"

An Approach to the Frame Problem,
and its Implementation

E. Sandewall

Computer Sciences Department
Uppsala University

Abstract

The frame problem in representing natural-language information is discussed.
It is argued that the problem is not restricted to problem-solving-type
situations, in which it has mostly been studied so far, but also has a broader
significance. A new solution to the frame problem, which arose within a
larger system for representing natural-language information, is described.
The basic idea is to extend the predicate calculus notation with a special

operator, Unless, with peculiar properties. Some difficulties with Unless are
described.

THE FRAME PROBLEM

This paper proposes a method for handling the frame problem in representing
conceptual, or natural-language-type information. The method is part of a
larger calculus for expressing conceptual information, called PcF-2, which is
described in Sandewall (1972), and which is a modification and extension
of Sandewall (1971a). The method proposed here is identical to the approach
of mine which B.Raphael mentions at the end of his paper on the frame
problem (Raphael 1971).

Previous work on the frame problem

The frame problem is the following: suppose we have a sequence of situations
(in the sense of McCarthy 1968) in an ordinary-world-type environment, and
that we know all ‘free-will’ actions that have been performed between these
situations, that is, all actions which we do not wish to explain purely by laws
of cause and effect within the environment. This information enables us to
make deductions -about properties of the environment in each situation.
In practice, most properties stay set unless something changes them. For
example, the color of an object usually stays the same when the object is

(o] 195



INFERENTIAL AND HEURISTIC SEARCH

moved, and of course when it is left alone. However, it may occasionally
change, and we might be able to realize this by a trivial deduction (for
example, if the object was re-painted) or by a more complex one (for example,
if the object was coated with fluorescent color and somebody blew a fuse so
that the uv lamp went out). The problem then is to find a deduction mecha-
nism which changes properties when they have to change, which retains
them when they do not change, and which (this is perhaps the most difficult
part) does this with a moderate number of axioms and moderate amounts of
processing time.

This problem may seem odd at first, but it is a very real problem in the
design of systems that reason about sequences of actions. This includes
problem-solving systems (which are supposed to find a sequence of actions
that leads to a given goal), but also some other cases. For example, an
intelligent CA1 system along the lines of Carbonell’s (1970) system, but for
history instead of geography, would certainly need to reason about sequences
of actions, and therefore would need a solution to the frame problem. In
this paper we are concerned with the frame problem for general use, as
exemplified by the history application, but not with short-cut methods for
problem-solving in simple environments.

Several previous authors have discussed the frame problem and proposed
solutions for it, particularly Raphael (1971), Fikes and Nilsson (1971), and
McCarthy and Hayes (1969, 1971a, 1971b). The work of Hewitt (1968-70)
and the descendant work of Sussman and Winograd (1970) is also quite
relevant to the frame problem, as has been pointed out, for example, by
Hayes (1971Db).

Let us very briefly comment on the proposed approaches from our view-
point of ‘general use’.

1. The general frame axiom approaches of McCarthy and Hayes (1969) and
Hayes (1971a). In these approaches one attempts to write very general rules
for when properties are retained, and their retention then has to be re-proved
for every new situation. We doubt if it is possible to get a set of frame
axioms with sufficient coverage, and we therefore reject these approaches.
2. Consistency-based methods. This approach is discussed by Hayes (1971b)
and is based on work by Rescher (1964) and Simon and Rescher (1966).
The basic idea is to remove properties only when they cause an inconsistency.
Some conventions are needed for deciding which property is responsible for
a detected inconsistency. We believe that this method could be useful, but that
it will be very costly in computation time, so that a more immediate method is
desirable.

3. The sTRIPS approach of Raphael (1971) and Fikes and Nilsson (1971).
Here facts are classified (on syntactic grounds) into ‘primitive’ and ‘non-
primitive’. Every action is characterized by a schema which specifies which
primitive facts in the situation are added and deleted by the action. Other
primitive facts are retained automatically. Non-primitive facts must in

196



SANDEWALL

principle be re-proved from the primitive facts in every new situation, although
in practice one can design the program so that the deduction need not be
re-performed.

