inductive hypothesis that
explains them.
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MECHANIZED REASONING

This resulted in a mathematical investigation of generalization of literals
and later of clauses, for which subsumption played the role of generalization
(Plotkin 1970). Given some phenomena we wish to find an inductive
hypothesis from which the phenomena can be deduced as a logical conse-
quence. We restricted attention to a weak form of deduction, namely sub-
sumption. This mimics the usual notion of generalization, so that the
hypotheses are mere inductive generalizations rather than fully-fledged
scientific theories from which the phenomena may be deduced by complex
chains of reasoning. This led us to consider the philosophical background of
inductive generalization, where we were strongly influenced by Buchanan
(1966).
The paper divides into three parts: philosophy, mathematics, and computa-

tion.
The philosophy section contains a general discussion of logics of scientific

discovery, which we later specialize to a logic for suggesting hypotheses which
are inductive generalizations of the phenomena.
The mathematics section discusses properties of least generalizations for

literals and clauses, and goes on to consider the possibility of algorithms
for generating inductive hypotheses to explain the phenomena. There is no
such algorithm in general, because of a difficulty in checking consistency, but
fortunately there are interesting solvable special cases.

Finally, we describe a program for performing inductive generalization,
and illustrate its performance in characterizing the description of wins in
'noughts-and-crosses' and that of family relationships.

PHILOSOPHY

Consider:
This crow is black.
That crow is black. 

All crows are black.

This is the simplest possible inductive argument. It is an empirical inductive
generalization. If we hope to have a robot capable of forming concepts or
drawing inductive conclusions in some formal language, we must at the very
least be able to tell it how to form such generalizations.
We aim to give a formal model of a general inductive generalization

problem and then look for algorithms for its solution. As a guideline for this,
we shall use the philosophy of science. Now, unless our robot is destined to
be an automatic scientist, it is not obvious that the problems of hypothesis
formation in science are the same as the ones he will have in his environment.
There is, however, a parallel between the concerns of the scientist, with his
sophisticated view of the world, and those of the robot, with its rather
primitive view.
Presumably, the robot will be able to see, handle, and touch things, and so

will have an observational vocabulary to refer to these sensory experiences.
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Thus it is blessed with an ur-ontology. (I am indebted to Bruce Anderson
and Pat Hayes for the prefix ur.) Eventually, if it is free of artificial restric-
tions, it will come across some phenomenon it does not understand. Or, to
make sense of its myriad flow of impressions, it will want to classify its
experience, if only for efficiency's sake. It will then need to start its ur-physics;
its methodology must surely be found in an ur-philosophy of its ur-science.
More prosaically: it will be necessary to form generalizations about seen

objects (Barrow and Popplestone 1971) and to learn, perhaps by experimenta-
tion, how objects, or objects and actions, are causally connected (Hayes
1971). It is not difficult to think of other tasks that current robots are asked
to perform, which could do with some inductive capability.
Our second assumption is that all concepts are to be formed in the first-

order predicate calculus. This is done, primarily, for technical convenience.
It is accepted that the theories of science are amenable to the axiomatic
method. Carnap (1967) is an impressive exponent of this view. There is,
however, a possibility that some amount of modality should be introduced to
deal with causality and tense. We do not expect knowledge logics to enter the
picture since the hypotheses refer to the world rather than the robot's relation
to the world.

Logics for discovering hypotheses

This paper is an attempt to put into practice some of the views of Buchanan
(1966). Where we have not introduced distortions of our own, justification
for our philosophical assertions can be found in his work.
Now, we want to find a logic of discovery for performing a particular job;

namely, through its use one must be able to find empirical generalizations of
facts. We start from an analysis of logics of discovery of hypotheses, and then
gradually proceed to the kind we have in mind.

First, we make some disclaimers. We do not mean by 'logic of discovery'
some infallible way of suggesting scientific truths, by means of which it will
always be possible, in a fixed, finite number of steps, to find a true general
law explaining some given phenomena. This was the unrealizable dream of
Bacon, Descartes and, to some extent, Mill. We know, however, that there is
no truth-preserving way of passing from the particular to the general. So
the word 'logic' refers here to a rational corpus of methods for finding and
evaluating certain propositions. In general, we use it to refer to considerations
which are independent of interpretation, that is, considerations holding in all
possible worlds.

Neither are we concerned with the psychological connotations of 'dis-
covery'. Our robot will not be required to dream or have inspirations. The
robot will be a rational man. Finally, we ignore the element of time. The
notion of co-discovery or precedence in making a discovery will have no
meaning.
Four questions arise about logics for discovery of hypotheses H, given
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knowledge k, which are required to do some job of explanation J.

xl Is H justified given k?
H2 Are there methods for justifying H, given k?
H3 What are conditions for an H to do J in a reasonable, interesting way,

given k?
H4 Are there methods for suggesting a (most) reasonable, interesting H

to do J, given k?

There is an analogous problem of discovering theorems T from a system

of axioms Ax, which is rather more familiar and better investigated.

