15

Mathematical and Computational Models of
Transformational Grammar

Joyce Friedman

Department of Computer and Communication Sciences
University of Michigan

INTRODUCTION
In this paper we compare three models of transformational grammar: the
mathematical model of Ginsburg and Partee (1969) as applied by Salomaa
(1971), the mathematical model of Peters and Ritchie (1971 and forth-
coming), and the computer model of Friedman et al. (1971). All of these
are, of course, based on the work of Chomsky as presented in Aspects of the
Theory of Syntax (1965).

We were led to this comparison by the observation that the computer
model is weaker in three important ways: search depth is not unbounded,
structures matching variables cannot be compared, and structures matching
variables cannot be moved. All of these are important to the explanatory
“adequacy of transformational grammar. Both mathematical models allow the
first, they each allow some form of the second, one of them allows the third.
We were interested in the mathematical consequences of our restrictions.

The comparison will be carried out by reformulating in the computer
system the most interesting proofs to date of the ability of transformational
grammars to generate any recursively enumerable set. These are Salomaa’s
proof that the Ginsburg-Partee model can generate any recursively enumer-
able (r.e.) set from a regular base, and the Peters-Ritchie proof that any r.e.
set can be obtained from a minimal linear base. Although modifications are
required, it is, as we shall show, possible to obtain these results within the
weaker computer model.

Thus, every recursively enumerable language is generated by a trans-
formational grammar with limited search depth, without equality compari-
sons of variables, and without moving structures corresponding to variables.
The comparison reinforces the observation that transformational grammars
can be excessively powerful in terms of generative capacity while at the same
time lacking features necessary for explanatory adequacy.

293

PERCEPTUAL AND LINGUISTIC MODELS

An understanding of the role of variables in the structural description of a
transformation is essential to the arguments of this paper. For the reader
unfamiliar with the notion, we offer here an elementary explanation.
Basically the idea is that in giving a structural description to match a tree,
part of the description can be omitted in favor of a variable which will match
any structure. In the simplest case consider the tree

S{NPrabbits) VP{V{eat) NP lettuced>>)
where the brackets indicate a tree structure in which S dominates NP, and
VP, and VP dominates ¥ and NP. Then either of the structural descriptions
NP VP or NP V NP matches the tree. But these would not match

S{AUX{do)» NP {rabbits) VP{V)eat) NP {lettuced>)
because an 4 UX precedes the leftmost NP. To match either of these trees,
and any other tree ending in ¥ NP, we introduce a variable as the left part of
the structural description. The variable will match any initial structure. In
the computer notation the percent sign is used for the variable, so we write
% VNP,

MATHEMATICAL AND COMPUTATIONAL MODELS
The two mathematical models limit themselves to the base component and
the transformational component of the syntactic part of a grammar. That is,
there is no consideration of either semantics or phonology, and furthermore,
no mention of the lexical component in syntax. The computer model likewise
ignores semantics, although it has now been extended to phonology. Within
its syntactic part it has an important lexical component.

For purposes of comparison we restrict ourselves to the components that
all three models have in common, that is, the base component and the
transformational component. The base component consists of phrase
structure rules, with a distinguished initial symbol S. This generates a base
tree with S as root. The transformational component maps this tree onto a
surface tree by application of a sequence of transformations. ’

The computer model differs from the mathematical models because of its
intended use. It is not designed primarily as a mathematical object, but is the
basis for a computer program used by linguists in.writing and testing
grammars and by students learning about transformational grammar. Some -
users are interested in the theory of syntax, and write grammars to illustrate
points of theory. For example, the program is now being used to investigate
case grammars. Other users are interested in describing little-known
languages. For them, the grammar represents a hypothesis about the language
which is tested by the program. For them transformational theory is simply
the best currently available formalism for grammar.

In any case, the user writes a transformational component which is an
input to the program. He may also provide a base component and study
random sentences, or he may provide a partial or complete base tree. The
output of the program is the output of the grammar, that is, a full derivation

294

FRIEDMAN

‘from base tree to surface tree. The user can modify or accept his grammar
based on this information.

Given this intended use of the program, there are certain natural conse-
quences for the model. The computer form of a grammar should seem natural
to a linguist: a computerized transformational grammar shouldn’t look too
different from those in the literature. The model must allow a choice of
alternative expressions, and thus will contain redundant features, and also
some features which purists might consider too powerful.