One can think of cases for which this scheme is not sufficient, for example,

Hayes’ example (1971a): if a cup is standing on a saucer and the saucer is
moved, the cup usually comes with it, but if only the cup is moved, the
saucer (usually) does not come with it. We would like to add another example
of a different nature. Let us make the reasonable assumption that friendship
assumes that you are alive, that is, it is impossible for a dead person to have
friends, or to have a dead person as a friend. We then want the “friendship’
Property to be ‘turned off” when a person dies. However, we do not wish to
burden the schemas associated with actions like ‘die’, ‘kill’, and so on, with
information regarding the cessation of friendship, and all other things that
change at such a time. On the other hand, if ‘to be a friend of” is to be a
non-primitive, then we do not see what the supporting primitive property
(-ies) could be. From such examples, we conclude that the STRIPS approach
is probably limited to the problem-solving-type situations for which it is
Presently being used.
4. The PLANNER approach. Since PLANNER is (among many other things)
a proposed programming language, any other approach would be a PLANNER
approach in the sense that it could be implemented in PLANNER. However,
there is one way of handling the frame problem, using the PLANNER
Primitives in a straightforward fashion, which we shall discuss here.

PLANNER enables the user to write rules which specify ‘things that can
be done’. Such a rule might, for example, correspond to a STRIPS schema.
When the sTR1PS schema adds a fact, PLANNER would add the correspond-
ing fact to the data base using the primitive thassert. When the STRIPS
schema states that a fact should be removed, the corresponding PLANNER
rule would contain a command to remove the fact from the data base,
using the primitive therase. Some care must be taken; for example, it is
necessary to do the therases of a situation transformation before the thasserts,
so that fresh facts are not erased.

Although the PLANNER approach has several points in common with the
STRIPS approach, the above two examples (cup and saucer, and dying friend)
do not present any difficulties in themselves. Both of them can be handled by
doing forward deduction of the form i

therase (A)> therase (B). .
Moreover, the programming language aspect of PLANNER makes it possible
to counter any proposed, single counterexample, in the worst case by writing
a piece of code. However, we depart from the PLANNER approach for
another reason, which will be discussed in the next section.

197



INFERENTIAL AND HEURISTIC SEARCH

EPISTEMOLOGY VS. HEURISTICS

McCarthy and Hayes (1969) discussed possible criteria for adequacy for a
proposed notation, and made the following distinction: ‘A representation is
called epistemologically adequate for a person or machine if it can be used
practically to express the facts that one actually has about the aspect of the
world . ... A representation is called heuristically adequate if the reasoning
processes actually gone through in solving a problem are expressible in the
language’. In our case, the ‘aspect of the world’ is of course the natural-
language aspect, rather than, for example, the quantum physical aspect.
Natural language itself is one epistemologically adequate representation,
but (as discussed in Sandewall 1971b) we want another one which is more
suitable for the task at hand, that is, question-answering, problem-solving,
and other reasoning by computer.

Notice that the word ‘heuristic’ is here used in a slightly broader sense than
usual. If we have a system which performs its reasoning by breadth-first
search (which is not ‘heuristic’ in the ordinary sense), and if this and other
search strategies are describable within the language, then the language is
here termed heuristically adequate. However, the major reason for having a
heuristically adequate system is of course to be able to communicate non-
trivial heuristic guidance to the system.

The PLANNER approach to computer reasoning makes it a virtue to
integrate epistemological and heuristic information, and the PLANNER
language is the notation for expressing these together. We believe that this is
permissible for problem environments of moderate complexity. However, for
real-life problem environments, the task of writing a reasoning program is so
complex that it is necessary to divide it into sub-tasks, and one very reason-
able division is to study the epistemological problems first, and to add the
heuristics afterwards, rather than try to do everything at once. This is
particularly attractive since a set of rules without heuristic information (or
other control information) is much less connected, and therefore much more
modular, than the rules with heuristic information.

In this context, by epistemological information we mean a notation
together with a set of rules (for example, logical axioms) which describe
permissible deductions. The predicate-calculus notation proposed in our
previous reports (1971a, 1971b, 1972) is intended to serve in this fashion.
However, we stress that such systems are intended as a basis for programming
in some programming language, and that it is essential that heuristic informa-
tion is later added. Attempts to feed such systems into uniform-strategy
theorem-provers (that is, to use them as a substitute for programming) are
bound to fail for efficiency reasons.

