
6

A Note on Mechanizing
Higher Order Logic

J. A. Robinson
College of Liberal Arts
Syracuse University

§1. Any description of a function in the lambda-calculus notation can be
translated automatically into a description of the same function in a purely
applicative notation which makes no use whatever of abstraction or bound
variables.
For example, the function V[x(x + 1)] might be described as

Ax(sQRT((nmEs x)((PLus x)oxE))). (1)
But by making use of 'Schonfinkel's functions' A, K, and I, defined by

(((Ax)y)z)= ((xz)(yz)) (2)
((I(x)Y) =x (3)

(Ix) =x (4)
we can describe .‘/[x(x+ 1)] as

((A(ic sQRT))((A((A(c TimEs))0)((A((A(ic PLus))i))(K ()NE)))).

(5)
The description (5) contains no bound variables or abstraction operations.

It is a purely applicative combination of the objects A, K, I, SQRT, TIMES,
PLUS, and ONE. Of course, it is not at all obvious that (5) and (1) describe
the same function. In order to prove that they do, however, it is necessary
only to check that the result of applying (5) to an arbitrary object z is the
same as the result of applying (1) to z. In fact, we have

(xx(sQRT((rimEs x)((pLus x)oNE)))z)
=(sQRT((TimEs z)((pLus z)oNE)))

when (1) is applied to z. When (5) is applied to z, we have
MA((soRT))((a((gx TimEs))0)((A((gx pLus))1))((oNE))))z)
=(((x soRT)z)(((g(A(c nmEs))0)((A((gx pLus))1))((oNE)))z))
by (2);

123

MECHANIZED REASONING

=(SQRTMA((A(K TIMES))IM(A((A(K PLUS))IMK oNED)z))
by (3);

=(sQRT((((A(K TimEs))10z)(((A((A(c pLus))0)(1(oNE))z)))
by (2);

=(sQRT((((ic TimEs)z)(iz))(((A((A(K PLus))i))(K oNE))z)))
by (2);

=-(sotur((rimEs(tz))(((A((A(K PLus))x))(K oNE))z)))
by (3);

--(sowr((rtmEs z)(((A((A(x pLus))i))(c oNE))z)))
by (4);

=(soaz((rimEs z)((((gic PLus))t)z)(((oNE)z))))
by (2);

=(sotur((rimEs z)((((x PLI.is)z)(rz))((x oNE)z))))
by (2);

-=---(soRT((rimEs z)((PLus(iz))((ic oNE)z))))
by (3);

=(soaz((rimEs z)((Pus z)((K oNE)z))))
by (4);

=(soRT((rImEs z)((PLus z)oNE)))
by (3). Therefore (5) describes the same function as (1).

It seems most unlikely that one could in general write purely applicative
`Schonfmkel descriptions', like (5), of functions already known to one in
some other form. Fortunately there is a general procedure — the Schonfmkel
procedure — which, when applied to any expression written in the more
intuitive lambda-calculus notation, will produce a correct translation of it
into the Schonfinkel notation. The procedure consists simply of repeatedly
applying the three following rules until no further applications can be made:

replace Axx by 1; (6)
replace AXB by (103), provided the expression B contains no occurrences
of x; (7)
replace 2x(Bc) by ((AlxB),Ixc) if (BC) contains one or more occurrences
of x.

