
22

Higher-order extensions to PROLOG: are they
needed?

D. H. D. Warren
Department of Artificial Intelligence
University of Edinburgh

Abstract

PROLOG is a simple and powerful progamming language based on first-order
logic. This paper examines two possible extensions to the language which would
generally be considered "higher-order".t The first extension introduces lambda
expressions and predicate variables so that functions and relations can be treated
as 'first class' data objects. We argue that this extension does not add anything to
the real power of the language. The other extension concerns the introduction of
set expressions to denote the set of all (provable) solutions to some goal. We
argue that this extension does indeed fill a real gap in the language, but must be
defined with care.

1. INTRODUCTION AND SUMMARY OF PROLOG

PROLOG (Roussel 1975, Warren, Pereira and Pereira 1977 and Warren 1979) is a
simple and powerful programming language based on first-order logic. It was
conceived around 1971 by Alain Colmerauer at the University of Marseille, and
has subsequently been put to use in a wide variety of applications, e.g. Bergman
and Kanoui 1975, Warren 1976, Darvas, Futo and Szeredi 1977, Markusz 1977,
Dahl 1977, Warren 1980, Bundy, Byrd, Luger, Mellish and Palmer 1979 and
Dwiggins and Silva 1979.

The purpose of this paper is to discuss two possible extensions to PROLOG,
both involving what are normally considered in the computing world to be
'higher order' t facilities. The first extension permits predicates to be treated as
data objects; the second extension introduces expressions to denote the set of all
solutions to some goal. The two sections of the paper covering these extensions
can be read independently.

t Throughout this paper, 'higher-order' is used in the informal (computing) sense of 'pertaining
to functions, sets, relations etc.'. The use of this term should not be taken to imply any
particular connection with higher-order logic.

441

LOGIC PROGRAMMING

For readers not familiar with PROLOG, there follows a brief summary of the
language. The syntax and terminology used is that of DEC-10 PROLOG (Pereira,
Pereira and Warren 1978).

A PROLOG program comprises a set of procedures, each of which constitutes
a definition of a certain predicate. A procedure consists of a sequence of clauses,
which have the general form:

P Q19 Q21 • • • Qn.

to be interpreted as:

"P (is true) if Q1 and Q2 and ... and Qn (are true)".

If n is zero, the clause is written simply as:

P.

and interpreted as:

"P (is true)".

The P and Qi are examples of goals or procedure calls, consisting of a predicate
applied to some arguments.

For example, here is a procedure defining the predicate 'european' of one
argument:

european(europe).
european (X) :- partof(X,Y), european (Y).

The clauses can be read as:

"Europe is European".
"For any X and Y, X is European if X is part of Y and Y is European".

The arguments of a procedure call are data objects called terms. A terms
may be an (atomic) constant, a variable, or a structure. Variables are distinguished
by an initial capital letter. Each variable of a clause is to be interpreted as standing
for any arbitrary object.

A structure consists of a functor applied to some terms as arguments, and is
written exactly like a goal, e.g.

point (2, 3)

The functor should be thought of as a record type, and the arguments as the
fields of a record.

A PROLOG program is invoked interactively by supplying a question, which
may be thought of as a clause without a left-hand side, e.g.

?- partof (X, britain).

to be interpreted as:

"Is X part of Britain? (for any X you know of)"

442

WARREN

The PROLOG system responds to a question by generating alternative instances
of the variables for which it can deduce that the goal or goals are true. For this
example, assuming there is an appropriate procedure for 'partor, these instances
might be:

X = england ;
X = scotland ;
X = wales

To find such instances, PROLOG executes a goal by first matching it against
the left-hand side of some clause and then executing the goals (if any) in the
clause's right-hand side. Goals are executed in left-to-right order, and clauses are
tried in the order they appear in the procedure. If a match isn't found (or there
are no outstanding goals left to execute), PROLOG backtracks; that is, it goes
back to the most recently executed goal and seeks an alternative match. Since
the matching process is actually unification (see Robinson 1965), the net effect
is to generate the most general instances of the goal for which it is true.

For convenience, certain predicates and functors may be written in infix
notation, e.g.

13 divides 52 X + 1

and a special syntax is used for those structures called lists (cf. LISP), constructed
from the constant ' []' and the functor of two arguments, e.g.

[X I L] for . (X, L)
[a, b , c] for . (a , . (b, . (c,
[a,b I L] for .(a,. (b, L))

As a final example, here is a procedure for the predicate 'concatenate
(X, Y,Z)', meaning "the concatenation of list X with list Y is list Z":

concatenate ([], L, L).
concatenate ([X I L1], L2, [X I L3]) :- concatenate (L1, L2, L3).

