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INTRODUCTION

To every 3-dimensional scene there correspond as many 2-dimensional
pictures as there are possible vantage points for the camera. It is, however,
possible to construct pictures for which there is no corresponding scene
containing physically-realizable objects. Pictures of such 'impossible objects'
can be useful in giving insight into the constraints or grammatical rules
associated with the 'language' of pictures, just as nonsense sentences can be
useful in illustrating the rules of other languages. Impossible objects have
been used by psychologists (Penrose and Penrose 1958) to create visual
illusions which successfully challenge the ability of our perceptual systems
to synthesize a 3-dimensional world from 2-dimensional information. The
incompatibilities among the various portions of pictures of these objects
are a novel way of testing our picture analysis procedures. The purpose of
this paper is to demonstrate some possible decision procedures and to test
them on pictures of both possible and impossible objects.

(a)

Figure 1. Two pictures of sets of line-segments
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Examples of pictures of objects for study are shown i
n figures 1, 2 and 3.

The first of these are from a paper by the author (Huffma
n 1968) which dealt

with objects consisting of straight line segments only
. It was assumed that

straight lines in the pictures were representative of str
aight-line segments in

the 3-dimensional scene; the sense of 'passing' at the va
rious intersections

was also indicated. With these assumptions the object sh
own in figure 1(a)

is not possible; the one in figure 1(b) is.

(a)

(c)

(e)

Figure 2. Examples of impossible polyhedra

296

(b)

(f)



liUFFMAN

The pictures in figure 2 purport to be of plane-bounded polyhedra. [The
first two of these are adapted from Penrose and Penrose (1958)]. It is primarily
with such polyhedral objects that this paper will deal. Under certain natural
assumptions none of the objects in figure 2 is possible.

(a)

(c)

(b)

(d)

Figure 3. Examples of 'smooth' objects

In figure 3 are shown pictures of four different 'smooth' objects. One of
these is impossible; the other three are possible. The constraints which must
be taken into account in making decisions about such objects will be the
topic of the final sections of this paper.
Of course the possibility or impossibility of the objects in any picture

depends upon what assumptions we make about the physical nature of the
3-dimensional elements which we can, in the picture, view in only two dimen-
sions. Typical assumptions we could make are: that what appear to be
straight lines are actually straight, that lines which appear to be parallel are
parallel, that objects are either 'thin' or have appreciable thickness, that all
lines which appear to meet at a point actually meet at that point, that all
edges which are on the side of the object toward the camera actually are
represented in the picture, and so forth.
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One assumption we shall make throughout this paper is that all pictures
are taken from a 'general position'; that is, that a slight change of the position
from which the picture is taken would not change the number of lines in the
picture or the configurations in which they come together. In the case of
pictures of polyhedra this eliminates the possibility of pictures in which two
vertices of the objects in the scene are, by coincidence, represented at the
same point in the picture, or two edges in the scene are seen as a single line
in the picture, or a vertex is seen exactly in line with an unrelated edge.
The assumption of a general position for the camera is a practical one since

it reduces the number of types of local configurations of lines which we must
deal with in the picture. Furthermore, if this assumption leads us to judge as
impossible an object or set of objects which we know to exist (and therefore
by definition 'possible') we can conclude that the camera was probably not
in a general position (or that some other assumption was unjustified). In
that case we can either move the camera slightly and retake the picture, or go
to an augmented list of local configurations which are possible and reanalyze
the picture accordingly.
The assumption of a general position for the camera, strictly interpreted,

would prevent us from considering pictures having several line-segments
which, if extended, met at a common point unless the corresponding edges in
the scene would also meet at a common vertex. A special case of this issue
arises if several line-segments in a picture are mutually parallel (and would
therefore meet at a point-at-infinity if extended). Because it is annoying to
have to concern ourselves about this issue in drawing pictures to be analyzed
we shall make whatever special commentary is necessary if several line-
segments in a picture would meet if extended.

DERIVATION OF LOCAL CONSTRAINTS FOR PICTURES OF
DEGREE-3 POLYHEDRA

Introductory Remarks

Pictures of scenes which contain only plane-bounded solid objects (that is,
assortments of polyhedra) are especially attractive for purposes of logical
analysis. On the one hand there are arbitrarily many objects of that type
since there can be for each object as many vertices as desired, and its planar
surfaces can meet each other so that in the region of a given vertex the
object can be locally convex or concave in a variety of ways. Thus there is a
rich and interesting set of objects which can be viewed. On the other hand the
number of ways in which individual edges can be viewed and can obscure
each other is limited. For these reasons an environment containing poly-
hedra is a sensible choice as an initial one into which to put a robot which
looks at the scene with its television camera 'eye' and which moves about the
environment, deciding what it has seen and how best to look for what it has
not seen. Other authors [for example, Guzman (1968)] have also considered
the problem of the analysis of scenes containing polyhedra.
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In the work reported here no account has been taken of the effects of
gravity or of the possible mutual interaction effects among various members
of a set of polyhedra. If we did not make this assumption we could soon find
ourselves immersed in such (for us, secondary) problems as determining
angles of repose for piles of tetrahedra, or of deriving the result that a stack
of identical unit cubes is just barely stable if the amount by which the nth
cube down in the stack extends beyond the one below it is equal to 1/n.
We shall assume that exactly three plane surfaces come together at each