A computer model can be too strong without harm, provided only that the
user can specialize it by rejecting options which he feels are unnecessary.
A simple example is the choice of repetition modes for transformations.
A transformation applies if, on testing, a structural analysis of the tree is
found which matches the structural description of the transformation. Four
different ‘repetition modes’ can be used to determine whether one or all
such structural analyses will be found, and if and when the corresponding
structural changes will be made. Using mnemonics constructed of ‘A’ for
‘analyze’ and ‘C’ for ‘change’, we can represent these as Ac (find the first
analysis and apply the change), AAcc (find all analyses, then do all changes),
AcAc (find the first analysis, do the change, repeat), and AAac (find all
analyses, do one randomly selected change). Some linguists might argue
that not all of these are necessary; indeed many might feel that one mode
suffices for all transformations. For a computer model, however, it is
advisable to allow all reasonable possibilities, so that a user may make his
own choice. The user is free to experiment, without being committed to the
use of excessive power.

Similarly, there may be technical weaknesses in a computer model which
are desirable for practical reasons. Although the base grammar specifies that
the sentence symbol S may be introduced recursively, the computer program
will not introduce embedded sentences in the base unless the user has
specifically called for one in the input to a particular run. This device is
necessary if the output of the generation process is to remain within practical
limits. In fact, for transformational grammar, the relation between em-
bedding and embedded sentences must be well specified if a sentence is to
result.

In a mathematical mode, on the other hand, it becomes very important to
be neither too weak nor too strong, because the investigation of power is a
prime purpose in constructing the model. Unbounded processes must be
expressed as such, wherever the linguistic theory allows them. That is,
results would immediately be suspect if what is really an unbounded process
in language were simulated by a bounded process in the mathematical model.
Thus, both the Ginsburg-Partee and Peters-Ritchie models attempt to be
faithful to linguistic theory in a way that the computer model does not.

295

PERCEPTUAL AND LINGUISTIC MODELS

Restrictions of the use of variables

We have mentioned above several important ways in which the computer

model is apparently too weak for explanatory adequacy. These are

1. bounded depth of analysis

2. lack of equality comparisons on variables

3. inability to move structures corresponding to variables.

On the other hand, both mathematical models allow unbounded depth of

analysis; both allow equality comparisons of variables, although the

Ginsburg-Partee model compares terminals only; Peters-Ritchie, but not

Ginsburg-Partee, allows movement of structures corresponding to variables.
The bounded depth constraint in the computer model requires that in

analyzing a tree to match a structural description the search never goes

below an S unless that S is explicitly mentioned. (If S is the only recursive

symbol in the base, then an equivalent statement is that no essential use of

variables is allowed. Any occurrence of a variable could then be replaced by

a finite choice of definite symbols. Thus, all these restrictions are restrictions

on variables.) Consider a structural description S/{(A4 S {(NP)) and the

subtree

!

S
VAN
4 S

NP
If the search begins at the top S, the daughters 4 and S are found and then
the NP below this S can be matched. But no match will be found if the
structural description is just S/{A NP}, which does not allow the search
to go below the intermediate S. This restriction was made because it is in
practice useful. It is convenient not to have to consider more than the current
S unless that consideration is part of the argument. For example, in the
Peters-Ritchie proof there are several structural descriptions (e.g. T3) with
the condition 1 is not an S; in the computer version the condition can be
omitted because of the bounded depth constraint (see Appendix B). Further,
the user can study the effect of unbounded search by writing the alternation
of the case of depth 1, depth 2, and so on up to any finite limit. This of
course does not give an exact representation of the transformation, but is
adequate for all practical purposes.

A consequence of the decision to block search whenever an § is encountered
in the tree but not in the structural description is that it is not possible for a
transformation to pull a constituent out of an arbitrarily deeply embedded
subtree, raise it over any number of sentence boundaries, and bringitup to a
higher sentence. Postal (1971) has argued convincingly that transformations
must have this power. It must be possible to write a single transformation
that will find a noun phrase and bring it up from an arbitrarily deeply
embedded subsentence. Postal’s example of the type of sentence whose
derivation requires unbounded depth is

296

FRIEDMAN

Who did Jack find out that Mary believed that Bill said that you
thought you saw?
Here the deep structure corresponds roughly to
Q(Jack found out that (Mary believed that (Bill said that (you
thought (you saw who)))))
where the parentheses indicate sentence embedding. The final ‘who’ must be
moved up to the top sentence from a sentence arbitrarily far down. There
is in general no upper bound to this depth.

There are results that can be proved about transformational grammars if
search depth is bounded, that are not easily proved, and are possibly not
even true, otherwise. Hamburger (1971) was able to extend to transforma-
tional grammars some of Gold’s results (1967) on identification of languages
in the limit. One of Hamburger’s crucial assumptions was that the search
depth was bounded. .