Notice how what is usually thought of as a function of two arguments producing
one result is here regarded as a predicate of three arguments. In PROLOG, a
function is always regarded as just a special case of a relation, identified by a
predicate with an extra final argument denoting the result of the function. An
advantage of this approach is that not only can the function be called in the
normal way, e.g. by:

?- concatenate ([a,b],[c], L).

meaning:

"what is the concatenation L of [a, b] with [c] ?"

but also other usages are possible and just as easy to express, e.g.

?- concatenate (LI, L2, [a, b , c]).

443

LOGIC PROGRAMMING

meaning:

"Which lists Ll and L2 have concatenation [a, b, c] ?"

2. PREDICATES AS "FIRST CLASS" DATA OBJECTS

It has often been argued that a programming language such as PROLOG, based on

first-order logic, lacks some of the power of "functional" languages such as LISP

and P0P-2, which provide what are considered to be "higher-order" facilities,

namely the ability to treat functions as data objects. To be specific, in these

functional languages it is possible to have a function call where the function to

be applied is not fixed at "compile-time", but is determined by some run-time

computation.
Now, as previously indicated, the procedures of PROLOG compute not only

functions, but also more general relations. The PROLOG analogue of the function

is therefore the predicate. So, to provide analogous higher-order facilities in
PROLOG, one might wish to allow predicates to be treated as data objects, and

in particular to allow the predicate symbol in a procedure call to be a variable.

For example, suppose one wanted to check whether all the elements of a

list satisfied some property (i.e. unary predicate). A general procedure to do this

would then be:

have_property([] ,P).
have_property ([X I L], P) P (X), have_property (L, P).

These clauses can read as:

"All elements of the empty list have property P".

"All elements of the list comprising head X tail L have property P

if property P holds for X and all elements of L have property P".

The procedure call:

?- have_property gedinburgh,paris,san_francisco], attractive).

would then succeed, provided the following facts are provable:

attractive (edinburgh). attractive (paris). attractive (san_francisco).

Most functional languages also provide the ability to refer to functional

objects "anonymously", through the means of lambda expressions. An analogous

extension to PROLOG would allow the use of lamda expressions to denote

predicates, where the body of the lambda expression would be a PROLOG goal

(or goals). An example would be the call:

?- have_property ([0, lb lamb da (X). square (X, X)).

meaning:

"Do 0 and I have the property of being equal to their squares?"
which should succeed, of course.

Do these two extensions — predicate variables and lambda expressions —

444

WARREN

really increase the power of PROLOG? I shall argue that they do not, since both
can be regarded merely as "syntactic sugar" for standard first-order logic. The
mapping into first-order logic is very simple. A procedure call with a variable as
predicate:

P(ti, , t„)

is transformed into the procedure call:

apply (P, , tr,)

and in addition a clause:

apply(foo,X1, , X„) foo (Xi, , Xe).

is supplied for each predicate foo which needs to be treated as a data object
(where n is the arity of f00).1. A lambda expression:

lambda (X1, . . . , Xn). E

is replaced by some unique identifier, say phi, which is defined by a separate
'apply' clause : -

apply(phi, X1, , X„) :-E.

Effectively, we are just giving the anonymous predicate a name. Thus the second
example rewrites to, say:

?- have_property ([0,1], is_its_own_square).

with

apply (is_its_ own_ square ,X) :- square (X ,X).

where the clauses for 'have_property' are now:

have_property ([1,P).
have_property ([X IL], P) :- apply (P, X), have_property (L, P).

Note that it is possible for a lambda expression to contain free variables.
In this case, the identifier which replaces the lambda expression must be par-
ameterised by the free variables. An example of this situation, which also illustrates
the versatility of the PROLOG variable, is the following clause:

common (R, L,Y) have_property(L, lambda (X) . R (X,Y)).

to be interpreted as:

"Attribute R has a common value Y for the elements of the list L if all
elements of L have the property of being paired with Y in relation R".

This clause might be invoked by the goal:

?- common (pastime , [tom , dick, harry], P).

t Note that we have a different 'apply' predicate for each different value of n; we could
have given these predicate distinct names if preferred, (say 'apply r, 'apply2', etc.).

445

LOGIC PROGRAMMING

to produce alternative solutions of, say:

P = football
P = darts

given that it is possible to prove facts like:

pastime (torn, football).

