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Abstract

This paper describes two algorithms for finding the optimal
interpretation of an unknown utterance in a continuous speech
understanding system. These methods guarantee that the first
complete interpretation found will be the best scoring
interpretation possible. Moreover, unlike other optimal
strategies, they do not make finite-state assumptions about the
nature of the grammar for the language being recognized. One of
the methods, the density method, is especially interesting because
it is not an instance of the "optimal" A* algorithm of Hart,
Nilsson, and Raphael, and appears to be superior to it in the
domains in which it is applicable. The other method, the shortfall
method, is an instance of the A* algorithm using a particular
heuristic function. Proofs of the guaranteed discovery of the best
interpretation and some empirical comparisons of the methods are
given. The relationship of these methods to strategies used in
existing speech understanding systems is also discussed. Although
presented in the speech context, the algorithms are applicable to a
general class of optimization and heuristic search problems.

1. INTRODUCTION

This paper is concernea with optimal decoding strategies for
continuous speech understanding. Specifically, it is concerned
with control strategies governing the formation and refinement of
partial hypotheses about the identity of an utterance that can
guarantee the discovery of the best possible interpretation.

We assume a system that contains the following components:

a) A Lexical Retrieval component that can find the k best
matching words in any region of an utterance subject to
certain constraints and can be recalled to continue
enumerating word matches in decreasing order of goodness
(where possible constraints include anchoring the left or
right end of the word to particular points in the
utterance or to particular adjacent word matches). We



OPTIMAL SEARCH STRATEGIES / 31

assume that this component is interfaced to appropriate
signal processing, acoustic-phonetic and phonological
analysis components as in (Woods et al., 1976), and that
it assigns a "quality" score to each word match reflecting
the goodness of the match.

b) A Linguistic component that, given any sequence of words,
can determine whether that sequence can be parsed as a
possible initial, final, or internal subsequence of a
syntactically correct and semantically and pragmatically
appropriate utterance, and can propcy,e compatible classes
of words at each end of such a sequence.

The HWIM speech understanding system developed at BBN (Woods et
al.. 1976; Wolf and Woods, 1977) has such capabilities. A control
strategy for such a system must answer questions such as:

a) At which points in the utterance to call the Lexical
Retrieval component, and when,

b) What number of words to ask for,

c) When to give subsequences of the results to the Linguistic
component, and

d) When to recall the Lexical Retrieval component to continue
enumerating words at a given point.

The goal of the control strategy is to discover the best  scoring
sequence  of  words  that  covers  the  entire  utterance  and  la
acceptable Io  the Linguistic component. We will consider here a
particular class of control strategies which we refer to as
"island-driven".

2. ISLAND-DRIVEN STRATEGIES

In an island-driven control strategy, partial hypotheses about
the possible identity of the utterance are formed around initial
"seed" words somewhere in the utterance and are grown into larger
and larger "island" hypotheses by the addition of words to one or
the other end of the island. Occasionally, two islands may
"collide" by proposing and discovering the same word in the gap
between them and may then be combined into a single larger island.

Each island hypothesis is evaluated by the Lexical Retrieval
component to determine its degree of match with the acoustic
evidence and is checked for syntactic, semantic, and pragmatic
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consistency by the Linguistic component. We will refer to a
partial hypothesis that has been so evaluated and checked for
consistency as a "theory". The strategies that we will consider
operate by successively processing "events" on an event queue,
where events correspond to suspended or dormant processes that may
result in the creation of theories.

The general algorithm operates as follows:

(1) An initial scan of the utterance is performed by the
Lexical Retrieval component to discover the n best matching words
anywhere in the utterance according to some criterion of "best" and
for some value n.* An initial seed event is created for each such
word and placed on the event queue. In addition, one or more
continuation events, which can be processed to continue the
enumeration of successively lower scoring words (regardless of
position in the utterance), is created and placed on the queue.
Each seed event is assigned a priority score (derived, in one of
several ways to be described shortly, from the quality_ score that
the Lexical Retrieval component gave it). Each continuation event
is assigned a priority score that can be guaranteed to bound the
priority score of any word that can be generated by that event
(e.g., derived from the score of the last word enumerated prior to
the continuation). The events are ordered on the event queue by
their priority scores and are processed in order of priority.

(2) The highest priority event is selected for processing.
This consists of (i) creating the corresponding theory (a one-word
theory in the case of a seed event), (ii) calling the Linguistic
component to check the consistency of the theory and to make
predictions for words and/or word classes that can occur adjacent
to it, at each end of the theory, (iii) calling the Lexical
Retrieval component to enumerate the k best matching words
satisfying these predictions at each end of the theory, and (iv)
generating a "word" event for each such word found. A word event
is an event that will add one word to a theory to create a larger
theory. Continuation events are also created that will continue
the enumeration of successively lower scoring words adjacent to the
theory. If island-collision is permitted as an operation (island
collision is a feature than can be enabled or disabled by a flag),
then each word event generated is checked against an island table

* The HWIM system also has the ability to execute left-fo-right,
right-to-left, and various hybrid strategies by appropriately
constraining this initial search (e.g., confining it to the left
end).
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to see if the same word (at the same position in the input) has
been proposed and found in the other direction by some theory. If
so, an "island-collision" event is created that will combine the
new word and the two theories on either side of it. Both word and
island-collision events are assigned priority scores derived from
the quality scores of the words that they contain and are inserted
into the event queue according to their priorities.

(3) Continue selecting the top priority event from the event
queue (step 2) until a theory is discovered that spans the entire
utterance and is syntactically, semantically, and pragmatically
acceptable as a complete sentence.

The main topic in this paper is the assignment of priority
scores to the events in the above algorithm in order to guarantee
that the first complete theory found will be the best scoring one
that can be found. Using the quality scores assigned by the

Lexical Retrieval component directly as priority scores does not

ordinarily provide such a guarantee. That is, a straightforward
"best-first" search strategy does not guarantee discovery of the
best overall hypothesis.

Note: Although the basic island-driven strategies are
Presented here as involving an initial scan of the entire utterance
before beginning the processing of events, there is nothing to
prevent an implementation from dovetailing this initial scan with
the event processing so that, for example, event processing on the

early portions of an utterance could begin before the entire
utterance had been heard.

3. THE SHORTFALL SCORING METHOD

3.a Assumptions 

The shortfall method assumes that the quality scores assigned
to word matches by the Lexical Retrieval component are additive, so
that theories are appropriately assigned scores that are the sums
of the scores of the word matches contained in them (scores that
are basically multiplicative can be handled by using their

logarithms). It also assumes that word matches have associated

beginning and ending positions that correspond to boundary
Positions in the input utterance. In the HWIM system, the quality
scores are logarithms of estimates of the relative probabilities of
the correctness of theories given the acoustic evidence.
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3.b The Basic Shortfall Scoring Procedure

Assume the utterance is divided by an acoustic-phonetic
processor into phonetic or subphonetic segments separated by
boundaries numbered logically from the beginning of the utterance.
Let t(i) be the time in milliseconds of the i-th boundary in the
utterance; nsegs, the number of segments in the utterance; and
seg(i) be the region of the input utterance from t(i-1) to t(i),
for i from 1 to nsegs.

For a word match from position i to j with score q, we will,
in some systematic way, allocate the total word score q to the
segments seg(i+1) seg(j) covered by the word match. For this
discussion, let us allocate it proportional to the durations of the
segments.

For a given utterance, we will determine for each segment
seg(i) the maximum score maxseg(i) that can be allocated to that
segment by any word match that covers the segment.* The score for
any word match from i to j will hence be bounded by the sum
maxseg(i+1)+ +maxseg(j), and the maximum score for any
complete theory will be bounded by T = the sum from 1 to nsegs of
maxseg(i).

Every partial theory will consist of a sequence of contiguous
word matches spanning a region from some boundary i to some
boundary j. Each such theory will carry with it two scores m and
q, where m is the sum of the maxseg(i) for the segments covered by
the sequence and q is the sum of the word scores of the theory. We
will assign each theory a priority score p = T - m + q. which can
be thought of as the maximum total score T for any theory minus
the shortfall from this ideal to which one is committed by choosing
this particular sequence of words (i.e., p = T-(m-q)).
Alternatively, p can be thought of as the estimated best possible
future score consisting of the score q which has already been
achieved for the region covered plus the best potential score T-m
for the region not yet covered (i.e., p = q+(T-m)). Because T-m is
an upper bound on the possible score that can be achieved on the
region not covered, the priority scores p have the characteristic
that they are non-increasing as theories grow.