The remaining two points in which the mathematical models appear more
powerful, the equality comparison for variables and moving of structure
matched by variables, are primarily motivated by the analysis of conjunction
(which indeed poses many problems for transformational grammar).

THEOREMS OF SALOMAA AND PETERS-RITCHIE
In spite of these linguistically weak aspects of the computer model, it retains
the full power demonstrated for the mathematical models. We examine two
major mathematical results on transformational grammar, and then show
that both proofs can be reproduced in the computer system.
Theorem (Salomaa). For an alphabet A4, there is a set R of transformational
rules such that any recursively enumerable A-free language Lo over A4 is
generated by a (restricted) Ginsburg-Partee transformational grammar with
regular base and with R as the set of transformational rules. Salomaa’s proof
is based on the theorem that every recursively enumerable language Lo can
be expressed as

Lo=h(hi(DnK1)nhy(DNK3))

where /4 and A; are homomorphisms, D is a Dyck language, and K; and K>
-are regular languages. D, h, and 4 are determined by 4 only, and are
independent of Lo. The base component generates the language KiaoK,
where ag is a marker, and the transformations carry out the homomorphisms
and check whether or not substrings belong to D and whether they belong
to the required intersections.

The Salomaa proof seems intuitively to differ from a normal linguistic
derivation. In particular, the lack of a transformational cycle seem un-
natural. This is closely related to the arbitrary recursion in the base. Not only
is S not a recursive symbol, but most other nonterminals of the base can be
recursive. Thus, the Salomaa proof seems to use a grammar which is different
in obvious ways from the grammar required for natural languages.

Theorem (Peters and Ritchie). L is a recursively enumerable language on the

297

PERCEPTUAL AND LINGUISTIC MODELS

alphabet 4={ay, a3, . . ., a,} if and only if L is generated by a transformational
grammar with the base rules S—»S# and S—aia;...a,b#.

The Peters-Ritchie proof begins with the fact that every r.e. language is
enumerated by some Turing machine Z. They construct a transformational
grammar which simulates the Turing machine Z. The terminal string of the
tree as it goes through the derivation contains a substring that represents the
instantaneous description of the Turing machine. The transformational
grammar is set up so that at each cycle exactly one Turing machine instruction
is applied. As the derivation proceeds up the tree, the Turing machine is
simulated step-by-step, and its instantaneous description is carried along.
Each time a cycle is completed, a boundary symbol is erased, and one of the
S’s given by the first rule of the base component is pruned. The initial
(base) tree has enough sub-trees so that there will be one for each instruction
to be used. Finally, a very clever scheme is used to erase all the boundary
symbols just in case the Turing machine has been adequately simulated.
The language of the grammar, that is, those surface strings which do not
contain the boundary symbol, corresponds to the set of sentences in the
language enumerated by the Turing machine.

These results show that transformational grammars as usually formulated
are too powerful. Peters and Ritchie (1969) observe that their result makes
impossible an empirically testable statement of the universal base hypothesis
for natural languages, unless one enlarges the range of data to be accounted
for by a grammar,

There are, of course, other results that show that transformational gram-
mars under certain restrictions generate restricted subclasses of languages.
For example, Petrick (1965) showed that, for a particular definition of
transformational grammar, only recursive languages are obtained if the
depth of embedding is bounded by a function of the length of the sentence.
Refined results along these lines are given in Peters and Ritchie (1971).

COMPARISON OF THE THREE MODELS

In comparing the three models we emphasize features used in these two
proofs. For each proof, we constructed a computer version that was run on
several examples. Appendix A lists our reproduction of Salomaa’s proof;
Appendix B is the Peters-Ritchie proof. In the discussion we show how these
versions of the proofs differ from the originals, and in particular we show
that neither of them makes unavoidable use of the more powerful concepts
of variable which are lacking in the computer model. Specific transformations
of the proofs will be referred to frequently; they will be found in the
appendixes.

Base component :
No attempt was made to simulate on the computer the base components of
the two proofs. The base rules are listed in the Appendixes for completeness

298

FRIEDMAN

only. All computer runs were made starting with completed base trees. The
computer model treats base rules as ordered context-free rules with recursion
on the sentence symbol only.

In the absence of any specification of the base component in the Ginsburg-
Partee model, Salomaa obtains the base trees by a regular grammar in which
the rules are unordered and there are many recursive symbols; however, the
sentence symbol is not reintroduced by any rule.

The Peters-Ritchie model allows an unordered set of context-sensitive rules
as the base. In the proof under consideration the base is a two-rule minimal
linear grammar; recursion is on the sentence symbol only.