Ti Does T follow from Ax?
T2 Can we show that T follows from Ax?
T3 Under what conditions is T an interesting, possible theorem in the

system Ax?
T4 Is there a way to generate (most) interesting possible theorems?
All the questions x1—T4 are informal ones to which one may seek to give

convincing formal answers.
It is agreed (ICreisel 1967) that Ti is settled for first-order logics by Tarski's

definition of truth. Ti has not been settled for higher-order logics. As regards
T2, the completeness theorem gives a semi-effective way of testing con-

sequence. Work has hardly started (Kowalski 1970, Kreisel 1968) on

efficient ways. The state of progress in T3 and T4 is minimal. Lee (1967)

makes some suggestions and Polya (1957) gives many informal ideas. On
the whole, the only reasonably successful method for discovering theorems

is to have an inspiration.
Evidently an answer to T2 gives one to Ti. Similarly, one to T4 gives one

to T3. Ti and T3 are independent. Not all theorems are interesting. Nor is it

necessary that all suggested possibilities will be theorems, although there may

be practical conditions which ensure that all interesting possible theorems are

actually theorems. We expect the degree of interest will be specified by a

quasi-ordering 71-<T2' will be read as 'Ti is more interesting than T2'.

In general there will be many most interesting ones. The definition of -< will

perhaps be relative to some question about Ax.
The questions xl to H4 have even less definite answers. We give a brief

account of the opinions of the two main schools of thought: the Popperians

and the Carnapians (Carnap 1950, Popper 1959).
Carnap holds that the only concern of inductive logic is HI and of deduc-

tive logic is T1. We will only use the term 'inductive logic' to refer to an

answer to Hi. To answer HI for some particular H and k, Carnap would

calculate c(H, k), the confirmation of H given k. The confirmation function,

c, has been taken to be the logical probability that H is true given k, or as

being the odds a rational man would lay that H was true, given k. Carnap

only defined c for the monadic predicate calculus. Hintikka (1965) extended

this to the predicate calculus in general. Unless we specify otherwise, our

remarks on Carnapians refer only to the monadic case.
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Thus, for Carnap, H is justified to a degree c(H, k) given k. If one had to

choose between alternative hypotheses one would prefer the more highly-
confirmed one. One can also define (Hintikka and Hilpinen 1966) a notion

of acceptance; that is, a predicate Ac(H, k) in terms of c and certain pro-
perties of k. They do, however, use a different c function from Carnap's.

As for H2, the definition of c gives an effective means of calculation in the
monadic case. In the general case there is no effective way of calculating c.

It was regarded as a paradox when sentences, consistent with k, which

were meant to do the job of describing all the existing individuals, all received

zero confirmation from any k which consisted of a description of some

individuals. We interpret this as showing that the criterion of reasonableness

conflicted with that of theoretical justification. Hintiklca's system avoids

this dilemma. Aside from this, the Camapians have little to say on H3 or H4,

as is consistent with their general view on the role of inductive logic.
For Popperians, there can be no absolute justification of a hypothesis.

There are instead a series of tests and competitions with other hypotheses.

Their analysis is most concerned with universal laws, the form of scientific

ones, for example: a law must be refutable and make many testable predic-
tions. It is by making contradictory predictions that one of a competing pair

may be eliminated.
Thus, much of their answer to HI contains an answer to H2. For H3, it

is suggested that simple hypotheses with a low a priori logical probability be
sought.

Again, an answer to H2 gives one to HI, and similarly for H4 and H3.
Not all justified hypotheses will be interesting, nor even, perhaps, reasonable.
For example, we might wish it to be reasonable, but not a justification, that
H be beautiful. Again, although it is not necessary, it may be that all the

reasonable, interesting hypotheses are justified.
Again, we expect the degree of interest to be specified by a quasi-ordering
This will be defined relative to k and J.

The following definitions seem reasonable in the light of the preceding

discussion.
An inductive logic is an answer to HI.
A practical inductive logic is an answer to HI and one to H2. One may

predicate completeness, consistency, or efficiency of a practical inductive
logic.

Answers to H3 and H4 constitute a logic of suggestion which may also be
consistent, complete, and efficient.
Answers to Hl—H4 constitute a logic of discovery provided H's being most

reasonable and interesting implies its being justified. Note that any set of
answers to H1—H4 can be, trivially, made into a logic of discovery by changing
the requirements for reasonableness to include also those for being justified,
and changing the method by using the answer to H2 to check that any H
found using the answer to H2 is justified.
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We shall give a logic of suggestion for finding inductive generalizations.
This will be both complete and consistent in various subcases. For the
monadic subcase, we shall give a practical complete and consistent inductive
logic, relative to which we obtain a logic of discovery.

Facts, evidence, theories and the nature of explanation

Now we examine k and J more closely. The robot's knowledge, k, will be

Th A (einfi) ( A denotes logical conjunction), where
i=

K1 Thef1 are statements of facts or events.
ic2 Each ei is a statement of background information or evidence relevant

to fM=1, n).
K3 Th is a statement of facts and theories relevant to all the ei.
The job, J, that H must do is to be a general law which is a potential

explanation of each f given the corresponding ei and Th. The definition of
potential explanation is, following Buchanan, a modification of Hempel's
explication of explanation for the purposes of a logic of suggestion.
H is a potential explanation of the / given ei and Th ill
El Fei Th H--ofi (i=1, n).
E2 One of the statements in ei or Th or H must be a general law.
E3 At least one of el or Th or H must be empirical (i.e., non-logical and

non-theoretical) in nature.
E4 It must not be the case that

Fein Th-4/1. (i=1, n).

E5 H ATh (ei Aft) is consistent.
o.