* There are several ways to actually compute such an upper bound.
The simplest involves using the best possible phoneme scores
assigned by the acoustic phonetic recognizer. The tightest bound
comes from accumulating the maxsegs from allocated scores of
actual word matches. See Section 3.j for further discussion.
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3.c Strategy 

In the shortfall scoring strategy, the priority scores of the
individual seed events are simply the shortfall scores of the
words. A priority score for a continuation event that will be an
Upper bound on the priority score of any words that might result
from the continuation can be computed as follows: Since the
Lexical Retrieval component enumerates words in decreasing order of
score, the quality score of any word that results from the
continuation will be no greater than that of the last word
enumerated so far. Moreover, we can derive from the lexicon a
lower bound on the length of a word and from this we can deduce the
Shortest region of the utterance that such a word could cover, and
hence the smallest possible m score that such a word could have.
From these two numbers, we can bound the priority score (T-m+q) of
any future word and use that as the priority score of the
continuation event. (This bound is excessively conservative, and in
actual practice it should be possible to derive a much tighter
bound. However, this argument is sufficient to guarantee that such
a bound can be computed.) A preferred alternative in this case
would be to have a lexical retrieval component that enumerated
words directly in increasing order of shortfall. This -could be
done by another instantiation of the same shortfall method,
recognizing words as sequences of phonemes. The lexical retrieval
component in HWIM, however, did not do this.

As new theories arise from processing events linking an
existing theory with a new word match, the m and q scores of an
event and the new theory that it will create are simply the
respective sums of the m and q scores of the old theory and the
word being added to it. Thus, after assigning an m score to a word
match by summing the max numbers for the segments that it covers,
the m score of any new theory that includes it can be computed by a
single addition.

3.d Admissibility aL Lilt Method 

Claim:

The first complete spanning theory found by the shortfall
scoring method will be one of the best scoring complete theories
(there could be more than one) that can be found by any strategy
(i.e., the algorithm is "admissible" in the conventional
terminology of heuristic search).
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Proof:

At the time the first complete spanning theory has been
processed, every other event on the event queue (including
continuation events for finding lower scoring seeds or lower
scoring words to add to the ends of islands) will already have
fallen low enough in its partial score (q score) that no possible
match sequence in the remaining region of the utterance can bring
its total score above that of the spanning theory. Also, the
presence of the continuation events in the queue makes the search
process complete in the sense that any word in the vocabulary would
be enumerated if the process were continued long enough. Thus
there is no possible word sequence across the utterance that would
not be considered by this search algorithm if it were run
sufficiently far. Hence, any complete theory of the utterance will
have a shortfall (m-q) at least as great as that of the first
complete theory discovered. Since all spanning theories have the
same maxscore m = T, it follows that the first spanning theory also
has the maximum possible quality score (q) of any spanning theory.

3.e 'Notes 

Note that the process can be continued to obtain the second
best complete theory, and so on. Note also that the admissibility
holds for this method whether the process is left-to-right (i.e.,
seeds only at the left end of the utterance) or middle-out (seeds
anywhere in the utterance), and that it does not require any island
collision feature.

The shortfall method works with almost any type of grammar.
It makes no assumptions that the grammar is finite-state, as do
Markovian strategies. In the middle-out modes, it does require the
linguistic consultant to have a parser (such as the bidirectional
ATN parser in the HWIM system) that can take an arbitrary island
fragment in the middle of an utterance and judge whether it is a
possible subsequence of an acceptable sentence. In practice, it
also helps if the parser can use the grammar to predict the
acceptable words and classes adjacent to an island, and if the
Lexical Retrieval component can use such predictions to constrain
its search (as in HWIM), but this is not essential to the formal
admissibility of the algorithm.

3.f Avoiding Duplicate Theories 

Note that in the middle-out, island-driven strategies there
are many different ways of eventually arriving at the same theory.
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For example, if we have an island w with a possible word x on the
left and a possible word y on the right, then we can first form the
theory (xw) and then (xwy) or we can form the theory (wy) and then
derive (xwy) from that. Which of these two routes is taken will
depend on the scores of the words, but it is quite possible (in
fact, likely) that in the course of working toward a complete
theory a strategy will arrive at the same subtheory several
different times by alternate routes.

If we do not include checks for the duplication of theories,
then we would often get two copies of the same theory. These would
forever duplicate the same predictions and theory formations,
giving rise to an exponential explosion of the search process. If
we include a test each time a theory is formed to determine whether
that theory has been formed previously, then we can avoid this
exponential process. In fact, if each time we are about to put a
word event on the event queue we check the event to see if the set
of word matches that it uses is the same as that of some other
event, then we can terminate this duplication before making the
entry on the queue and consuming the queue space (and certainly
before calling the Linguistic component to check it out and make
further predictions).

The check for duplication among all the events that have been
created can constitute a considerable amount of testing if done in
a brute force exhaustive test. However, it can be considerably
reduced by indexing events by their beginning and end points or
Other tricks. Moreover, if one can rely on the events being
generated in the order determined by the basic shortfall strategy,
then the following simple check based only on the word matches at
each end of an event can be used to determine whether an'event is
redundant (i.e., will produce the same theory as some event already
generated):

If the new word is at the left end and has the same or
smaller shortfall as the rightmost word in the theory, then
this event is redundant.

If the new word is at the right end and has strictly
smaller shortfall than the leftmost word in the theory,
then this event is redundant.

The argument for the validity of this test is as follows:

In the search space we are considering, it is possible,
Without a check for duplication, to derive a given theory with
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words wi,w2,...,wk in 2k-1 different ways - one corresponding to
each of the possible binary derivation trees starting with some one
of the wi as a seed, and then successively adding words either to
the right or the left end. (Proof - either wi or wk was chosen
last, hence there are two ways to derive a string of length k for
every possible derivation of a string of length k-1. There is one
possible way - i.e., as a seed - to derive a string of length 1.)
Of all these derivation trees, the first one that will be found is
the one that uses the wi with the smallest shortfall as a seed, and
at subsequent steps adds the better (in terms of shortfall) of the
two words at either end (assume for the moment that no two of the
words have exactly the same score). Hence, any derivation that
attempts to add a word to one end of an island when that word has a
smaller shortfall than the word at the other end of the island will
be duplicating a theory that has already been derived (or at least
already has an event for it on the event queue). In the case of
two competing seeds with the same shortfall or words at each end of
an island that have the same shortfall, we have arbitrarily picked
the leftmost as the preferred one, which we will permit the
algorithm to follow fully, and we block the derivation of
duplicates from the other one. Thus, if we have a word being added
to the left end of a theory that has the same shortfall as the word
at the right end, then this event is redundant, since the preferred
order will generate an equivalent event that adds the left end word
first.

Thus, a very simple check between the score of the word being
added to a theory and the score of the word at the other end of the
theory will suffice to eliminate the formation of redundant events.

3.g Fuzzy Word Matches 

The above discussion does not explicitly mention the problem
of finding the same word in essentially the same place but with
slightly different end points and different scores. We have
observed this kind of output from the Lexical Retrieval component
of HWIM and indeed find it desirable to know the degree of
variation possible in the end points of a word match and the
appropriate degradation in score for each. However, it is wasteful
to give several different events to the Linguistic component, all
of which are adding word matches to a given theory that differ only
in their endpoints and scores. For this reason, we have introduced
a structure that groups together multiple equivalent word matches

into a single entity called a fuzzy  word  match (or "fuzzy" for

short), which is given the score of its best member. A theory
containing fuzzy word matches actually represents a class of
grammatically equivalent theories and carries the score of the best
one.
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When an event is created to add a word match to a theory
containing a fuzzy word match at that end, the score of the event
must be computed using a "rectified" score that takes into account
the best member of the fuzzy that is compatible with the new word
(i.e., has boundaries that hook up to the new word and satisfies
appropriate phonological word boundary constraints). In general,
when several fuzzies are adjacent, the best compatible sequence of
word matches must be chosen, and when the new word match is itself
a fuzzy, the best combination of one of its members with a sequence
of word matches from the theory must be taken. The event is thus
given the score of the best of the grammatically equivalent,
non-fuzzy events for which it stands. (Note that the score for an
event is the same as the score for the theory which will result
from it.)

If word matches returned by the Lexical Retrieval component are
grouped into fuzzy matches whenever possible, and word events are
given appropriately rectified scores, then the above admissibility
result still holds (i.e., the first complete theory processed will
be the best). The only difference (aside from the elimination of
separate processing for grammatically equivalent theories) will be
that certain word events (i.e., those whose new word(s) .is (are)
compatible only with a less-than-best path through the existing
theory) will be formed earlier than they otherwise would have.
However, these events will still be placed on the queue with the
correct score (i.e., the score of the best path through the
resulting theory) so that they will reach the top and be processed
in exactly the same order as they would in the strategy without
fuzzies.

