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LEARNING MACHINES

by

DR. A. NI. ANDREW

SUMMARY

THE application of learning machines to process control is discussed.
Three approaches to the design of learning machines are shown to have more
in common than is immediately apparent. These are (1) based on the use of
conditional probabilities, (2) suggested by the idea that biological learn-
ing is due to facilitation of synapses and (3) based on existing statisti-
cal theory dealing with the optimisation of operating conditions. Although
the application of logical-type machines to process control involves
formidable complexity, design principles are evolved here for a learning
machine which deals with quantitative signal and depends for its operation
on the computation of correlation coefficients.

1. INTRODUCTION

In this paper learning machines will be discussed with particular refer-
ence to industrial applications, but it is believed that the arguments have
a bearing on the study of human and animal learning. The extent to which
parallels between brains and machines may profitably be drawn has been
discussed by many writers including MacKay (ref. 1) and Sluckin (ref. 2), and
it is clear that extreme caution is required. It does appear, however, that.
valuable biological experiments are likely to be suggested by a study of
the difficulties encountered in attempting to make practical applications
of learning machines as similar difficulties have presumably been met and
solved at some stage of biological evolution.

1.1 The definition of learning

Thorpe (ref. 3) provisionally defines learning in animals as "that inter-
na]. process which manifests itself as adaptive change in ihdividual behaviour
as a result of experience." By its inclusion of "adaptive" this definition
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implies that the learning process is necessarily associated with goal-
directed behaviour. The goal may be the acquisition of food when hungry, or
drink when thirsty, or the satisfaction of an instinctive drive such as re-
production or care of the young. The animal's behaviour may be interpreted
as an attempt to maximise some function of its sensory inflows. Wiener

(ref. 4) uses the term "affective tone" to describe this function; Selfridge
(ref. 5) refers to a similar function as "hedony".

In the case of a learning machine to control an industrial process the
quantity which it recognises as "hedony" and tries to maximise will be a
pre-arranged function of a number of quantities associated with the process.
These will include measures of yield and quality of the product and the
costs of running the process. The learning machine will keep modifying its
policy of control by trial-and-error with the aim of increasing the amount
of "hedony". This is, of course, essentially what a person does in acquir-

ing skill in a control task.

1.2 A type of industrial application

Since chemical processes lend themselves to automation more readily than

do processes involving the handling of solid objects, attention has been
paid particularly to the possibility of using a learning machine to control
a chemical process. Consequently it will be assumed in the following that

the learning machine must deal with quantitative rather than logical infor-

mation, but may, nevertheless, be able to make binary decisions and to

change its own internal connections.
Figure 1. represents a process controlled by a learning machine. The

quantities a, b and c may be temperatures, pressures, flow-rates or other
variables associated with the process. The learning machine effects control
by varying the quantities d and e, which may control valve settings or
heating power applied to parts of the process. In order to compute the

degree of goal-achievement or hedony, h, the output of the process is mea-
sured and probably tested for quality by suitable transducers. The inflow

of raw material may also be monitored.
The arrangement of fig./ is considerably different from an ordinary

servo-mechanism employing negative feedback. In a servo-mechanism the quan-

tity which indicates the degree of goal-achievement, namely the output

error, can be used directly to control the active element. In the arrange-

ment of fig. 1, on the other hand, it is unlikely that the quantity h can be
used directly to control the process as there will usually be a considerable

delay between the occurrence of a variation in d or e and the appearance of
the resultant change in h.

In general the only way in which the process can be controlled is by

letting d and e be controlled as functions of a, b and c. The quantity h
can only enter into the control system in a more subtle way. The mathemati-

cal functions relating d and e to a, b and c must contain a number of
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parameters which can be altered in a trial-and-error fashion so as to

maximise h. At any instant, therefore, the effect of a high value of h is
to help set the seal of approval on the forms of the control functions

which were operative before it occurred, while the effect of a low value

of h is the opposite. By such trial-and-error procedures the control
functions can be made to approach their optimum forms. It is perhaps

worth observing at this point that the optimisation is not necessarily

restricted to finding the best values of parameters in the functions; it

is possible to devise optimisation procedures which can alter the function

more fundamentally, as will be described later.

Although a distinction was drawn between servo-mechanisms and the type

of arrangement shown in fig. 1, this could represent a self-optimising

servo in the case where a, b and c are functions of the input and output
Quantities of the servo-mechanism, and h is some time-averaged
monotonically-decreasing function of the servo error.

It is expected that learning machines will allow efficient automatic

control of processes which are not amenable to precise mathematical

analysis. The use of a learning machine is, in fact, an empirical method

for approximating to the optimum control function. Other empirical methods
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are possible, involving the continuous recording of all relevant quantities
associated with the process and the periodic analysis of records by means
of a computer. The method employing a learning machine is attractive inso-
far as trial-and-error adjustment can proceed continuously, and conse-
quently the optimum control function should be approached more rapidly than
by other methods. This relatively rapid approach. to the optimum could be
particularly valuable if the process was influenced by some fluctuating
quantity which could not be monitored, but which influenced the optimum
control functions.

The principle of operation of a learning machine as described in the
foregoing is very similar to Ashby's principle of ultrastability, (ref.6).
Three different approaches to the problem of building a learning machine
will be discussed. These appear, at first sight, to have little in common
but will be shown to be closely related. Then, certain of the principles
which were involved in these approaches will be further elaborated to show
how it is hoped to build a practical learning machine suitable for
industrial use.

2. FIRST APPROACH TO THE DESIGN OF LEARNING MACHINES.
THE CONDITIONAL PROBABILITY COMPUTER

The ideas of probability theory must obviously be involved in any

empirical approach to process control, since the aim is to maximise the

probability of the desired goal in the future. Since a certain amount of

information about the process is available to the controller at any time

, (in the form of measures of a,b and c in fig. 1, for instance) the probabi-
lity levels which are important are the conditional probabilities which
are computed subject to the information being as indicated.

A computer has been built by Uttley (refs. 7,8,9) and Russell which is
specially designed to evaluate conditional probabilities. Some further

developments have been described by Russell (ref. 10). This type of computer
has a number of input channels which can be activated singly or in groups.

The signals in the channels are necessarily in dichotomous ("yes-no")

form; each channel at any instant is either activated or not activated.

The channels are connected to a classification system (see Uttley ref. ii)

of a kind which is shown in fig. 2. for the case of a 3-channel machine.

The capital letters A, B and C have been used to represent the signals in
the three channels; the convention will be adopted nere of using capital

letters for dichotomous quantities and small letters for continuously

varying quantities.
The classification system can activate a unit for every possible group

of input channels. A machine with n input channels must have 0 - i units.
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Fig. 2

The practical conditional probability computer which was built by Uttley
and Russell has five input channels and consequently 31 units. This com-
puter will be exhibited at the Symposium. In order to compute conditional
Probabilities, each of these units counts the number of times it is
activated. In the existing computer this is done in an analogue fashion by
arranging that the charge on a capacitor is altered every time the unit is
activated. Then the conditional probability of activity in any particular
channel, given activity in some other channel, or group of channels, can
be computed as the ratio of the counts stored in a particular pair of

units.