Structural description

In reproducing the Salomaa proof in the computer system, a few changes to
the transformations were necessary. There is no difficulty with S-bounded
search depth, since the base structure is a simple sentence with no embedded
S. However, the transformation 18, which checks whether Ay(ky)=hi(k2),
does so by an equality test on variables. Equality of variables here is equality
of corresponding terminal strings only. T8 cannot be transcribed directly
because comparison of variables is not allowed in the computer model.
However, by using a device that Salomaa uses elsewhere in the proof, T8
is replaced by a sequence of transformations T8A, T8B, and T8C (see Appendix
A), which create an extra copy of the relevant subtree and then compare its
halves node by node, deleting if the comparison is satisfactory.

Another difference, though not relevant to our main discussion, is that for
Salomaa a structural description is a boolean combination of proper analyses
with no explicit mention of substructure. His proof uses boolean combination
in three transformations, T5, T7, and Ti1. In all three the form is a single
proper analysis which carries the main burden of the transformation,
conjoined with a negation which specifies that no letter of a particular
alphabet occurs. This is done to ensure that the previous transformation
has applied as often as it can and is now no longer applicable. Thus, if the
transformations had been taken as ordered, the negation would be un-
‘necessary. In the computer model a structural description is a sequence of
structures and negation is available only with reference to the subanalysis of
a mentioned node. This was adequate to the purposes of T7 and Ti1 (see
Appendix A). T5 was rewritten more simply since the boolean combination
was in fact unnecessary.

The Peters-Ritchie model has a much richer notion of structural descrip-
tion, specified in terms of a boolean combination of conditions on a factoriza-
tion of the labelled bracketing representing the tree. The model allows
equality comparisons of variables; these compare structures rather than
terminal strings. However, this device is not used in their proof.

The Peters-Ritchie model does allow unbounded search depth, and it was
on this point that some changes were necessary in transcribing the trans-

299

PERCEPTUAL AND LINGUISTIC MODELS

formations. It was necessary to introduce additional structure in the state-
ments of the transformations; however, some supplementary conditions were
thereby eliminated.

The basic scheme for the transformations of the Peters-Ritchie proof can
most easily be seen by examining transformation T5. For the case of an
alphabet with the three symbols 41, A2, 43, the structural description of T5
can be written in the notation of the computer model as

SCSCH#A#H# AVA2AIB #### (##)BYB#H YD) #.
Because of the bounded search depth discussed above, the computer version
of this transformation mentions two sentence symbols S rather than just
the one mentioned in the original proof. The tree matched by this structural
description can be represented schematically as:

/S\
S #
S B # XX

The sentence tree whose contents are fully given by the structural description
is the lowest one in the figure. The dots indicate the position in the tree of
the instantaneous description of the Turing machine. The top S in. the
figure is the one at the top of the current step of the cycle.

All of the structural descriptions of the Peters-Ritchie proof can be re-
written in this form or, as in T3, as choices of a finite set of these. Thus
unbounded search depth, although allowed by the notation, is not needed for
the proof.

Structural change

The computer mode! disallows any operations on variables, but is otherwise
able to reproduce all changes allowed by the other two models. The Peters-
Ritchie model allows deletion, substitution, and adjunction, all of sequences
of factors; the Ginsburg-Partee model is similar except that sequences
corresponding to variables cannot be moved. Since the Peters-Ritchie proof
does not use the ability to move variables, there is no difficulty in transcribing
its structural changes to the computer notation.

Sequencing of transformations
The three models differ in the way they specify the order of application of
transformations. The computer model provides a language in which a

300

FRIEDMAN

control program can be written. The Peters-Ritchie model assumes the
standard bottom-to-top transformational cycle. In Appendix B, the computer
control program is used to provide the transformational cycle for the Peters-
Ritchie proof. v

The control device of the Ginsburg-Partee model is also quite general, but
Salomaa’s proof uses only a restricted model in which the control device is
ignored. Salomaa’s transformations are unordered and are formulated so
that at any point in the derivation at most one of them can apply. The
computer system requires some order for the rules; in Appendix A the
control program simply applies them in the order written. By marking some
rules as Acac the full derivation is carried out in one pass through the
rules. An alternative would be to specify all rules as Ac and have the control
program invoke them repeatedly until none applies.