3 . h U'. f Oil

The shortfall scoring method is similar in some respects to
the well-known branch and bound technique, except for the fact that
the space of possible solutions is determined by a grammar, and the
Characteristic in the middle-out version that the same partial
interpretation may be reached by many different paths. It can also
be modeled as an example of the A* algorithm of Hart, Nilsson, and
Raphael (1968) for finding the shortest path through a graph,
Where, in this case, the nodes in the graph are partial
interpretations of the utterance, and the connections in the graph
correspond to the seed and word events. Consequently, it shares
With that algorithm a certain kind of optimality that Hart,
Nilsson, and Raphael prove - i.e., among other algorithms in its
Class, it explores the fewest hypotheses possible for a given
bounding function while still assuring the discovery of the best
hypothesis. It is simpler than the general A* algorithm, however,
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in that we are looking for the best scoring node, and we are not
interested in scores of paths leading to that node (in fact all
such paths have the same score in our case). The simple argument
given previously suffices to show the admissibility of the
shortfall method, whereas the general A* algorithm is more
complicated.

3.i Computing the MAXSEG Profilg

Measuring the shortfall from any maxseg profile that is a per
word upper bound of quality score would be sufficient to assure the
theoretical admissibility of the shortfall method. However, the
tightness of the upper bound affects the number of events tried and
partial theories created in the search for a successful
interpretation (i.e., the "breadth" of the search). By assigning
the upper bound as a segment-by-segment profile determined by
allocated shares of actual word match scores, a fairly tight upper
bound can be achieved, which tends to minimize the breadth of
search. In HWIM, the maxseg profile was computed from the word
matches found so far (the best of which are found first). When
occasionally a word match is found that raises the maxseg for some
segment, all events are appropriately rescored.

3.j Discussion 

When using the shortfall method, the overwhelming tendency is
that an event adding a new word to an island will pick up
additional shortfall and fall some distance down in the queue. The
result is that other events are processed before any additional
work is done on that island. (Occasionally, the new word is the
best word in its region and buys no additional shortfall, but this
is a rarity.) The distance that this new event falls down the
queue is determined by the amount of additional shortfall that it
has just picked up and the shortfalls of the events that are
competing with it on the queue. This distance directly affects the
degree of "depth-first" vs. "breadth-first" processing done by the
algorithm. If the new word scores well, the event falls only
slightly, and few, if any, alternate events are processed before
it. In this case the algorithm is relatively depth first. If the
new word scores badly, the event falls further down the queue, many
more alternative events have priority over it and the algorithm is
more breadth first.

The above characterization is only an intuitive approximation,
since the actual number of events processed before the new event is
considered depends on the number of new events that will be
generated by the intervening events that will also score higher
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than this one. In some cases, the number of such events can be
extensive. The general effect, however, is that the shortfall
scoring method provides a dynamically varying combination of
depth-first and breadth-first search which is determined by the
relative qualities of the events that are in competition.

Unfortunately, experience with the HWIM system has shown that
the shortfall algorithm is excessively conservative. It amounts to
assuming that any theory will obtain the maximum possible scores in
the regions not yet covered. This is clearly overly optimistic in
almost all cases, and it in fact leads to an excessively breadth
first search. (For more details, see Section 7.)

4. DENSITY SCORING WITH ISLAND COLLISIONS

Density scoring is a fundamentally different priority scoring
method. It uses a priority score which is the quality score of a
theory divided by the duration of the region that it covers. One
way to view this strategy is to consider again the task of
estimating the expected score to be achieved in the region not
covered by a theory and consider estimating this score as a direct
extrapolation of the same score per millisecond that has already
been achieved - i.e., add to the current score an estimated
Potential score consisting of the score density of the current
theory times the duration of the region not covered by that theory.
Since the resulting total estimated score is just the score density
Of the theory times the total duration of the utterance, and the
total duration of the utterance is a constant, we can compare only
the score densities of the theories themselves and achieve the same
decisions.

When we think of the score density as an extrapolation of the
score already achieved by a theory into the region not yet covered
we are clearly no longer obtaining an upper bound on the possible
future score an event might lead to. Hence, the previous proof of
admissibility used for the shortfall method no longer applies. In
particular, whereas T minus the shortfall is a monotonically
decreasing function as an island grows, the score densities can get
smaller when a bad word is picked up and then get larger again as
the theory grows and picks up better words (thus averaging the
score of the bad word over a larger duration). Hence, it is not
true that the score density of descendants of an event must be no
greater than that of the event itself.

However, when used with an island collision feature that
allows one to combine together in one step the word lists of two
different theories that are noticing the same word from opposite
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directions, the density method also guarantees that the first
complete theory found is the best one. To prove this, we must use

a different argument than for the basic shortfall strategy. The

argument depends on the ability to derive subparts of a theory
independently from different seeds - i.e., the middle-out control

strategy is essential for the admissibility of the density scoring

method.

Lemma:

Using the density scoring method in a middle-out strategy with
island collision events, any theory covering any region of the

utterance can be derived by a sequence of events all of which have

a score density no less than that of the theory itself.

Ln52.91:

By induction on the number of words in the theory:

(1) The hypothesis is trivially true for one-word theories by

means of a seed event.

(2) Suppose that the hypothesis is true for theories of k or

fewer words and that we have a theory of k+1 words with density d.
Assume that the theory consists of the sequence of words wowl...wk.

Case a. If the theory wi...wk (i.e., all but wo) has density
not less than d, then by the inductive hypothesis it has a
derivation whose events all have density not less than d, and

this derivation plus the event to add wo will constitute the

desired derivation of the complete theory.

Case b. -Similarly if the theory wo wk_i has a density no

less than d, there is a suitable derivation of that theory
that can be extended to a derivation of the complete theory

with density no less than d by adding wk.

Case c. If neither a nor b is the case, then since wi...wk

has density less than d, therefore wo must have density
greater than d. Let j be the smallest integer such that
wo...wj has density less than d. Such a j, smaller than k,

must exist since the theory wo...wk_i has density less than

d. Also, j must be larger than 0 since wo has density
greater than d. Now since the density of wo...wj is less

than d, the remaining theory wi.o...wk must have density

greater than d. Also, since j is the smallest such, the
theory wo...wj_i has density greater than or equal to d.
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Since these last two theories each have length smaller than k
and density no less than d, by the inductive hypothesis they
each have derivations using events of density no less than d.
Therefore, before any events of density less than d can reach
the top of the stack, both of these theories would have been
processed, and both would have noticed the word wj from
opposite sides; hence an island collision event would have
been constructed for the combined theory and would have the
combined density d.

Corollary:

. When a spanning theory of some density has been found by the
middle-out density scoring method with island collisions, any
spanning theory of higher density could have been completely
derived using events of higher density, and thus would have been
found before the theory in question. Hence, the first complete
Spanning theory found will be one of the best possible

interpretations.

Corollary (dual algorithm):

A dual of the above lemma shows that a density algorithm that
* Prefers the smallest rather than the largest density will guarantee
the discovery of the lowest scoring theory.

5. SHORTFALL DENSITY

The above proof of the admissibility of density scoring makes
no assumptions about the scoring metric whose density is being
taken other than that it be additive. Hence, the density method
can be applied to either the original quality score assigned by the
Lexical Retrieval component, or to the local shortfall described
Previously, giving rise to strategies which we refer to as quality
density and shortfall density, respectively. Initial experimental
comparison of the algorithms (see Sec. 7) suggests that the
Shortfall density method is superior to quality density, which is
in turn superior to the shortfall method alone. The superiority of
the density methods over the shortfall method can be accounted for
by the excessive conservatism (over optimistic scoring of

alternative hypotheses) of the shortfall method. The superiority
of the combined shortfall density method can be attributed to an

improved "focus of attention" strategy as follows:
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5.a Focus of Attention by a MAXSEG Profile 

A major effect of scoring the shortfall from a maxseg profile
is that the score differences in different parts of the utterance
are effectively leveled out, so that events in a region of the
utterance where there are not very good quality words can hold
their own against alternative interpretations in regions where
there are high quality words. This promotes the refocusing of
attention from a region where there may happen to be high quality
accidental word matches to events whose word match quality may not
be as great, but are the best matches in their regions. If this
were not done, then many second best, third best, etc. matches in
the high scoring region could be considered before any theories
worked their way across the low scoring regions. Thus, an
apparently satisfactory and intuitively reasonable strategy for
focusing attention emerges from the same strategy that guarantees
to get the best scoring theory first.