The argument has sometimes been raised, at least in informal discussions
at conferences, that epistemology cannot be separated from heuristics, that is,
that in order to express facts in a convenient fashion, one must utilize state-
ments about or make assumptions about when and how these facts are to be

198



SANDEWALL

used in the reasoning process. The discussion of approaches to the frame
problem above might seem to verify that argument, since the PLANNER
approach seemed the most satisfactory one. If we want to argue the distinction
between epistemology and heuristics, we should therefore provide a mecha-
nism which handles the frame problem without using heuristic information.

The present paper intends to do this — using a mechanism, the Unless
operator, which is an extension to predicate-calculus notation, and which
adequately handles the frame problem. At the same time, the Unless operator
is independent of the theorem-prover or other interpreter that executes the
search (in the data base), and of the heuristic information that governs this
interpreter. We shall outline several different execution strategies, all of which
are compatible with the intended meaning of the Unless operator. In that
sense, our notation stays on the epistemological level, and is neutral with
respect to heuristics.

THE HOST NOTATION
As was previously mentioned, our approach to the frame problem is part of
a larger system for expressing conceptual information, called pcF-2. The full
PCF-2 notation is too extensive to be described here, but for the present
purpose it is sufficient to describe a subset.
We utilize the following sorts:
objects (which may be physical objects, or persons)
properties (e.g. ‘red’, ‘angry’, ‘male’)
situations (in McCarthy’s sense of the word)
actions (e.g. ‘to walk’, ‘to smoke’, ‘to smoke cigarettes in bed’,
‘to push’, ‘the robot pushing’, ‘to push a box’, ‘to push the box called
:box12’)
The following relations and functions are needed:
15: object x property X situation
states that the object has the property in the situation.
INN: action X situation
states that the action occurs in the situation.
Case functions, of which there are several, one for each Fillmoresque
‘case’. Their sorts are usually
action x object—action
{action X property—action
They are used to construct composite actions (for example, ‘to smoke
cigarettes’ from simpler actions (for example, ‘to smoke’)
Succ: situation x action—»situation
Maps a situation into that successor situation which results if the action
is taken.
Additional relations and functions are needed, for example, to characterize
the hierarchy of properties (human — mammal —animate . . .) or the succession
ordering of situations, but they are not of interest here.

199



INFERENTIAL AND HEURISTIC SEARCH

THE APPROACH TO THE FRAME PROBLEM
Given the system above, we have two versions of the frame problem, one for
properties and one for actions. In the former, we want an object to retain a
property (for example, ‘red’) until the property is explicitly changed (for
example, by repainting). In the latter, we want an action to last (for example,
‘John sleeping’) until the action is explicitly discontinued by another action
(for example, ‘Peter waking up John’). Let us outline the solution to the
property version of the problem.
We introduce a ternary relation
ENDS: object X property x situation
and a frame inference rule which with some simplification may be written as
18(0, p, 5),
Unless(ENDS(o, p, Succ(s, a)))

15(o, p, Succ(s, a))
The Unless operator makes this rule peculiar. The rule is intended to mean:
‘if it can be proved that 15(o, p, s), and if it can not be proved that ENDS(o, p,
Succ(s, a)), then it has been proved that 18(o, p, Succ(s, a))’.

The solution to the other, action version to the frame problem is ana-
loguous. ‘

This approach to the frame problem gains its strength (as compared to,
for example, STRIPS) from the fact that one can make deductions to any
depth using the predicate ENDs. Thus in the dying friend example, one could
have a rule to the effect ‘if x ends being alive, then x ends being a friend of y’.
In the cup and saucer example, one would have ‘if x supports y, and x
moves to /, then y moves to I’, plus ‘if x moves, then x ends being where it
was’. (Writing these rules out in the formalism is a trivial task.) Furthermore,
this approach also makes it possible to do deductions backwards in time, such
as ‘since A is the case now, B must have been the case in the previous situa-
tion’, where B or conclusions from B may then be used in Unless clauses.
Such deduction may appear in history-type reasoning, although probably not
in problem-solving applications.