Parameters

The repetition mode parameter of the computer model was discussed above
as an example of deliberate excess power. Although the mathematical model
of Ginsburg and Partee provides directly for Ac transformations, and
indirectly, through the control device, for AcAc transformations, Salomaa’s
proof uses only Ac. In simulating his proof it is convenient, though not
necessary, to use both Ac and AcAc. The Peters-Ritchie model treats all
transformations as AAc. In their proof, transformations 13 and T4 must be
regarded as AAC; the others could be indifferently taken as any of the four
modes.

The computer model allows transformations to be specified as optional or
obligatory. Since the optionality parameter is relegated by Ginsburg and
Partee to the control device, which Salomaa does not use, Salomaa’s
transformations are all obligatory. In the Peters-Ritchie system all trans-
formations are obligatory, although the effect of optionality can be obtained.

Special conditions

The computer model was designed to be neutral with respect to certain special
conditions on transformational grammars so that a user might simulate
them if desired but would not be required to include them. The condition on
recoverability of deletions is required by the Peters-Ritchie model; it is
preserved by our version of their proof. Their automatic ‘pruning convention’
is simulated by the transformation TPRUNE in the computer version. The
filtering condition is a condition on the output of a grammar: for Peters and
Ritchie the presence of the boundary marker # signals a failed derivation;
Salomaa uses the markers ay, . . ., a¢ for this purpose.

Acknowledgement
This research was supported in part by the National Science Foundation under Grant
GS 31309 to The University of Michigan.

301

PERCEPTUAL AND LINGUISTIC MODELS

REFERENCES

Chomsky, N. (1965) Aspects of the Theory of Syntax. Cambridge, Mass.: MIT Press.

Friedman, J. et al. (1971) A Computer Model of Transformational Grammar. New York:
American Elsevier,

Ginsburg, S. & Partee, B. (1969) A mathematical model of transformational grammars.
Information and Control, 15, 297-334.

Gold, E.M. (1967) Language identification in the limit. Information and Control, 10,
447-74.

Hamburger, H.J. (1971) On the Learning of Three Classes of Transformational
Grammars. Ph.D. dissertation, University of Michigan.

Peters, P.S. & Ritchie, R.W. (1969) A note on the universal base hypothesis. Journal
of Linguistics, 5, 150-2. ’)

Peters, P.S. & Ritchie, R.W. (1971) On restricting the base component of a trans-
formational grammar. Information and Control, 18, 483-501,

Peters, P.S. & Ritchie, R.W. (forthcoming) On the generative power of transformational
grammars.

Petrick, S.R. (1965) A Recognition Procedure for Transformational Grammars. Ph.D.
dissertation, Massachusetts Institute of Technology.

Postal, P.M. (1971) Cross-Over Phenomena. New York: Holt, Rinehart and Winston.

302

FRIEDMAN

APPENDIX A

PCNMPUTER EXPERIMENTS IN TRANSFORMATIONAL GRAMMAR:W

WSALOMAA=~ THE GENERATIVE CAPACITY OF TRANSFORMATIONAL GRAMMARS"
" 0OF GINSBURG AND PARTEE"

WINFARMATIDN AND CONTROLe 18y 227-232 (1971)%

"THE BASE GENERATES A WORD K1 AO K2 "
PHRASESTRUCTURE
S = 01, .
WLET Gl BE A REGULAR GRAMMAR GENERATING K1®
YWITH INITIAL SYMBOL Q1"
YWITH NONTERMINALS UL, U2, SAYN
wiokdor [NSERT HERE ALL RULES A = X By B NONTERMINAL, OF GL"
Wikt TNSERT HERE A RULE A = X $2, FOR EACH RULE A = X, X IN I2"
BLET 62 BE A- REGULAR GRAMMAR GENERATING K2®
"WITH INITIAL SYMBOL Q2
"WITH NONTERMINALS V1, V2, SAY®
$2 = AD 02.
wxkkk INSERT HERE ALL RULES OF G2
SENDPSG

“LET 1 BE D1, D29
"LET I1 BE Cl.C2,4C3,C4" .
"LET THE SYMBOLS OF I2 BE BljeeeyBby WITH INVERSES BIlveeesBI6

TRANSFORMATIONS

"T1 DUPLICATES THE BASE WORDY
WAND INTRODUCES THE MARKER Al BETWEEN THE TWOQ COPIESH
TRANS T1 AC.
©sn 1 01,
SC 1 ADRIS 1y Al ARISE 1.

WTHE "NEXT RULES OPERATE ON 'THE LEFTMOST COPYM
"T2 CHECKS WHETHER OR NOT K1 BELONGS TO D™
YAND IF IT DOES ERASES K1 "
TRANS T2 ACAC.
SD % (1 Bl 2 BIly 1 B2 2 BI2y 1 B3 2 BI3y) B4 2 Bl4y 1 BS 2 BIS,
1 B6 2 BI6) ¥ S2 Al Ql.
SC ERASE 1, ERASE 2.