Notice that in the shortfall density method, the maxseg
profile is no longer serving the role of guaranteeing admissibility
that it did in the shortfall method. In this case, the
admissibility is guaranteed by the nature of densities and island
collisions. Rather, in this method the maxseg profile is used only
to provide this leveling of effort over portions of the utterance
to promote the refocusing of attention from regions where there are
many good quality matches to regions where the best matching
possibility may not be as great. In fact, it is no longer
necessary that the maxseg profile be an upper bound (although there
are undesirable effects when the shortfall density goes negative).

As long as shortfall is positive, the addition of a word with
no shortfall to a hypothesis will produce a longer duration
hypothesis and consequently a smaller shortfall density (which
counts as a better hypothesis). Consequently, such a hypothesis
will be encouraged. However, when the shortfall is negative, the
addition of a new word with no shortfall will similarly produce a
hypothesis with longer duration and will spread the negative
shortfall over a longer period producing a density score with
smaller magnitude but (since it is negative) a larger value.
Consequently, such a hypothesis will be discouraged and there will
be a tendency to shift attention to other negative shortfall
hypotheses that are shorter. Thus, when shortfall is positive, the
ordering tends to prefer hypotheses that are longer (shortfall
being equal), while when the shortfall is negative, the ordering
prefers hypotheses that are shorter. Hence, in a collection of
hypotheses whose shortfall is negative, the search strategy will
strongly favor shifting attention back to shorter hypotheses rather
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than pursuing longer hypotheses. This will not affect the
admissibility of the algorithm, but will exacerbate the breadth of
the search in the region of negative shortfall.

6. EFFICIENCY TECHNIQUES

In addition to the basic choice of priority scoring metric
used for ranking the event queue, there are several efficiency
techniques that can be used to improve the performance of the
island-driven strategy, frequently without loss of admissibility
guarantees. Two of these are the use of "ghost" words, and the
selection of a preferred direction for events from a given theory.

6.a Ghost Words 

Every time a theory is given to the linguistic consultant for
evaluation, proposals are made for new words on both sides of the
resulting island (unless the island is already against one end of
the utterance). Although events can add only one word at a time to
the island, and this must be at one end or the other, eventually a
word will have to be added to the other end, and that word cannot
score better than the best word that was found at that- end the
first time. The ghost words feature consists of remembering with
each event the list of words found by the Lexical Retrieval
component at the other end and scoring the event using the best of
the ghost words as well as the words in the event proper. The
result is that bad partial interpretations tend to get bad twice as
fast, since they have essentially a one-word look-ahead at the
Other end that comes free each time an event is processed. On the
other hand, an event that has a good word match at the other end
gets credit for it early, so that it gets processed sooner. The
ghost words feature, thus, is an accelerator that causes extraneous
events to fall faster down the event queue and allows the desired
events to rise to the top faster. Experimental use of this feature
has shown it to be very effective in reducing the number of events
that must be processed to find the best spanning event. Its
addition to the shortfall algorithm does not sacrifice

admissibility. It is not theoretically admissible when added to
the density methods, but it appears in practice not to sacrifice
much.

6.b Choosing a Preferred Direction 

Again, recall that when a theory is evaluated by the

linguistic consultant, predictions are made at both ends of the
island. When one of the events resulting from these predictions is
later processed, adding a new word to one end of the island, the
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predictions at the other end of the new island will be a subset of
the predictions previously made at that end of the old island. In
general, words found by this new island at that end will also have
been found by the old island, and if the score of the new island is
slightly worse than that of the old island (the normal situation),
then the strategy will tend to revert to the old island to try
events picking up a word at the other end. This leads to a rather
frustrating derivation of a given theory by first enumerating a
large number of different subsequences of its final word sequence.

Since any eventual spanning theory must eventually pick some
word at each end of the island, one could arbitrarily pick either
direction and decide to work only in that direction until the end
of the utterance is encountered, and only then begin to consider
events in the other direction. This would essentially eliminate
the duplication described above, but could cause the algorithm to
work into a region of the utterance where the correct word did not
score very well without the benefit of additional syntactic support
that could have been obtained by extending the island further in
the other direction for a while.

Without sufficient syntactic constraint at the chosen end,
there may be too many acceptable words that score fairly well for
the correct poorly scoring word to occur within a reasonable
distance from the top of the queue. By working on the other end,
one may tighten that constraint and enable the desired word to
appear (although this can never cause a better scoring word to
appear than those that appeared for the shorter island).

A flag in the HWIM system causes the algorithm to pick a
preferred or fichosenn direction for a given theory as the direction
of the best scoring event that extends that theory, and to mark the
events going in the other direction from that theory so that they
can be used only for making tighter predictions for words at the
chosen end. This is accomplished by blocking any events noticing
one of the ghost words at the inactive end of an event if that
event is going counter to the chosen direction. This blocking,
alone, eliminates a significant number of redundant generations of
different ways to get to the same theory. An even greater
improvement is obtained by rescoring the events that are going
counter to the chosen direction by using the worst ghost at the
other end rather than the best ghost. Since only word matches that
score worse than any of the ghosts at that end are being sought by
these events, this is a much better estimate of the potential score
of any spanning theories that might result from these events.
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The effect of rescoring the events in the non-chosen direction
using the worst ghost is that, in most cases, these events fall so
low in the event queue as to be totally out of consideration. Only
in those cases where there was little syntactic constraint in the
chosen direction and the worst matching word at that point was
still quite good, do these events stay in contention, and in those
cases, the use of the worst ghost score provides an appropriate
ranking of these events in the event queue.

6.c Nearly Admissible Algorithms 

The heuristics of ghosts and preferred direction when added to
the basic shortfall algorithm improve efficiency without affecting
the formal admissibility of the algorithm. Similarly the
combination of the shortfall and density algorithms does not affect
the formal admissibility of the density algorithm. When adding
ghosts and direction preference to the density algorithms, however,
this is not necessarily the case (at least the Lemma proving the

admissibility of the density method no longer goes through). It is
not obvious whether these variations of the density algorithm are
admissible or not. However, the basic admissibility
characteristics of the algorithm remain in effect in any case, with
at worst a slight chance of a non-optimal interpretation being
found in pathological circumstances. We can characterize such
algorithms as "nearly" admissible -- i.e., adaptations of
admissible algorithms that guarantee to get the best interpretation
except possibly in very low probability exceptional circumstances.
Empirically, as shown below, these nearly admissible algorithms
appear to have all of the advantages of the provably admissible
ones (i.e., not finding incorrect interpretations) while .gaining
the advantages of the efficiency heuristics.

7. EMPIRICAL COMPARISON OF THE DIFFERENT STRATEGIES

In the HWIM Speech understanding system, approximations to the

Shortfall and density algorithms have been implemented and tested.
The major approximation is that continuation events are not
implemented, but instead the initial values of n and k are chosen
large enough that one believes that the correct interpretation of
the utterance is found before any of the continuation events would
have reached the top of the queue. If such is the case, then all
of the decisions made by the approximation are the same as those of
the admissible theoretical algorithm, and hence the first complete
theory found will still be guaranteed to be the best. There are
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other approximations that are less justifiable, due to bugs and
some rectifiable (but not rectified) discrepancies between the
actual implementation and the theoretical algorithm. These
differences are believed to be minor.

Details of the system's general performance are found in
(Woods et al., 1976). Comparative performance results on a set of
10 utterances for the shortfall (S), shortfall density (SD), and
quality density (QD) scoring strategies are shown in Table 1 below.
The option of using the quality score (Q) alone as a priority score
is given for comparison.

a SD

Correct first interpretation 4 3 0 5
Incorrect first interpretation 2 0 0 0
No response 4 7 10 5
Average number of 49 82 100 73
theories processed

*

Table 1. Comparison of different priority
scoring functions.

These experiments were run using the ghosts, island-collision,
and preferred direction heuristics with a resource limit of 100
theories to process before the system would give up with no
response. The ten sentences used for the test were chosen at
random from a test set of 124 recorded sentences.

Although a test set of only ten utterances is admittedly too
small, I believe that the trends indicated in the figure are
generally correct. Specifically, while using the quality score
alone leads to a spanning interpretation in relatively few
theories, it does so without much assurance of getting the best
interpretation. In this case, only two-thirds of its answers are
correct. All of the other methods consider more theories in an
effort to make sure that the best interpretation is found.
Consequently they found fewer spanning interpretations within the
resource limitation but found no incorrect interpretations. We did
not try running the quality scoring strategy beyond the first
interpretation to see if a better interpretation could be found

* This average is computed over 9 sentences, omitting one for which
the system broke due to a bug.
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since, among other things, it is nontrivial to decide when to
terminate such a process.* Running in this mode, one could easily
enumerate more theories than the other methods and still not have
any guarantee that the best interpretation had been discovered.