Requirement E4 ensures that H enters non-vacuously into the explanation
and E5 replaces Hempel's requirement of truth with one of consistency, and
this is why we write 'potential'.

Before trying to characterize the form of Th, and the e1 andfi, and the type
of general law that interests us, let us see how varying f,, ei and Th can lead
us through the whole spectrum of scientific hypotheses.
Th might consist of some axioms of applied science including axioms

relating observations to the theory of Euclidean space, f the fact that an
apple fell, e the fact that it was flung into the air and H Newton's theory of
gravitation.
When a whole theory has broken down, the e1 consist of all previous

observational experience in the field plus some anomalies, Th is practically
empty, and H will contain many new terms and relations. On the sidelines
will be the discredited theory.
H might be an extension, by analogy, of Th designed to carry Th's previous

successes into the new field described by the ei and f
Th could be the body of normal science, the ei and f an account of some

new phenomena found in some experiments. H would then be an explanation
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using the terms of normal science. As an example, descriptions of the
phenomenon of superconductivity, framed in the quantum theory, fit this
mould.

A particular form for the facts and evidence

Let us return to the crows. As an aside, we remark that we would have liked
to treat

'This crow is black'
as meaning

Crow(crowl) A (Crow(crowl)=> Black(crowl))
where => is a modal connective which could denote

causes, or entails as an essential property, or is a good reason for.

However, we do not know of any appropriate modal logic, and so did not
do this. Instead, we shall incorporate crows in the above scheme by taking
ei =Black(crowl ); e2=Black(crow2); fi=Crow(crowl); f2=Crow(crow2)
and Th empty.
More generally we shall let F= (fa= I, n} be a set of ground literals

[for an account of our logical language, see Robinson (1965) and Plotkin
(1970)], and

e i= Ev (A)
be a conjunction of ground literals. We use ground literals to represent
observations, thus formalizing Ki. We do not formalize K2 since what
constitutes relevance seems to depend on the subject domain. The only
syntactic guide we can give is that f, and ei should have terms in common;
perhaps the relation between literals of having terms in common should make
the set of literals in f, and e connected.
As for K3, we let Th be a conjunction of ground literals. We did this since

we could not obtain a good theory for any more complicated Th.
There is a group of conditions on the e1 and A for partial satisfaction of

the E conditions.
First, all vocabulary in thee, and f L is to be observational: so E3 is satisfied.

Second, no f is to appear in the corresponding el A Th. Thus E4 is satisfied.
Finally we require that

Th A (e f

is consistent so that it is possible for H to satisfy E5.

Generalization as a particular form of explanation

To finish specifying the job that H must do, we say what it is for H to be a
general law, which is, given Th and e1, a generalization off,. (i= 1, n).
As it is a scientific law, H is to be a universal sentence. We allow H to be

ground, as a degenerate case.
We say that H is a generalization off, given Th and ei if, roughly, in the

proof off, from the e i,Th, and H, the only inferences which do not involve e1
or Th are those in which we instantiate some sentence.
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This is to be made more precise in the context of a binary resolution system.

H is regarded as a set of clauses, Th as a set of unit clauses and ertfi as a
clause. It then follows from the subsumption theorem (Kowalski 1970) that
El holds if one can derive a clause Di by resolution from HuTh which
subsumes ei-tfi. We say that H is a generalization of ei-■fi given Th if all
the resolutions in the derivation of Di involve a clause from Th.
We need some definitions. If C and D are clauses then C< D means C

subsumes D.
Let L be a literal. L is that literal with the same atom as L, but opposite

sign.
Let Th be a conjunction of literals. We set

Th=g1L appears in Th} .
If L and M are literals, by
LM (Th) we mean

(Read this as L is more general than M, relative to Th. The next two definitions
should be given similar readings.)
If C and D are clauses, by

C< D(Th ) we mean
C<DuTh.

Let H1 and H2 be sets of clauses.
By Hi <H2(Th ) we mean for every D in H2 there is a C in H1 such that

C<D(Th).
These are all quasi-orderings when Th is ground.
Let Ho= {ei-Vi (considered as a clause) Il < in}

, say.

Lemma 1
His a generalization of ei-tfi given Th(i=1, n) if H< Ho(Th).
We do not give a proof of this which depends on the fact that E4 holds.

The same result goes through for m-clash resolution. Whenever we do not
give proofs in this paper, they will appear in Plotkin's forthcoming PhD

thesis.
Note that the definition of generalizations ensures that no new function or

predicate symbols can appear in any generalization, H.
To sum up, a job J is specified by a set
F= (fili=1, n} of ground literals

and a function Ev, such that
ei=Ev(fi)

is a conjunction of ground literals, and a conjunction Th of ground literals.
F, Ev and Th are subject to

J1 fi does not appear in Th(i =1, n).

a Th A A (et Aft) is consistent.
t-

H does J if
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H<H0(Th).

jzi HATh A A (ei Afi) is consistent.

A particular choice of the 'more interesting than' relation

We now define the quasi-ordering -< which judges whether or not one
hypothesis is more interesting and more reasonable than another.
Definition. Let complexity (H)=the number of clauses in H.

Let power (C)=the cardinality of {fi in FIC<C1(Th)}.
Let power (H)= E power (C).

Cell

Then H1-<H2 if
complexity (Hi)<complexity (H2)
or the complexities are equal and power (HO> power (112)
or the powers and complexities are equal and H2<H1(Th).