Suppose, for instance, that the A and B channels are active. Then the
conditional probability of activity in C is given, by:—

Probability of C, given A and B =

count stored in (ABC) unit
p (C)

count stored in (AR) unit
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When the A and 3 inputs of the conditional probability computer are acti-
vated simultaneously, it computes and quantity 15,4B(C) and if there are D
and E channels it similarly computes PAB(L) and PABO. The computer could
have been made so as to indicate the actual values of these probabilities,

but it in fact determines whether or not they exceed a predetermined'thres-

hold value. If this value is exceeded an inference is made of activity in

the corresponding channel or channels C, D or E. The output signals of the
computer consist, therefore, of inferences of activity in the same channels

as are used to convey the input signals.

2.1 Goal-seeking by conditional probability

The conditional probability computer was not designed for the type of

industrial application which is considered here, and it is not inherently

goal-seeking. There are three main ways in which it can be modified to

become goal-seeking. These are illustrated in figs.3,4 and 5 respectively.
In figs. 3 and 4, one of the input channels of the computer is connected

so that it is activated when there is an indication of success from the

Conditional Probability Computer
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CD

Random
Generator

Relay
Operated
by Infer-
ence of
Success

Indication of

Success

Fig.3. First Type of Goal Seeking
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process. (It is assumed in these arrangements that the indication of success
is a yes-no signal, and not a continuous variable like h in fig. 1). In fig.3
the random generator applies different patterns of activity to the D and E
channels, until the whole pattern of activity applied to the A, B, C, D and
E channels is one which the computer associates with activity in channel F,
which represents success. When F becomes active by inference, the relay
closes and allows the pattern of activity presented to D and E to be applied
to the process. In order that the computer can learn it is necessary that
the relay closes sometimes when an inference of activity in F has not been
made; it might be arranged, for instance, that if the computer does not
make an inference in F within a certain time of random searching, the relay,
in any case, clbses.

In fig. i, the pattern of activity in channels D and E is actually inferred
by the computer. It infers the pattern of activity in these channels which
it has come to associate with the pattern existing in the A, B and C
channels, and with activity (representing success) in the F channel. The
input to the F channel which is used to invoke inferences is applied in
such a way that it does not affect the counts on the units of the computer.

If this was not done, the computer would come to associate success with all
possible patterns on the A, B and C channels in combination with an absence
of activity in D and E.

In fig. 5, the indication of success is not actually applied to a channel

of the computer. Instead, it is arranged that the units of the computer are

only allowed to count if there is an indication of success. By this means

the computer can learn to associate favourable patterns of activity in D
and E with the patterns which occur in A, B and C.

The types of goal-seeking shown in figs. 1/ and 5 (2nd and 3rd types) are
essentially equivalent to one another. In fig.5 the indication of success

allows counting in all units, while in fig.4 it allows counting in those

units which have a connection to the F channel. But since, in fig. ii, It is
only the units having a connection to the F channel which are important in
making inferences, figs. 4 and 5 are essentially the same.

Figure 5, however, indicates how the principle can be extended to the
case where the indication of success is a continuous variable such as h in
fig. 1. The indication of success in fig.5 could be such a quantity, and
might even take negative as well as positive values. The amount by which

the counts in the units are altered would be proportional to h.
In spite of its rather severe limitations due to having only five on-off

channels to convey information to it, the existing conditional probability

computer has proved remarkably versatile. When coupled to simple pieces of

external apparatus it provides a number of interesting and amusing

demonstrations.
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3. SECOND APPROACH TO THE DESIGN OF LEARNING MACHINES.

FACILITATION OF SYNAPSES

A second approach to the design of learning machines is suggested by
the idea that biological learning is due to changes in the properties of
synaptic connections between neurons. A learning machine might consist of
a number of units capable of activating each other through some kind of

linkage, where the properties of the linkages are modified as part of the
learning process. There would be a variable quantity associated with each
linkage and the effectiveness of the linkage in transferring the activity
from one unit to another would depend on the current level of this
quantity. The values of these quantities would be continuously modified as
functions of the activity of the network.

MacKay (refs. 1, 12, 13) has discussed the possibility of building net-
works in which the linkages do not behave in a deterministic manner, but
have a certain probability of transferring activity. In this case the pro-
bability of a transfer would be governed by the current level of the vari-
able quantity associated with the linkage. An alternative to MacKay's

scheme would be to let the occurrence or non-occurrence of a transfer
depend absolutely on the current level of the quantity, according to
whether it was greater or less than some threshold value.

In order that this kind of network may learn, the variable quantities

associated with the linkages must be suitably modified as functions of the

activity of the network. In an application where the network is required to
be goal-seeking, an obvious rule for modifying these quantities would be
the following -

If a transfer of activity in a linkage is followed by an indication of

goal-achievement, let the effectiveness of the linkage in transferring
activity be increased. If the transfer is not followed by goal-achievement,

let the effectiveness of the linkage be reduced. An extension of this rule

which would probably produce faster learning would be the following -
If simultaneous activity in the two units which are coupled by a

linkage is followed by goal-achievement, let the effectiveness of the

linkage be increased and vice versa. According to this latter rule the

effectiveness of the linkage is altered whether or not the simultaneous

activity in the units was due to this particular linkage. (It is assumed

that the linkage can transfer activity in one direction only).

Other possible rules for varying the effectiveness of the linkages

might be devised. It is sometimes suggested that in the nervous system

those synapses which are frequently activated become more effective. This

would provide a mechanism whereby the system would learn with practice,

but it is difficult to relate the principle to goal-directed activity. In

any case, recent work by Professor Delisle Burns at McGill University

indicates that repeated activation of a synapse has the effect of reducing

its effectiveness rather than increasing it.
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It has been assumed in the foregoing that a linkage either transfers

activity or does not, but a network could contain units in which activity

is produced by a summation of effects of a number of linkages, although

any one linkage would not produce activity by itself. Such units must

certainly be incorporated in any network intended to serve as a model for

the nervous system. In the present treatment, however, it will be assumed

for simplicity that the transfer of activity by a linkage is an all-or-

nothing process.

3.1. Conditional Probability computed by linkages

Although the conditional probability computer in its present form does

not operate by altering the properties of the linkages, a computer could

be designed to work in this way and to show equivalent behaviour. In the

computer as previously described the storage of information is in the

units themselves which count the number of times they are activated non-

inferentially.
The storage can equally well be in the linkages but it is necessary in

that case to have a larger number of storage locations. For a computer

having n input channels, it is necessary to have about et locations if the
storage is in the units and n/2 times as many if it is in the linkages.

However in the various modifications of the computer which make it goal-

seeking, many of the storage locations can be eliminated in either case.