vertex of the polyhedra. (The techniques for less-restrictive assumptions can
be shown to be relatively simple extensions of this special case.) An exhaustive
listing of all (only four) inherently different vertex types is made, together
with an exhaustive listing of the essentially different ways they can be viewed.
(Certain views of different vertex types will look the same to the camera
even though they 'mean' different things.) Similarly, straight lines in a
picture can have any of four possible interpretations. Picture analysis will
progress as an alternation between decisions about the correct interpretations
of lines and of the points where sets of lines are incident in the picture. Correct
interpretations of these lines and points yield correspondingly correct
deductions about the true nature of the associated edges and vertices of the
objects in the actual scene.
The single most important insight which makes this analysis possible is the

realization that there are exactly four possible interpretations of a line in a
picture. It can represent either a 'convex' or a ̀ concave' edge with both
associated planes in view, or it can represent a (convex) 'hiding' edge which
can obscure more distant parts of the scene either to one side of the edge or
the other. A given line segment cannot have two different ̀ meanings' in two
different parts of the picture and it is this constancy of interpretation of what
a line must mean in a picture which is the key to the method of analysis
presented here.

Definition of terms

The environment is assumed to contain an assortment of solid polyhedra
which have exactly three planar surfaces at each of the vertices and, of course,
two surfaces associated with each edge. We shall call the actual collection of
polyhedra the (3-dimensional) scene; the projected (2-dimensional) view
which the camera sees will be called the picture. The visible edges and vertices
of the scene are associated with the straight lines (actually, line-segments)
and nodes, respectively, of the picture. These lines and nodes determine a
picture which is actually a graph, which we may refer to, from time to time,
as the picture-graph. On each side of each line in a picture is an area which
may or may not be associated with one of the surfaces of the same poly-
hedron associated with the line.
We shall use the term ̀ picture' to refer not only to projected views of

possible 3-dimensional scenes but also to 2-dimensional line drawings which
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purport to be views of scenes but for which there may be no corresponding
physically-realizable set of polyhedra. Such pictures of 'impossible objects'
may be constructed with a view to exercising our analysis procedures in a
special way. They may also come about naturally if, for example, an edge in
the scene generates no corresponding line in the picture because of the lighting
conditions under which the picture was taken.

Types of vertices and edges in the scene

There are four basic ways in which three plane surfaces can come together
at a vertex. All four can be illustrated in the picture of a fireplace and raised
hearth shown in figure 4(a). In figure 4(b), pictures of these four vertex

5  

1
7

5
(a)

3

  5

(b)

Figure 4. Illustrating the four types of vertices: (a) a fireplace and hearth; (b) the
four vertex types
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types are shown associated with pictures of four polyhedra. The identifying
numbers are determined in accordance with the following reasoning. The
three planes which meet at a vertex partition the surrounding space into
eight octants. (Even if the three planes and associated three edges are not
mutually orthogonal the term 'octant' will be used and the general comments
offered here will nevertheless apply.) The number of octants which are
occupied by solid material at the vertex is chosen as the type-number for the
vertex. (The 'T-nodes' are not associated with physical vertices and will be
commented on separately later.)

There are only two types of edges possible for our plane-bounded poly-

hedra: concave and convex. Each of the four vertex types we have allowed is
uniquely associated with a trio of edge-types. The edges associated with
type-1 vertices are all convex; those associated with type-7 vertices are all

concave. Two of the edges incident at a type-3 vertex are convex and the other

is concave. Two of the edges incident at a type-5 vertex are concave and the
other is convex.

Types of nodes and lines in the picture

A vertex can be viewed from any one of the octants which is not occupied
by solid material and all views from a given octant give essentially the same
'configuration'. (The exact meaning of this comment will be apparent later.)
For instance, a type-3 vertex can be viewed from the complementary five
octants in which the eye or camera may be placed. Except in the case of a
type-1 vertex, where rotational symmetries reduce the number of possibilities,

the view from each of the octants gives an essentially different way in which

the edges can meet.
• The possible views of each of the four types of vertices are summarized in
figure 5. Note that although there are always exactly three edges incident at a
vertex, only two may actually be visible as lines in the picture; the third line

is, in these cases, associated with an edge which is hidden (from the camera
position). Such lines are shown dotted in the figures.
The (undotted) lines in each of the pictures of the vertices are labelled as

follows:

(a) a +' line represents a convex edge which has both of its corresponding
planes visible from the camera;

(b) a '—'line represents a concave edge which has both of its corresponding
planes visible from the camera;