The motivation for the first two clauses of the definition of -< is as follows:
Let us define -<„ by:

1/1-4H2 if

complexity (H1)<complexity (Hz)
or the complexities are equal and power (Hi) power (Hz).

Then we say that is a lexicographic extension of if it can be defined
by the form

-< 'H2 if
cp1/2

or the complexities and powers are equal and 1/1-<"1/2
(-<' being an arbitrary quasi-ordering).

Then any ordering -<1 which extends -<,1, lexicographically can be shown
to be a natural generalization of a measure of simplicity used by Quine
(1955) for disjunctive normal forms of propositional functions. It is possible
to reduce the problem of finding simplest equivalent disjunctive normal
forms of a given proposition to an instance of problem J (see below) with
-< replaced by -<1.
The third clause in the definition of -< makes a solution less general, in

opposition to the others. This is both a conservative policy and a confession
of ignorance. If we do not know which to choose, then choosing the least
general gives a survey of all the other possibilities.
Our choice of -< is not central to this paper, unlike the other restrictions

that we have made. We are perfectly willing to consider other ones, and
indeed prove the later unsolvability theorem for a wide range of such choices.

This completes our answer to

The problem of finding most interesting explanations

To answer H4, we must find a method of finding a set of clauses, H, such that:
(1) H<H0(Th).
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(2) H ATh A A (e fi) is consistent.

(3) H is minimal, with respect to amongst those sets of clauses
satisfying (1) and (2).
We shall call the problem of finding such an H, problem J.

Compatibility between our logic of suggestion and various inductive logics

We have described the structure of k, the robot's knowledge, and J, the job
of explanation, to be performed in the most interesting possible way by a
hypothesis H. This is formalized by the conditions of problem J. In the
next section we give a logic of suggestion for various subcases of problem J.
There are, in the literature, a number of inductive logics giving criteria for

judging hypotheses. To obtain a logic of discovery, relative to some inductive
logic, we would need to show first that the inductive logic can be made
practical. Secondly, it must be the case that the hypotheses generated by
our logic of suggestion are always justifiable by the criteria of that inductive
logic. We shall do all this for the monadic case.
Here is the practical inductive logic. The monadic case arises when Th and

the f and ea contain only monadic predicate symbols and no function
symbols other than constant ones. Hintiklca and Hilpinen define a comput-
able binary predicate of monadic sentences, Ac.

Ac(h, e)' is to be read as ̀h is acceptable on the basis of e'.
Their system has a parameter a which we assume to be fixed, for the purposes
of this discussion.
Ac satisfies:
AC! If Ac(hi, e) and. . . and Ac(hk, e) and if F (h . . . A hk)—>ho, then

Ac(ho, e).
Ac2 The set {hilAc(hi, e)} is logically consistent.

Theorem 1

For n ?...no(n is the number offis) and any solution, H, to a monadic problem
J,

Ac(H,Th A(finei))

is true. The constant, no, is computable from the number of predicate
symbols.

Acceptance conditions have been studied for languages other than the
monadic one (Kemeny 1953, Putnam 1963) but we have not studied their
interactions with our system.

MATHEMATICS: SUBSUMPTION, LEAST GENERALIZATION
AND A LOGIC OF SUGGESTION

Least generalization for literals

We give some theory for the 'less general relative to Th' relation. The theory

110



PLOTKIN

follows essentially the plan of Plotkin (1970) to which we refer for results
and notation.
We write LM (Th) when L<M(Th) and M<L(Th). This is an equiva-

lence relation. We define similarly C-,D(Th ) and HI -,H2(Th).
Lemma 2

L M(Th) if {L} and {M} are alphabetic variants or else both subsume Th.
Proof. Sufficiency.

If {L} < Th then

{M} < {L}uTh (by assumption)

<ThuTh=Th.

Similarly {M} trz- {L} <Th.

Otherwise {L} < {M}uTh
implies LM and similarly M<L; and so L and Mare alphabetic variants.
Necessity.
Obvious.

Definition. Lis a least general generalization of M and N relative to Th if
(1) L<M(Th) and L<N(Th)
(2) If L' <M(Th) and L' <N(Th) then L' <L(Th).

Lemma 3
Let L= inf{M, N} be the least general generalization of M and N as given in
Plotkin (1970). Then Lis a least general generalization of M and N relative
to Th.
Proof. (1) is easy.
(2) Let L' <M, N(Th).

If {L'} < Th then L' <L(Th).
Otherwise L' <M, N and so L' <L.

Reduction and least generalization for clauses

Definition. C is reduced relative to Th if DCC, C(Th) implies C=D.
Lemma 4
If C- D(Th) and C and Dare reduced relative to Th then they are alphabetic
variants. The following algorithm gives a reduced subset E, relative to Th,
of C such that E C(Th).

(1) Set E to C.

(2) Find an L in C and a substitution a. so that Ecrg(E\ {L})urh,
else stop.

(3) Change E to Ecr and go to 2.
Proof. There is a g so that

Cgg_DuTh.

So C= Ciu C2 where Cip D, CvigTh.
Hence C- Ci(Th) and since C is reduced relative to Th, C2=0.
Thus Cit g_ D.
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Similarly, Dv g C for some v. So C.-- D. But being reduced relative to Th

implies being reduced. Hence by theorem 2 in Plotkin (1970), C and D are

alphabetic variants.
The proof of the second part is an exact analogue of the proof of the

corresponding part of theorem 2 in Plotkin (1970).

