
12

POP-1: AN ON-LINE LANGUAGE
• R. J. POPPLESTONE
EXPERIMENTAL PROGRAMMING UNIT
DEPARTMENT OF MACHINE INTELLIGENCE AND PERCEPTION
UNIVERSITY OF EDINBURGH

POP-1 is an on-line computer language, whereas most of the well-known
languages (FORTRAN, MAD, ALGOL, Lisp, etc.) are designed for off-line use.
Poi,-1 is for use by a person communicating directly with a computer via a
typewriter. It differs from JOSS (Shaw 1964) in that it is primarily intended
for the sophisticated computer user.* With this in mind I have aimed at a
tolerable efficiency of execution, and an ability to define and name new
operations, with comprehensive monitoring facilities. On the other hand
actual error messages are rather simple.
At the very lowest level, the computer can be used just as a desk calculator.

For example

23+54+72+98
** 247

Lines preceded by double asterisks represent program output.
If the user wants to perform a number of operations using the same num-

ber, he can declare a variable to hold it.

VARS A;

24.56—>A;
97 *
** 2382.32
(27 * A+ 3)/(1 7 —5 *
** —6.2677

* See also mar (Kaplaw, Strong & Brackett 1966).

• 185

PROBLEM-ORIENTED LANGUAGES

All operations are organised by means of a stack, and this basic feature
shows up explicitly in the case of two types of instruction:

(i) 'argumentless' output commands (for example by itself will cause

the number at the top of the stack to be printed);
(ii) 'assignmentless expressions' which are interpreted as implicit assign-

ments to the top of the stack.

With the above examples in mind, certain principles seem obvious.

(i) An on-line language must provide a way of returning the computer
to a standard state no matter what state it is in at any time (analogous to the
operation of clearing a desk calculator).

(ii) If an error is detected, a message as to the nature of the error must be
displayed, and the machine must then enter a clearly defined state, with as
little damage as possible to the results already built up.

The on-line user can make best use of such a system by building up complex
entities in small units. For example, when calculating a large expression, it is
better to work out parts of it and store these parts in variables, rather than
try to do the whole thing at once.
In the above examples pop-1 has appeared as a language with a fixed

vocabulary. In fact both the vocabulary, and to a limited extent the grammar,

are extensible. In the terms of the earlier analogy it is as though we had a
calculating machine equipped with an indefinite number of spare keys, on
which we can stick new labels. For example, we can define an operation to
find the HCF of two numbers by

FUNCTION HCF X Y
VARS QUOTIENT REMAINDER
DEFINE XJ/Y-+REMAINDER--*QUOTIENT ;
IF REMAINDER= 0 THEN Y EXIT
HCF(Y, REMAINDER) END

Where // produces two values, remainder and quotient. The instinctive
reaction of the on-line user, having defined a function, is to test it:

Hcr(12, 16)
** 4

One may decide at this stage that it would be preferable to use an in-fixed
operator, say + + instead of HCF. To do this we need to re-assign the 'value'
of the operator HCF, thus:

VALUE HCF--->VALUE ;
SETPRECEDENCE(" +", 12, "SYMMETRIC");

The symbol 'SYMMETRIC' gives the signal that the operator '+ +' is to be used
as an infix.

25 ++
** 5

The purpose of the SETPRECEDENCE operation is to declare + + as being an
186

POPPLESTONE

infixed operator with precedence 12. Thus addition (precedence 6) and
multiplication (precedence 5) will be done before ++, i.e.,

4+6++7 * 5.
**5

The line VALUE HCF-*VALUE + simply assigns to ++ the definition of
}ICF already established.
Pop-1 grammar is a simple precedence grammar. Functions can be written

either before their arguments as IICF(X, Y) or after as in X Y IICF.
Functions can be redefined at any time. This is obviously important for an

on-line language, since the first definition of a function may be incorrect.
In fact, a function definition is no more than an assignment of a constant
(the definition) to the name. Thus one could in fact redefine +, *, Ito
have meanings over some field other than the reals (e.g., the complex numbers
or a finite field).
For instance to do this for a finite field of characteristic P one writes:

