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1. INTRODUCTION

This paper is concerned with two aspects of the ‘exact match’ problem which
is that of searching amongst a set of stored patterns to find those specified by
a given partial description. We describe how to design simple content-
addressable memories, functioning in parallel, which can do this and which,
in some sense, can generalise about the stored data. Secondly, we consider
how certain graphical representations of data may be suitable for use in
efficient serial search strategies. We indicate how such structures can be used
in diagnosis when the availability or cost of tests to be applied cannot be
determined in advance. ‘

The type of parallel system to be considered is to store descriptions of a set
of patterns, and is then to be used to supplement an incomplete description
of a newly presented pattern by matching it against those in store. If this
partial description matches one or more of the stored patterns then we
would like the memory to provide us with the partial description that these
patterns share. If the new pattern does not match any in store then we
expect that the information supplied will be according to the relationships
between the pattern presented and those in store. The information that we
require our memory to provide when given an incomplete description as an
address is therefore more than just the response ‘yes’ or ‘no’. In this respect
our type of system differs from content-addressable parallel memories used
in computer technology, and for the same reason its capabilities exceed that
of a switching network which is designed to respond positively when the
states of its input channels attain one of a number of combinations of binary
values (Richards 1971, Renwick and Cole 1971).

This paper generalises the work of Willshaw (1972) to ensembles which
conform to few or no logical constraints. The graphical generalisation of the
multitree which is used by Willshaw to represent the ensemble will be seen to
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have properties which suggest its use as a method of data retrieval in conven-
tional storage systems. This method is applicable to the problem of reducing
the amount of serial search needed to identify a pattern in store from a
given partial description.

2. THE INDUCTIVE NET

We now review the properties of a parallel device called the Inductive Net
(Willshaw 1972), which is closely related to the Associative Net (Willshaw,
Buneman and Longuet-Higgins 1969). This is designed to store a selection of
patterns chosen from a special type of ensemble. When presented with an
incomplete description of an ensemble member it is able to use the informa-
tion in store to supplement the description of that member. The structure
imposed on the ensemble enables the Net to have the additional property of
generalisation as it can augment descriptions of ensemble members with which
it was not explicitly provided.

Each pattern with which the Net deals is in the form of a bmary vector of
fixed length, each component of the vector representing the value the pattern
takes on a particular binary feature. The restriction placed on the ensemble is
that no two features are logically independent — that is, for each pair of
features not all the four possible combinations of feature values ‘+ +°,
‘4 —’, ‘=4’ and ‘— —" are possessed by members of the ensemble, which
is sa1d to obey the four point condition (Buneman 1971).

The Inductive Net is made up of a set of horizontal lines (input lines)
crossing at right angles a set of vertical lines (output lines), binary switches
being placed at the intersections so formed. Each possible feature value has
one horizontal line and one vertical line identified with it. A pattern is stored
in the Net by exciting the horizontal lines and the vertical lines identified
with its feature values, and turning on each switch which receives excitation
along both the lines on which it is placed. In the retrieval mode, the pattern
to be used as the address or cue (which is usually incomplete) is input by.
exciting the appropriate horizontal lines. Each binary switch whose hori-
zontal line is excited and which has been turned on sends a pulse of unit
strength down its vertical line which then fires if the number of pulses sent
down it equals the number of excited input lines. An inhibitory mechanism
placed across each pair of output lines identified with the same feature
prevents any signal emerging if both lines are simultaneously active. The
set of feature values associated with the output produced in this manner is
- regarded as the response of the Inductive Net to the given cue.