The other two types of label for picture lines correspond to those convex
edges in the scene which have both of their associated planes on the same side
of the edge as viewed from the camera, one hiding the other. An arrow is used

as the label for such lines with the convention that, as one moves in the
direction indicated by the arrow, the pair of associated planes is to the right.
Since an arrow may lead toward or away from a given node of the picture we
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conclude that, with respect to that node, we can label an incident line with
either

(c) an 'in' arrow, or

(d) an 'out' arrow,

as well as with the +' or —' label.
It is clear that a line in a picture of a 'possible' scene must have a single

one of the four labels associated with it along its entire length. (Otherwise
the pair of planes associated with it would have different orientations in
different parts of the scene.)
Our convention for labelling dotted lines (representing edges hidden from

the camera) is consistent with the one for labelling lines representing visible
edges. In order to determine the label for a line corresponding to a hidden
edge, imagine that the surfaces between that edge and the camera are removed,
and note the orientations of the pair of planes associated with the edge. The
label which is to be assigned to the picture line is the same as if the inter-
mediate surfaces had not been present. Examples of all four types of dotted
lines are shown in figure 5.
Note that a hidden line may be labelled '+', even though the corresponding

edge is concave, and that a hidden line may be labelled even though the
corresponding edge is convex. Similarly, hidden lines which are labelled with
arrows may be associated with either concave or convex edges. (In each of
these cases it is the parity of the number of surfaces between the camera and
the edge which is the controlling factor.)

All visible edges of a scene correspond in a picture to lines which can be
thought of as having zero depth. The dotted lines in figure 5 have unit depth.
In general the depth-index for a line is the number of surfaces which would
have to be removed to expose the corresponding edge in the scene. Each line
in a picture has not only one of four types; it also has a non-negative depth
index. We shall, in general, in this paper deal only with exposed, or zero-
depth, lines. Thus we are giving here only a 'surface' analysis. A 'deeper'
analysis will not be necessary for our present purpose.
From figure 5 it can be seen that the arrowed lines (both dotted and

undotted) in each of the twelve possible vertex views satisfy a 'continuity' or
'conservation' rule: the number of arrows into and out of a node are equal.
(This result is also true of nodes which represent vertices having more than
three associated surfaces and it applies as well to pictures representing non-
planar surfaces.)
In a picture an additional kind of node can occur which is associated with

no corresponding vertex in the scene. These are the 'T-nodes' noted earlier.
Each gives direct evidence that the bar of the 'T' is an arrowed line in which
the direction of the arrow is from right to left (when the 'T' is in the standard
upright position). The line type for the obscured line may be +' or —' or
arrowed (in either direction). A listing of all of the other labelled line
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(b)

(d)

Figure 5. Complete listing of possible picturesof vertices: (a) type 1 vertices;
(b) type 3 vertices; (c) types vertices; (d) type7 vertex
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configurations possible in the vicinity of a node in a picture-graph is given in
figure 6. It is convenient to call each either a 'v', 'w', or 'Y'. (Each of these
configurations may, of course, appear with an arbitrary rotation in a given
picture.) The integer shown is the associated vertex-type. Note that each of
these three types of configuration around a node of the picture-graph can
have several different 'meanings' in terms of the (3-dimensional) vertex-types
it can represent. The proper interpretation of the configuration of lines
incident at a given node cannot be determined unless the surrounding
'context' is taken into consideration.

VV 4V V VV
3 3 3 5 1 5

5 3 7

Figure 6. Possible labelled-line configurations around a picture node

THE PROBLEM OF PICTURE ANALYSIS

The mapping from scene to picture

Imagine a (3-dimensional) scene containing one or more polyhedra. In the
process of producing a corresponding (2-dimensional) picture-graph we can
imagine several different stages, at each of which some information is lost.
For example, consider a rectangular parallelopiped through which a hole
with a cross-section which is a parallelogram is completely drilled. A close
approximation to a true representation of this object is given in the labelled
`X-ray' picture shown in figure 7(a). (For completeness a depth-index for all
hidden lines and labels for the nodes could also be given but they would only
unnecessarily clutter the picture here.) Some information about the actual
dimensions of the object has already been lost, unavoidably, particularly
information about the distances in the direction of the rays which pass
through the camera position. This lost information is associated with the
now-missing 'third' dimension.
If no indication is given of hidden lines we obtain the labelled picture-

graph in figure 7(b). (The labels' for the nodes of a picture-graph of a
polyhedron with degree-3 vertices are uniquely determined by the line-labels;
see figure 6. Thus these labels would be redundant.) Here we have irretrievably
lost even more information about the real object since there is an infinite
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variety of hidden protrusions, cavities and obscured objects which would not
be apparent in this type of picture. At this stage there is an inherent ambiguity
about the hidden parts of the object. For example, in our example we have
no evidence about how far the hole penetrates into the object. Finally, by
dropping the line-labels we obtain the unlabelled picture-graph itself [figure
(7c)].