Here the lambda expression:

lambda (X). R(X,Y)

has free variables 'R' and 'Y', so if we identify it by, say, 'foo(R,Y)', the clause
for 'common' rewrites to:

common (R, L,Y) have.property (L, foo (R,Y)).

with:

apply (foo (R,Y), X :- apply (R, X ,Y).
apply (pastime , X , Y) :- pastime (X , Y).

Observe that PROLOG produces the solutions by first generating a pastime P
of 'tom', and then checking that P is also a pastime of 'dick' and 'harry'. Thus
the free variables of a lambda expression need not all be known initially. In this
respect, we seem to have something essentially more powerful than what is
available in functional languages.

Notice also that this treatment of the non-local variables in a lambda expres-
sion corresponds exactly to "static binding" as in ALGOL or SCHEME (Steele
1978) in contrast to the "dynamic binding" of LISP and POP-2. Dynamic binding
has the curious property that the name chosen for a variable is semantically
significant. This would clearly be incongruous in the PROLOG context, and can
be viewed as a flaw in the original definition of LISP which has led to the variant,
SCHEME.

As a final, more sophisticated, example of treating predicates as data objects,
let us look briefly at the PROLOG equivalent of the definition of the 'twice'
function (see for example, Turner 1979). In a functional language this is defined
as:

twice = lambda (F) .(lambda (X) . F (F (X)))

Thus 'twice' maps a function F into another function which is the composition
of F with itself. If we also have:

succ = lamb da (X) . X+ I

then:

twice (twice)(twice)(succ)(0)

is a valid expression, which in fact evaluates to 16. (Check this for yourself!)
Using the rewrite rules outlined above in conjunction with the standard technique

446

WARREN

for translating functional notation into predicate notation, this problem translates

into PROLOG as:

?- apply (twice, twice, Fl), apply (F1, twice, F2),
apply (F2, succ, F3), apply (F3, 0, Ans).

where

apply (twice, F, twice (F)).
apply (twice (F), X, Z) :- apply (F, X,Y), apply (F,Y, Z).

apply (succ,X,Y) Y is X+1.

(where 'is' is a PROLOG built-in predicate that evaluates arithmetic expressions).
Executing this question with PROLOG does indeed produce the right result:

Ans = 16

and the values of the other variables help to show how this result is obtained:

Fl = twice (twice),
F2 = twice (twice (twice)),
F3 = twice (twice (twice (twice (succ))))

Discussion

To summarise the argument so far: functional languages such as LISP and POP-2
allow functions to be treated as "first class" data objects, and this property is
often claimed to give these languages an added power lacking in PROLOG. I have
therefore put forward two extensions to PROLOG — predicate variables and
lambda expressions — providing what I believe is the exactly analogous property

for PROLOG, that of making predicates into "first class" data objects. This belief
is backed up by the examples given. I have then shown how these extensions can

be regarded as mere syntactic sugar, by presenting a very simple way of translating

them back into standard first-order logic.
The translation is such that it does not involve any unbounded increase in

either the size of the program or in the number of execution steps. I therefore
claim that the extensions do not add anything to the strict power of PROLOG;
i.e., they do not make it feasible to program anything that was not feasible before

(in contrast to other possible extensions — see later, for example).
Of course "power" is often used more loosely to cover such language proper-

ties as conciseness, clarity, or implementation efficiency (measured in bytes and
milliseconds). So let us consider, on such wider grounds, two possible arguments
for nevertheless incorporating these extensions into PROLOG.

1. The extensions should be provided as primitive in the language so that
they can be implemented efficiently.

2. The extended syntax is much nicer to read and to use and should be
provided as standard.

We will discuss these points one by one.

447

LOGIC PROGRAMMING

Efficiency

The standard way of implementing functional objects involves a representation

known as a closure. Essentially, a closure is a pair of pointers, one pointing to

the code for the function concerned, the other pointing to an environment

containing the values of the function's non-local variables. The advantage of this

representation is that it avoids having to make a copy of the function's code for

each different binding of the non-local variables.
Now PROLOG implementations commonly use an implementation technique

known as structure-sharing, whereby any non-atomic data object has a represen-

tation very similar to a closure. This representation, called a molecule, likewise

consists of two pointers, one pointing to (a representation of) the original source

term, the other pointing to an environment containing the values of the variables

occurring in that source term.
The result of structure-sharing, combined with our technique for translating

higher-order expressions into first-order logic, is that higher-order objects auto-