It can be shown that, for a goal-seeking computer, the number of storage

locations is much the same whichever way the computer is organised.

Fbr a non-goal-seeking conditional probability computer having storage

in the linkages, every unit corresponding to a group of channels must be

capable of being activated inferentially through a linkage from every unit

corresponding to the same group of channels with one channel eliminated.

For instance, the unit corresponding to ACD must be connected through
linkages to the units AC, CD and AD. The unit corresponding to AB must be
connected through linkages to the units A and B.

Figure 6 shows two alternative circuits which could be incorporated in
the linkages to compute conditional probabilities.

For the purpose of explanation It is assumed that one of these circuits

is incorporated in the linkage which can activate the AB unit from the A
unit. In the circuit of fig. t3 (a), the switch Si is normally in the posi-
tion shown, but goes over to the right for a short time whenever the unit

A becomes active due to activity in the A channel - not by inference. If
the 

B unit (and hence the AB unit) are similarly active at the same time,
the switch S

2 
is in its upward position and connects the capacitor of

value kC to the supply voltage V. On the other hand, if the B unit is not

active, the switch S2 connects the capacitor of value kC to earth, and it

is discharged. It is clear that if event A is aikays accompanied by event B,
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the voltage on the capacitor approaches KJ; if the event A is never
accompanied by event B, the voltage approaches zero. It can be shown that

if 1711 is the voltage on the capacitors after the nth occurrence of activity

in A,

Vn
si) (2).= (1—rA 8 + r.8 + 7-28 

n-2 
+  

Vo L n n-1 
)

where Si = 1 or 0 according to whether or not B was active on the ith
occurrence of activity in A.

For the circuit of fig.6(a)

(3)

and normally k <<
The expression on the right hand side of Eq. 2 is a reasonable one to

take as a "running value" of the conditional probability of B given A.
VHence, „p. as produced by the circuit of fig.6(a) Is a suitable quantity to
vo

take as such a "running value". The behaviour of the circuit fig.6(b) is
similar. It is required that the switch SI in this case closes for a

definite time t/ every time A occurs. Then if the time constant of R and
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Cis equal to t,, it can be shown that the circuit of fig. 6(b) also con-
forms to Eq. 2, but in this case

t
r = exp

t
2

(4)

In order that a computer incorporating one of these circuits may make

inferences, it is only necessary that the voltage V across the capacitor to
the left of the circuit is applied to a comparator which determines whether

or not V1170 is greater than the chosen threshold value of conditional pro-
bability. If Yao is greater than the threshold, the linkage produces in-

ferences. In the case considered above, for instance, if V1I70 is greater
than the threshold, and if input A becomes active, the linkage will energise
unit All by inference (assuming input B is not active and hence unit All is
not activated directly). When unit AB is activated by inference, the com-
puter indicates an inference of activity in channel B.

Circuits other than those in fig.s can be devised to compute conditional

probabilities. For an industrial application the storage element would

probably not be a capacitor since this would not provide long term storage.

The use of magnetic cores in an analogue fashion, as has been done by

Pittman (ref.14) is a possibility.

3.2 Equivalence of approaches 1 and 2

Since it is possible to design a conditional probability computer which

depends for its operation on the modification of linkages, it is considered

that approaches 1 and 2 to the design of learning machines are essentially

equivalent. Figure 7 shows a type of learning machine which could have been

evolved through either approach. It is essentially a rearrangement of the

3rd type of goal-seeking shown in fig. 5, for the case where the conditional
probability computer depends on the modification of linkages. (It does,

however, have a classification system for the A, B and C inputs which
differs from that in fig.2. Instead of an AB unit, there is an A.B."C unit,
active when the input pattern is "4 and B and not C". There is no special
merit in the system of fig.2 in the case where the data in channels A, B
and C is reliable, so that it is never necessary to make inferences of A,
B or 0

The random generator in fig.7 can either be connected to the D and E
channels, corresponding to the random generator in fig. s, or it can be

applied to the linkages themselves making them behave like the probabilis-

tic connections discussed by MacKay.

4. LIMITATIONS OF LOGICAL-TYPE DEVICES FOR PROCESS CONTROL

The learning machines considered in the last two sections dealt with

yes-no information; the input and output channels were either active or
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inactive. A computer controlling a process, however, must utilise informa-
tion coming from transducers measuring temperatures, pressures, flows,
etc. and it is unlikely that satisfactory control could be effected by a
system which treated these measures as yes-no quantities. (The rather
clumsy terms "yes-no" and "logical-type" are used here in preference to
"binary" in order to avoid possible confusion with pulse-code modulation).

A BC

A B"..0

 t ABC ..-4 
--4    A‘,^Brc --4  

  -ABC  

Ns-C

0 • 

Random
Generator

Process

Indication of Success (allows count)

Fig.?. modification of Tiara Type of Goal Seeking
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A possible way of extending logical-type machines to take account of

quantitative information would be to code the measured quantities in binary

form and then to use several of the yes-no channels to convey the informa-

tion from each transducer. In this way it is possible, in principle, to

arrange for a logical-type machine to deal with any sort of input informa-

tion.

Unfortunately the complexity of the learning machine which is required

becomes prohibitive. It would be reasonable to represent each measured

quantity by five binary digits. To control a dynamic process, the learning

machine must take account of past as well as present values. In order that

the machine may take account of values at two-time-displacements as well as

the current value, it is necessary that each measured quantity connects

with 15 yes-no input channels. Hence, the total number of yes-no channels

by which information is fed to the learning machine must be 15 times the

number of transducers, and is, therefore, prohibitively large.

4.1 Achieving simplification

There are several ways in which some simplification might be achieved.

It is possible that in certain applications some of the 15 yes-no channels

corresponding to an input quantity could be eliminated. It might sometimes

be sufficient to represent the current value of a quantity by five binary

channels, and its derivative by two, making seven in all. Simplification in

this way is undesirable, however, since information thrown away can never

be regained and any reduction in the amount of information supplied to the

learning machine can only restrict the range of control functions which it

IS able to apply.

4.2 Use of sub-goals

Two further ways in which some simplification can be achieved are by the

use of sub-goals and by interpolation. Any application of a learning con-

troller to a process of any complexity would involve the use of sub-goals.

Parts of the process would be linked to a sub-section of the controller in

the general manner represented by fig./ but the quantity recognised as

"hedony" and maximised by this part of the controller would not be the same

as the overall goal of the complete controller. In controlling a chemical

process, for instance, the overall,goal would be expressed in terms of the

yield and quality of the product, but a sub-goal might be to maintain a

particular temperature-distribution in a fractionating column. If the sub-

goals were determined in advance by the designer of the controller, the use

of sub-goals would be a departure from the learning principle. In fact,

however, the sub-goals could be modified in a trial-and-error fashion by

that part of the controller (which may by termed the "master" controller)

whose goal is the overall goal of the process.
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A complicated controller might actually involve a hierarchy of learning
machines of which one was the "master" or first-order controller. This
would have, as its goal, the overall goal of the process, and it would set
the goals for the second-order controllers, some of which would, in turn,
set goals for third-order controllers and so on. The use of subsidiary

goals can lead to a considerable reduction in the complexity of a learning
controller.