VARS P

FUNCTION ADD X Y

DEFINE ADD(X, y) P-*X--->y; X END

VALUE ADD VALUE+ -4-VALUE ADD -4-VALUE+ ;

Because of the stack basis of this sequence, the result is to interchange the
values of 'ADD' and'+' and similarly for SUB and MULT. Note that the last
line has the desired effect of exchanging the values of 'ADD' and'+' because
it consists of a sequence of assignments first to, and then from, the stack.
Further, since it is executed before the function definition itself is entered
(which occurs on the first occasion that the function is called) the operator
use of ADD in 'DEFINE ADD (X y)' already has the meaning previously possessed
by +. It is necessary to introduce the names ADD SUB MULT DIV because the
old definitions of these operations are needed by the new ones.
Now we get, for example,

7—>-P ;
4+5=
** 2
DIV can be defined using the euclidean algorithm.

Algorithm:

FUNCTION DIV X Y DEFINE X * RECIPROCAL (y) END

FUNCTION RECIPROCAL X

VARS U V H

DEFINE X P EUCLID -->U -*V -*1-1;

IF NOT (11= 1) THEN NL TEXT P NOT PRIME; EXIT
U END

FUNCTION EUCLID X Y

VARS QUOTIENT REMAINDER U V H

DEFINE X//Y-9-REMAINDER -*QUOTIENT*,

187

PROBLEM-ORIENTED LANGUAGES

IF REMAINDER= 0 THEN Y, 1, 0 EXIT
Y REMAINDER EUCLID -3U
H, U SUB(U, MULT (V, QUOTIENT)), V END

The symbol NL means 'new line', i.e., it is a formal function.
The effect of VALUE is to make the next word be treated as a variable. Its

opposite is OBEY which makes the next word be treated as a function.

ARRAYS

These are treated as functions with a difference—the difference being that
they have a meaning when preceded by an (apart from the above meaning).
Declaring that a variable is to hold an array is distinct from assigning the
space to hold that array. The word ARRAY in any list of variables indicates
that all following variables are to be treated as arrays (until NORMAL or
FUNCTION or the end of the list is reached). Rectangular arrays are created
by the function NEWARRAY. Thus, to handle permutations, one might write
the following group of functions:

VARS LENGTH;
FUNCTION READPERM
VARS ARRAY X NORMAL I
DEFINE 1-31; <<1 LENGTH>>NEWARRAY-÷ VALUE X;
L 1: NEXTATOM X(I);
IF I= LENGTH THEN VALUE X EXIT
I+ GOTO NEXT END

The brackets << >> enclose items which are to be evaluated and then made
into a list

FUNCTION MULTPERM ARRAY X Y
VARS I ARRAY Z
DEFINE 1-g ; 1 LENGTH NEWARRAY-->VALUE Z;
NEXT: I X Y--)- Z(I);
IF I=LENGTH THEN VALUE Z EXIT
I+ 1-41; GOTO NEXT END
3-)-LENGTH;
VARSABCD
READPERM 1 2 3-*A; READPERM 3 2 1-4-B; READPERM 1 3 2-+c;
VALUE MULTPERM -* VALUE *;
A *
** 3 2 1
B*C.

** 2 3 1

Since arrays are created by function, one can write functions to create special
arrays, e.g., in a chess program

FUNCTION NEWBOARD
VARS I J K ARRAY A

188

POPPLESTONE

DEFINE <<1 8 1>> NEWARRAY--)-VALUE A;
1-44;

Li: IF 1>8 THEN VALUE A EXIT

L2: IF j>8 THEN I+ 1--->I GOTO L

ALSO (I MASK 1)+(i MASK 1) MASK 1 THEN "BLACK" ELSE "WHITE"

ALSO --->A(I, J), J+ 1-÷J GOTO L2 END.