matically get something very close to their standard, closure representation. In

particular, we do not need to do any copying of code or variable values in order

to create the higher-order object. The only significant difference is that, instead

of a direct pointer to the code of the higher-order object, we have an identifier

which is mapped into the corresponding code via the appropriate 'apply' clause.
This difference is minimal if the clauses for 'apply' are appropriately indexed

on the procedure's first argument, as is provided automatically in DEC-10

PROLOG, for instance. It is then possible to get from the identifier of the higher-

order object to its code in a small, fixed number of steps — effectively, the

identifier is an indirect pointer.
So, for DEC-10 PROLOG at least, providing a specific implementation of

higher-order objects would not produce huge efficiency gains over the approach

I am advocating, and for most programs the overall improvement would probably

be negligible.
Note that it appears to be possible to apply a directly analogous technique

to functional languages to "pre-process away" higher-order expressions. Struc-
tures would be constructed to represent the higher-order objects, and an arbitrarily

big 'apply' function would be needed to invoke the corresponding code. However

the result is not nearly so practical as in the PROLOG case, since, apart from being

much less readable, it involves explicitly copying non-local variables and (in the

absence of the equivalent of a case expression) executing an arbitrarily large

number of tests in the 'apply' function. Moreover, while it is quite natural to

add new 'apply' clauses one by one as the need arises, it is much less convenient

to have to make modifications to the body of an 'apply' function.

Readability and usability

The extended syntax is obviously more concise, but whether this makes programs

easier to understand is highly debatable. It seems to be a matter of taste which

syntax one prefers.

448

WARREN

Most PROLOG users would argue that one of PROLOG's main strengths is
that it avoids deeply nested expressions. Instead the program is broken down
into smaller, more easily comprehended units. The resulting program may be
slightly longer, but it is easier to read and (what is especially important) easier to
modify.

Now the effect of introducing lambda expressions is directly contrary to
this philosophy. It results in bigger, more deeply-nested expressions. I am there-
fore certainly against this part of the extension.

The introduction of predicate variables, however, seems to have a certain
elegance. For example, I would probably prefer to write the 'twice' example as:

?- twice (twice ,F 1), Fl(twice , F2), F2 (succ, F3), F3 (0, Ans).

twice (F, twice (F)).
twice (F, X, Z) F (X,Y), F (Y, Z).
succ(X,Y) Y is X+1.

I understand recent PROLOG implementation (see Colmerauer, Kanoui and van
Caneghem 1979) allows this kind of syntax.

However, if predicate variables are used in more than small doses, the program
becomes excessively abstract and therefore hard to understand. For example,
it is possible to define a higher-order procedure 'iterate':

iterate ([], F, Z, Z).
iterate ([X I L], F, Z ,Y) :- iterate (L, F, Z,Y0), F (X,YO,Y)

such that list concatenation, and the summation of the elements of a list, are

special cases:

concatenate (L1, L2, L3) :- iterate (L1, cons, L2, L3).
sum (L, N) :- iterate (L, add, 0, N).

But this seems a particularly perverse way to define such simple predicates.
On balance, therefore, I do not think the benefits of predicate variables

are worth the extra language complexity involved.

3. SET EXPRESSIONS

A difficulty which programmers new to PROLOG soon come up against is that
they need to combine information generated on alternative branches of the
program. However, with pure PROLOG, all information about a certain branch
of the computation is lost on backtracking to an earlier point. To take a very
simple example, suppose we have the following facts about the 'drinks' predi-
cate (written in infix notation):

david drinks beer.
david drinks milk.
jane drinks water.
ben drinks milk.

449

LOGIC PROGRAMMING

then it is very easy to represent the question:

"Who drinks milk?"

One simply writes:

?— X drinks milk.

and PROLOG% backtracking generates the two solutions:

X = david ;
X = ben

But how should one represent the question:

"How many people drink milk?"

It seems we already have all the information needed to compute the solution,

which should obviously be "2". Somehow we need to combine the solutions

generated by backtracking into a single data structure so that they can be counted

by a straightforward (recursive) procedure. The problem is how to remember

one solution when we backtrack to get another.

At this point, the logician might point out a flaw in the programmer's

reasoning. We have no right to assume the answer to the question is "2", since, in

the absence of any information about who does not drink milk, it is quite

possible that there are other facts we don't know. Maybe, say:

jane drinks milk.

Therefore, from a logical point a view, the question of how many people drink

milk can't be answered with the information available.