“T3 CHANGES THE MARKER TO- A2W
TRANS T3 AC.
SD $2 2A1 Ol.
SC A2 SUBSE 2.

"T4 CHECKS WHETHER OR NOT K2 BELONGS TO Do®
"ANDy IF IT DDES,y ERASES K2"
TRANS T4 ACAC. . B
SD A0 % (1 B1 2 8Ily 1 B2 2 BI2,y 1 B3 2 BI3y 1 B4 2 Bl4y 1 BS 2 BIS5y
1 B6 2 BI6) % A2 Ql.
SC ERASE 1y ERASE 2.

MT5 CHANGES THE MARKER TO A3, ®
MPRAVIDED BOTH KL AND K2 BELONG TO D
uT5 ALSD ERASES THE LEFT MOST BRANCH OF THE TREEM
TRANS T5 AC.
WROALEAN COMBINATION EXCLUDING LETTERS OF 12 IS UNNECESSARY™
SD 1A0 2A2 Q1.
SC ERASE 1y A3 SUBSE 2.

WTHE REMAINING RULES OPERATE ON THE RIGHT-MOST BRANtH"
"T6 APPLIES THE HOMOMORPHISM Hl TO BOTH K1 AND K2-%

303

PERCEPTUAL AND LINGUISTIC MODELS

WTRANS Té&"
WTHE ACTUAL SC WILL DEPEND ON Hl. - THE STRING H1(X).1S ADJOINED®
"TN THE LEFT OF 3y THEN 3 IS ERASED." R ",
UTN REPRESENT THE HOMOMORPHISM H1 WE BREAK T6 INTO 2R+8 "
WTRANSFORMATIONSy AND CARRY OUT THE MAPPING SYMBOL BY SYMsOL™
TRANS T6R1 ACAC.
SN A3 % 3B1 Z.
SC Cl1 ALESE 3, Cl ALESE 3, ERASE 3, "H1(Bl)=Cl C1" R
TRANS T6B2 ACAC. SD A3 3 3B2 %. SC ERASE 3. "H1(B2)=EMPTY"
TRANS T6B3 ACAC. SD A3 % 3B3 %. SC C2 ALESE 3, ERASE 3. "H1(B3)=C2"
TRANS T684 ACAC. SO A3 ¥ 3R4 %. SC C3 ALESE 3, C4 ALESE 3, ERASE 3.
TRANS T685 ACACe. SD A3 % 385 % SC Cl ALESE 31 ERASE 3.
TRANS T6B6 ACAC. SD A3 2 3B6 #%. SC C2 ALESE 3,. C2 ALESE 3, ERASE 3.
TRANS T63I11 ACAC. SD A3 38I1 %, SC C3 ALESE 31 ERASE 3.
TRANS Té6RI2 ACAC. SD A3 3RI2 %+ SC ERASE 3.
TRANS T6B8I3 ACAC. SD.A3 3RI3 %. SC C4 ALESE 3, Cl ALESE 3, ERASE 3.
TRANS T6BI4 ACAC. S A3 3B14 %..SC C2 ALESE 3, ERASE 3.
TRAMS T&BIS ACACe. SD A3 3315 %. SC C3 ALESE 3, C3 ALESE 3, ERASE 3.
TRANS TéBI6 ACACe. SD A3 3816 %o SC ERASE 3.

Al

A€ G AL € ¢ ¢

HT7 CHANGES THE MARKER TO A4, ™

YAFTER HAVING CHECKED THAT ALL APPLICATIONS ‘OF H1 ARE MADE®
TRANS T7 AC (A3).

SN 1 A3 Q1-/<% (Bl4B2yB34yB4+B54B6yBIL4BIZ2+BI3,B14,BI5,RI6) %De

SC A4 SUBSE 1le

"T8 CHANGES THE MARKER TO A5, PROVIDED H1(K1)=H1(K2)"

WTRANS T8 CANNOT BE TRANSCRIBED DIRECTLY®
WRECAUSE WE NN NOT HAVE THE EQUALITY TEST FOR VARIABLES X!
WINSTEAD WE COPY THE TREES OF INTEREST AND COMPARE BY UELETION"
TRANS T8A AC (A4).

SN A4 1 0L .

SC 1 ADRIS 1, A5 ARISE 1.
TRANS TAB ACAC (A4).