None of the versions of admissible algorithms found incorrect
interpretations, so the reliability of their interpretations, when
they get them, is 100% (providing the acoustic phonetic analysis of
the input utterance does not cause some incorrect interpretation to
score higher than the correct one, a situation that occurs
sometimes in the HWIM system, but was not a factor in this
experiment). Unfortunately, the shortfall strategy alone is so
conservative in doing this that it failed to find any
interpretations within the resource limit. Both of the density
methods are clearly superior to the straight shortfall method.
(Incidentally, the left-to-right shortfall strategy also failed to
get any interpretations within the resource limit.)

The shortfall density strategy ranked superior to the quality
density strategy in terms of the number of events that needed to be
processed to find the first spanning interpretation and
consequently found more correct interpretations within the
resource limitations.

The effects of the island collision (C), ghosts (G), and
preferred direction (D) heuristics are shown in Table 2 (where SD+0
means shortfall density without collisions, ghosts, or chosen
direction, SD+C means shortfall density with island collisions,
etc.). The inclusion of a heuristic does not always guarantee that
the system will understand an utterance in fewer theories, but the
Pooled results shown (note especially the series SD+0, SD+G, SD+GD,

* Mostow (1977) gives a partial description of the criteria used in
the Hearsay II system for making this decision, but the method is
not algorithmic and is based on the assumption that any partial
solution that is locally better than a found solution I (and that
can be extended to a globally superior solution I") can be
extended step by step into I" so that the partial solution I' at
each step is locally superior to I. He makes no attempt to prove
that such a sequence of partial solutions exists and appears only
concerned with whether a search strategy can find one. In fact,
there are situations in which no such sequence of stepwise
extensions exists, as can be determined by reflecting on the proof
of the admissibility of the density method and the necessity of
the island collision feature for the admissibility result. One
can then easily construct counterexamples to Mostow's assumption.
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SD+GDC) suggest that the successively added heuristics produce
improvements in both accuracy and number of theories required.
(Note that our formal admissibility results have been shown only
for the SD+C case. The SD+GDC case is at least nearly admissible.)

SD+0 SD+C 5D+G 5D+GD SD+GDC

Correct 3 3 3 4 5
Incorrect 0 0 0 0 0
No response 7 7 7 6 5
Average number of
theories processed 83 78 81 76 69

*

Table 2. The effects of island collisions,
ghosts, and direction preference.

8. COMPARISON WITH EXISTING SPEECH UNDERSTANDING SYSTEMS

8.a BBN HWIM

The variations on admissible strategies discussed above are
only some of the control strategy options implemented in the BBN
HWIM speech understanding system. In addition there are a large
number of strategy variations that result in deliberately
inadmissible strategies, including strictly left-to-right density
strategies and "hybrid" strategies that start near the left end of
an utterance and work left to the end and then left-to-right .across
the rest of the utterance. For reasons of time and resource
limitations, the final test run of the HWIM system was made using
one of the inadmissible hybrid left-to-right strategies (Woods, et
al., 1976).. Subsequently, a much smaller experiment was run to
compare various control strategies on a set of ten utterances
chosen at random from the larger set. Although this sample is much
too small to be relied on, the results are nevertheless suggestive.
For two comparable experiments using our best left-to-right method
(left-hybrid shortfall density) and our best nearly admissible
method (shortfall density with ghosts, island collisions, and
direction preference), both with a resource limitation of 100
theories and without using a facility for analysis-by-synthesis
word verification, the results were as follows:

* This average is computed over 8 sentences, omitting two for which
the system broke due to bugs.
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LHSDNV SD+GCD

Correct interpretation 6 5
Incorrect interpretation 2 0
No interpretation 2 5
Average number of theories evaluated 51 76

That is, the inadmissible left-hybrid strategy found the best (and
in these cases the correct) interpretation within the resource
limitation in 6 of the 10 cases, while the nearly admissible
Shortfall density strategy found only 5 (not necessarily a
Significant difference for this size sample). On the other hand,
the left-hybrid method misinterpreted two additional utterances
With no indication to distinguish them from the other 6. If this
strategy were used in an actual application with comparable degrees
of acoustic degradation (e.g., due to a noisy environment), the
System would claim to understand 80% of its utterances, but would
actually misunderstand 25% of those. The shortfall density
strategy, on the other hand, would only claim to understand 50% of
the utterances, but would misunderstand a negligible fraction.

The middle-out shortfall density algorithm in the above
experiments expanded only 50% more theories (and incidentally used
Only 30% more cpu time) than did the left-hybrid strategy.
Although as we said before, this test set is much too small to draw
firm conclusions, the success rate of the two methods are not much
different, except that the middle-out method is clearly less likely
to make an incorrect interpretation. Moreover, the numbers of
theories considered and the computation times are not vastly
different. If one considers proposals to improve the performance
of inadmissible strategies by having them continue to search for
additional interpretations after the first one is found (and thus
take the best of several), then the time difference shown above
could easily be reversed and there would still be no guarantee that
the interpretation found would be the best one.

8.b DRAGON

The DRAGON system (Baker, 1975) is the only other speech
understanding system in the ARPA project that provides a guaranteed
best matching solution. It does this by using a dynamic
Programming algorithm that depends on the grammar being a Markov
Process (i.e., a finite-state grammar). It operates by
incrementally constructing, for each position in the input and each
state in the grammar, the best path from the beginning of the
utterance ending in that state at that position. The computation
Of the best paths at position 1+1 from those at position i is a
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relatively straightforward local computation, although for a
grammar with n states, the number of operations for each such step
is n times the branching ratio (i.e., the average number of
transitions with non-zero probability leaving a state). DRAGON
performs such a step for each 10 millisecond portion of the
utterance using a state transition that "consumes" an individual
allophonic segment of a phoneme.

The optimality of the solution found by this algorithm depends
on the property of finite state grammars that one sequence of words
(or phonemic segments) leading to a given state is equivalent to
any other such sequence as far as compatibility with future
predictions is concerned (regardless of the particular words used).
* It is this property that permits the algorithm to ignore all but
the best path leading to each state (even if competing paths score
quite well!), and therefore permits it to find the best solution by
progressively extending a bounded number of paths across the
utterance from left to right. (This is a very attractive property,
although in this case it requires one such path for each state in
the grammar.) For more general grammars, where there may be
context-sensitive checking between two different parts of the
utterance (e.g., person and number agreement and semantic
constraints between a subject and a verb), the best path leading to
a given state at a given position may not be compatible with the
best path following it. In this case, second best (and worse)
paths leading to a given state may have to be considered in order
to find any complete paths at all (much less an optimum).

Although only applicable to finite-state languages, DRAGON's
dynamic programming method has the advantage of taking an amount of
time proportional to the length of the utterance, being simple to
compute, and guaranteeing to obtain the optimal solution. The only
difficulty (aside from estimating the necessary transition
probabilities) is that for a large number of states in the grammar
(e.g., thousands for a reasonable size grammar) the amount of
computation required is expensive. Except to the extent that the
finite-state grammar permits one to eliminate from consideration

* I am using the term "state" a little casually here in roughly the
sense that it is used in an ATN grammar (Woods, 1970). If one
takes the condition of having equivalent future predictions as the
definition of a "state" of a grammar, then what the finite-state
grammar does is guarantee that there are only a finite number of
such states, which can therefore be enumerated and named ahead of
time. For a more general grammar, the number of such states is
open-ended.
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any path that is not the best one leading to its state, the
algorithm exhaustively enumerates all other possibilities.

Although DRAGON's scores are estimates of probabilities of
interpretations, its guarantee of optimality does not depend on
that, but only on the fact that its grammar is finite-state and
that therefore it suffices to carry a record of the best path
leading to each state. The same dynamic programming algorithm can
be applied at the level of phonemes or words, and can be
generalized to apply to an input lattice such as the BBN segment
lattice (Woods et al., 1976).

An unfortunate disadvantage of the dynamic programming
algorithm is that it cannot be continued to obtain the second best
interpretation. It loses this ability when it throws away all but
the best path leading to each state. Hence a system like DRAGON
can have no way of knowing if there are two competing
interpretations with very similar scores.