THE UNLESS OPERATOR

The introduction of the Unless operator is a drastic modification of the logic.
It even violates the extension property of almost all logical systems, which
says that if you add more axioms, everything that used to be a theorem is still
a theorem. However, it is not obvious whether this is serious. Our reason for
using predicate calculus in the first place was that we wanted a notation in
which to express conceptual information, and which could serve as a basis for
a computer program that is expected to become large and complex. In other
words, predicate calculus is only used for its syntax. The Unless operator
extends the notation, but it is still reasonably clear how it is implemented in
practice in a ‘backward-search’ algorithm. If we have the above frame
inference rule of the form

200



SANDEWALL

A

Unless B

C
and if we wish to prove C, we first make it a sub-problem to prove 4. If
we succeed, we then make it a sub-problem to prove B. If we succeed in this
proof, then the proof of C did not succeed, and vice versa. Programming-
wise, it should not be a problem that the proof of B might involve another
Unless-clause. The fact that the search for a proof of B might have to be
interrupted should not bother us too much. In an advanced system, the
search for a proof for B might later be resumed in a final check-out of a
proposed plan, or line of reasoning. This implementation of the Unless
operator is similar to the PLANNER thnot, and in fact PLANNER would be a
convenient (although expensive) implementation language for this system,

However, the fact that the Unless operator has some dirty logical properties
should not be completely ignored. In one form or another, these difficulties
are bound to appear in any implementation of an Unless operator. They are
intrinsic and cannot be evaded, for example, by the choice of programming
language. In this paper, we shall merely draw attention to some of these
problems, without attempting to provide a solution. In the sequel, we shall per-
mit Unless in wifs, for example, in axioms, with the obvious intended meaning.

First, consider the axioms

A

A A Unless(B)=C

AAUnless(C)oB
Clearly we cannot permit both B and C to be theorems simultaneously.
Which of them is a theorem, if any? One possible approach to resolving the
question is to use a precedence ordering on the axioms. Another approach is
to restrict the structure of permitted axioms so that such situations can not
occur. A third possibility is to bite the sour apple and accept that theoremhood
is three-valued: theorem, not a theorem, or undetermined.

If the above backward-search algorithm is asked to prove B, it will create
the sub-questions Band C alternatingly while digging down into the recursion.
Its final answer (theorem or not theorem) will depend on which of the two
sub-questions is at the break-off point. This is of course not satisfactory.
One would like to have a definition of theoremhood which uses relatively
conventional logical methods, that is, by specifying a procedure which will
generate all theorems and only them. The practically useful backward-
search algorithm would then be modified so as to approximate the theorem
generator. However, it is not easy to set up such a procedure which also
satisfies our intuition about how the Unless operator would behave. Consider,
for example, the following seemingly very natural definition:

We define a restricted wif(rwff) as a two-tuple (e, s), where e is a wif
and s is a set of wil. We extend all inference rules for wif,

81,82,...,e"|"e
201



INFERENTIAL AND HEURISTIC SEARCH

into corresponding inference rules for rwif of the form:

158510, (€2, 82)5 o o oy K€y Sy F €, 51USVU . . . US,»
Moreover, we add the inference rule

{Unless(B)>e, s) I (e, su{B})
(The notation is sloppy, but the intention should be clear.) We then specify
the following inference mechanism for rwff: :
1. From a set A={a;} of axioms which are wifs, we construct the set

Xo= { < a;, %] > }
where J is the empty set.
2. For every X;, we construct Y;,; by adding the results of all possible
one-step applications of inference rules.
3. From Y,,3, we construct X;,; by deleting all {e, s such that ¢’ € s where
(e,s'>e Y.
4. For a given e: if there exists some s and K such that (e, s) € X, for all
k> K, then e is a theorem.
With this procedure, neither B nor Cin the above example would be theorems.
Unfortunately, in the following example,

A

A A Unless(B)=C

A A Unless(C)> D

A A Unless(D)oE
our intuition would permit E to be a theorem, but the above algorithm would
not. It seems that more work is needed on this problem.

TIME-SEQUENTIAL DEDUCTION
In the face of the peculiarities of the Unless operator, it is tempting to use
the selected frame inference rule in a deduction which proceeds ‘forward’ in
time. Such a deduction might be performed as follows:
1. Collect all information about the initial situation. Make deductions from
it, as long as the conclusions refer to the initial situation. (In practice, it
may of course be necessary to interrupt this deduction.)
2. Determine all unconditional information (not relying on Unless condi-
tions) about the next situation, for example, by using information about the
action that led to this new situation.
3. Add the frame inference rule, and make forward deduction as far as
possible about the new situation.
4. Transfer properties from the old situation, except in those cases when it
is blocked by an ‘ENDS’ relation.
5. Remove all ‘ENDS’ relations. Then go to 2.
This procedure belongs to the same class of methods as STRIPS and the
PLANNER method, whereas the general Unless deduction that was mentioned
above is more similar to the consistency-based methods.