As an example of how the Inductive Net functions figure 1 shows the Net
whlch has stored the following patterns:

A: +1 -2 +3 -4
B: +1 +2 -3 -4
C: +1 42 -3 +4 .
D: -1 -2 -3 -4
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Each pattern is represented by a binary vector of length 4. To assign a value
‘+x’ to a pattern means that this pattern takes value ‘4’ on feature x.
Similarly for ‘—x". From this list of feature values we note, for example, that
a pattern with feature value +2 also has values +1 and —3. This simple
correlation has been noted in the Net, for along the horizontal line labelled
+2, switches +1 and —3 have been turned on and switches —1 and +3 have
not. This line is therefore storing the ‘rule’ that a pattern with feature value
+2 also has feature values +1 and —3. Similarly,; we observe that a pattern
with feature value +3 also has feature values +1, —2 and —4, so this ‘rule’
is stored in horizontal line + 3. More complex rules such as ‘the presence of
+1 and 42 implies the presence of —3’ have not been stored in the Net
because each horizontal line is identified with only one feature value.

+1 —1 +2 =2 +3 -3 +4 —4

+1>—-6—0—e —a—a—a—a—€-
-1>—-0—@—J—e—d—a|—J—@-
+2>-a—0—@—q—q—a—a—a-
-2>-@—e—d—q —a—¢—J—a-
+3>—@—d —0 —a—a —q—q —a- .
—3>—a—d—a—a—o—a—d—a—
+4>—a—J —a| —q|—a| —e¢|—a|—a|-
-4>—-a—a—a—a—@ —a|—J—aq|-

[—1 [ [—] [
v il VT T

Figure 1. The Inductive Net which has stored patterns A, B, ¢ and D. Switches which
are on are coloured black.

In order to discuss the behaviour of the Inductive Net we need the fact that
all the information that a selection of patterns from a four point ensemble
can tell us about the ensemble itself can be represented by a family of trees
which we can draw as a single structure called a multitree, in which each
node represents a possible member of the ensemble and each 11nk corresponds
to the alteration of one or more features
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The multitree constructed from patterns A, B, C and D is shown in figure 2.
Each of the four stored patterns is represented by a node and there is a node,
which we label X, not identified with any pattern. The links are directed, and
the arrows placed on them point towards that region of the multitree having
value ‘+’ on the associated feature, the remainder of the multitree taking
the value ‘—’. The reader may like to verify that the multitree of figure 2 is
the correct one by checking that its links assign the correct set of feature
values to nodes A, B, ¢ and D. (In this simple case each link is identified with
only one feature, so that the multitree represents Just one tree. In general the
multitree represents more than one tree.)

Figure 2. The multitree constructed from patterns A, B, C and D.

Let us imagine that we are given the descriptions of a number of patterns
which we know were selected from a four point ensemble, and we are now
asked to supplement incomplete descriptions of ensemble members. The
appropriate multitree is a very useful tool for this task. First of all, it contains
descriptions of all the members of the ensemble whose presence can be
inferred from the given sample. That is the reason why the extra node x
appears in our example — the four point ensemble from which patterns A, B,
c and D were selected must also contain pattern X. Secondly, the multitree
has the property that any incomplete set of feature values common to one or
more ensemble members specifies that connected region of the multitree
containing the nodes associated with them, and so the complete set of
feature values common to these ensemble members can be read off from the
- multitree. For example, if we were asked to supplement the partial description
+4, reference to figure 2 shows that feature value +4 specifies node c,
and its complete description +1+2—3+4 can be read off from the multitree.

" Similarly the partial description —2—3 specifies nodes b and X which, as the
multitree tells us, share feature values —2—3—4.

It is a straightforward exercise to prove that the Inductive Net can
supplement partial descriptions just as well as we would expect from an
examination of the multitree constructed from the set of patterns given to
the Net to store (Willshaw 1972). Returning to our example once more,
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this means that if we input the description +4 to the Net of figure 1 then the
output is +1+2-3+4, and the response to the cue —2—3is —2—-3—4.

These are two illustrations of the general theorem which reads:

If the set of feature values used as input to the Inductive Net specifies
a connected region of the multitree then the output is the complete set
of feature values common to that region.

The most important property of the Inductive Net is that 1t is able to
supplement descriptions which it was not explicitly given to store. This asset
becomes undesirable if we do not wish the Net to generalise in this way.
If, for example, we had defined our ensemble to comprise the patterns
A, B, C and D and no more, the Net of figure 1 would still supplement partial
descriptions on the assumption that X was present as well.