8.c HARPY

The CMU HARPY system (Lowerre, 1976) is a development on the
DRAGON theme which gives up the theoretical guarantee of optimality
in exchange for computation speed. Like DRAGON, it takes advantage
Of' the unique characteristic of finite-state grammars cited above,
so that only the best path leading to a given state need be
considered. However, it uses an adaptation of the dynamic
Programming algorithm in which not all of the paths ending at a
given position are constructed. Specifically, at each step of the
computation, those paths scoring less than a variable threshold are
Pruned from further consideration. This gives an algorithm that
carries a number of paths in parallel (the number varying depending
on the number of competitors above the threshold at any given
Point) but is not exhaustive. If the threshold is chosen
appropriately, the performance can closely approximate that of the
optimal algorithm, although there is a tradeoff between the speed
efficiency gained and the chances of finding a less than optimal
Path. In practice, HARPY's threshold is set so that it introduces
negligible likelihood of missing the best interpretation, thus
achieving a nearly admissible algorithm in the terminology
introduced above. Like the DRAGON algorithm, it cannot be
continued to produce the second best interpretation.

The HARPY system has the best demonstrated performance
statistics of any of the ARPA continuous speech understanding
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systems. However, it derives this performance in large part from
the use of a highly constraining (and advantageously structured)
finite-state grammar (see Wolf and Woods, 1980). This grammar has
an average branching ratio of approximately 10, and characterizes a
non-habitable, finite set of sentences, with virtually no "near
miss" sentence pairs included.* For example, "What are their
affiliations" is in the grammar, but no other sentences starting
with "What are their" are possible. The only two sentences
starting with "What are the" are "What are the titles of the recent
ARPA surnotes," and "What are the key phrases." These three
sentences will almost certainly find some robust difference beyond
the initial three words that will reliably tell them apart.
Similarly, the grammar permits sentences of the form "We wish to
get the latest forty articles on <topic>," but one cannot say a
similar sentence with "I" for "we", "want" for "wish", "see" for
"get", "a" for "the", "thirty" for "forty", or any similar
deviation from exactly the word sequence given above.) Most of
HARPY's grammar patterns (such as the last one) consist of a
particular sentence with one single open category for either an
author's name or a topic. A large number of them are particular
sentences with no open categories (like the first three above).
Such grammar patterns significantly reduce the number of possible
"distractor" hypotheses that can compete with the correct
interpretation of a test sentence, even when they are not used as
test sentences themselves.

The HARPY algorithm makes no guarantee that the correct path
will not be pruned from consideration if it starts out poorly, but
at least for the structure of HARPY's current grammar (most of
whose sentences start with stressed imperative verbs or
interrogative pronouns), the correct interpretation is usually
found.

* Later references to this grammar refer to a "dynamic" branching
ratio of 30. This ratio is computed by averaging the branching
ratio along the paths of the correct interpretations of
utterances, whereas the branching ratio of 10 results from
averaging uniformly over the grammar as a whole. As a measure of
the difficulty of a grammar for speech understanding, the average
over the entire grammar is more appropriate, since it measures the
potential for the grammar to permit viable "distractor" hypotheses
that might be confused with a correct interpretation. In the
actual searching of the hypothesis space for a correct
interpretation, most of the hypotheses considered will in fact be
such distractor hypotheses and not partial hypotheses along the
correct path.
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The HARPY technique appears to be the algorithm of preference
at present for applications involving carefully structured
artificial languages with finite-state grammars and small branching
ratios (on the order of 10 possible word choices at each position
in an utterance). However, it does not conveniently extend to
larger and more habitable grammars. This is due to a number of
factors, the most important of which is the combinatorics of
expanding a large habitable grammar into a finite-state network.
For example, the incorporation of a single context sensitive
feature (such as number agreement between subjects and verbs) into
a finite-state grammar requires the doubling of the number of
states in a large sub net of the grammar, the incorporation of two
such features requires a quadrupling of states, and so on. In the
worst case, implementing the constraint of a context free grammar
that the number of "pushes" for self-embedding constituents must
match the number of "pops" cannot be represented with any finite
number of states, necessitating finite-state approximations tat
either accept sentences that the original grammar doesn't or fail
to accept some that it does. Such finite-state grammars also have
difficulty dealing with dynamically changing situations such as
constraints on utterances that depend on previous utterances.

Neither the DRAGON nor the HARPY system use density
normalization or any method to attempt to estimate the potential
score that is achievable on the as yet unanalyzed portion of the
utterance. Such normalization is not necessary, since they follow
Paths in parallel, all of which start and end at the same point in
the utterance, and therefore never have to compare paths of
different lengths or in different parts of the utterance. Again,
it is worth emphasizing that the ability of these algorithms to
keep the number of paths that need to be considered manageable
depends on the unique characteristic of finite-state languages that
requires only the best path to each state be considered.

8.d IBM

A group at IBM (Bahl et al., 1976) has a speech understanding
System based on Markov models of language, which has implemented
two control strategies: a Viterbi algorithm (essentially the same
dynamic programming algorithm used by DRAGON) and a "stack
decoder", a left-to-right algorithm with a priority scoring
function that attempts to estimate the probability that a given
Partial hypothesis will lead to the correct overall hypothesis.
The latter apparently does not guarantee the optimal

interpretation, but somehow is reported as getting more sentences
correct than the other (a circumstance that can happen if there are
acoustic-phonetic scoring errors such that the best scoring
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interpretation is not correct or if the transition probabilities of
the Markov model do not agree with the test set).

Recent experiments with an improved version of one of the IBM
systems, incorporating the CMU technique of bypassing a phonetic
segmentation to do recognition on fixed length acoustic segments
(Bahl et al., 1978), reported performance on the same grammar used
in the HARPY system (the "CMU-AIX05 Language") of 99% correct
sentence understanding. (This performance is based on recordings
in a noise-free environment, however, compared to a rather casual
environment for the CMU results). They also report performance of
81% correct sentence understanding on a more difficult, but still
small branching ratio, finite-state grammar (their "New Raleigh
Language"). Both of these results were obtained in experiments
with the system trained for a single speaker and tested on that
same speaker. Performance of the system when tested with a
different speaker is significantly less.

8.e Hearsay II

The Hearsay II system (Erman et al., 1980) permits the kind of
generalized middle-out parsing described in this paper, and does so
for context free grammars (although apparently not for
context-sensitive or more powerful grammars). Moreover, it has a
capability for the kind of island collisions described here.
However, the control strategies with which it has been run are
substantially different.

The major emphasis of the Hearsay-II work has been
architectural rather than algorithmic, resulting in a general
system of knowledge sources (KS's) which communicate with each
other via a cross referenced structure called a "blackboard." Each
KS is invoked by the satisfaction of a condition called a stimulus
frame (SF) associated with the KS. When a KS is invoked, it
performs actions specified in a response frame (RF) which make or
change entries on the blackboard, thus triggering additional KS's
until a stopping condition is realized. At that time, the best
overall hypothesis yet found is taken as the interpretation of the
utterance, or if not complete hypothesis has been found, a
combination of partial hypotheses is chosen and the system attempts
to construct a semantic interpretation from that. The blackboard
of the system is divided into parametric, segment, syllable, word,
word-sequence, phrase, and semantic interpretation levels.

Compared to HWIM, the Hearsay-II architecture appears to
encourage a kind of "pandemonium" strategy versus HWIM's emphasis
on specific components interacting in specific ways with specified
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orderings of queues of events. In fact the differences between
HWIM and Hearsay-II in this respect are more apparent than real.
The Hearsay-II system also maintains queues of things to do, and
the HWIM system does in fact maintain pointers connecting data
structures at different levels. A substantial architectural
difference is that the structures in HWIM are tailored to the
Classes of algorithms being executed rather than using a very
general common data structure throughout as in Hearsay.* The major
difference comes down to the former's emphasis on an architecture
to support a nonspecific control strategy versus HWIM's emphasis on
the discovery of effective control algorithms.

The details of the algorithms used in Hearsay-II are largely
relegated to the "contents of the KS's" and have been difficult to
extract from available publications. As of 1976, when this paper
was first written, the best available description of the Hearsay-II
algorithm was extremely sketchy, reflecting the extreme of the
architectural vs algorithmic emphasis. In Hayes-Roth and Lesser
(1976), even the idea of formulating an explicit control strategy
was rejected as "inappropriate" (because it "destroys the
data-directed nature and modularity of knowledge source activity").

Hearsay-II's scoring function for hypotheses, which its
authors refer to as the "desirability" of a KS, is an ad hoc
combination of functions reflecting intuitive notions of "value",
"reliability", "validity", "credibility", "significance",
"Utility", etc. Specifically, they state: "the desirability of a
KS invocation is defined to be an increasing function of the
following variables: the estimated value of its RF (an increasing
function of the reliability of the KS and the estimated level,
duration, and validity credibility of the hypothesis to be created
or supported); the ratio of the estimated RF value to the minimum
current state in the time region of the RF; and the probability
that the KS invocation will directly satisfy or indirectly
contribute to the satisfaction of a goal as well as the utility of
the potentially satisfied goal." (Hayes-Roth & Lesser, 1976).