(C)

Figure 7. Illustrating three kinds of pictures: (a) labelled ̀ X-ray' picture-graph;
(b) labelled picture-graph; (c) unlabelled picture-graph

Reconstruction of a scene from a picture

Certainly a necessary condition for the realizability of an unlabelled picture-
graph as a scene containing polyhedra is that there exists some labelling which
places exactly one of the four possible line-labels on each line so that around
each node of the graph there exists just one of the allowable configurations
given in figure 6. (The 'T-nodes' are exceptions which have already been
noted.) The successful labelling of the lines around each node in a picture
uniquely corresponds to an identification of the types of vertices and edges
in the associated scene. It is also clear that the two picture areas on either
side of a line which has been labelled with a ' or a — ' must belong to the
same object.
The labelling process for the lines and nodes of an unlabelled picture is

analogous to the parsing of sentences in other languages. In our language the
'alphabet' consists of four types ('f, 'y', 'w', and 'Y') of nodes. In order to be
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'syntactically' correct a picture containing these symbols must have them
interconnected only in certain allowed ways. As we have noted above, even
a properly-labelled picture can have a wide variety of interpretations.
A totally-satisfactory analysis procedure would allow us to specify in detail
at least one labelled ̀ X-ray' picture from which a corresponding object or set
of objects could be constructed.

Forbidden picture-subgraphs

The syntactic rules for any language impose constraints on the manner in
which the symbols of its alphabet may be related to each other. This is
certainly true of our pictures of polyhedra. Some forbidden combinations
are shown in figure 8. The lines of none of them can be consistently labelled.
(The reader should verify this fact for himself.) The configuration consisting
of two ̀T-nodes' [figure 8(a)] is worthy of special notice since it is forbidden

(a) (b) (c)

(g) (h)

(i)

Figure 8. Examples of forbidden subpictures
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even in pictures of polyhedra which may have an arbitrary number of
edges associated with a vertex.

Pictures which cannot be labelled

In figure 9 eight examples of pictures of objects are given which are impossible
to realize as degree-3 polyhedra. In these examples each of the lines can be
labelled so as to satisfy the necessary constraints at all but one node. The
identity of the node (in general, nodes) at which the labelling is not an
allowed one may depend upon the order in which the labels are derived. Our
primary concern is with whether or not a labelling is possible for the picture
as a whole rather than with where the labelling fails. Often, however, the

(a)

(c)

(e)

(g)

(d)

Figure 9. Pictures of objects for which there is no labelling possible
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location of a picture region where labelling is impossible will be where a
human subject reports that the picture 'doesn't look right' to him.
We have assumed that each of the eight pictures in figure 9 is of a complete

object rather than, for example, a recess in the surface of a larger object. This
assumption allows us to label each of the lines on the periphery of the
picture with an arrow pointing clockwise. Other lines incident on nodes on
the periphery can be labelled'+'  or — ' depending on whether the arrows on
the periphery take a right or left turn at those nodes (see the appropriate w
and Y configurations in figure 6). Additional lines which can be labelled
immediately with an arrow are those associated with a T-node. The remaining
lines are labelled so that, if possible, an allowable configuration exists at
each node. In this labelling procedure it may be necessary to assume a given
label for a line in order to make further progress and to revise this assumption
if it leads to a stage at which further labelling is impossible.

Pictures of 'unlikely' objects

The pictures in figure 10 can all be labelled consistently (in a unique way) and
each describes an object which would probably be 'unlikely' to be seen by
most of us. The objects in figures 10(a) and (b) can be visualized more easily
if one imagines that a cavity in the form of a skew parallelopiped is removed
from the more familiar part of each object pictured. In these two pictures we
have violated the condition of a general position for the camera. If the camera
position were moved somewhat certain edges of the cavities would no longer
appear parallel to other edges of the object.
The object in figure 10(c) is in the general position. However, if the camera

were moved a significant amount to the right of the object it would record
the hidden construction on the back side of the object which was necessary
to make the object 'possible'. The object in figure 10(d) can be realized by
combining two tetrahedra.
The 'skew cube' of figure 10(e) looks impossible to many human subjects

but it is realizable regardless of the exact orientation of the lines in the
picture. In order to prove this we can imagine the construction of the object
itself. First, orient three plane surfaces in any of the (infinite number of)
ways in which they meet so that the edges associated with their pairwise
intersections appear to the camera to be the three lines at the middle of the
picture. Next, locate two more edges in each of these three surfaces so that
the set of six appear to the camera to be in the positions of the six peripheral
lines of the picture. Each of the vertices corresponding to the three 'w'
configurations has associated with it a pair of edges determining uniquely the
location of one of the three hidden surfaces of the object and the point com-
mon to these three plane surfaces is also uniquely determined.
If this point would appear to the camera to be inside the periphery of the

object in the picture the object can be constructed with the six surfaces
referred to above. If this point would appear to the camera to be outside
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(b)

(d)

Figure 10. Examples of 'unlikely' objects

(e)

that periphery (and in front of one of the three visible surfaces) a seventh
surface would be necessary in order to -realize the object pictured. The
orientation of the picture lines in the example given would require this
construction.
In many applications the assumption that 'unlikely' objects do not exist

in the scene can be as important a constraint as some of the others men-
tioned in this paper. The fewer the assumed number of types of objects the
easier the picture analysis is.