The programmer, however, is unlikely to be satisfied with this argument, and

may explain that what he really meant was:

"How many people are known to drink milk?"

which is surely a reasonable query having "2" as its unequivocal answer.

Ways to get the desired result in this and similar cases are part of the PROLOG

folklore. They involve going outside the pure PROLOG described here, in order

to preserve information on backtracking. This is done using certain extra facilities
provided by Prolog implementations as "built-in procedures". Typically these

procedures modify the program by adding and deleting clauses. The trouble with

these ad hoc solutions is that they generally only provide a partially correct
implementation of what is intended, and what is intended is often far from clear.

Above all, the parts of the program affected can no longer be interpreted simply

as a shorthand for statements of fact in natural language, in the way we have

seen so far.
I believe it is possible to replace these ad hoc solutions with a single more

principled extension to PROLOG, which preserves the "declarative" aspect of

the language. This extension has already been incorporated in the latest version

of DEC-10 PROLOG. The implementation is essentially an encapsulation of the

standard hack in a more general and robust form.

450

WARREN

The extension takes the form of a new built-in predicate:

setof(X,P,S)

to be read as:

"The set of instances of X such that P is provable is S".

The term P represents a goal or goals, specified exactly as in the right-hand side

of a clause. The term X is a variable occurring in P, or more generally any term
containing such variables. The set S is represented as a list whose elements are

sorted into a standard order, without any duplicates.
Our previously problematic query:

"How many people (are known to) drink milk?"

can now be expressed as:

?- setof(X, X drinks milk, 5), size (S, N).

which can be interpreted more literally as:

"Is it true of any S and N that
the set of those that drink milk is S and the size of the set S is N?"

to which the Prolog response is:

S = [ben, david], N = 2

This assumes a definition of 'size'. This predicate simply computes the length of

a list, and is easily defined:

size([], 0).
size ([X I L], N1) :- size (L,N), N 1 is N+1.

The 'seta' primitive has certain inevitable practical limitations. The set to

be enumerated must be finite, and furthermore it must be enumerable by

PROLOG in finite time. If there are any infinite branches in a search space,

execution of the ̀ setof' expression will simply not terminate.
Note that since PROLOG always generates most general instances, it is

possible to generate set elements containing variables. Our implementation

of ̀ setor does not prohibit this. However in such cases the list S will only

provide an imperfect representation of what is in reality an infinite set. Effec-

tively, the list contains only a single, arbitrary representative of the infinitely

many different ways of instantiating each solution containing variables.

The 'seta' primitive must be defined and implemented with particular care
if it is to behave correctly in any context. For example, suppose we wish to define

a general predicate 'drunk by(D,N)' meaning "D is drunk by a total of N indi-
viduals". Then a suitable definition easily follows from our previous example:

drunk_by(D,N) :- set of(X, X drinks D, S), size (S, N).

A question such as:

?- drunk_by (milk, N).

451

LOGIC PROGRAMMING

will then produce, without difficulty, the solution:

N = 2

But what happens if we ask the question:

?- drunk_by (D,1).
meaning:

"What is drunk by just 1 individual?"

Obviously the correct result should be to produce the two alternative solutions:

D = beer;
D = water

However this entails that our 'seta' primitive should be "backtrackable",
generating alternative sets if the set expression contains any uninstantiated
free variables. In the example just given, 'D' was such a variable.

Our implementation of 'seta' fully takes care of such cases. Notice that
this also makes it quite all right for set expressions to be nested. For example,
one possible way to express the query:

"Which people drink each beverage?"
is:

?- se tof(Beverage-People, setof(X, X drinks Beverage, People), S).

Here we have a case where the first argument of a 'seta' is a structure rather
than a single variable; (`-' is an infix functor). The response to this question will
be:

S = [beer-[davidl, milk4ben, david], water-[jane]

To allow ̀ setof' to be backtrackable, we have to slightly restrict its meaning.
All our sets are implicitly non-empty. Otherwise there would be indefinitely
many alternative ways of instantiating the free variables of a set expression to
produce the empty set as solution. For example, if empty sets were allowed,
the question:

?- setof(X, X drinks D, S).

should presumably have solutions like:

D = treacle, S = [] ;
D = kerosene, S = [] ;

and so on ad infinitum. In general, 'S' is empty where 'D' is anything that is not
known to be drunk by somebody.

The problem here is equivalent to that of producing a correct implementation
of negation (regarded as non-provability), for which there doesn't yet appear to
be a fully satisfactory solution.