They go on to say that the above is not "complex enough" to
"Provide precise control in all of the situations that arise," and
Proceed to describe various further elaborations. Although it is

* The latter has aesthetic appeal, but the former is more
efficient, as evidenced by the historical trend in Hearsay
development toward moving information out of the blackboard and
into specialized data structures within the different components
(see Erman et al., 1980).
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not possible to tell from this description exactly what Hearsay II
does, we can infer some characteristics of its behavior. First of
all, the fact that the desirability of a KS invocation is an
increasing function of its duration definitely rules out any
interpretation of it as implementing the shortfall or density
methods.

The above allusion to the "current state in the time region of
the RF" refers to a function S(t) that for each point t in the
utterance specifies the maximum of the "values" of all hypotheses
"which represent interpretations containing the point t." This
"state" function at first glance seems similar to the maxseg
profile used in the shortfall algorithm (and indeed was what caused
me to start thinking along those lines), but in actuality it is
quite different. Instead of being an estimate of the maximum
possible portion of a score that can be attributed to a segment,
Hearsay-II's state is the maximum total score of any hypothesis
found so far that covers it (recall that such scores increase with
length of the theory). Its contribution to the desirability of a
hypothesis is described as the ratio of the "value" of that
hypothesis to the smallest value of the state parameter in its
region.

Since the smallest state value in the region of a hypothesis
will always be at least as great as that of the hypothesis being
valued (each state is the max value of all covering hypotheses),
this ratio is always less than or equal to one, and is strictly
less only when every portion of the region covered by the
hypothesis has some better covering hypothesis (although not
necessarily a single hypothesis that covers the whole region).
Consequently, this "state" component of the score has the effect of
inhibiting a hypothesis that at every point has a better
competitor. Since the values of hypotheses grow with the length of
the region covered, the effect will be that hypotheses that get big
early will inhibit alternative hypotheses on the regions they
cover. With shortfall scoring, on the other hand, the tendency is
for big hypotheses to pick up additional shortfall and increase the
likelihood of a shift to a competing hypothesis. Hearsay-II's use
of the "state" parameter, is more reminiscent of SRI's "focus by
inhibition" technique discussed below, which was found to have
generally undesirable effects, although it did offset some of the
costs of their island driving strategy (Paxton, 1976).

Since this paper was originally written, a newer paper
(Hayes-Roth and Lesser, 1977) has presented additional details of
the above strategy (which they call "phrase specific") and a newer
control strategy called "word specific". Among the things made
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Clearer in the later paper are that the duration bias discussed
above is parameterized and that the current state function S(t)
(and a related "implicit goal state" I(t)) participate in the
overall desirability calculation as separate components of a
weighted sum. By appropriate settings of parameters, one could
eliminated the duration bias and any of three different terms that
exploit the "state": one involving a ratio of the hypothesis's "RF
validity" to the smallest state in its region (discussed above),
one involving the difference between the RF validity and the state
(not the same as my shortfall, however), and one proportional to
the maximum I(t) in the region (I(t) is specified in the paper only
to the extent that "it is only a slight oversimplification to think
of I(t) as the arithmetic inverse of the current state S(t)").

The "word specific" strategy differs from the "phrase
Specific?? strategy in several ways, one of which is that the
current state function S(t) represents the highest value of any
N.P_FA hypothesis that is incorporated into any grammatical sequence.
This makes the state function very similar to the maxseg profile at
a slightly larger "grain size" (i.e., in word sized pieces rather
than phoneme sized pieces). However, it is not used in the same
way as the maxseg profile. Both terms that use the S(t) function
in the desirability computation are measures of how much a
hypothesis is better than the worst value of S(t) in its region.
(The maxseg profile is used to measure how much a hypothesis is
worse than an estimated best covering of its region.) The word
specific strategy also drops the duration biasing from several
components of the desirability computation, but still retains (and
increases) the duration bias in the component which their tuning
parameters give the most importance. The values of the tuning
Parameters are also changed in the word specific case, and the
Paper is somewhat ambiguous about what "value" is actually used to

,construct the current state function in this case.

There are sufficient omissions and ambiguities even in the
later paper that it is still difficult to tell how the overall
control strategy actually works. One can determine, however, that
the word specific strategy is somewhat more similar to the density
method than the phrase specific strategy is, although it is still
substantially different. Given their description, it would be.
possible to set the parameters of the desirability calculation to
be very similar to the quality density method (although not the
Shortfall density method). However, depending on details of the
waY the desirability of. KS invocations is used in the overall
system, the resulting control strategy might still not be
comparable to the method presented here. At any rate, they do not
appear to have tried this option. The paper reports one experiment
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that shows the word specific strategy to be superior to the phrase
specific one, but does not discuss the effects of varying the
tuning parameters to assess the relative utilities of the various
components of the desirability computation. It would be nice to
see a systematic study a la Paxton (see below) of the relative
merits of the different options.

In summary, the emphasis of the Hearsay-II has been largely
architectural and there has apparently been little success in
determining the importance of the various components of their
scoring functions or in uncovering the essential elements of an
effective control strategy. They report that "A significant amount
of tuning of the focusing parameters has been attempted.
Nevertheless, the current parameter values are probably not
optimal, and it seems clearly impossible to determine what the
optimal values are." (Hayes-Roth and Lesser, 1977). One can
speculate, given the optimality results of this paper, that the
optimum parameter values may lie in a direction much closer to the
density method. The relative performance of. their word specific
and phrase specific strategies is consistent with this conjecture.
However, it is possible that some nonobvious characteristic of the
Hearsay-II architecture might block their fully exploiting the
density method.

8.f The SRI experiments

At SRI, Paxton (1977) performed a number of experiments on
control strategy options, using a simulated word matching component
based on performance statistics of the SDC word matching component
to which a speech understanding system at SRI was originally
intended to be coupled. Paxton's system is well-documented, and
contains a number of interesting and well-done capabilities. He
has worked out a very clean representation of the SRI grammar as a
collection of small ATN networks (although he doesn't call them
ttlat) which do not have the directional left-to-right orientation
that conventional ATN's do and in which the association of augments
with transitions is more systematized and less procedural. The
capabilities of this system for syntactic/semantic/pragmatic
constraint are comparable in power to that of HWIM's general ATN
grammar, and in several respects the notations used are cleaner and
more perspicuous. Moreover, the implementation of these grammars
contains some very elegant efficiency techniques. The system has a
capability for middle-out parsing making use of the
semantic/pragmatic augments in the grammar, although it doesn't
seem to have a capability for island collisions and doesn't
construct islands for arbitrary sentence fragments.
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In terms of the control strategy framework -set up in this
Paper (as opposed to the terms that he himself uses), Paxton's
system makes a distinction between a quality score for a hypothesis
and a priority score for an event, although the kinds of hypotheses
and events that his system creates are somewhat different than
those in HWIM. One way of viewing his system in the terms
presented here is that his hypotheses are always partially
completed constituents (what he calls "phrases"), which can make
Predictions for the kinds of words or constituent phrases that they
can use. These phrases are incorporated into a structure called a
"Parse net" in which explicit "producer" and "consumer" links
associate such hypotheses to each other, but partially completed
Phrases are not combined into larger sentence fragments
corresponding to HWIM's notion of islands. His events are of two
tYPes: operations to look for a word or words at a point (which he
calls a "word task", comparable to our proposals to the lexical
retrieval component), and events to create such predictions from a
phrase (which he calls a "predict task"). Every phrase is
implicitly an event for a predict task, and he has a special data
type called a "prediction" to represent events for word tasks.

Whereas HWIM, when it processes a hypothesis, will always make
all predictions, then call the Lexical Retrieval component tO find
all matching words, and then create word events for each such found
word, Paxton's system breaks this cycle up differently. His system
schedules separate events for each of the individual word
Predictions generated by a hypothesis, and whenever a word or
completed phrase is found he distributes it immediately to all itsn
consumers" without waiting. (This difference is perhaps motivated

by his lack of a word matcher that could efficiently find the best
matching words at a given position without exhaustively considering
each word in the dictionary.) The success of such a method would
appear to depend on the ability to judge a priori, without local
acoustic evidence what words were likely to appear. That is, it
demands exceptionally strong syntactic/semantic predictions.