The Inductive Net is therefore not able to augment descriptions of arbitra-
rily chosen sets of patterns. It is convenient to divide this problem into two
parts and consider each separately. We shall show in the next section that we
can always produce a parallel system able to supplement descriptions of any
set of patterns placed in store. However, if the system is to be able to
generalise then the ensemble from which the stored set of patterns is taken
must have one of a finite number of types of structure. Some of these types
of ensemble do not in fact obey the four point condition. However, if the only
hypothesis about the ensemble is that it is not four point (which is in effect a
non-hypothesis) then no generalisations can be made. The possible genera-
lisations are prescribed by graphical representations of data of the type
discussed later, so we shall delay discussion about the making of genera-
lisations until these representations have been introduced.

3. COMPLEX NETS WHICH DO NOT MAKE

GENERALISATIONS
Let us suppose that we would like to design an Inductive Net to supplement
the descriptions of A, B, ¢ and D of figure 2, but not X, as it does at the
. moment. If, for example, we supply as input to the Net the partial description
~—2-3, this should be enough to distinguish b (—1~2-~3--4) from A, B and
c. However, reference to the multitree tells us that feature values —2—3
specify nodes D and X, and so the output from the Net is the set of feature
values —2—3—4, no information about the value of feature 1 having been
recorded on input lines —2 or —3.

The solution is to construct a parallel structure, which we call a Complex
Net, to record more complex combinations of input and output feature values
than the Inductive Net does. We do this by giving the Inductive Net additional
horizontal lines, each of which has a mask placed on the front of it which
causes the line to fire when a particular combination of feature values occur
together in the input pattern. We say that a Complex Net is of size S if each
mask looks at no more than S feature values to decide whether or not it
should fire. In our example, if we add in a horizontal line which fires only
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when feature values —2 and -3 occur in the input pattern, this ensures
that the output for the partial description —2—3 is now —1-2-3—4,
as we require. In fact, for this Complex Net to supplement all possible
descriptions of A, B, c and D we need the extra masks +1—3, +1-2, —2-3,
so this Net is of size 2.

‘As a second example of the construction of Complex Nets we add to our
patterns A, B, € and D two more called E and F. The descriptions of these six
patterns are:

‘Ar +1 -2 43 -4
+1 +2 -3 -4
+1 +2 -3 +4
-1 -2 -3 -4
4+1 +2 +3 +4
F: -1 -2 +3 -4
This set of patterns violates the four pomt condition; for example, the four
pairs of feature values +3+4, +3-4, —-3+4 and —3—4 all occur in the
above list of feature values.

In order to find out what masks our Complex Net should have so that it
may supplement descriptions of just these six patterns, and no more, we use
an algorithm which is outlined in section 5 along with the other mathematical
propositions. In fact, for our example we need a Complex Net of size 3 with
13 masks of size 2* or higher. These masks are listed below in table 1.

moaw

Table 1. Feature values prescribing the masks of size 2 or higher for the
Complex Net storing patterns A to F.

+1-2 14243
+1-3 +1+2-4
—-142 +1+3-4
—-1-2 +2+43-4
—-143 :
-1-3

+2-3

—243

=2-3

This ends our discussion of how to design a Complex Net able to answer
questions about any set of patterns placed in store. We shall show how Nets
of this type can make generalisations after we have discussed certain graphlcal
representations of data.

* The size of a mask is the number of feature values that it must look at in order
to decide whether it should fire.
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4. GRAPHICAL REPRESENTATIONS AND DIAGNOSTIC KEYS
Burkhard and Keller (1972) have shown that, in the ‘closest match’ problem,
the construction of a graph on the patterns in store can cut down the amount
of searching. This problem is that of finding those patterns in a conventional
(computer) store which have least Hamming distance from a given ‘test’
pattern. Their method is to construct that graph on the patterns in store in
which pairs of patterns are linked which are separated by a Hamming distance
less than some number «. In the search for the patterns closest to the test
pattern, if we have already found a pattern distance d from the test pattern
we can subsequently discard from the set of closest patterns any pattern we
find whose distance is greater than d+« from the test pattern and, without
further calculation, we can reject all its neighbours in this graph. The degree
to which the search is speeded up depends critically on the choice of a.