For example, this procedure translates (1) into (5). We have:

(1)=xx(soRT((rimEs x)((pLus x)oNE)));
=((A)x EQRT)xx((TimEs x)((pLus x)oNE)))
by (8);

▪

soa.T))XxartmEs x)((PLus x)oNE)))
by (7);

---- ((A(I(soRT))((A Xx(nmEs x))Xx((n.us x)oNE)))
by (8);

..--.-.((A0c soil:MU/WA Ax TimEs)Xxx))Ax((PLus x)oNE)))
by (8);

•

sortr))((A((A(x nmEs))Xxx))Xx((ptus x)oNE)))
by (7);

soRT))((A((A(x nmEs))i))Xx((PLus x)oNE)))
by (6);

--=((A(K sortz))((AgA(K TimEs))1))((a Xx(PLus x))Xx ONE)))
by (8);

124

(8)

ROBINSON

=((A(K SQRT))((A((A(K TimEs))I))((A((A PLUS)Xxx))Xx ONE)))
by (8);

=((A(x. SQRT))((A((A(K TimEs))1))((A((a(c Purs))Xxx))Xx ONE)))
by (7);

=((A(K SQRT))((A((A(K TIMES))IDUA((A(K PLUS))IDAx ONE)))
by (6);

.--((A(K SQRT))((A((A(K nmEs))0)((a((A(c pLus))1))0c ()NEM)
by (7);

—(5)•

We saw previously, by a special calculation, that (1) and (5) describe the
same function. More generally, whenever the Schonfinkel procedure produces
a translation F of an expression 2X13, we may prove that

(2xi:1z) = (Fz) (9)
holds for an arbitrary z by noting that:
(i) if B is X then (Axsz)=z

=(1z) by (4)
= (Fz) by (6).

(ii) if B does not contain x then (Axnz) =z

= ((cn)z) by (3)
= (Fz) by (7).

(iii) if B = (CD) contains x then (balz) = (Ax(cD)z)
= (ctz/x)Dtz/x})
= ((),xcz)(Axpz))
=_(((A)xc)AxD)z) by (2)
= (Fz) by (8).

§2. The phenomena described in the previous section were discovered fifty
years ago by Schonfinkel (1924). They have since been studied in great
detail by Curry and Feys (1958) under the heading combinatory logic. An
excellent summary can be found in Rosenbloom (1950, Chapter 3, section 4).
For our present purposes the situation can be summed up by saying that

whatever can be expressed in a language based on application and abstraction
as fundamental notions can be expressed in a far simpler language based
on application alone.
The purpose of this note is to provoke investigations into the use of such

simple 'Schonfinkel languages' as the vehicles of meaning in the mechanization
of higher order theorem-proving problems. The extreme syntactic and
semantic simplicity of these languages makes it seem likely that it will be
much easier to develop proof procedures and interactive deductive systems
for them than for the lambda-calculi suggested in Robinson (1969). For one
thing, they can be treated as first-order equation calculi, permitting the use
of resolution and related inference principles (such as paramodulation) which
are well understood.
These possibilities are explored in the next section.

125

MECHANIZED REASONING

§3. Such a first-order system might look like the following. The terms are
either variables x, y, z, etc., or constants A, B, C, PLUS, SQRT, etc., or else are
applications (a, 13) in which at and)6' are terms.
The only literals in the system are equations '1=13 and inequations at & 13,

where a and 13 are terms.
One makes assertions in the system by writing clauses, i.e., finite collections

of literals considered as disjunctions of their members, universally quantified
with respect to all variables.
In other words, this is a first-order language in which there is only one

relation symbol, namely equality; only one function symbol, namely applica-
tion; and a collection of individual constants.
Among the constants there will be: A, K, I, TRUE, FALSE, NOT, OR, AND,

IMPLIES, EQUAL, ALL, EXISTS, CHOICE, IF and FAIL. The first three of
these will intuitively denote the three Schonfmkel functions; the next seven
will denote what their mnemonic properties suggest; the next two will
denote the quantifiers; CHOICE will denote Hilbert's epsilon operator or
selection function, which assigns to every nonempty set some member of it
(and, to the empty set, some arbitrary object); IF denotes the operator which
corresponds to the 'if ... then . . . else . ..' construction of conditional
expressions in languages like ALGOL, LISP or P0P-2; FAIL denotes the dual
of CHOICE.
These informal and intuitive semantic rules for the constants are embodied

in a set of clauses called SEM, which plays the role of a set of axioms. They
are:

SEM 1.