Definition. C is a least general generalization of D and E relative to Th iff

(1) CD(Th) and C<E(Th)

(2) Cs< D(Th) and C' <E(Th) implies C(Th).

Lemma 5

Let C= inf{ Durk, EuTh} be the result of applying the algorithm of

theorem 3 of Plotkin (1970) to DuTh and EuTh. Then, C is the least

general generalization of D and E relative to Th.

Proof

(1) C<DuTh=>C<D(Th).

C<EuTh=>C<E(Th).

(2) C'‘.. D(Th) and C' <E(Th)

= >C1 <DuTh, C' <EuTh

=>C' <inf{DuTh, EuTh} = C.

It follows that any finite non-empty set of clauses H has a least general

generalization relative to Th which is unique to within equivalence relative

to Th. By inf H we mean one such.

Reduction for sets of clauses

A set, H, of clauses is reduced relative to Th if H' c H, H(Th) implies

H' = H.
Lemma 6
If H' H(Th) and H' and H are reduced relative to Th then there is a bi-

jection 0 : H'—q1 such that 0(C)--,C(Th)(C E H').
The following algorithm gives a reduced, relative to Th, subset H' of H'such

that H' H(Th).
(1) Set H' equal to H.
(2) Find a clause Cmn H' such that H'\{C} {C}(Th). If this is impos-

sible, stop.
(3) Change H' to .111{C} and go to (1).

Proof Choose 0 : H'--0.11 so that O(C)< C(Th)(C e H').

This is possible since H < H' (Th).
Similarly, choose a 0' : H-411' so that 0'(C)< C(Th)(C H).

Then for C in H', 0' (0(C))<O(C)<C(Th). But H' is reduced, so 0'(0(C))

=C. (Ce H').
Similarly, 0(0'(C))= C(C e H).

Hence 0 is a bijection with inverse 0' and C-0(C)(Th).

Evidently the algorithm terminates with some H' g H. If H' is not reduced

there is a proper subset H" of H' so that H' H"(Th). Let C be in H'\H".
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Then H'\{C} {C} (Th) and the algorithm could not have stopped. This
contradiction completes the proof.

Reformulation of conditions for a best explanation

Let us repeat the statement of the formal problem J. We must find a set of

clauses, H such that:
(1) H<H0(Th).

(2) HA Th AA (e Afi) is consistent.
t=

(3) His minimal, with respect to amongst those sets of clauses
satisfying (1) and (2).

It will turn out that every solution H will be found, to within equivalence
relative to Th, in a lattice f(Ho) of least general generalizations relative to

Th.
The following definition applies to an arbitrary set of clauses H.

.1(H) is a lattice of clauses with carrier { inf H'IH' H, H' , and lattice
operations given by

infH1flinfH2=infHirH2 and
inf Llinf H2= inf

The lattice may also be viewed as being generated by Ho using the above

U. Let us illustrate with Ho= { C1, C2, C3 ) .

Figure 1

We can now identify the solutions to problem J.
Theorem 2
H is a solution if it is equivalent relative to Th to an H' satisfying:

(1) H'g.sf (H0).
(2) H' <110(Th).

(3) H' A Th A A (e A f I) is consistent.
1=1.

(4) H' is minimal, w.r.t. -<ei„ amongst those sets of clauses satisfy-
ing (1), (2) and (3).

Further, the problem has at least one solution.
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Thus to determine all the solutions, we need only calculate the above set.
.fir(Ho) is calculable, from the results of Plotkin (1970), H<If (Th) is an
effective relation (it is really just subsumption) and is also. However we
do not know prima facie whether 'H ATh A A (ei Aft) is consistent' is decid-
able or not. In general consistency is not semi-decidable. However, because
of the special way our Hs arise, we might hope that this is an exception.

General unsolvability and some solvable subcases, with examples

Unfortunately we have
Theorem 3
There is no algorithm which will, given Th and the ei andft, produce a solution
of problem J.
This theorem holds even if we restrict Th and ei and ft as follows.
(1) Th is empty.
(2) Only one predicate symbol, P say, occurs in theft.
(3) P does not occur in any of the el.
We can also change the definition of -< a little. Indeed the theorem holds

for an arbitrary relation such that
(1) is a lexicographic extension of
(2) The new problem J, obtained by changing -< to always has a
solution.
To show that it is worthwhile going on to find solvable subcases we give a

couple of examples. First, the last appearance of the crows.
Table 1 shows theft and ei.

Table 1

fi= Black(crowl) ' ei=Crow(crowl)
f2=Black(crow2) e2=Crow(crow2)

Also Th was empty. We have Ho = { Cli C2} where.

Ci= Crow(crowl)v Black(crowl)

C2= Crow(crow2)v Black(crow2)

Now, C3= inf{Ci, C2)=Crow(x)v Black(x)
Evidently C3A Cl A e2 Aft. Af2 is consistent and so {C3} is the only solution.

We have induced 'All crows are black'.
Next, we give a less trivial example from Hunt, Marin, and Stone (1966).