In this paper, we have been concerned with the ‘exact match’ problem,
that of identifying a pattern or some of its properties from a partial description
of that pattern. Is there a method of decreasing the search time which
similarly employs some graph on the patterns? For the time being we shall
assume these patterns are to be stored conventionally in either a list or an
array and that graphs on these patterns can be constructed either by use of a
two-dimensional binary array, or by the use of more complicated pointer
structures. Call the n patterns to be stored Oy, Oy, . . ., O, each consisting of
k binary-valued components or features. A graph on these patterns will be
called an F-graph if that graph, when restricted to those patterns which
possess any given combination of feature values, is a connected graph. Put
otherwise, a graph is an F-graph if for each conjunctive predicate P=
PinPynP;.,..NP, on a subset of the features we can find a connected sub-
graph whose points are just those patterns which satisfy P. Given an F-graph,
we need search only along its links to achieve an exact match and the search
can be conducted in such a way that, if we have found a pattern which
satisfies some components of the predicate P, then we need move only along
links on which these components remain unchanged. Thus a hill climbing
procedure on an F-graph which optimises the match with P is bound to
achieve an exact match if one exists.

This process is of no use unless the F-graph is such that each pattern is
linked, on average, to only a fraction of the others. The complete graph is,
trivially, an F-graph but is useless as a device for restricting the search. There
is however, for any set of patterns, a unique minimal F-graph on those
patterns, that is an F-graph whose lines are lines in any F-graph on those
patterns. This graph can be constructed as follows: link every pair of patterns
which are Hamming distance one apart by a line, and associate with this line
alength of one. Call this graph G;. Augment G; with lines of length two by
joining points of Hamming distance two apart, provided these points are not
already graphical distance two apart in G;. Call this augmented graph G,
and measure distances in G, by the shortest length of path (if one exists)
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joining two points. Now augment G, in the same way with lines of length
three, and continue until the largest Hamming distance has been dealt with.

Although the minimal F-graph on the given patterns is well defined, it
may be possible, by adding extra patterns, to construct an F-graph with
fewer lines. One example of this is the tree-like data considered earlier, where
by adding patterns we can achieve an F-graph which is a tree. In this case
each new pattern has the property that for every pair of features there is some
given pattern that has the same values on those features. As we shall see,
properties of other F-graphs bear a close relationship to the properties of the

networks of the previous section.

It is interesting to compare the use of these graphs with that of another
essentially graphical construction, a diagnostic key. This is a number of
instructions telling the user how to apply a set of tests to a specimen in order
to place it in one of a number of previously determined classes. (Niemela,
Hopkins and Quadling 1968; Pankhurst 1970). Such keys depend for their
use on the assumption that the result of any test (feature value) can be
_established if required, and it is also in general impossible to use any partial
description that might be available at the outset. While diagnostic keys are
usually prepared for their efficiency of operation in terms of the number and
cost of the tests necessary to identify an object, their drawback is their
extreme inflexibility. We feel that computer diagnosis might benefit from the
use of more descriptive data structures; the problem of deciding which tests
to perform, when there is a choice, could be computed as the diagnosis
proceeds, for it may only be then that the cost or availability of tests can be
established.

5. COMBINATORIAL RESULTS AND GENERALISATIONS
We here summarise some useful definitions. Each pattern is a binary vector
of length k. Associated with the ith component of a set of patterns is the ith
Seature f; which carries each pattern onto its boolean value. An elementary
predicate is a predicate of the form f; or —1f; for some feature and an elemen-
tary disjunction (or conjunction) is a disjunction (or conjunction) of elementary
predicates.