SEM 2.

SEM 3.
SEM 4.
SEM 5.
SEM 6.
SEM 7.
SEM 8.
SEM 9.
SEM 10.

SEM 11.

SEM 12.
SEM 13.
SEM 14.
SEM 15.
SEM 16.
SEM 17.
SEM 18.
SEM 19.
SEM 20.
SEM 21.
SEM 22.
SEM 23.
SEM 24.

(((Ax)y)z)=((xz)(yz))
((cx)y)=x
(ix)=x
X0 TRUE X0 FALSE

X0 TRUE (NOT X)= FALSE
X= TRUE (NOT X) FALSE

XOPALSE (NOT X)= TRUE

X=FALSE (NOT X)0 TRUE
X0 TRUE y0 TRUE ((AND x)y)= TRUE
X0 TRUE y0 FALSE ((AND x)y)=FALSE
X0FALSE y0 TRUE ((AND x)y) =FALSE
X0FALSE y0 FALSE ((AND x)y) = FALSE
((AND x)y)0 TRUE X= TRUE
((AND x)y) 5TRUE y= TRUE
((AND x)y)0 FALSE X= FALSE y= FALSE
X0 TRUE y0 TRUE ((OR x)y) = TRUE
X0 TRUE y0 FALSE ((OR x)y)= TRUE
X0 FALSE y0 TRUE ((OR x)y),----- TRUE
X0 FALSE y0 FALSE ((OR x)y)= FALSE
((OR x)y)0 FALSE X=FALSE
((OR x)y)0 FALSE y= FALSE
((OR x)y)0 TRUE X= TRUE y=TRUE

TRUE y0 TRUE ((IMPLIES x)y)= TRUE
X0 TRUE y0 FALSE ((IMPLIES x)y)=FALSE

126

ROBINSON

SEM 25. X0 FALSE yOTRUE ((IMPLIES x)y)=TRUE
SEM 26. x0 FALSE y0 FALSE ((IMPLIES x)y)= TRUE
SEM 27. ((IMPLIES x)y)0 FALSE X= TRUE
SEM 28. ((IMPLIES x)y) FALSE y= FALSE
SEM 29. ((IMPLIES x)y)OTRUE X =FALSE y= TRUE
SEM 30. x0y ((EQUAL x)y)=TRUE
SEM 31. x=y ((EQUAL x)y)=FALSE
SEM 32. ((EQUAL x)y) TRUE x=y
SEM 33. ((EQuAL x)y)0 FALSE x0y
SEM 34. x0 TRUE (((IF X)Y)2')=Y
SEM 35. X0 FALSE (((IF x)y)z)=z
SEM 36. (ALL X) TRUE (xy)= TRUE
SEM 37. (xy)OTRUE (EXISTS X)=TRUE
SEM 38. (x(EA1L x))= TRUE (ALL X)= TRUE

SEM 39. (EXISTS x) TRUE (X(CHOICE X))= TRUE

SEM 40. (EXISTS X)0 FALSE (xy)= FALSE

SEM 41. (x(cuoicE x)) FALSE (EXISTS X) = FALSE

SEM 42. (xy)0 FALSE (ALL x) =FALSE
SEM 43. (ALL X) OFALSE (X(FAIL x)) =FALSE

SEM 44. X=X
SEM 45. x0y y=x
SEM 46. x0y yOz x=z
SEM 47. x0y uv (xu)=(yv).