We must learn that all bears or large animals are dangerous. Our observa-
tional data consists of a description of various animals, both dangerous and
non-dangerous, in terms of the attributes Size, Animality, and Colour. Again
Th is empty.
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Now, Ho = { Cil 1 i7}. The members of 5(Ho) which are consistent
7

with A (einfi) are, apart from Ci to C7,i=1
C8= inf C2)

= Size (x, s)v Colour (x, black)v Animal(x, bear)v Dangerous(x)
and

C9= inf {C3, C6, C7)
= Size (x, large)v Colour (x, c)v Animal(x, a)v Dangerous (x).

The solution is H= {C8, C9, C4, C5} and includes the following version of
the generalization to be learnt:
'Anything that has a size and is a black bear is dangerous' and 'Anything

that is a large coloured animal is dangerous'.
Notice that if we assume that all animals have a colour and all bears have

a size, then this generalization is equivalent to the original one.

Table 2

fi= Dangerous(animall) ei= Size(animall, small) Colour(animall, black)
Animal(animall, bear)

12= Dangerous(animal2) e2= Size(anima12, medium) Colour(anima12, black)
Animal(anima12, bear)

13= Dangerous(animal3) e= Size(anima13, large) Colour(anima13, brown)
Animal(anima13, dog)

14= Dangerous(animal4) e4= Size(anima14, small) Colour(anima14, black)
Animal(anima14, cat)

f5= Dangerous(animal5) e5= Size(anima15, medium) Colour(anima15, black)
Animal(anima15, horse)

16= Dangerous(animal6) e6= Size(anima16, large) Colour(anima16, black)
Animal(anima16, horse)

h = Dangerous(animal7) e7 = Size(anima17, large) Colour(animaI7, brown)
Animal(anima17, horse).

Let us consider some special solvable subcases.
sl If there are no function symbols other than constant ones in Th A A
(e IAA), then the same will be true of the members of (110) and
consistency of
HA Th A (e Afi) where H.c.f(H0), will always be decidable.

Notice that this gives the last link for a logic of discovery in the monadic
case.
s2 Suppose the underlying predicate calculus has two sorts, situations and

objects, and that there are situation constant symbols and variable
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symbols, but no other function symbols which produce situations. The
whole of our theory goes through as before, with only small alterations.

Then if,
(1) there are situation constant symbols Si fl. s„() such that each predicate
symbol Qj which appears in an f or e (1=1, n) has a situation place which is
filled with si() when Qj appears in e i or (i= 1, n), and
(2) no predicate symbols in Th have any situation places, it follows that

H ATh A A (el Afi) is consistent if for all i, and Ce H,
C*(e iu{ i})(Th) .1<it5n, Hg. fic (11o)•

This is decidable.

An algorithm for the solvable subcases

By the remarks made after theorem 2, we have now a consistent and complete
logic of suggestion for the subcases sl and s2. Furthermore the method of
finding solutions is effective. We can now give an explicit algorithm. Consider
the following 'derivation' rules.
(1) H= >(H\{C})u{inf{C, C1}} (provided C e H and C$ C'i(Th ) and

HA inf(C, C A Th A A (e a AA) is consistent).
i=1 A

(2) H=>(H\{C})u {C} (provided C e H, C is not reduced and O is a
reduced form of C). •
(3) H=> H\{C} (provided Ce Hand Cis dependent on H\{C}).

Definition. For any clause C, let Explainset (C)= {i1C<C I} . Then C is
dependent on H if Explainset (C) c uExplailiset(D).

DeH

These rules are effective provided that the consistency question is decidable.
It is possible to apply the derivation rules only a finite number of times

to Ho. Thus one obtains a set {111110= >H, it is not possible to apply any
rule to H} . This is the set of irredundant sets of clauses. The solutions are,
to within equivalence relative to Th, the sets of clauses in this set which are
minimal with respect to -<cp. Finally all irredundant Hs are reduced, and all
their member clauses are reduced.
We look at some subcases where it is possible to put extra restrictions on

the rules.
There is a common situation where H can be split into two parts. Let us

say that Th, F, E form a positive problem J if any predicate symbol that
appears in F appears, if at all, only positively in Th or any el.
Let 1/4- = {Ctifi is positive, 1 i< n

H={Cjffgis negative, 1 n}
Then any solution H to problem J can be written in the form H= H+u

where If+ c.f. (Hit ), f(H) (or at least it can to within equivalence
relative to Th).
One can define negative problems and get the same result.
For both positive and negative problems, one may require that rule 1 only

be applied when inf{C, Ci} is a member of Jr (14- )u.sr (Ha' ).
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if J is positive (similarly for negative) and falls under subcase s2, then in
the test for consistency, we can insist that if C is in .51.(H4' ) then we only
test that C city {A}) for negative!,. Again, if C is in 5(1-47 ) we need only
try positive!,.

A general algorithm using a limited consistency check

Finally, we mention an alternative to looking for consistent subcases,
suggested by Meltzer (1970). We replace E5, by the requirement that a
determined effort has been made (but failed) to prove that HA Th A A
(einfi) is inconsistent. Of course, this means that, in general, we shall not
obtain a logic of discovery. We could still add on at the end a (perhaps
computationally very expensive) test for consistency. This combination
(which, for the appropriate subcases would be a logic of discovery) might be
quite practical.
For our problem we decided to formalize the 'determined' test as

HA Th A A (e Afi) A Ax is /-consistent, where Ax is an arbitrary set of
sentences that the robot believes about its observational vocabulary and
1-consistent means that a binary resolution theorem prover has not found a
contradiction at level 1. The theory goes through much as before, and theorem
2 holds when the evident changes have been made.