In a problem-solving situation, where we search a tree of possible futures
for a good plan, we could strongly limit the forward deduction in step 3

© 202



SANDEWALL

during the planning phase. In the checkout phase, when we have found a
plan, we would then go back and continue the deduction in step 3 in order to
detect whether something could go wrong in the plan.

This time-sequential algorithm is not completely general, since it assumes
that all deduction is performed within a situation, or from a situation to its
successors. It will therefore not be sufficient if we require deductions ‘back-
wards’ in time, saying ‘since A4 is the case in the present situation, B must
have been the case in the previous situation’. Such deductions do not need
to be common, but they do exist. We therefore believe that the time-sequential
deduction is satisfactory in a planning phase, where one can ignore the
backward-time deductions, but that a more general procedure, which can
handle the full power of the Unless operator, is needed in the analysis of a
given history, and possibly also in the checkout of plans.

Finally, let us remark that the Unless operator may be useful in some other
cases besides the frame problem. For example, in handling hypothetical
situations (‘suppose you had been born two years later’) we wish to assume
all facts of our ordinary situation unless they are explicitly or implicitly
changed by the hypothesis. There is some discussion about this in section 13
of Sandewall (1972). Here, again, a comparison with the consistency-based
method of Rescher is relevant: the Unless operator is less elegant, but closer
to a practical implementation.

Acknowledgements
This research was supported by the Swedish Natural Science Research Council under
grant Dnr 2654-006.

REFERENCES

Carbonell, J.R. (1970) Mixed-initiative man-computer instructional dialogues.

BBN Report 1971, Job no. 11399. Cambridge, Mass.: Bolt, Beranek & Newman Inc.

Fikes, R.E. & Nilsson, N.J. (1971) sTRIPS: a new approach to the application of
theorem proving to problem solving. Art. Int., 2, 189-208.

Hayes, P.J. (1971a) A logic of actions. Machine Intelligence 6, pp. 495-520 (eds
Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

Hayes, P.F. (1971b) The frame problem and related problems in artificial intelligence.
A.I. Memo 153, Stanford Artificial Intelligence Project. California: Stanford University.

Hewitt, C. (1968) PLANNER: a language for manipulating models and proving theorems
in a robot. A.I. Memo 168, Artificial Intelligence Project MAc. Cambridge, Mass:

MIT,

McCarthy, J. (1968) Situations, actions, and causal laws. Semantic Information
Processing, pp. 410-17 (ed. Minsky, M.). Cambridge, Mass.: MIT Press.

McCarthy, J. & Hayes, P.J. (1969) Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence 4, pp. 463-502 (eds Meltzer, B. &
Michie, D.). Edinburgh: Edinburgh University Press.

Raphael, B. (1971) The frame problem in problem-solving systems. Artificial Intelligence
and Heuristic Programming, pp. 159-69 (eds Findler, N.V. & Meltzer, B.). Edinburgh:
Edinburgh University Press.

Rescher, N. (1964) Hypothetical Reasoning. Amsterdam: North Holland Press.

203



INFERENTIAL AND HEURISTIC SEARCH

Sandewall, E. (1971a) Representing natural language information in predicate calculus.
Machine Intelligence 6, pp. 255-77 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Sandewall, E. (1971b) Formal methods in the design of question-answering systems.
Art. Int., 2, 12946.

Sandewall, E. (1972) pcF-2, a first-order calculus for expressing conceptual information.
Computer Science Report. Uppsala: Computer Sciences Department, Uppsala
University.

Simon, H.A. & Rescher, N. (1966) Cause and counterfactual. Philosophy of Science,
323-40.

Sussman, G.J., Winograd, T. & Charniak, E. (1970) Micro-Planner Reference Manual.
AL Memo 203, Artificial Intelligence Project MAc. Cambridge, Mass: MIT.

204