Any particular theorem-proving problem can then be treated by writing a
set PROD of clauses in this language and seeking to deduce 0 (the empty
clause) from the set: SEM U PROB. The deduction can proceed according to
any valid principles of inference which apply to equality clauses. In particular
the resolution principle may be used as sole principle; or the resolution
principle together with paramodulation (Robinson and Wos 1969); or
Sibert's system (Sibert 1969); or the E-resolution system of Morris (1969).
In any of these systems, if SEMUPROB is unsatisfiable (in the usual first-
order sense) then a deduction of 0 is automatically obtainable from SEM Li
PROB as premises; and conversely.
The underlying assumption here is that the (first-order) unsatisfiability of

SEM U PROD is equivalent to the (intuitive, higher order) unsatisfiability of
PROB alone. Whether or not this is so depends on the 'correctness' of the
set SEM as a specification of the fundamental semantics. For our present
purposes we will simply postulate the correctness of SEM, and confine our
attention to the problem of designing suitable deductive machinery.
The various deductive systems mentioned above, while theoretically

adequate, are no use in practice. The difficulty lies in the fact that the deduc-
tions produced in any of these systems are too long. Their length is caused

by the very small size of the individual inferences they contain; they corres-
pond to a 'micro' level of analysis of the reasoning, in which each ̀ macro'
inference is broken down into a sequence of extremely elementary steps.

The way to deal with this problem seems clear: identify the 'macros', and
set up deductive machinery in which they are the basic inference principles.

127

MECHANIZED REASONING

§4. An example will illustrate the ideas set forth in the previous section.
We are to show that the statement:

for ally, if (Ry) then (ym) (1)
follows from the statements:

for all x, if (Qx) then (xm); (2)
for all p, if (pQ) then (pR). (3)

We begin by constructing terms in our language corresponding to each
statement. This is conveniently done in two stages: first, construct a term
using lambda-notation; then apply Schlinfmkel's procedure. For example,
(1) first becomes:

(ALL)yaIMPLIES (Ry))(ym))) (4)

and then, by Schonfinkel's procedure:
(ALL((A((A(K ImpLiEs))((A(KR))0))((m)(icm)))). (5)

In similar fashion (2) and (3) become respectively:
(ALL((a((gx impLiEsnaA(KQ))0))((m)(Km)))); (6)
(ALL((A((A(K ImptiEs))((m)((Q))))((m)(KR)))). (7)

Now in order to prove that (1) follows from (2) and (3) we will assert
(2) and (3) and deny (1), and seek to deduce a contradiction. In our language
this is done by equating the corresponding terms to TRUE and to FALSE and
asserting the equations. This yields three unit clauses, comprising PROB:

PROS 1. (ALL((A((A(K IMPLIES))((A(KR))1)))((AO(KM)))) = FALSE

PROB 2. (m..1.((A((a(c ImPLIEs))((a(KQ))1)))((m)(Km))))=TRUE
PROS 3. (ALL((A((A(K ImpuEs))((m)(KQ))))((m)(KR))))=TRUE

We now deduce 0 from the set SEM U PROB, the deduction comprising a
set of clauses labelled DED. From SEM 36 and PROB 3 we obtain, by
resolution:

DED 1. (((A((A(K IMPLIES))((AI)(KQ))))((AO(KR)Dy) = TRUE

whence we immediately infer, by normalization:
DED 2. ((imPLIEs(yQ))(yR)) =TRUE.

What is normalization? It is a 'macro' inference principle, which consists of
repeatedly applying the equations SEM 1, SEM 2 and SEM 3 until no further
applications are possible. In the present case the 'micro' steps by which
DED 2 is obtained from DED 1 are:

DED 1. (((A((A(K IMPLIES))((AI)(K0)))((AI)(KR)))y) = TRUE

•DED 1.1. (a(A(K IMPLIES))((At)(K(2)))y)(((A1)(KR))y)) = TRUE

using SEM 1;
•DED 1.2. (MK ImPuEs)y)(((m)(KQ))y))(((AI)(KR))y))=TRUE

using SEM 1;
DED 1.3. ((impuEs(((m)(KQ))y))(((m)(KR))y)) =TRUE

using SEM 2;
DED 1.4. ((imPtiEs((Ty)(((Q)y)))(((m)(KR))y))=TRUE

using SEM 1;
DED 1.5. WmpuEs(y(N0y)))(((m)(KR))y))=TRUE

using SEM 3;
.DED 1.6. ((imPLIEs(YQ))(((mr)(KR))Y))=TRUE

using SEM 2:

128

ROBINSON

•DED 1.7. ((imeues(n))((iy)((cR)y))) =TRUE
using SEM 1;

•DED 1.8. ((impLies(yQ))(y((cR)y))) = TRUE
using sem 3;

•DED 2. ((tmEues(n))(yR)) = TRUE
using SEM 2.