An example from group theory

We hand-simulated the method, with 1 set equal to ten, for the problem that
Meltzer tried. The facts are represented using a binary predicate symbol E,
for equality, and a binary function symbol f for multiplication. Thus ab=cd
is represented by two facts,fi =E(f(a, b),f(c, d)) andf2=E(f(c, d),f(a, b))
(sim. for ab*cd). The corresponding e are empty. Th was empty, but one
took Ax to be the axioms for equality. It can be shown that E(ti, t2) is in the
solution H if E(t2, t1) is (sim. for E(ti, 12)) so we present the input and
output in the ordinary notation.
The facts given were:

ee=e
ae =a
(aa)e=a(ae)
(ea)a=e
ea4 e
aa 4 a
bc = cb
(bb)b= c
(bb)c+ c
(bc)c+ b.

The solution was:
1 xe=x
2 xa+ x
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3 (aa)e=a(ae)
4 (ea)a=e
5 xy=yx
6 (bb)c+c
7 (bc)c+b
8 (bb)b=c

Thus we found the right-identity and commutative laws. When we added
(ab)b=a(bb)

the solution was as above except that 3 is replaced by (xy)z=x(yz), the
associative law. This is the same kind of result as Meltzer obtained.

COMPUTATION
The program

We have written a program for a logic of suggestion in the Pop-2 program-
ming language. The program assumes that the problem is positive, that it
falls under the soluble case, s2, and that Th is empty. It calculates the IP
part of an irredundant H. If run with signs reversed, it will calculate the H-
part. A heuristic approximation to an irredundant H is found, rather than
the solution proper, so that the present, rather crude program should have
reasonable running times. At the moment, these times vary from three to
fifteen minutes on the ICI, 4130 machine. We estimate that it would take up
to four times as long to produce a list of all the irredundant Hs.
The flow chart of the program is figure 2. Various heuristics are used in

making the choices mentioned in the flow chart.

Let

NO

Choose a C in H÷ with which
rule 1 may be used, if there are
any

NONE

ONE

Choose a CI in Hcl such that it is
not known that C< C, and which

. has not been tried before.

Find a reduced version of
D=inf{C,C1)

Does D pass the consistency
test?

YES

Figure 2

Apply rule 1 and then rule 3
where possible.
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Let Fail(C)=
{ c,i C is in Ho and in the course of building up C, an attempt to use Ci
failed).

Let Success (C)=
{CiTC is in 1/0 and in the course of building up C, an attempt to use Ci
succeeded ) .
The clause, C, can only be selected if Fail(C)uSuccess(C)+ Ho.
The program chooses that C with largest Success(C) and of two such

clauses prefers the one with the smaller failure set.
Clause Ci is chosen to be one for which there is a minimal number of Cs

in H such that Ci is in Success(C). This reflects our belief that the chance of
failing, and so wasting a lot of computational effort, grows with the number
of previous successes in explaining C.
Now, D is found using the algorithm of Plotkin (1970). Only an approxi-

mate form of the reduced clause is found. We order D={L1, . . L„, . . L„,}
as follows. The literals LI, all have different predicate symbol and sign
pairs. Further if a predicate symbol and sign pair occurs in D, it occurs in
L1,. L. The literal Li has less variables than any other literal with that
predicate symbol and sign. (i=1, n). For n<i<m, Li has less variables (not
in L1, . . Li- 1) than in any other of the Li . . .4,,.
We then take as our reduced version, the reduced version, calculated

properly, of
{Lil 1 <i<min(1, m)} , where I is a program parameter. We set / to be 11.
The consistency test checks whether

C< eiu {J,} for some negative f1.

An experiment using the win predicate of noughts and crosses

Our first example was taken from the field of noughts and crosses. This
problem does fall under the s2 subcase; positions play the part of situations.
The board is considered to be a three by three matrix. There are three

predicate symbols, XX, 00 and Win.

X 0

0 X X

X 0

Figure 3

XX(i,j, p) is true if position p has an x in square (i, j). The predicate 00
is defined similarly. Win has the obvious definition. As an example, suppose
that p() is the name of the position in figure 3.
The fact, f, to be explained is

f= Win(P 0) •
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The relevant evidence, e, is taken to be a description of the board,

e=Ev(f)
= XX(1, 2, p()) XX(2, 2, p())
XX(2, 3, p()) A XX(3, 2, p 0)

A 00(1, 3, p())A 00(2,1, p())
A 00(3, 3, p()).

Note that 1, 2, 3 and p 0 are constant symbols. We give the result for a set

of positions taken from Popplestone (1970). The win and non-win positions
are displayed in tables 3 and 4 respectively. The program found an 1/4- =

{ C2} where:

= XX(i, 3, p)v XX(m, P)
v XX(m, 1, p)v X X(i, m, p)
v W(p).

Table 3

Table 4

X

X

X

X X X

ox 0

X

X 0

X X X

X

X
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and

c2=x—Ty(3,d,p)v xx(d, d, p)
v X X(2, g, p)v XX(g, g, p)

v XX(i, F, p)v XX(1, 1, p)
v W(p).