ADDITIONAL PICTURE CONSTRAINTS

Introductory remarks

It will be seen in this section that even if a picture can be labelled consistently
it may not be of a realizable object or set of objects. Additional constraints
corresponding to more refined geometric tests must also be satisfied. Examples
of pictures which can be labelled but which are not possible are given in
figure 11. Figure 11(a) illustrates that the same object surface cannot be
associated with two different sides of the same line (independent of which
of the four labels the line has). The objects in figures 11(b), (c), and (d) are
not possible since the picture gives evidence that two planes intersect along
two different edges. In figures 11(e) and (f) the pairwise intersection of three
planes gives three lines in the picture which do not intersect (when extended)
at a common point, as they should. The same argument eliminates the
picture in figure 11(g) as possible; this time the third plane is hidden from
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(a)

(c)

(e)

(b)

(d)

(0

1111111
(h)

Figure 11. Examples illustrating conditions involving lines common to two faces
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view even though the edges at which it intersects the other two planes is
visible to the camera. The objects (or object: the two subobjects could be
joined by a hidden coupling) in figure 11(h) are possible. This example shows
pairs of areas in the picture which are associated with two different lines, but
in this case the lines do not represent edges common to the two associated

surfaces.
The geometric constraints which were violated in the examples above are

simple illustrations of a more general set of necessary constraints. Let us
define a cyclically-ordered edge set (or 'cyclic-set' for short) to be a cyclically
ordered sequence of edges purporting in the picture to have the property that

each pair of edges which are consecutive in the sequence determine a distinct

plane. We know from the examples above that a cyclic-set with one member is
not physically possible. A cyclic-set with two members is not possible unless
the two edges are identical.
A cyclic-set with three members is not possible unless the three edges

(extended if necessary) would meet at a common vertex. Since we have
assumed that our pictures were taken from a general position this implies

that the associated triple of lines in the picture would also have to meet at a
common node. The three lines incident at a picture node representing a vertex
automatically meet the realizability condition. When a cyclic-set has four or
more edges the realizability condition is more complicated. For example, it is
not necessary that either they or the corresponding picture lines meet at a
common point. [ See, for example, the four lines extending from the 'base'
of the object in figure 13(a).]

The 'gain concept

Consider the drawing of figure 12(a). The heavy lines (a, b, c, d and e) are
intended to represent the edges of a single plane and the lines Li to represent
the directions taken by the 'third' edges at the points P. These lines (Li)
represent the cyclic set in question. The lines L1 and L2 (and a) are in one
plane, the lines L2 and L3 (and b) in the next, and so forth.
There is no loss of generality in assuming that the given plane is parallel

to the plane of the picture itself. Now imagine that a second plane, parallel to
the first, is constructed with edges a', b', c', d', and e'. The lines representing
these edges would have to be parallel to the corresponding lines constituting
the boundary of the first plane. If the lines Li have orientations corresponding
to a physically-realizable scene the lines representing the boundary of the
second plane would have to intersect on the lines Li as shown in the example.

If the lines Li have arbitrary orientations the construction illustrated in
figure 12(a) will, in general, not be possible. Assume, for instance, that the
orientation of L1 is changed and that those of the other lines associated with
the cyclic-set are not. Choose a point X on L1 and construct a' parallel to a.
From the intersection of a with L2 construct b' parallel to b, and so forth.
In general the procedure will determine a point Y (the intersection of e' and
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Li) which is different from X, as has been illustrated in figures 12(b), 12(c),
and (12d). The ratio between the distance P1 Y and the distance PiX will be
defined as the (clockwise) gain associated with the cyclic-set. We could have
defined a counterclockwise gain; it would be reciprocally related to the
clockwise gain. The gain is independent of how far the initial point X chosen
for the construction procedure is from P1.

C'

(b)

e'

\ a

Y

X

1,,

(c) (d)

Figure 12. Illustrating the 'gain' concept: (a) illustrating unity gain condition;
(b) illustrating gain3 / 2; (c) illustrating gain:4-'1/2; (d) illustrating gain -1

It is clear that a necessary condition for the realizability of an object
depicted by a picture is that there be a gain of unity associated with each
cyclically-ordered edge-set. When these gains differ from unity by only small
fractions a picture will generally, but not always, look 'right' (see figure 13).
Those in which the gains are appreciably different from unity will often look

312



HUFFMAN

'warped' (see figure 11(f), for example). In a sense the gain (or its reciprocal)
is a measure of how 'ungrammatical' a picture is. It would seem possible to
draw sets of pictures of objects in which the gain differed more and more
from unity so as to test the sensitivity of human subjects to this type of
picture distortion. In this application the advantage of having a precise
numerical value for the distortion is obvious.

It is fairly easy to show that when the gain associated with a cyclic-set is
negative the picture lines cannot even be labelled properly. This is beyond
the scope of this paper and is left as an exercise to the reader.