4.3 Use of interpolation

The other principle which could be used to reduce complexity is inter-

polation. It was assumed earlier that five yes-no channels are needed to
convey the signal from a transducer, or fifteen to convey the current value

as well as the values at two time-displacements. The system of interpola-

tion which is proposed would let each signal be represented by a smaller

number of yes-no channels, which might be two to represent a single signal,

or six when time-displaced values are represented. Then the two yes-no

signals can define four levels within the range of variation of the

measured quantity. Suppose, for example, that the measured quantity is a

temperature which can vary between 40 and 100 degrees. Then 40 degrees

would be represented by 0,0 in the yes-no channels, 60 degrees by 0,1 in '

them, 80 degrees'by 1,0 and 100 degrees by 1,1. At any instant in time it

will generally be found that the temperature is not exactly 40, 60, 80 or

100 degrees. The learning machine must decide what action it would take

for the nearest of these values of temperature above and below the given

value. For example, If the temperature was 63 degrees, the controller would

work out control actions which would be appropriate if (a) the value was

80 degrees and (b) the value was 80 degrees. Then a weighted average of (a)

and (b) would be taken, with more weight given to (a) than to (b) since 63

is closer to 60 than to 80. This weighted average would be the control

action exercised by the controller.

In the general case, where a number of variables are represented by the

activity in two yes-no channels, a more complicated form of interpolation

must be used. Let n be the number of variables, including time-displaced

versions. Instead of determining what the control action would be in each

of two situations, it is now necessary to determine what would be the con-

trol action in each of 2' situations. Then a weighted average is taken of

the control actions indicated for each of the 2n situations. The weighting

given to any indication would be governed by the degree of approximation of

the corresponding situation to the true situation.

When interpolation is used, the process by which the learning machine

adjusts the storage in its units or linkages must be modified to take

account of values of the variables which are not exactly represented by the

yes-no channels. For example, consider again a variable taking the value of

63 degrees, where 60 degrees is represented by 0,1 and 80 degrees by 1,0.
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Then the storage locations which can be modified as a result of the
activity involving this measure will include those which would have been
modified had the value been 60 degrees as well as those which would have
been modified if the value had been 80 degrees. The former group will be
modified more than the latter, since 63 is closer to 60 than to 80.

By the use of sub-goals and interpolation, a considerable saving in
complexity is possible in the application of a logical-type learning
machine to process control. However, the necessary complexity is still
high and it appears that a more elegant solution can be reached by depart-
ing from the logical mode of operation.

4.4 Time taken to learn

The reduction in complexity which is achieved by the use of sub-goals
and interpolation is valuable insofar as it makes the learning machine more
nearly feasible from the point of view of cost and size; it is also
valuable in reducing the time taken for the machine to learn. A logical-
type learning machine having, say, 30 yes-no inputs would have to learn how
to behave in each of the 230 situations which might arise (except for those
which are physically impossible). Since 23° is approximately 109 and since
each situation must arise a number of times before the machine learns how
to deal with it, it is clear that the learning process will take a long

time. Even if unlimited resources were available for the construction of a

learning machine, therefore, the complexity would still have to be kept

within bounds in order that learning would not take too long.

4.5 Numerical estimates of complexity

It is instructive to calculate the number of units which are needed in
a learning machine of the logical type having various numbers of yes-no
input channels. In Table 1, let n be the number of input channels. The
values shown are multiples of 6 or 15, since these are the numbers of

channels required to represent one variable in the cases of operation with

and without interpolation.
The second column in Table) shows e. This is the minimum possible num-

ber of storage locations in a learning machine of the type shown in jig.7
having n yes-no input channels. Actually, the number of locations could

only be as small as 2n in the case where the controller had only one yes-no

output channel through which to control the process.
Since the number of storage locations tends to be large, it is desirable

to consider a cheap form of storage such as magnetic tape. The quantities

held in the various storage locations could be represented by binary digits

recorded on tape. This would require at least 10 digits per location (see

below). The number of digits is therefore 10 x 2' and is shown in column 3

of Table 1. Column 4 shows the length of magnetic tape which would be
needed assuming a packing density of 100 digits per inch.
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TABLE 1

Note: 1 light year = 5.878 x 1012 miles

No. of

channels

n

Min. no. of

locations

2n

No. of binary .

digits

10 x 2n

Length of

magnetic tape

6 64 640 6 inches

12 4,096 40,960 34 feet

15 32,768 327,680 260 feet

24 1.6 x 107 1.6 x 108 25 miles

30 109 1010 1,6C0 miles

42 4 x 1012 4 x 1013 6,300,000 Miles

60 1018 1019 0.27 light-year

72 4 x 1021 4 x 1022 1,074 light-years

84 1.6 x 1028 1.6 x 1026 4,295,000 light-years

It is clear that the logical type of learning machine becomes prohibi-

tively complex when the number of yes-no channels is more than about 20, .

and even for 12 channels the complexity is considerable. It is important to

remember that the number of storage locations as shown in column 2 is a

minimum based on the assumption that the output is by a single yes-no

channel. In general the number will be considerably greater, and the figures

in columns 3 and 4 would be multiplied correspondingly.

4.6 Retrospective indication of goal-achievement

A source of complication which has not hitherto been mmtioned is the .

fact that it will not generally be possible to assume any particular value

for the time-lag between a control action by the controller (see fig./)

and the appearance of an effect in the indication of "hedony". For most

processes, in fact, the effect of a control action at any instant will be

spread over a period of time, and the nature of the effect may be different

at different times within this period. A learning machine used to control

such a process must have several quantities stored in each "storage loca-

tion". In the learning machine of fig. 7, for instance, each of the linkages
would store a number of quantities which might be (a) a quantity relating

to the probability of success immediately following a control action in-

volving the linkage, (b) a quantity relating to the probability of success

30 mins. after such an action and (c) a quantity relating to the probabi-

lity of success 60 minutes after the action.

The values Of 30 and 60 minutes for the lags have, of course, been

chosen arbitrarily; in a practical application the values would be chosen
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with regard to the time-constants of the process. It would be advantageous
to store many more than three quantities and the ideal would be to store a
continuous function of time. Here as elsewhere, a compromise is necessary
to keep complexity within bounds.

Returning to the learning machine of fig. 7, the way in which learning
would take place would be as follows.

A suitable memory, such as a continuous loop of magnetic tape, would be
incorporated. This would contain, at any instant, a record of the input and
output signals of the controller over the previous 60 minutes of operation.
When a "success" signal was produced by the process, the quantity described
under (a) would be modified in those linkages which had been active
immediately previously, and simultaneously the quantity described under (b)
would be modified in those linkages which according to the record had been
active 30 mins. previously and similarly for the quantities described
under (c).