SN A4 Q1 A5 % 5({C1yC24C34C4) AD % 6(C14C2+C34C4)y WHERE 5 EQ 6.

WCNULD AVOID CONDITION 5 EQ 6.BY DOING 4 CASES™

SC FRASE 5, ERASE 6.
TRANS T8C AC (A4).

SD'1 A4 2 Q1 3 A5 4 AOQ.

SC A5 SUBSE 1y ERASE 3, ERASE 4.

WT9 ERASES THE BRANCH DOMINATED BY THE NODE S2,.%
. HAND CHANGES THE MARKER TO A6"
TRANS T9 AC (AS).
SN 1 A5 % 3 S2.
SC A6 SUBSE 1, ERASE 3.

"T10 APPLIES THE HOMOMORPHISM H®
TRANS T10 ACAC.
“AN ALTERNATIVE WAY TO DO A HOMOMDRPHISM"

SN A6 % (1 Cls2 C2y 3 C3y 4 C4) %o
SC D1 ALESE 1y D2 ALESE 1, ERASE 1y

D1 ALESE 2y ERASE 2,

ERASE 3,

N2 ALESE 4y D2 ALESE 4y ERASE 4.

"T11 ERASES THE MARKER, THUS LEAVING A WORD UF LO ¥
TRANS, T11 AC.

SP'1 A6 01-/<% (CLlsC24C3,C4) %>,

SC ERASE 1.

CP I:TREE;II.
$ENDTRA

$SHMAIN FTRIN TRAN,

"INPUT BASE TREES FOLLOW®
S$<01<BL U1<B3 U2<BI3 U1<BI1l S2<A0 Q2<B1l V1<B3 V2<RI3 V2<311>>>>>>>>>>.
$<Q1<B1 ULKRI1 12483 S$2<A0 02<B1 V1<BI1l V2<BI3>>>>>5>5,

s

304

O

FRIEDMAN

APPENDIX B

"CdMPUTER EXPERIMENTS IN TRANSFORMATIONAL GRAMMAR:®
"PETERS AND RITCHIE~ ON RESTRICTING THE BASE COMPONENTM
"INFNRMATION AND CONTROLs 18, 483-501 (1971) »

PHRASESTRUCTURE
S=a (S#, AL A2 A3 B H) .
$ENDPSG

“NOTE: BOUNDED DEPTH OF SEARCH, NO ESSENTIAL VARIABLES ®
YNOTE: ND NUMBERED VARIABLES "
MNOTE: NO RESTRICTIONS ARE USED "

TRANSFORMATIONS
TRANS T12."COMBINES T1 AND T2
"PRONDUCES R BOUNDARIES FOR INNERMOST SENTENCE"
WAND POSITIONS THEM CDRRECTLY AND ADDS B AS RIGHTMOST SYMBOLW
BLET N=NUMBER OF TM SYMBOLS"
WLET R=NUMBER OF TM STATES=4M
SD 1A1 A2 A3 2B 3% ,
SC 3 ADLES 1, 3 ADLES .1y 3 ADLES 1y 3 ADLES 1, "(R TIMES)®
2 ADRIS 3.
TRANS T3 AAC o .
"T3 AND T4 PRODUCE THE OTHER 3 #'S IN THE INNERMOST SENTENCE™
UAND THE STRING B®&U # Y Baky o
"T3 PRODUCES' B¥**V, THEN T4 PRODUCES #Y, THEN T3 PRODUCES B*Un
SN (9S< 1# # # # AL A2 A3 3B (4#,5#) (# #) B > £ 8#,
SKOSK1# # # # AL A2 A3 3B (4#,5#) (# #) B > % > 8#).
UCONDITION THAT 1 IS NOT AN S IS UNNEEDED IN THIS FORMATY®
SC 4 ADRIS 4, 3 ADRIS 9, ERASE 8.
TRANS T4 AAC o
sh s<
10S<#### [3A1 A2 A3,A1 3A2 A34A1 A2 3A3) B (5#,#) 6% B > 2> 9% .
SC SADLES 6y 3 ADRIS 109 5 ADRIS 10, ERASE 9.
TRANS T§ 11 .
WINCREASES T (INITIALLY 4) BY 1 WHEN LEFTMOST USABLE SQUARE"
"OF TAPE IS REACHED FOR THE FIRST TIME®
SN SC SC# # # # AL A2 A3 B # R B 28 (# #) B>B # 5> #
SC 2 ADRIS 2. v
TRANS Té .
WINCREASES T BY 2 WHEN RIGHTMOST USARLE SQUARE IS REACHED™
VFOR THE FIRST TIME®)
UNOTE: A LLEMMA IS NEEDED TO THE EFFECT THAT EVERY R.E.
"LANGUAGE IS ENUMERATED BY SOME TM THAT SCANS ITS WHOLE"
"INPUT- THIS 1S OF COURSE EASY T PROVE"
SD SK SC # # ¥ # AL A2 A3 B # # 2# # (#) 8> %.# (AL9)A2+A34B) B > # .
. SC 2 ADRIS 2, 2 ADRIS 2.
TRANS T78.
"TURING MACHINE ZB: REPLACES ALL A3 BY A2 AND GOES HOME ®
n(S1 AL R S1) (S1 A2 R S1) {S1 A3 A2 S1) (S1 B L §2) »
" 1S2 Al L S2) (S2 A2 L S2) (52 8B R $3) »