Quotation marks enclose atoms. MASK forms the logical AND of its arguments
considered as bit patterns. When the conditional THEN • • • ELSE • • • ALSO is
obeyed, the commands between THEN and ELSE are obeyed if the top of the
stack is 'true' (i.e., non zero) before THEN. Otherwise the commands between
ELSE and ALSO are obeyed. ALSO is thus used as a terminator of conditionals
rather similar in action to the semi-colon which is used to terminate assign-
ments.

LIST PROCESSING
Pop-1 was originally a pure list-processing language, and list-processing

facilities are well developed. Let us consider the function REV to reverse a list.

FUNCTION REV X

DEFINE IF X ATOM THEN X EXIT

REV(X TL) < > X HD : : lEND

The operator <> means join, i.e., concatenate the lists which are its operands,
and :: is CONS in LISP.
Let us translate some dog-English into dog-French. Suppose we have read

an English sentence as a list, and suppose we have a dictionary DIC giving
what part of speech each English word is, and its French equivalent, together
with information as to whether a word (if it is an adjective) comes before or
after the word it qualifies. If a sentence is defined as a nounphrase followed
by a transitive verb followed by a nounphrase then:

FUNCTION SENTENCE X D

VARS U V T

DEFINE NOUNPHRASE (X, D)-->T--?..V;

"SENTENCE" :: V (> LOOKUP (T HD, D) HD < > (T TL NOUNPHRASE-+U)::1;

U END

FUNCTION NOUNPHRASE X D

VARS UV T

DEFINE LOOKUP(X HD, D).-+U;

IF U HD= "NOUN" THEN "NOUNPHRASE" : U : ; X TL EXIT

NOUNPHRASE(X TL, D)--->T-+V;

V OU:: 1;T END
These functions work by finding the first syntactic unit of the type that

bears their name in the list x, giving as a result an analysis of that unit, and
whatever remains in the list x. Having produced a parsed version of the sen-
tence, we translate it with the following function:

189

PROBLEM-ORIENTED LANGUAGES

FUNCTION TRANSLATE X G

DEFINE

IF X HD= "SENTENCE" THEN TRANSLATE (X TL HD, G); FRENCH (X TL TL

HD) ;

TRANSLATE (X TL TL TL HD, G) EXIT

IF X HD= "NOUN" THEN FRENCH (X) SPR EXIT

IF X HD= "ADJECTIVE" THEN IF G= "MASCULINE" THEN FRENCH (X) HD SPR

EXIT

FRENCH (X) TL HD SPR EXIT

IF X HD= "NOUNPHRASE" THEN GENDER (X TL HD)--o-G;

TRANSSELECT (X TL YL, G, "ARTICLE");

TRANSSELECT (X TL, TL, G, "BEFORE");

TRANSLATE (X TL HD, G);

TRANSSELECT (X TL TL, G, "AFTER")

EXIT

NL "FAIL" PR END

This works as follows. x is the tree representing the sentence, or a part

of it, in the parsed form, containing all the information necessary for a

translation. G is the gender of the part of the sentence being translated, if this

is relevant. Thus the sentence 'The cat eats fish' is parsed as

SENTENCE

NOUNPHRASE VERB NOUNPHRASE

NOUN ADJECTIVE MANGE NOUN ADJECTIVE

CHAT MASC [LE LA LES LES] ARTICLE POISSON MASC

[LE LA LES LES] ART

Note that lists are enclosed in square brackets.

When applying TRANSLATE to this structure, first we apply TRANSLATE to

the nounphrase (X TL HD), then we find the French equivalent of the verb,

and print it preceded by a space. To translate the nounphrase, we first extract

the gender of the noun (GENDER (X TL IID)). We then apply the function

TRANSSELECT to the list of adjectives following the noun.

TRANSSELECT is defined by:
FUNCTION TRANSSELECT X G S

DEFINE

NEXT: IF X ATOM THEN EXIT

IF POSSELECT (X HD)= S THEN TRANSLATE (X HD, G) ALSO

X TL X; GOTO NEXT END

190

POPPLESTONE
Thus transselect translates only those items in the list x which have the atom
S in the position POSSELECT. Hence the first call translates the articles 'the'
and 'a', and the second those adjectives that come before the noun in French.
Next, we translate the noun itself, and then those adjectives which come
after the noun.
For curiosity's sake, Fig. 1 shows some worked examples done on the

console typewriter as a demonstration.