The "decision" of a linkage whether or not to give an output at any
instant when its input is activated must depend on a function of the three
quantities listed under (a), (b) and (c). The function must be such that
the linkage would become active in the case where one of the three quanti-
ties indicated that activity in the linkage was usually followed by good
results in 0, 30 or 60 minutes; and the other two of the quantities made no
significant indication. On the other hand the function must also be such
that the linkage would not become active if one of the quantities indicated
that activity in the linkage was consistently followed by lack of success
after some interval. This latter requirement would hold, even when the other

stored quantities indicated that good results were usually obtained after

other time intervals.
It was because of the need to retain several quantities in each storage

location that the number of binary digits to represent a storage location in

digital form was taken to be as many as ten (see Table 1). If only one
quantity was stored three or four binary digits would be sufficient.

It is clear from the foregoing that a logical-type learning machine

suitable for process control is likely to be of formidable complexity.

There is, however, no reason for restricting learning machines to the

logical type of operation. In fact, it will be shown that machines which

deal with quantitative information (by means other than converting it to

binary form) will probably prove more suitable for application to process

control.
Logical-type machines have been discussed at length for three reasons.

These are (a) because much of the previous discussion of learning machines

by other writers has been devoted to machines of this sort and (b) because

it is not impossible that logical-type machines may find practical appli-

cations even though they are apparently less suitable for chemical process
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control and (c) because quantitative learning machines can be regarded as a

development from the logical type. The following section will be concerned

with (c). It will be shown how an attempt to reduce the complexity involved

in building a practical logical-type machine can lead to a scheme for a

quantitative learning machine.

5. EXTFMSICN TO QUANTITATIVE OPERATION

Two types of classification system have been mentioned, namely the type

shown in fig. 2, in which a given pattern of activity in the input channels
can activate a number of units, and the type used in fig. 7, in which each
unit corresponds uniquely to a particular pattern of activity. A possible

way of achieving some simplification would be to omit some of the higher

order units in a classification system of the type of fig. 2. Suppose this
is carried to the limit where there is no classification at all but only

direct connections to the input channels. (That is to say, all the units in

fig. 2 except those in the lowest row have been eliminated).
Suppose further that the input channels are connected through linkages to the

output channels in the my that the units are connected in fig; 7. In this the cut- .
puts of the different linkages which affect a particular output channel are

combined in an "or" fashion. In the simplified learning machine which is now

proposed it is obvious that if the outputs of the linkages were combined in

an "or" fashion the machine would not be able to make full use of its input

information, since, as soon as the output channel was activated by activity

in one input channel, it would become independent of all the other input

channels. If the outputs of the linkages are summated instead of being com-

bined in an "or" fashion, the machine can make better use of its Input in-

formation. For a machine using summation, the quantity or quantities stored

in the linkages would determine the magnitude of the contribution of the

linkage to the summation. Thus the linkages would have a different function

from that considered previously, which was to determine from the stored

quantities whether or not activity should be transmitted at all. For the

machine using summation, an obvious extension is to let the inputs to the

units be quantitative instead of yes-no signals, and to have the output

signals of the units proportional to the inputs. The ratio between the out-

put and input signals of a linkage would be a function of the quantities

stored in the linkage, which are modified by the learning process. The

controlling action of a learning machine, as now proposed, would be repre-

sented by a set of equations of the form

d = La + Pb + (5)

where d is an output signal, and a, b, and c are three input signals of the
controller, as shown in fig. 1. L. Al and N depend on the quantities stored ih
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the appropriate linkages of the learning machine. In practice a "constant

term" X would also be included. K would also be modified by the learning
process. Equation (5) becomes

d= + La + Nb + (6)

Equation (5), of course, simply expresses d as a linear function of a, b,
and c. The aim of the learning process is to adjust the values of K,L,Ar,
and N so as to make this linear function approximate as closely as possible
to the optimum control function for the process.

5.1 The use of correlation

The way in which the parameters K,L,Afand N could be modified is by
making experimental variations in their values while the process is running,

and correlating these variations with the variations in the degree of goal-

achievement or "hedony" represented by h in fig./. If there is a signifi-
cant positive correlation between the variations of one of the parameters,

say itf, and the variations in h, the learning machine must make an increase
in the value of Y. Conversely, if significant negative correlation is
observed, the machine must reduce the value of if.

5.2 Correlation as an extension of the conditional Probability Principle

This process of self-adjustment by correlation will be discussed in

more detail in the next two sections. It is interesting to note that the

computations carried out by the linkages in fig.7 are essentially correla-

tions. The "transfer function" of each linkage (corresponding to N above)
can take the value 0 or 1 in fig. 7. Counting in the units is allowed,

only when a "success" signal is present. This means that the dichotomous

"transfer function" is multiplied by the "success" indication, which is a

dichotomous hedony signal, and a time-weighted average of the product is

computed in the linkage. The time-weighted average of the product is

essentially a correlation between transfer function and hedony. Strictly

speaking, the quantity computed is not the normalised correlation coeffi-

cient defined by

XY
r= (7)

av.a2)
since in this definition the quantities X and Y must consist of fluctuations
about mean values. The quantities "hedony" and "transfer function", which

may be represented in their dichotomous form by I/ and hc do not necessarily
consist of fluctuations about means.

However, the quantity computed is of the form

r = I. (6)
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where W(t) is a time-weighting function, Equation 8 essentially represents

a correlation (see Licklider, ref. 15 for a discussion of running correla-
tion functions). Hence the use of correlation in a quantitative learning
machine is a direct extension of the principles devised for logical-type

learning machines.

8. THIRD APPROACH TO THE DESIGN OF LEARNING MACHINES. EVOLUTIONARY
OPERATION

Any attempt to apply learning principles in industry should certainly
utilise the large amount of statistical theory which has been discussed by

Box under the heading of Evolutionary Operation (ref. 18). The theory is
described in greater detail in Chapter 11 of the book edited by Davies

(ref. .17) and in other publications by Box and his colleagues. (refs. le,
19, 20, 21 and others).

Box and his co-lAorkers are concerned with the determination of optimum

conditions for a process where the variables are quantities such as

temperature, pressure, time of reaction, proportions of constituents

and so on. Figures 8 and 9 show two ways in which the yield (or "hedony")
of a process may be plotted as a function of these variables.

Box et at describe empirical procedures which can be used (without
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exploring all possible combinations of values of the variables) to arrive at
those values which bring the yield to its maximum.

There seems to be no reason why the same principles should not be
applied to the optimisation of a control function. Any control function
may be represented to any desired accuracy by a set of polynomial equations
with a sufficient number of terms. There would be one such equation for
each channel through which the controller was able to affect the process.
The polynomial equations would be of the same form as Equation 6, with the
addition of higher order terms:-

d K +• La + Afb + Nc + Pa2+ 2b2 + Rc2 + Sab + Tbc + Vca

+ Va2b + Wabc +   (9)
where the optimisation procedure Is applied to find the best values of
K,Loil etc.