(c)

(b)

Figure 13. Pictures satisfying the unity-gain condition

The dual representation

A representation which is dual to the picture-graph will be summarized here
briefly. Such a representation can be useful in visualizing the orientation of
the surfaces of an object and in ascertaining whether or not they can be made
mutually compatible.
A dual picture-graph is a graph in which there is a node corresponding to

every surface represented in the picture, a (triangular) area corresponding to
every (degree-3) node represented in the picture and a line corresponding to
every line in the picture (see figure 14). If the picture is of a possible object
it will be possible to construct the dual-graph and orient it so that every
line in the dual-graph is at right angles to the corresponding line in the
picture itself. The lines a, b, c and d in figure 14(a) represent the boundary
of a plane surface in a picture. The directions of the lines e, f, g and h have
been chosen so that the unit-gain requirement has been met. Therefore it is
possible to construct surfaces of an associated object so that the surfaces A
(defined by lines a, e and h), B (defined by the lines b, e and f), C (defined
by the lines c, f and g) and D (defined by the lines d, g and h) are plane
surfaces.
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(a)

Figure 14. Illustrating duality: (a) picture-graph; (b) dual picture-graph.

We note that the directions of the three lines associated with a node in the
picture uniquely determine the proportions of a corresponding triangle drawn
in the dual-graph. By progressing around the boundary of a plane repre-
sented in the picture we generate in the dual a sequence of triangles the
locations of which are uniquely determined once the first triangle in the
sequence has been drawn. (Note, for example, in figure 14 the sequence of
triangles abe, bcf, cdg and dah.) In this process a sequence of lines corres-
ponding to a cyclic-set is generated in the dual graph (for example, the
sequence e, f, g, h). This sequence will close on itself if and only if the unit-
gain requirement is met.
With the dual-graph constructed in this manner its directed line-segments

correspond to gradients and differences between gradients of planes in the
picture. By 'gradient' in this context we shall mean a (two-dimensional)
vector associated with a plane surface represented in the picture which, by
its direction and magnitude, shows the direction and magnitude of the
greatest positive rate of change of distance from the camera with respect
to motion in the picture.
Assume in figure 14(a) that the object surface bounded by a, b, c and d is

parallel to the picture plane. (The gradient associated with that plane is the
zero-vector.) The gradient associated with D would have the direction of the

directed line segment OD in the dual-graph. The gradient associated with

B would have the direction of OB in the dual-graph. (Note that the hidden
surface B in the picture is under the reference plane and is tilted down toward
the left.) The lines a and c have similar interpretations.
The vectors associated with the other lines can be interpreted as (vector)
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differences between pairs of the other gradients. With the reference plane
assumed to have a zero gradient the node 0 in the dual can be considered to

be the origin. Moving the origin away from this point corresponds to trans-

forming the object pictured in such a way that its projection on the picture

plane remains constant. Reducing the lengths of all lines in the dual-graph
by a given factor corresponds to 'flattening' the object pictured by the same
factor.
The (perpendicular) distance from the origin to an arbitrary line in the

dual-graph is a measure of the slope of the corresponding object edge with

respect to the picture-plane. Thus lines passing through the origin correspond

to those edges which are parallel to the picture-plane. Pairs of surfaces which

are parallel in the scene would be associated with the same point in the dual-

graph.
It is possible to consider the dual-graph itself as a picture of a dual-scene

in which information about the 'third dimension' has been lost. In that case

the directed line segments in the original picture correspond to gradients of

the surface in a 3-dimensional dual-scene. The other obvious dual relation-

ships also hold. Special comment should, nevertheless, be made about the

way pairs of lines are oriented with respect to each other in the scene and the

dual-scene. If at the apparent point of intersection of two lines, Li and Li,

in the picture Li is in the scene actually closer to the camera than Li is, then

in the dual-scene Li will be closer to the camera than Li is. It follows that

lines which intersect in the scene will also intersect in the dual-scene.

Summary remarks

We considered first a comparatively simple set of labelling constraints which

we later found were not a sufficient test for the realizability of an object
represented in a picture-graph. A more refined set of necessary conditions

resulted from the unit-gain requirement and the alternate viewpoint available

from the dual picture-graph. These constitute a productive way of demon-
strating whether or not all of the surfaces in the scene can be realized as
plane surfaces and whether or not they can have compatible orientations.

In spite of this there are still examples of pictures of objects which cannot

be analyzed by using only these tests in a straightforward way.
Consider, for example, the object(s) in figure 15. The edges can all be

labelled consistently. The unit-gain requirement is met for all cyclic-sets of
edges. And yet it is obvious that the scene is impossible to realize. One way of
demonstrating this is to: note that a properly-oriented piercing line would
intersect the A-plane in two different points, p and q. Alternately, one could
conclude from the picture that there must be at least two different lines in
which the surfaces A and B must intersect: one in the left half of the picture
and one in the right half. Other relatively simple tests give equivalent results.