Normalization yields exactly one conclusion when applied to any clause,
and corresponds, in the Schonfinkel notation, to conversion to normal form
in the lambda calculus. It is exceedingly easy to carry out in the machine.

Continuing with the deduction, we obtain from DED 2 and SEM 29, by
resolution:

DED 3. (3,Q) =FALSE(yR) =TRUE.

whence, resolving with SEM 4, we get:
DED 4. (n)0TRuE(yR)=TRuE

and resolving with SEM 4 again:
Den 5. (pa TRue(yR) F./use.

Our next inference involves another 'macro' principle. From PROS 1 we
obtain, by abstraction, the clause:

DED 6. (((A(K ALL))((A((A(KA))((A(K(A(K IMPLIES))))
((A((A(KA))((A(KK))1)))(KI)))))(KaA1)(Km)))))R) = FALSE

and by abstraction, likewise, from PROB 2, we get:
DED 7. (((A(K ALL))((A((A(KA))((A(K(A(K IMPLIES))))

((g(A(KA))((A(KK))0))(KI)))))(K((AI)(Km)))))Q)= TRUE.

What is abstraction? One way to characterize it is to say that it is just the
reverse of normalization: equations SEM 1, SEM 2, SEM 3 being applied re-
peatedly, in a chain of substitutions. However, it is the right hand sides of
these equations, not the left hand sides, which get replaced; just the opposite
way round from the normalization replacements. For example, the chain of
'micro' steps by which DED 6 is reached from PROB 1 is shown in figure 1.

In the sequence of equality inferences we have indicated which subterm
is replaced in each line, and which term replaces it to form the next line; and
in each replacement we have indicated by which of SEM 1, SEM 2, or SEM 3
these two terms are equal. It will be noted that this same chain, when read
from bottom to top, is a normalization of DED 6; that is, PROS 1 can be
inferred from D ED 6 by normalization.
A theorem-proving program based on elementary equality inferences would

have to 'discover' this chain of steps by isolating it from all other chains of
elementary inferences. In fact there is something quite special about this
particular chain, but what is special about it cannot be expressed at the
'micro' level.
The overall transaction in this inference is the solution of the following

problem:

find .9" such that:
(ALLaA((A0c impLiEsm(A(KR))1)))((m)(km)))) =(FR).