For simplicity, only the first order terms would be considered in a
first approximation, and higher order terms would be introduced if the
first approximation proved inadequate. So long as only the first order
terms are considered, Equation 9 is identical with Equation 6, and the
procedure for optimisation which can be derived from Box's theory is
essentially that discussed in the previous section.

The application of Box's theory should make it possible to decide how,
if at all, the variations in the parameters K,L,A1 etc. should be related
to one another. One thing which is certain Is that the different parameters
should vary at the same time, rather than remaining constant while one at
a time is varied. The realisation that factors should vary simultaneously
is fundamental to the work of Box and is discussed by Fisher (ref.22).

Box arrives at procedures for conducting a set of experiments in the

neighbourhood of a particular set of operating conditions, and for deter-
mining therefrom the way in which the conditions should be altered so as
to approach the optimum. In fig.9 a particular set of operating conditions

would be represented by a point P in the plane of the diagram. Suppose
tests are made at each of two levels of each of the two variables. Then
tests could be made under four different sets of operating conditions,

which would be represented in the figure by the corners of a rectangle

drawn round or near P. However, in order to determine the directions in
which the operating conditions should be modified in order to approach the

Optimum, it is only strictly necessary to perform experiments at three of

these points. Similarly, for three variables which are each tested at two

levels, it is only necessary to conduct five out of the eight possible

experiments. (See ref. 17 p.507).
A learning machine seeking to optimise its control function by adjust-

ment of a number of variables might advantageously be made to relate the

experimental fluctuations in the variables. If the variables were three in

number it would be made to test five out of the eight possible combinations
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of signs of the fluctuations. This system would probably produce a more
rapid approach to the optimum than completely random fluctuations would.
This is a point which requires further investigation however. It is
possible that a planned pattern of fluctuations is only advantageous when ,
the errors of the individual observations of "hedony" are low; this is
unlikely to be true in practical applications of learning machines to
process control. Nevertheless it is clear that the statistical theory due
to Box provides the basis for planning the experimental strategy of an
industrial learning machine.

6.1 Some other possibilities.

A learning machine for process control could be made to operate by

means other than by optimising control functions of the form of Equation 9.
Other forms of empirical approximation could be used. It Is also possible
to devise learning procedures in which the aim is to represent the process
as well as possible by mathematical expressions. From the mathematical
model of the process it is straightforward to derive optimum control
functions.
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Kalman (ref. 23) has built a learning machine which controls a process by

first deriving a mathematical model. The type of process he considers is

one having one input channel and one output channel, but since it is a

dynamic process, the controller must take account of signal levels over a

range of time. Kalman represents the process by the equation

Ck + biCk_i + bnCk_n = aomk + almk_i t  

aomk_o  (10)

where the a. and b. are arbitrary constants and the bo has been set
arbitrarily to unity. The mi represent instantaneous values of the control

effort applied by the controller to the process, at times kr, (k-1)T 
(k-OT, where T is a fixed interval of time. The Ci represent the response

of the process at times kT,(k-1)T.... (k-n)T.
Wilby and Woodcock (ref. 24) are building a self-optimising filter, which

can adjust Itself to simulate a process. This filter therefore lends itself

to incorporation in a controller which, like that of Kalman, makes use of a

mathematical model of the process. The type of controller proposed here does

not incorporate a mathematical model of the process. The model is an inter-

mediate step between the observations which the machine makes of the pro-

cess and the control function it applies. In general, it is in the

interests of simplicity to eliminate this intermediate step. There is one

big advantage in having the mathematical model, however, since the learning

involved in forming the model is still useful even if the goal of the learn-

ing machine is changed. In some applications of learning machines, therefore,

machines incorporating a mathematical model of the process will be preferred.

7. FURTHER TRICKS WITH CORRELATION

7.1 AmPlitude of the fluctuations

' As already described, the values of the parameters lf,L,Al   are
adjusted in value by making small fluctuations in their values, and corre-

lating these with variations in the nhedony" or degree of goal-achievement,

h. The obvious way of deciding the magnitude of the fluctuations is to
start with very small ones and then to increase their magnitude until the

value. obtained for the correlation is statistically significant.

If the parameter is already at a value which gives a maximum of h, there

may be no significant correlation even when the fluctuations are large. It

is desirable that the machine does not continue these large fluctuations

indefinitely, since they must affect the process adversely.

These large fluctuations can be avoided by computing two distinct

correlations for each parameter. These are (a) the correlation of the para-

meter itself with hedony, as already mentioned, and (b) the correlation of
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the modulus of the fluctuations of the parameter with hedony. The magnitude
of the fluctuations should increase until (a) becomes statistically signi-
ficant or (b) becomes significant with negative sign.

7.2 Self-reorganisation

There are further correlations which may profitably be computed in the
machine. Since the correlation between a parameter and the hedony appears
as a continuous or "running" value, it is possible to compute a correlation
between this correlation and some other variable. We had in Equation 6:-

d = A' + La + gb + Nc

Let ra be the running value of the correlation between L and h when L
fluctuates. Then if a significant correlation exists between ra and a, the
conclusion can be drawn by the machine that the equation for d could pro-
fitably include a term in a2. Similarly, if there is a significant correla-
tion between ra and b, the equation could profitably include a term in ab,
and so on.

With the addition of these terms, the equation becomes

d = K + La + Alb + Nc + Pa2 + %ft, (11)

If now there is a significant correlation between roh and c, for instance,
the machine may add a term in abc, and so on.

A learning machine may therefore incorporate self-reorganisation. It

incorporates a fixed number of units, and may decide by the above procedure
how these should be allocated to the computation of higher-order terms. It
is also possible to devise criteria which the machine may apply in order to
decide whether an already-allocated unit is serving a useful purpose. If it
is not, it can be re-allocated. (One possible criterion to decide whether a
unit is functioning usefully is to examine whether the fluctuations in its
parameter, subject to the conditions discussed earlier, became large enough
to involve changes in sign of the parameter in the course of the fluctua-
tions. If they do, the unit is serving no useful purpose).

The development of the circuitry needed to allocate units to different

jobs presents interesting problems. Circuits involving relays and uniselec-
tors can be used in much the same way as they are used by telephone

engineers in allocating telephone channels to subscribers. A type of static
circuit which may be suitable has recently been described by Chapman and
Freed (ref. 25) as a possible model for neuronal connections in the spinal
cord.

7.3 ComPosite goals

In general, a process must be controlled so as to achieve a composite

goal, or in other words to work towards a number of goals which must be

(94009) 499



balanced against one another in importance. Many human and animal activi-
ties similarly involve multiple goals; for example a man driving a car from
A to B has the goal of avoiding an accident, but also has the goal of
getting from A to B as quickly as possible. The two goals conflict to some
extent and the driver's conduct is determined by some sort of estimate of
their relative importance.