It is not difficult to imagine other more complex sets of objects which can
be proved to be possible or impossible if an appropriate set of auxiliary
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points, lines, or planes are added to the picture. Once these are added a proof
of impossibility may be quite short and based on easily-understood principles
of geometry. But to know where to apply these principles will probably
require, in general, an analysis, the details of which are specific to the given
picture.

A

Figure 15. An impossible pair of objects

We have assumed for the purposes of this paper that the polyhedra which
are pictured have only three edges associated with each vertex. This assump-
tion is not so restrictive as it might at first seem. Vertices having four or more
associated edges can be converted to sets of vertices having only three by a
procedure of 'grinding' and / or 'filling' in the vicinity of the vertices. The
vertex of the original polyhedron can then be considered to be the limit
reached by the inverse procedure (in which the amount of ground or filled
material is reduced to zero) and the configuration of lines at the correspond-
ing picture node to be the conjunction of several of the basic configurations
shown in figure 6. If we may assume that the polyhedra in our pictures can
have arbitrarily large numbers of edges associated with their vertices the
primary condition for the realizability of the objects pictured is that no two

configurations exist which would imply arrow labels in different directions
on the same line-segment [see, for example, figure 8(a)]. The results relating
to the unit-gain requirement and the dual formulation apply without
significant modification to pictures of these more general polyhedra.

A LANGUAGE FOR PICTURES OF SMOOTH OBJECTS

Types of picture lines and nodes

In this section I will present a brief summary report of work involving
pictures of 'smooth' objects. A more detailed paper will be forthcoming at a

later date.
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'Smooth' here will be given an informal definition. By a smooth surface
we shall mean one having, for each surface point, a well-defined directed
line orthogonal to, and pointed away from the surface such that the orienta-
tion of this line is a continuous function of the position of the associated
point on the surface. For the sake of simplicity we shall allow in our pictures
only smooth surfaces bound by smooth edges (defined in a manner analogous
to the one in which smooth surfaces were defined) and solid objects bound by
smooth surfaces having no edges. Smooth objects may, of course, be quite
complex. For instance, it is possible to associate either orientable ('two-sided')
or nonorientable ( one-sided') smooth surfaces with arbitrarily large sets of
edges which are arbitrarily knotted together. Consequently, smooth objects
furnish another rich source of pictures for analysis.

Figure 16. Cloth and saddles

In figure 16 there are some examples of pictures of smooth objects. Note
that picture lines can represent either edges of a surface or folds in the surface.
We distinguish between these two types of lines by labelling the first type with
single arrows and the second type with double arrows. In each case we orient
the arrow so that, as we travel in the direction of the arrow, the associated
surface (one for a line representing an edge) or surfaces (two for a line
representing a fold) are to the right in the picture. Thus the number of
arrows in the label for a line is also a measure of the difference between the
numbers of surfaces represented in the two areas on the two sides of the line.

It will be noted that at each indicated node in the picture (except the
T-nodes) two of the lines meet at a cusp. This is true even for the nodes
identified by 'c', 'd', ̀ e' and 'f' (at these nodes one of the lines represents
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a hidden edge or fold). This is a consequence of the fact that the surfaces
and edges represented are smooth. For nodes of types 'e' and 'f' only one visible
line is incident and this line always represents a fold. For pictures of solid smooth
objects only these two latter types of nodes (and T-nodes) are necessary.

Derived constraints

The possible configurations of lines which can exist at picture nodes is sum-
marized in figure 17. The last four configurations are possible in pictures of
creases and are added to show how this style of picture language could be
expanded. Surfaces which are creased are, however, not smooth in the sense
that that term has been defined here and consequently in this paper we shall
not consider further these last four types of picture nodes.

(a) (b)

(g) (h)

(c) (d) (e)

ir
14
I 

.

`{‘ (
%

«

(i) (.)

Figure 17. Configurations possible in a picture of smooth objects

By examining the first six configurations of figure 17 we can conclude that
they occur in pairs which are related by being mirror images of each other.
The mirror image of a configuration has its arrows pointing in directions
opposite to the corresponding arrows in the original.
The hidden lines in figures 17(c), 17(d), 17(e), and 17(f) are all hidden

under exactly one surface. When each of these configurations is placed under
one or more surfaces none of the lines will be visible but the one will have a
depth-index which is one more than those of the other lines.
In each of these configurations the number of arrows into a node equals

the number of arrows out of that node (when hidden lines are taken into
account). This is a consequence of the fact that the number of surfaces
associated with a given area of the picture (bounded by lines which may be
visible or hidden) is a constant. We can conclude that the net number of
arrows into each closed picture region is also zero.
The surfaces, edges, and folds in a scene map into three basic unlabelled
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configurations (other than the 'T') in a picture: the 'gamma' node [figures
17(a), 17(b)], the 'lineal' node [figures 17(c), 17(d)] and the 'terminal'
node [figures 17(e), 17 (f)]. In making decisions about the possibility or
impossibility of smooth objects the lineal nodes cause special concern since
one must consider the possibility that one or more lineal nodes may be
concealed along any curved line segment. Nevertheless, even though the
number of arrows associated with a line label changes as a lineal node is
passed, the direction of the arrow ( s) is unchanged. Consequently we know that
the direction of the arrows appropriate for labelling a given segment of line
is fixed over that line segment (until a gamma node or a terminal node is
reached).