Although the restriction to non-empty sets can reasonably be seen as a
shortcoming, it does often automatically capture what is required. For example,
try formulating the question:

"Which employee's children are all at university?"

452

WARREN

Obviously we don't really want to count as a solution an employee who doesn't
have any children.

4. CONCLUSION

We have looked at two possible "higher-order" extensions to PROLOG. We have
seen that the first extension, which permits predicates to be treated as 'first
class' data objects, does not really contribute to the power of the language,
although some would argue that it is useful syntactic sugar. In contrast, the
addition of set expressions to PROLOG seems to fill a long felt need, and many
problems cannot be expressed in pure PROLOG without such an extension.
We have seen that it is important for set expressions to be "backtrackable", so
that they can be used freely in any context.

Acknowledgements

The 'seta' primitive described here was particularly influenced by the work
of A. Colmerauer 1977 and V. Dahl 1977 on natural language analysis. Helpful
comments on the paper were made by S. Jones and F. Pereira. The support of
the British Science Research Council is gratefully acknowledged.

REFERENCES

Bergman, M. & Kanoui, H. (1975). SYCOPHANTE: Systeme de calcul formel et d'interro-
gation symbolique sur l'ordinateur. Marseille: Groupe d'Intelligence Artificielle, U.E.R.
de Luminy, Universite d'Aix-Marseille H.

Bundy, A., Byrd, L., Luger, G., Mellish, C. & Palmer, M. (1979). Solving mechanics problems
using meta-level inference. Expert Systems in the Micro-Electronic Age, pp. 50-64
(ed. Michie, D.). Edinburgh: Edinburgh University Press.

Colmerauer, A., Kanoui, H. & van Caneghem, M. (1979). Etude et realisation d'un systeme
PROLOG. Marseille: Groupe d'Intelligence Artificielle, U.E.R. de Luminy, Universite
d'Aix-Marseille II.

Colmerauer, A. (1977). Un sous-ensemble interessant du francais. R.A.I.R.0, 13, 4, pp.
309-336. (Presented under the title of "An interesting natural language subset" at the
Workshop on Logic and Databases, Toulouse 1977).

Dahl, V. (1977). Un systeme deductif d'interrogation de banques de donnees en Espagnol.
Marseille: Groupe d'Intelligence Artificielle, U.E.R. de Luminy, Universite d'Aix-
Marseille II.

Darvas, F., Futo, I. & Szeredi, P. (1977). Logic-based program system for predicting drug
interaction. Int. J. Biomed. Comp.

Dwiggins, D. L. & Silva, G. (1979). A Knowledge-based automated message understanding
methodology for an advanced indications system. Technical Report No. R79-006
Woodland Hills, Ca: Operating Systems Inc.

Markusz, Z. (1977). How to design variants of flats using programming language PROLOG
based on mathematical logic. Information Processing 77, pp. 885-889 (ed. Gilchrist,
B.). Amsterdam, New York, Oxford: North Holland Publishing Co.

Pereira, L. M., Pereira, F. & Warren, D. H. D. (1978). User's guide to DEC system-10 PROLOG.
D.A.I. Research Paper No. 154. Edinburgh: Department of Artificial Intelligence,
University of Edinburgh.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. J. Ass.
Compt. Mach., 12, 227-234.

Roussel, P. (1975). PROLOG: manuel de reference et d'utilisation. Marseille: Groupe
d'Intelligence Artificielle, U.E.R. de Luminy, Universite d'Aix-Marseille II.

453

LOGIC PROGRAMMING

Steele, G. L. (1978). RABBIT: a compiler for SCHEME. M.Sc. Thesis: also
 published as

AI-TR-474. Cambridge, Mass: Artificial Intelligence Group, Massachusetts Insti
tute

of Technology.
Turner, D. A. (1979). A new implementation technique for applicative languages.

 Software

Practice and Experience, 9, 31-49.
Warren, D. H. D. (1976). Generating conditional plans and programs. Preprint: AISB Sum

mer

Conference, Edinburgh.
Warren, D. H. D. (1980). Logic programming and compiler writing. Software

 Practice and

Experience, 10,97-125.
Warren, D. H. D. (1979). PROLOG on the DECsystem-10. Expert Sy

stems in the Micro-

Electronic Age, pp. 112-121 (ed. Michie, D.). Edinburgh: Edinburgh
 University Press.

Warren, D. H. D., Pereira, L. M. & Pereira, F. (1977). PROLOG — the
language and its

implementation compared with LISP. Symposium on Al and
Programming languages,

ACM SIGPLAN 12.

454