MACROS

Since Pop-1 is a list-processing language, one might expect that it would be
easy to provide facilities#20for writing macros. This is indeed the case. First we
define the function MACRO by

FUNCTION MACRO VARS X
DEFINE READ--->X;

SETTYPE(X,5,3,15,0);
<<"FUNCTION" X>> <> INSTREAM--->INSTREAM

END
SETTYPE(MACR0,5,3,15,0);

This is in fact itself a macro definition, and works as follows. The final
SETTYPE command has the effect of making the function MACRO be executed
as soon as it is read. Thus if

MACRO THIRD . . .
occurs in the input instream, then when MACRO is read, it is immediately
obeyed. Thus the first action of MACRO is to read the next word, i.e., TEIRD
off the input stream and store it in X. INSTREAM is a list which, if non-empty,
contains the atoms which are next to be read off the input stream. Thus after
the evaluation of MACRO the next items to be read off the input stream will be

FUNCTION THIRD . . .
Thus the effect of MACRO. . . is to define THIRD as a function which is itself
evaluated as soon as it is read. Now let us consider how to define THIRD as a
macro which will take the third member of a list.

MACRO THIRD
VARS X

DEFINE MACARGS—>X;
<<"("("X>> <>DTL TL HDA <> INSTREAM--> INSTREAN1 END

Let us see that THIRD defined above will produce the correct reverse Polish
input for the#assembler.
Suppose THIRD#is called by

THIRD (A <> THIRD(13))
• as soon as THIRD is read (and its precedence has been set by settype so that it
is not transferred behind the list of arguments, which would be its fate if it
were an ordinary function) it is evaluated. The function MACARGS, which is

191

PROBLEM-ORIENTED LANGUAGES

23 + 54 + 72*96 - 298*34 n>

** -3143

VARS A B C%

[Semicolon Does not occur on the typewriter so use % instead]

19 -> A% 25 -> B%
A*B + 98*(75 + B) + 4*A =>

** 10351

FUNCTION REV X
DEFINE

IF X ATOM THEN NIL EXIT
REV(X TL) <> X HD END

REV#20[1 2 3 4 5 6]) =>

** 1
[No good so redefine REV]

FUNCTION REV X
DEFINE

IF X ATOM THEN NIL EXIT
REV(X TL) #20 <<X HD >> END

REV([1 2 3 4 5 6])

** [6 5 4 3 2 1]

[OK. Now load translation program from paper tape]

[THE BIG BLACK CAT EATS THE RED MEAT] SENTENCE

**PLEASE TELL ME ABOUT "BIG"
**PART OF SPEECH ADJECTIVE
**FRENCH
**SINGULAR GRAND
**FEMININE GRANDE
**PLURAL GRANDS
**FEMININE GRANDES
**
,**IS IT BEFORE OR AFTER OR ARTICLE BEFORE
**PLEASE TELL ME ABOUT "CAT"
**PART OF SPEECH NOUN
**FRENCH CHAT
**IS IT MASCULINE OR FEMININE MASCLINE
**YOU MUST REPLY ONE OF.MASCULINE OR FEMININE

MASCULINE

FIG. 1. An example of a pop-1 "session".

192

POPPLESTONE

**PLEASE TELL ME ABOUT "RED"
**PART OF SPEECH
**I DO NOT KNOW THIS PART OP SPEECH
**PART OF SPEECH
**FRENCH
**SINGULAR
**FEMININE
**PLURAL
**FEMININE
**

**IS IT BEFORE OR AFTER OR ARTICLE

-> A -> B%

AJECTIVE

ADJECTIVE

ROUGE
ROUGE
ROUE##ROUGES
ROUGES

AFTER

A
** 1 [This is the null list, and is the unparsed part of
the input]