as in

as in

Figure 18. Forbidden configurations in pictures of smooth objects

An equally important conclusion follows from the observation of the
direction of the arrows in the 'arms' of a gamma configuration: the arrow on
the right arm is always into the node and the arrow on the left arm is always
out of the node. This fact and the constancy of arrow direction in the vicinity
of lineal nodes allow us to conclude that the three configurations in figure 18
(and their mirror images) cannot occur in pictures of possible objects. A slightly
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subtle version of the configuration of figure 18(b) is imbedded in the picture

of figure 3(d) and prevents that object from being possible.

An example for study

The pictures in figure 19 show four different ways of completing the hidden

line structure for the example of figure 3(a). The first of these shows the

simplest and perhaps the most obvious way of continuing the visible lines as

hidden lines. The labellings given on the hidden lines are compatible with

those on the visible lines. Nevertheless the object is not possible.

In order to prove the impossibility of this object we examine the line which

goes from p past q to r. This line indicates an edge which disappears between

p and q and reappears between q and r. The line which crosses the path between

p and q has a double arrow; this gives evidence that the edge represented at q

is under two surfaces. On the other hand the line which crosses between q and

r has a single arrow and this gives evidence that the edge represented at q

is under only one surface. Since the line at q can have only one depth-index

the object with the hidden line structure given in figure 19(a) is clearly

impossible.
Other ways of completing the hidden lines are given in figures 19(b), (c),

and (d). For each of these there is a way not only of labelling the lines in a

consistent way but also of assigning a depth-index (shown by integers in the

figure) to each line segment. Each configuration at a hidden picture node is

basically the same as one of those in figure 17 but with the depth-index of all

lines of the configuration increased uniformly by a number equal to the

number of surfaces existing between the basic configuration and the camera.

The picture in figure 3 ( b) is of a realizable object. One lineal node and one

hidden gamma node suffice. The picture in figure 3(c) is also of a realizable

object. Two lineal nodes and one hidden gamma node suffice. These examples

are left as exercises for the reader.

Conditions for realizability

Any one of the three successful ways of adding hidden lines to the picture

example above demonstrates the possibility of the object. The question of

which is 'best' cannot, of course, be answered on an absolute basis. A

reasonable preference is for the one (or ones) which require the fewest

additional picture nodes. A reasonable constraint to impose is a minimum

allowable radius of curvature for the hidden lines. Such a constraint would be

somewhat analogous to an upper frequency limit or bandwidth restriction

for continuous signals.
The author conjectures that a necessary and sufficient condition for the

realizability of a picture of a smooth object (or objects) is that there be no

conflict among the arrow directions imposed on a picture line by its association

with an arm of a gamma node or the bar of a T-node (recall figure 18) or

because of its identification as a part of the boundary of an object. The
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Figure 19. Possible hidden line configurations for a smooth object.
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necessity of the condition is obvious. Its sufficiency would follow from the
existence of a procedure for bringing together in a compatible way the hidden
lines associated with T-nodes, lineal nodes, and terminal nodes. A key
construction in this procedure was illustrated in figure 19(d). It allowed a
single-arrowed line to go from one depth to another in the picture. Such
techniques allow us to bring together hidden lines at the appropriate depth-
indices.
In the proposed procedure (or in others which achieve the desired result)

we must take into account the following issues. When two hidden lines cross
in the picture the depth-index of the lower line must be changed by the
number of arrows on the upper line. (This is a generalization of the rules
appropriate at a T-node.) The depth-index of a line cannot exceed the
number of surfaces associated with the areas on either side of the line, nor
can the number of surfaces associated with a picture area be negative.

SUMMARY REMARKS

Very few real-world scenes contain only degree-3 polyhedra or simple smooth
objects. Nevertheless the study of the picture languages associated with such

simple scenes serves its purpose by giving us some perspective about what we
might and might not expect to accomplish from the study of more compli-

cated picture languages. As a minimum we should at least be better able to
decide when sentences from a 'polyhedral language' or 'smooth language' are

or are not present in a picture containing a babble of several languages.
Pictures of objects with combinations of smooth and plane surfaces and

having additional types of 'vertices' (for example, cones and cylinders) may
be analyzed using combinations of the techniques illustrated in this paper.
As we have mentioned earlier additional picture configurations are

possible if we allow creases in the surfaces. Other special types of surface

features correspond to their own element types. For instance, the configura-
tions around picture points which are associated with 'crumpled paper'

surfaces are constrained by the fact that in the scene the angles which are
represented at the picture point must sum to 3600. Wrinkles, puckers,

scoring, and indentations all cause their own distinctive configurations in a
picture and add to the list of symbols possible in a picture language.

Stereo pairs of pictures, sequences of pictures taken at slightly different
times, and pictures containing shadow information (they are all closely

related) offer other examples worthy of study.
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