129

MECHANIZED REASONING

PROB 1: (ALL((A((A(K IMPLIESMIA(KR))IDMAI)(KM)))) =FALSE
1

SEM 2

(ALL((A((A(K IMPLIES)MA(KR))1DMKI(A0(KM)))RM =FALSE

%1. .SEM 2

(ALL.((A((a(ic impuEs))((A(KR))(1(K1)R))))(0c((m)(Km)))R))) = FALSE

M3

(ALL((A((A(K impLiEs))((A(KORM((KOR))))(0MA1)(Km)))R))) =FALSE

1-ISEM 2

(ALL((A((A(K imPUEs))((AWKOR')(IR)))(0c0R))))(0c((m)(Km)))R)))=FALSE

SEM I

(ALL((A((A(K IMPLIES)M4A(KK))ORDIIK1)RMMK((A1)(KM)))0))=FALSE

1. SENI 2

imPLIEs))((i((cA)R1)(((A(KK))OR)?((K1)R))))((icam)(Kni)))R)))=FALSE

SEM 1

1
.(ALL((A((A(K IMPLIES))((II(A(KA))(IAIKKI)1))0((KOR)p)((KUAI)(KM)R)))= FALSE

SEM I

(ALL((A((A(K IMPLIESM(AUAIKAM(A(K IC))1M(KWRMIIK((A1)(KM))IRD) =FALSE

SEM 2

(ALLUAHOc(A(K IMPLIES)))OMM(A(KA))((A(KK))1)))(K1))0M(KUAIRKM)))R)))= FALSE

 ISEMI
(ALL(IAMAIK(AIK IMPLIESMR(AUAIKAMIA(KIL))IMIKIMR

I
MIKIIATYKMMR))) =FALSE

1

Lk SEM 2

(ALL(c(t(KA)R1)(((A(K(A(K impLiEs))))((A((A(KA))((A(KK))1)))(KI)))R)i)(04(m)(Km)))R)))=FALSE

SEM I

(Att(MA(KA))((A0c(A0c IMPLIESDIMAI(A(KA))((A(KK))1)))(KOM&KUA1)(KM)DR)))=FALSE
1 1

SEMI

(ALLII(AI(A(KA))(IA(K(A(K IMPLIES))IMAI(AIKAMIA(KK))IMIKIDDRKI(A1)(KM))DRID =FALSE

ITSIEM 2
.((t(ic ALL)R)MAUA(KA))((A(K(A(c imPLiEs))))((AUA(KA))((A(c1c))0))(0))))(K((m)(Km))))R))— FALSE

1
SEM 1

ALLMIAI(A(KA))(IA(K(A(K IMPLIES)))MAIIA(KA)MA(KK)IIM(KI)))))(KI(A1)(KM)))))R) =FALSE
which is DEO 6.

Figure 1

The left hand side of this equation is the left hand side of PROB 1. The
problem intuitively is therefore: express PROB I as: (FR) = FALSE. This
amounts to asking 'what does the left hand side of PROB 1 say about R?'
The left hand side of DED 6 has the form (FR), and its F in fact solves the
problem.
Once the matter is seen in this light, however, a direct solution presents

itself: first write

130

ROBINSON

(ALL((A((A(x impLiEs))((A(ca))i)))((m)(xm))))
as: (xx(ALL((A((A(K impLies))((A(Kx))1)))((m)(Km))))R)

and then apply Schlinfinkel's algorithm to eliminate the lambda notation.
The reader will easily verify that this produces the left hand side of DED 6.
The inference principle we are here calling abstraction can therefore be

stated at the 'macro' level as follows: from a clause C(t) (i.e., a clause C in
which there is a particular occurrence of a term t singled out for attention)
infer the clause C(t') (i.e., the result of replacing the singled-out occurrence oft
by an occurrence of the term t'); where t' is the result of applying Schonfinkel's
procedure to the expression (Axt{x 1 s} s), where s is a constant occurring in t.
(In the above, t{x/s} is the result of substituting the variable x for each

occurrence in t of the constant s.)
In the application of this rule which we have been examining, C(t) is

PROB 1; t is its left hand side:
(.6.1.1.((g(A(x impLiEs))((gicani)))((m)(xm))));

and s is R. The reader will easily verify that C(t') is then DED 6.
There are only finitely many ways in which abstraction can be applied to a

given clause C, corresponding to the finitely many ways in which t and s can
be chosen. For each choice of t and s, the resulting clause is uniquely
determined.
With this explanation of abstraction, the reader is now in a position to

check that the next step in our deduction, DED 7, is indeed obtained by
abstraction from PROB 2. That is, PROB 2 is C, its left hand side is t, and Q is
s. It follows that the result is as stated.
The deduction ends with

DED 8.

which follows by hyper-resolution from DED 5, DED 6, and DED 7.