In an industrial application, the main goals will usually be (a) to
maximise the quantity of the product, (b) to keep the quality within

specification and (c) to minimise wear and tear of the equipment. It will
not usually be difficult to devise a function of these goals which may
appropriately be taken as the "hedony", since all industry has one main
aim which is the maximisation of profits.

In this paper it has hitherto been assumed that the learning machine has

no indication of the degree of goal-achievement except the indication of
the value of "hedony". It has been assumed that the learning process depends

entirely on correlations with this function. However, if no account is taken

of the different components of the hedony, information which would appear

to be significant is being ignored. It seems clear that the learning process
would approach the optimum function more rapidly if the machine was kept

informed, not only of its degree of goal-achievent, but also of Che precise
way in which it has failed to achieve the goal.

It therefore appears that the machine should make use of correlations

with the quantities which contribute to the hedony function, but the writer

has not yet arrived at a scheme for doing this. This is one of the many

aspects of the development of learning machines which require further

consideration.

8. LEARNING BY WATCHING

A learning machine applied to an industrial process could not be coupled

to the process while in a completely naive state. If its initial control

actions were entirely random the consequences for the process might be

disastrous. In many cases it would be possible to pre-set the controller so

that it controls the process in a safe and reasonable fashion before any

learning occurs. Then the learning process can operate to bring the control

function nearer to the optimum.
As an alternative to pre-setting the controller manually, it might be

preferable in some cases to couple the learning machine to the process

while the process is under manual control. In this way the machine could,

in effect, learn by watching the human operator. After a sufficient period

of learning by watching the machine could be put in control.
A learning machine may be made to learn by watching in either of two

ways. It may simply learn to imitate the control policy of the human .
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operator. In this case the machine takes no account of the degree of goal-

achievement of the process during the period of watching. The other

possibility is that the machine observes the variations which occur in the

operator's policy of control, and tries to correlate them with the varia-

tions in degree of goal-achievement. Then, when the machine Is put in

control its policy of control can be more consistently favourable than was

the policy of the operator.

8.1. Imitative learning

The simpler form of learning by watching can be achieved by a straight-

forward adaptation of existing statistical theory. A linear approximation

(of the form of Eq. 6) to the control policy used by an operator in con-

trolling d as a function of a,b and c is given by the equation given in
statistical texts for the regression of d on a, b and c. (see for example,
Weatherburn, ref. 25).

The equation is:-

crd

a

o c o

rda 1 rba rca o (12)

rdb rab 1 rcb

rdc rac rbc 1

where c'1: is the standard deviation of i, and rij is the correlation 
coeffi-

cient of i and j.

Since, to control a dynamic process, the measured variables (a,b,c in
Eq.12) must include past as well as present values, the order of deter-

minant required in the regression equatIon will generally be inconveniently

high. It is unlikely that a learning machine would Incorporate the means of

expanding the determinant, but it would certainly incorporate the means of

computing the correlation coefficients and standard deviations. The conver-

sion of the determinantal equation into the form of Eq.6 would be done once

and for all when the learning machine was changed from learning by watching

to controlling. The computation involved in the conversion would probably

be carried out manually or by a digital computer.

8.2 Learning by watching with regard to goal-achievement

For the more advanced form of learning by watching it is necessary that

the regression equation be continuously computed and expanded into the form

of Eqn.6. Then the fluctuations of the coefficients in the resulting

continuously-varying equation would be correlated with the fluctuations in

goal-achievement. The mean values of these coefficients would also be
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computed. The values of coefficients which would be tried by the machine
when it was put in control would be these mean values plus modifications.
The signs of the modifications would be determined by the computed values

of correlation between the goal—achievement and the fluctuations of the
coefficients during the period of learning by watching.

9. SOME PRACTICAL DIFFICULTIES

General principles have been discussed for learning machines for indus—

trial applications, and it is hoped that these will lead to practical
forms. Reader o who have followed the discussion this far will have realised,

or at least suspected, that many practical difficulties have been omitted
from the discussion. One of these is the difficulty of devising suitable

functions to be taken as "running values" of correlation etc.
Equation 2 gives a suitable function to represent a running value of

conditional probability. There is the difficulty here, however, that the

time—constant of the averaging process (controlled by the value of r in

Equation 2) must be arbitrarily chosen. The use of different values of r

will affect the "temperament" of the machine.
The difficulty is greater when a more complicated function must be

computed as a running value. In some cases it will be necessary to utilise

running values of certain variables in order to compute the value of

another variable. In this case a number of different time—constants are in—

volved, and their ratios must be suitably chosen. -
In computing a running value of correlation coefficient, the quantities

which are multiplied must be fluctuations about mean values, and then the

product is smoothed with a certain time—constant. The mean values are

themselves running values obtained by smoothing the original signals with

a certain time—constant. In what has been written here it has been assumed

throughout that the correlation coefficients are normalised so as to lie

between —1 and +1. The need for normalisation complicates the issue still

further.
In fact, the computation of running values is too involved a subject to

be discussed fully here. It will form the subject of a separate publication.

10 CONCLUSIONS

The writer hopes to apply the principles of learning by correlation to

an industrial application. The general principles have been discussed here

but there are many aspects which require further consideration. There are

also many avenues of speculation which have been left unexplored.
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Although reference has been made to several other workers, the present .
paper has not reviewed anything like all of the literature on learning

machines. The emphasis has been on quantitative rather than logical-type

machines because it appears that the quantitative type will find applica-
tion more readily. However, it is very likely that logical-type machines

will also find applications. Among the logical-type learning machines which
have not been discussed are the computer programmes demonstrated by

Oettinger (ref. 2?) and the model of animal learning described by Deutsch
(ref. 28). Another type of computer programme with learning properties has
recently been described by Friedberg. (re.f.29).

Although little has been said about human and animal learning, it is

felt that the principles discussed here are highly significant for psycho-

logists. Their significance does not arise from any suggestion that the

learning machines are models for animal learning unless in an extremely

general way. The usefulness,of the present discussion to psychology is

likely to be in suggesting, hypotheses and experiments rather than

explanations.

I am indebted to the Director of the National Physical Laboratory for
permission to publish this paper, to Dr. Uttley and to my other colleagues

for valuable discussions relating to the subject matter. The responsibility

for the opinions expressed, is, however, entirely my own.
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APPENDIX TO THE PAPER BY DR. A. M. ANDREWP

One of the main objects of the paper is to point out the need for some
form of interpolation in any learning machine applied to process control.
Two forms of interpolation are discussed; one under the heading

"Interpolation" in section 4.3, and one in terms of polynomial functions

in part 5. Without some form of interpolation the learning machine cannot

exploit the continuity of Its environment.

The principles discussed in the latter part of the paper lead to a

number of interesting possibilities not mentioned in the paper. One of

these is the possibility of making machines which will "learn to learn".