An elementary disjunction (conjunction)D; contains an elementary dis-
junction (conjunction)D; if each elementary predicate in D, occurs also in
D;. A conjunction D is called a mask if D=>P; for some elementary pre-
dicate P, and there is no smaller conjunction D’ contained in D for which
D'=>P,. The order of a disjunction or conjunction is the number of elementary
predicates it contains. .

The following propositions hold
(1) The masks are determined by the minimal - elementary disjunctions
which are true on every pattern. Equivalently, they are determined by the
minimal false disjunctions.

(2) The set of patterns determine and are determmed by thelr masks.
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(3) Given a set Q of patterns, a pattern O’ satisfies all the minimal dis-
junctions for Q of order less than or equal to some j if for each subset S
of the features of order j there is a pattern O in Q such that

f(0)=f(0’) for all f; in §S.

The first of these propositions means that the masks can be calculated from
the minimal true disjunctions. The problem of finding these is the same as
finding the set of minimal covers contained in a given cover of a set. (A cover
of a set S is a set of subsets whose union contains S.) There is a serial algo-
rithm for finding these masks, details of which will be published elsewhere.
It is an attractive possibility that the masks might also be calculated by an
adaptive mechanism operating on an Inductive Net, but we know of no
such method.

The second result ensures, first of all, that if a Complex Net contains all
the masks for a set of patterns then those patterns alone are the only com-
Plete outputs that this Net can give. However, if an upper limit is placed on
the size of the masks that this Net can have, there may be other patterns
which have been effectively stored (Proposition 3). Returning to our example
of the storage of patterns A to F, if the Net can only have masks of size 1
this means that no minimal disjunctions of order greater than 2 can be used
to determine which patterns are in store. Therefore some minimal disjunctions
are disallowed and so extra patterns will have been stored in the Net. As
proposition 3 indicates, these are found by taking those of the set of 16
possible patterns which were not originally stored. For each of these, if we
find that all of the (%) pairs of feature values it possesses occur in the patterns
originally stored, we regard this as being a stored pattern-too. Having
applied this procedure to each of these 10 patterns we are then able to draw
the F-graph on the new set of stored patterns. This is shown in figure 3
and we observe that it contains many extra nodes. There are other F-graphs
that we can construct from the patterns A to F. If our Complex Net were
allowed to have masks of size 2 or less then we check triplets instead of
doublets of feature values in order to find the extra patterns in store. By this
means we produce the F-graph shown in figure 4 which contains one extra
node. Finally, by checking quadruplets we obtain the F-graph which is
constructed on the patterns themselves (figure 5). This is as it should be
because in this case no minimal disjunctions are disallowed. We say that an
F-graph is of order S if it was produced by allowing only minimal disjunctions
of order S or less to determine the patterns represented in it.

The point about constructing graphs of this form is that a Complex Net
of size S—1 — that is, each mask is allowed to look at no more than S—1
components of the input — will supplement incomplete descriptions of the
patterns represented in the F-graph of order S which may mention patterns
other than those given to the Net to store. It is in this sense that a Complex
Net is able to perform generalisations. If a Net has had built into it an
explicit assumption about the structure of the data it stores, this assumption
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Figure 5. The F-graph of order 4 for patterns A to F.
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taking the form of an upper limit to the size of the mask it can possess, then
the Net will be able to generalise on this basis. On the other hand, if no
assumption has been made (that is, there is no limit to the size of mask the
Complex Net may have) then it will always supplement descriptions according
to the F-graph constructed from the patterns given to the Net to store, and
so will not be able to generalise.

The family of F-graphs that we can construct in this way may also have
some application to the diagnosis problem. If we examine the three graphs we
have just constructed, the F-graph of figure 4 contains fewest links. Assuming
that we can mark invented nodes so that they can be discarded when required,
it would seem that the F-graph with the smallest number of links would be
the one to use in diagnosis, where links may be the expensive items. However,
we know of no method for producing from a set of patterns the F-graph
which is minimal in this respect.

We have programs for constructing F-graphs and masks for reasonably
large data sets, and we hope to put these into practice in some diagnostic
application.
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