Note that i, p, m, d and g are variable symbols.
The clause C1 has as a consequence that any position containing a column

of xs or a forward diagonal row is a win; C2 does the same for the rows and
the backward diagonal. These rather elegant explanations were available
because there was not enough negative evidence. For example, C1 implies
that any position containing an x in (1, 3) and (3, 1) is a win.
We might have used an additional predicate symbol BB to indicate the

presence of blanks. Thus to Ev(f), for the position in figure 3 we would add
the literals BB(1,1, p()) and BB(3, 1, p0). Alternatively, we could dispense
with XX, 00 and BB and use Occ instead where, for example, Occ( X, i,j, p)
means that position p has an x in square (i,j). Both these alternatives result
in much more data processing and the need for many more examples of
wins and loses before reasonable hypotheses are generated. This is because
the richer language allows the expression of more hypotheses which must be
eliminated before reaching a good one.
If we changed the win criterion so that as well as a line of xs we required

also that (1, 1) did not have an 0 then with the method of describing positions
in terms of XX and 00 that we use, we would never obtain a reasonable
hypothesis. If the negative information (such as 00(1,1, DO)) were added,
we would be able to get a good hypothesis. This is the problem of determining
just what is relevant to a given fact f.
Many of these ills might be cured by extending the theory to allow Th

to include such sentences as:
Vi,j, p XX(i, j, -100(i, j, p).

Learning the patrilineal ancestor relationship

Our next example is concerned with family relationships. We tried to discover
sufficient conditions for the satisfaction of the binary relation, patrilineal
ancestor which is recursively defined by

anc(x, y)---=father(x, y)v 2z(father(x, z) A anc(z, y)).

This problem falls under case sl rather than s2. However, we used the
program as an indicator of the results a more thorough one would produce.
The family tree is given in figure 4.
We used three binary predicate symbols, Father, Daughter, and Anc, with

the evident meanings. Ev(f) was chosen differently according to whether or
not! was positive. If f was Anc(x, y) then we chose a reasonably small set
of literals which established some sort of link between x and y. A link is a
set of literals {LiTi = 1, n} where each Li is of the form P i(xi, yi) or Pi(yi, xi)
and x= xi, yi= xi+i (1:5 i<n — 1) and y„=y. If the smallest link for f had n
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Adam

Re
I
g

Bill Terry Rod

Figure 4

Table 5

1

fi= Anc(Rod, Kaija)

.12= Anc (Reg, Terry)
f3= Anc(Reg, Kaija)

Kaija . Viivi.

el= Daughter (Kaija, Rod)
Father(Rod, Kaija)

e2= Father(Reg, Terry)
e3= Father (Reg, Rod)

Daughter(Kaija, Rod)
Father(Rod, Kaija)
Anc(Rod, Kaija)
Anc(Reg, Rod)

fa= Anc(Adam, Kaija) e4= Anc(Adam, Reg)
Anc(Reg, Kaija)
Anc(Rod, Kaija)
Father(Reg, Rod)
Father(Rod, Kaija)

Anc(Terry, Bill) es= Anc(Reg, Bill) Anc(Reg, Terry)
Anc(Adam, Terry) Anc(Adam, Bill)
Anc(Adam, Reg) Anc(Adam, Rod)
Anc(Rod, Kaija) Anc(Adam, Kaija)
Father(Reg, Terry) Father(Reg, Bill)
Father(Reg, Rod) Father(Rod, Kaija)
Daughter(Kaija, Rod) Anc(Adam, Viivi)
Anc(Reg, Rod) Anc(Reg, Kaija)
Anc(Reg, Viivi) Anc(Rod, Viivi)
Father(Rod, Viivi) Daughter(Viivi, Rod)

f6= Anc(Terry, Rod) e6= es
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literals we took Ev(f) to be the union of a few of the links of length n. If f
was negative, we simply let Ev(f) be the whole family tree. The ei and fi are
displayed in table 5.

The program found an H= C2} where
=Father(x, y)v Anc(x, y)

and

C2 =Anc(p,q)v Father(p, q)

v Anc(Reg, q)v Father(Reg, Rod)

v Father (Rod, Kaija)v Anc (Rod, Kaija)
v Anc(k n)v Anc(n, Kalja)
v Anc(k, Kaija)

Note that x, y, p, q, k and n are variable symbols.
C1 explains f1 and h. C2 explains f3 and/4. Now, one can show that

6
C2 "0 C3( A (e JAM)1=1

where

C3 = Anc ( k, n) v Anc (n, Kaija)
v Anc(k, Kaija).

We plan to add this facility of reduction, relative to all known facts, to the
program.
The clauses CI and C3 constitute exactly the sufficient half of a good

definition of Anc(x, Kaija). We could not have expected more, since the
only examples we gave where the recursive part of the definition had to be
invoked were of patrilineal ancestors of Kaija.

This experiment shows up rather clearly that, although the choice of Ev
seems reasonable, it is desirable to have a more thoroughgoing theory of the
choice of Ev, and the interaction of that choice with the generalization theory.

CONCLUSIONS

We claim three things. First we have a reasonable philosophically-oriented
theory of generalization. This is meant to be a study of the weakest possible
kind of hypothesis formation. It may very well not lead to anything more
general. Nonetheless an ability to form generalizations will not be useless
for a robot. Secondly, there is an interesting mathematical theory which
seems open to development. Lastly, pilot experiments have shown promise
of a practical algorithm.
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