§5. The example of the previous section was also used in Robinson (1969).
The main point of the proof is to spot that what (2) says about Q, (1) says
about R; while (3) states that whatever can be said truly about Q can also
be said truly about R. The abstraction rule is thus crucial in automatically
generating the proof, and corresponds to a characteristically 'human'
capability, namely, the ability to 'spot what a sentence says' about each thing
which is mentioned in the sentence, and to see that some other sentence says
the same about some other thing.

§6. The relation between Schonfinkel notation and the lambda-calculus
notation is quite closely analogous to the relation between machine language
and source language, in the context of programming. Schonfinkel's procedure,
in this analogy, corresponds to compiling. Rules of inference such as norma-
lization and abstraction are like routines written in machine code, whose
function is viewed holistically at the source language level, yet analysed in
detail at the machine level.

131

MECHANIZED REASONING

It would clearly be very useful to have, in terms of this analogy, a decompila-
lion procedure — a procedure which translates a given piece of Schonfinkel
notation into lambda notation by reversing the direction of application of
the three replacement rules (6), (7) and (8) of section 1. There appears to
be no difficulty about designing such a procedure. It would, for example,
translate DED 6 into:

(Ax(ALL Ay((ImpLiEs (xy))(ym)))R) =. FALSE.

§7. It is hoped that this brief discussion of the use of SchOnfinkel notation to
express higher order theorem-proving problems within first-order equation

calculi will serve as a starting point for further investigations. There are a
number of interesting questions that arise:
(1) What, besides normalization and abstraction, are appropriate ̀ macro'
rules of inference? For example, one might well wish to broaden the notion of

'computing out' to cover not only the ̀ evaluation' of A, lc and i — which is
essentially what normalization is — but also the evaluation of other functions,
such as the boolean functions, the standard arithmetic functions, or indeed
any functions for which there exists information enough in the system to

replace applications of them by the results of those applications.
(2) Is SEM adequate? There may be further constants which ought to be
included and axiomatized as ̀system' constants' — e.g., CAR, CDR, CONS, and
ATOM, of the LISP system. It may be that there are better ways of axiomatiz-

ing the present set of system constants than those incorporated in the present
SEM.
(3) Ought we to reimpose the type classification (see Robinson 1969) or
not? What purposes does this classification really serve?
(4) Might it be useful to allow relation symbols other than equality, and
function symbols other than application, into the first-order calculi we use to
express higher order problems? If so, what relations and functions should

be represented? Usefulness apart, is it theoretically necessary to introduce

further notions?

Acknowledgement

The work described was completed while the author held a Senior Visiting Fellowship
in the Metamathematics Unit, Edinburgh University, financed by the Science Research
Council.

132

ROBINSON

REFERENCES

Curry, H.B. & Feys, R. (1958) Combinatory Logic, Volume I. Amsterdam: North
Holland Publishing Company.

Morris, J.B. (1969) E-Resolution: extension of resolution to include the equality
relation. Proceedings of the First International Joint Conference on Artificial Intelligence.
Washington D.C.

Robinson, G., & Wos, L. (1969) Paramodulation and theorem-proving in first-order
theories with equality. Machine Intelligence 4, pp. 135-50 (eds Meltzer, B. & Michie,
D.). Edinburgh: Edinburgh University Press.

Robinson, J.A. (1969) Mechanizing higher order logic. Machine Intelligence 4, pp. 151-
70 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

Rosenbloom, P.C. (1950) The Elements of Mathematical Logic. New York: Dover
Publications.

Schonfinkel, M. (1924) Uber die Bausteine der mathematischen Logik. Mathematische
Annalen, 92,305-16. English version entitled: On the building blocks of mathematical
logic. In From Frege to Godel: A Source Book in Mathematical Logic, pp. 355-66
(ed. van Heijenoort, J.). Harvard University Press, 1967.

Sibert, E.E. (1969) A machine-oriented logic incorporating the equality relation.
.Machine Intelligence 4, pp. 103-34 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

133