Paxton's system makes no attempt to guarantee the best
interpretation, nor does it stop with the first complete
interpretation it finds. Rather it runs until one of several
Stopping conditions is satisfied (such as running out of storage),
after which it takes the best interpretation that it has found so
far.

Paxton performed a systematic set of experiments varying four
control strategy choices, which he called "focus by inhibition,"
map all at once," "context checking," and "island driving." The

first was a strategy for focusing on a set of words that occur in
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high scoring hypotheses and decreasing the scores of all tasks for
hypotheses incompatible with those words.

The "map all at once" strategy referred to a "bottom up"
lexical retrieval strategy that found all possible words at a given
point and ranked them taking their word mapper scores into account,
rather than proposing such words one at a time in the order in
which their proposing hypothesis ranked them (i.e., rather than
ranking such words according to a priori preferences assigned by
the grammar). This is more similar to the way the lexical
retrieval component is used in HWIM and the algorithms presented in
this paper.

"Context checking" referred to a technique of assigning a
priority score to predictions of a partial phrase on the basis of a
heuristic search for the best possible combinations of higher level
constituents that can use it, rather than by basing such priority
scores solely on the local quality of the partial phrase alone.
(This mechanism gives part of the effect of our use of theories
that include arbitrary fragments of a sentence that may cross
several levels of phase boundary, but apparently does not permit a
fragment that has incomplete phrases at both ends to be assigned a
priority as a whole. It assigns the resulting priority score just
to the phrase doing the prediction without apparently remembering
the context that justified this score.)

"Island driving," in Paxton's system, referred to the use of a
middle-out strategy that looked for a best word somewhere in the
utterance to start a seed, and if all hypotheses from that seed
scored badly enough would look for another such seed, and so on.
However, his system contained none of the features such as island
collisions, .ghosts, preferred directions, shortfall, or density
scoring techniques discussed in this paper (although it may have
had something amounting to an absolute direction preference - the
documentation is not totally clear on whether both ends of an
island can be worked on independently). Hence its version of
island driving seems to have all of the disadvantages of a
middle-out strategy with almost none of the compensating
advantages.

The experiments indicated that the "main effects" of focus by
inhibition (i.e., the net effects averaged over all combinations of
other strategy options) were negative both in accuracy of the
recognition and in number of events processed, and that the main
effects of mapping all at once and context checking were positive
(the former was more expensive in run time in their system, but
might not have been with a suitable lexical retrieval component
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such as that of HWIM). All three of these experiments showed a
statistically significant effect. In addition, the main effect of
Paxton's island driving feature was found to be negative in time
and accuracy, although the result was not statistically significant
"because of a large interaction with sentence length."
Specifically, Paxton found that island driving improved performance
for short utterances, but decreased performance for longer ones,
largely due to exceeding the storage limitations before finding the
best interpretation. Consequently, it is possible that the
implementation of some of the features described in this paper
might have improved the performance of the island driving strategy
sufficiently to gain a net improvement.

Paxton's results with the focus by inhibition strategy reflect
What seems to have been a common experience of the various speech
understanding groups in the ARPA project. Although it seemed
natural to expect that some word match scores should be good enough
that they could be considered correct, thereby eliminating attempts
to find alternatives to them, in fact all attempts to implement
such an intuition seem to have led to at best indifferent results
and usually to positive degradation. In retrospect, the fact that
perfect matches of other words or short word sequences can occur by
accident in completely accurate transcriptions of sentences (e.g.,
"four" within "California") should suggest that there is no magic
threshold above which one can consider a given hypothesis correct
Without verifying its consistent extension to a complete spanning
theory. It seems, therefore, that the absolute value of the local
quality score is not what matters in deciding the most likely
interpretation. The relative scores of competing hypotheses are
more relevant, but what really counts is the eventual quality of
the complete spanning theory.

9. COST/BENEFITS OF OPTIMALITY

There is a '!folk theorem" in some Al circles that admissible
strategies are more expensive than approximate ones and therefore
tO be avoided. Our experience with various control strategies in
HWIM appears to indicate that at least in the case of speech and
for the island-driven shortfall density method with island
collisions, the admissible method is only 30-50% less "efficient"
than a straightforward "best-first" strategy and has substantial
performance advantages in minimizing false interpretations.* An

* Erman et al.'s statement (Erman et al., 1980) that BBN's
experiments substantiated SRI's claim that island driving was
inferior to some forms of left-to-right search is incorrect.
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additional characteristic of the shortfall density method with
respect to efficiency is that the combinatorics of the search
depend on the amount of shortfall and not directly on the length of
the input. Thus as the quality of the acoustic phonetic components
improve, the combinatorics of the shortfall density algorithm
improve dramatically.

One might be tempted to take the performance comparisons of

the HWIM system versus the Hearsay-II system (Lea, 1980) as
evidence of the superiority of approximate strategies over
admissible ones. However, it is more likely that the difference in
performance is due to the differences in difficulty of the two
grammars or to differences in their acoustic "front end."*
Hearsay-II can in principle explore all the alternative hypotheses
that the quality density strategy would and should in fact explore
at least these if functioning according to its design philosophy of
finding a first interpretation and then exploring further any
hypotheses that could produce something better.

When speaking of nonadmissible strategies, one should be

careful to distinguish between arbitrary, ad hoc strategies and

what I have called "nearly admissible strategies." The latter can
often have all the advantages of both. In further support of the
advantages of admissibility, or at least near admissibility, over

Their statement is apparently based on the fact that HWIM's final
performance run was made using a left-to-right, nonadmissible
strategy (which we believed at the time to be expedient). (See

also the discussion of Paxton,s result in 8.f above.)
Incidentally, their statement that the HWIM system had an explicit
control strategy is also incorrect. HWIM had an explicit
interconnection of components, but many different control
strategies were explored within this basic architecture.
* The best reported performance results of the Hearsay II system

are based on the same highly constrained, branching ratio 10
grammar used by HARPY (see section 8.c above). HWIM, on the other
hand, used a general ATN grammar with estimated average branching

ratio of 196, permitting a relatively habitable subset of English
which includes such minimal pairs as "What is the registration

fee" and "What is their registration fee." Another factor

affecting the relative performance of HWIM versus both HARPY and

Hearsay-II is that the latter take their dictionary pronunciations
from averaged actual speech of specific speakers. HWIM attempts

the more difficult task of synthesizing them by rule from phonetic
pronunciations from a pronouncing dictionary of American English.
HWIM consequently neither requires nor uses any speaker training.
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ad hoc search strategies, I should point out that the performance
of the HARPY system was consistently superior both in speed and
accuracy to that of Hearsay-II on the same grammar and vocabulary
and with the same acoustic front end. (This is not entirely fair
since Hearsay-II carried a lot of architectural baggage and was not
as finely tuned as HARPY. However, it is clearly not a victory for
the ad hoc approach.) Although the HARPY developers make much of
the fact that their "beam search" technique gives up the guarantee
of admissibility for efficiency, the HARPY algorithm in fact owes
much of its success to being a nearly admissible algorithm, derived
as discussed above from an admissible dynamic programming
algorithm.

I would argue therefore that it is premature to rule out
admissible algorithms as undesirable or inappropriate for speech
understanding. In fact, preliminary evidence suggests that
admissible algorithms or at least "nearly admissible" algorithms
are to be preferred.

10. CONCLUSIONS

We have presented two basic priority scoring methods,
sl.-1-9-t_trala and density scoring, that provide admissible search
strategies for finding the best matching interpretation of a
continuous speech utterance, with no limitations to finite-state
p•ammars and without exhaustively enumerating all possible
interpretations. Moreover, the two methods can be used in
conjunction, and the combined method appears to be more efficient
than either of the methods by themselves. We have also presented
several heuristics that can be used with these basic strategies to
Produce admissible or nearly admissible algorithms that appear to
have all of the advantages of the provably admissible ones while
exploring fewer hypotheses. Although the methods are presented
here in the context of speech understanding systems, analogous
methods are applicable to other perceptual tasks such as vision,
with appropriate generalizations of segment, word, and phrase.

The density scoring method is especially interesting, since it
is not an instance of the "optimal" A* algorithm and (at least for
the speech understanding problem) appears to be superior to the
corresponding A* algorithm (the shortfall method) in the number of
hypotheses that need to be explored to obtain the best matching
solution. It apparently gains this superiority from its ability to
work on different parts of the solution independently and combine
them by the mechanism of island collision. This is similar in some
respects to the use of lemmas in a theorem proving system. The
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density method is not applicable to as wide a class of problems as
the general A* algorithm, but should be applicable to any
"covering" problem where scores are accumulated from partial
hypotheses that can be said to "cover" some analog of a region.
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