The design of a learning machine involves the choice of values for a number

of parameters, including time-constants of smoothing for the running values

of statistical quantities, and threshold levels at which these quantities

produce a change in the control policy of the machine. A person designing

the machine would need to choose these values rather arbitrarily, since

there is no simple way of determining the values which will produce most

rapid learning. In fact, the design of a learning machine is precisely the

kind of intractible mathematical problem which it is hoped to by-pass by

the use of learning machines. Eventually, therefore, it is likely that

machines will be devised In which the learning process itself will be

subject to adaptive modifications.
Two of the references require further comment. In referring to Wilby

and Woodcock (ref. 24), the writer should have realised that these workers
are under the direction of Professor Gabor, and are putting into practical

form the self-optimising filter proposed by Prof. Gabor (ref. 1).
A much abbreviated form of the paper by Chapman and Freed (ref.2 5) has

now been published (ref. 2).
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DISCUSSION ON THE PAPER BY DR. A. M. ANDREW

MR. C. STRACHEY: I find myself in some difficulty at the prospect of having
to cram into five minutes all the comments I want to make on Dr. Andrew's
paper. First of all, I think it is fair to say that there are two or
perhaps three types of learning programme (or machine) which can be
envisaged. There is the sort of self-organising type, such as the per-
ceptron, which you hope is ultimately going to organise itself into a
suitable configuration. Then there is the type which might be called the
'thinking' machine, which is sophisticated to start with and has some of
its concepts already built in, as with the geometrical problem-solving
machine. I find both these very interesting indeed, but neither of them
at the moment show signs of having any practical application. There is a
third type of learning machine, which is really not so much a learning
machine as an optimum seeking machine, which is specialised, in that you
decide beforehand what sort of thing you want it to learn in considerable
detail. Machines of this sort have probably less claim to be called

learning machines, but more claim to be called useful. They have been
simulated on digital machines for a number of years, and are generally
regarded as being uninteresting from the point of view of programming.

I think Dr. Andrew has confused the issue considerably by trying to

apply to a practical problem a machine of the self-organising perceptron
type. I do not think this is an appropriate thing to do. The first two-

thirds of the paper refers to logical type conditional probability com-

puters, and finally comes to the conclusion, with which I shall agree,

that they are not much good for the type of thing he is proposing for

them; the tables of the size of storage required in any practical problem

certainly makes it difficult to imagine constructing a machine of this

sort.

I have some further evidence which I should like to put before you to

reinforce this point of view; it is not concerned with the amount of

equipment but with the way in which it functions. The last third of the

paper is concerned with a totally different proposal, which I think might

Probably stand' more chance of success. But it seems to me there is

nothing in this part of the paper which is other than purely speculative.

It seems to me a great pity that, when you are talking about learning

machines, you should start to describe them as applied to complicated

physical problems such as controlling a chemical works before you have
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made some practical investigation, or simulated investigation, on digital
computers which you can make so very easily for these systems. I think in
any practical control problem you have to make use of all the specialised
information you can get hold of, though I'm afraid I have not time to
expand that at the moment.

I just want to say that, after reading this paper, I was stimulated -
perhaps I should say pricked - into writing a programme for a digital
machine which simulates on a slightly larger scale, the machine described
In figure 7. This is supposed to be a learning machine of the same type
as the conditional probability computer. The machine I envisaged has two
decimal digit inputs and two decimal digit outputs: you can set it to add,
subtract or multiply or to give the least significant digit of the sum or
the product. What you ask it to do depends on the Indication of success
which is given by a separate part of the routine, which is called the
teacher. The way it worked was such that if it got a bad answer the
probability of that one was depressed, and if it got a right answer it
went on getting it right. Now the remarkable thing about this particular
routine is that it behaves considerably worse than you would expect; it
behaves worse than at random. At first It was only looking for the least
significant digit in the sum, and before it got all the answers correct
there were 649 wrong ones. On the average it had tried six and a half
times for each successful answer, which is worse than if you went straight
through, say, from 1 to 9. This is not unreasonable because obviously
sometimes you try the same wrong numbers by chance several times.

DR. L. M. SPETNER: In ttis paper Dr. Andrew has indicated that it
seemed quite hopeless to use the idea of logical design or digital
techniques in his machine because of the large number of boxes that would
be required to handle each one of his functions. The situation might,
however, be little more optimistic than this, in that one might take
advantage of a self-organizing type of device, such as the perceptron, in
doing this job. Here the self-organization might consist, not of reinfor-
cing the values of the association cells, but perhaps adjusting the
thresholds. Adjustment of the thresholds seems to be a reasonable thing to
do when one is trying to effect a logical network. The reason for this is
that one may consider a threshold device with many binary inputs as a
generalized logical network. For example, a threshold device with two
inputs that can have the value of 0 or 1 and has a threshold of 1 is an
either-or device, and so on. So that if one has N inputs into such a unit
then there are N different thresholds that may be used. This allows the
device to be any one of the N different symetrical logical functions.
There is of course a sticky problem as to how one tells whether he should
raise or lower any particular threshold to effect some given response.
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This might be done by nutating the threshold during the computation of

the responses, and from this nutation determine which way to change the

threshold In order to Improve the response.

I hope that these comments will stimulate further thought along these

lines.

DR. A. M. ANDREW (in reply): I disagree with Mr. Strachey in his assump-

tion that the third type of learning machine he mentions - the optimum-

seeking machine - must necessarily be such that the sort of thing it is to

learn is predetermined in considerable detail. Section 7.2 of the paper is

intended to indicate how the principles of these machines can be extended

to incorporate self-reorganisation. The use of sub-goalvetich are subjcct to

adaptive modification, as mentioned in Section 4.2, Introduces still

further flexibility of operation.

I apologise for not adequately reviewing previous work in self-optimis-

ing systems. A large amount has been published, including a review of the

field by Aseltine, Mancini and Sarture (ref. 1), and details of the
Westinghouse OPCON by Burt and Van Nice (ref. 2). The work of Draper and
Li (ref. 3),Is particularly noteworthy.

It is difficult to comment on Mr. Strachey's experiment in programming .

without having further details. In any case, the problem to which he has

applied the computer is rather different from the process-control type of

application which I have been considering.

I agree that computer simulation of learning machines can be extremely

valuable. One of my colleagues is already using a digital computer in this

way, and I am starting to prepare a programme simulating a learning

machine which applies the control function shown as Equation 6 of the

paper. The construction of such a programme becomes a rather more compli-
cated matter than Mr. Strachey suggests if it is designed to make a worth-
while contribution to the derivation of design principles for learning

machines.

The kind of logical network suggested by Dr. Spetner does not, so far
as I can see, allow interpolation any more readily than do other logical-
type devices. Without this feature the machine must take a long time to

learn to perform any task involving continuous variables, even if its

complexity can be kept within limits of feasibility.
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