SnD s< .
S<HE#E AL 3A2 A3 B ###HUHR) (#)B> % (AlyA29A3,4B) 10# (18(AlyA2),
14A3)
2.8> 17 % .

SC 18 ALESE 10, 9 ARISE 10, 3 SUBST 14, 2 ADLES 10, 19 ADLES 10,
4 ADLES 10, ERASE 11, ERASE 12, ERASE 13, ERASE 17 .
TRANS T7B2.
s s<
CSCH 2### AL A2 A3 B #EH#(#4)(#)B> % 9(AL,A2,A3,8) 10# (11# (Al,A2),
' 8)
2B >1T # . , ,
SC 18 ALESE 10, 9 ARISE 10, 3 SUBST 14, 2 ADLES 10, 19 ADLES 10
4 ADLES 10, ERASE 11, ERASE 12, ERASE 13, ERASE 17 .

305

PERCEPTUAL AND LINGUISTIC MODELS

TRANS T7B3.,
SN s<
S<# 2# 19## Al A2 A3 B ####(##)(#)B)Z(AI:AZ,AS,B) 104 11# 188
%R >1T # o
SC 18 ALESE 10y 9 ARISE 10y 3 SUBST 14y 2 ADLES 10y 19 ADLES 10,
4 ADLES 10, ERASE 11, ERASE 12, ERASE 13, ERASE 17 &
TRAMS T8 .
"T8,T9,T10 ARE CLEAN-UP TRANSFORMATIONS™
#T8 CHECKS THAT THE SQUARES AT EACH END OF THE TAPE ARE NOTY
MBEING SCANNED, AND THAT T=7 SO NGO EXCESS TAPE WAS PROGVIDED®
MIF 0Ky TB ERASES RIGHT=END B AND HALTING STATE, REPLACES"
WDEEPEST SENTENCE BY S<#> AND POSITIONS A # TO SIGNAL T9w
SN SK1SK # # # # Al A2 A3 B # # # # # # # B> % (ALgA24A39A4,48)
6 (104 (11# (12#))) (A1,A24A3,B) % 98 > 13# .
n SECOND CHANGE QOPERATION HERE CDULD BE DONE Y ERASURES®
SC & ADRIS .1y (S}+LOW +DONE|<#>) SUBSE 1y
ERASE 6y ERASE 104 -ERASE 114 ERASE 124
ERASE 94 ERASE 13.
TRANS T9 . :
"T9 PASSES A # ACROSS THE TAPE FROM L TO Ry ONE SQUARE AT An
WTIME, ERASING EACH B ENCOUNTERED"
S0 SC S<#> % 3# (4By5(AL,A24A3)) 6% £ > T# .
SC- FRASE 4y 3 ALESE 6y ERASE 7.
TRANS-TL0.
. MT10 ERASES FINAL # AND RIGHTMOST SYMBOL IF IT IS B M
SN SK1S<HD> % 3# (4ByA19A29A3) > 63 o
SC FRASE 1, ERASE 3y ERASE 4y ERASE 6.
TRANS TPRUNE
WREDUCTION CONVENTION FOR LABELED BRACKETINGS®
SO 15<28> o WHERE 1 DOMBY S o
SC 2 SURSE 1.
BTRANSFORMATINNAL CYCLE®
TRANS SMARK V.
SN 1S, WHERE 1 NDOM S,
SC]+LNW] MERGEF 1.
TRANS LOWESTS V. :
SN (1S]+L0OW], 1S<S]+L0OW +DONE] %>y 1S<S|+DONE|LS|+LON +DONE] %> %>),
WHERE 1 NINC1 |+00NE].
SC |+DONE| MERGEF 1.
cp
SMARK 3
IN LOWESTS(1) ONC 15 II 3 TREE >
SENDTRA !

306