B
** [SENTENCE [NOUNPHRASE [NOUN CHAT MASCULINE]
**[ADJECTIVE (NOIR NOIRE NOIRS NOIRES]AFTER]
**(ADJECTIVE [GRAND GRANDE GRANDS GRANDES]BEFORE]
**[ADJECTIVE (LE LA LES LES]ARTICLE]](VERB MANGE
**][NOUNPHRASE [NOUN VIANDE FEMININE](ADJECTIVE
**(ROUGE ROUGE ROUGES ROUGES]AFTER)(ADJECTIVE
**[LE LA LES LES]ARTICLE])]

[This is the tree structure of the sentence represented in
bracketed form - Let us explore this tree]

3 HD
** SENTENCE

B TL HD .0
** (NOUNPHRASE [NOUN CHAT MASCULINE MADJECTIVE
**[NOIR NOIRE NOIRS NOIRES)AFTER)(ADJECTIVE
**(GRAND GRANDE GRANDS GRANDES)BEFORE)(ADJECTIVE
**(LE LA LES LES]ARTICLE]]

B TL TL HD n>
** [VERB MANGE]

B TL TL TL HD =>
** [NOUNPHRASE (NOUN VIANDE FEMININE][ADJECTIVE
**[ROUGE ROUGE ROUGES ROUGES]AFTER][ADJECTIVE
**[LE LA LES LES]ARTICLE])

B TL TL TL TL HD
ERROR 30 COMPILER HD
ERROR 30
[An attempt has been made to evaluate HD with an atomic argument]

B 1 TRANSLATE
LE GRAND CHAT NOIR MANGE LA VIANDE RO

UGE

FUNCTION SEN##TRANS X
DEFINE X SENTENCE TRANSLATE END

[THE LITTLE B##BLACK BOY EATS THE MEAT] TRANS
LE PETIT GARCON NOIR MANGE LA VIANDE

[The character "01" causes the atom just typed to be ignored]

193 ,

PROBLEM-ORIENTED LANGUAGES

a library function defined in POP-1, reads the string of atoms (A <> THIRD (13))
and converts it into the list [A <> THIRD(B)] (square brackets denote list

structures, round brackets are just symbols). Assuming INSTREAM to be
empty (i.e., we are not in the middle of a macro call), this first call of THIRD

will leave

((A <> THIRD(H)) TL TL HD)

in INSTREAM. Processing this will result in A being compiled and <> being set
aside before THIRD is called again. Thus at the second call of THIRD INSTREAM
will contain (B)) TL TL TL HD), and the second call will turn this into ((e) TL
TL HD)) TL TL HD). Hence B TL TL HD will now be compiled, and then the K>
operator which was set aside, and then the TL TL HD, so the total effect of
the macro calls is

A B TL TL HD < > TL TL HD

which is the correct reverse Polish form of the input stream.

IMPLEMENTATION

The present implementation (on an Elliott 4100) is by means of an interpreter.
A program being input is first processed to set variables and functions into
the correct reverse Polish order. The resulting stream is then translated into
pseudo-machine code which is obeyed by the interpretive routine. Certain
words such as FUNCTION, THEN, EXIT have the effect of activating special
routines as soon as they are input. The user himself can define such words,
e.g., in making macro definitions. Thus the whole system is easily extensible.

AIMS

pop-1 was originally conceived as a list-processing language which has
acquired an increasingly on-line emphasis. It is now adopted as a language
for exploratory programming projects at the Experimental Programming
Unit of the University of Edinburgh, and as such will be incorporated in the
on-line time-sharing system being developed there.

EDITOR'S NOTE

pop-1 has now been superseded by a greatly extended version, pop-2, which
is the subject of Chapter 14.

REFERENCES

Kaplaw, R., Strong, S., & Brackett, J. (1966). MAP: a system of on-line mathe-
matical analysis. Technical report MAC-TR-24, Massachusetts Institute of
Technology.

Shaw, J. C. (1964). JOSS: A designer's view of an experimental on-line computing
system. In AFIPS Conference Proceedings, Vol. 26. Baltimore and London:
Spartan Books.

194

