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ABSTRACT

This paper shows how a question-answering system can be constructed using
first-order logic as its language and a resolution-type theorem-prover as its
deductive mechanism. A working computer-program, Q A3, based on these
ideas is described. The performance of the program compares favorably with
several other general question-answering systems.

1. QUESTION ANSWERING

A question-answering system accepts information about some subject areas
and answers questions by utilizing this information. The type of question-
answering system considered in this paper is ideally one having the following
features:

1. A language general enough to describe any reasonable question-
answering subjects and express desired questions and answers.

2. The ability to search efficiently the stored information and recognize
items that are relevant to a particular query.

3. The ability to derive an answer that is not stored explicitly, but that is
derivable by the use of moderate effort from the stored facts.

4. Interactions between subject areas; for example, if the system has
facts about Subject A and Subject B, then it should be able to answer a
question that requires the use of both sets of facts.

5. Capability of allowing the user to add new facts or replace old facts
conveniently.

This paper argues the case for formal methods to achieve such a system and
presents one particular approach in detail. A natural language facility is not
one of the properties sought after or discussed (although Coles, 1968, has
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added to the program described here a translator from a subset of English to
first-order logic).
The name 'question-answering system' requires clarification. The system

described above might be named an 'advice taker' or a 'multi-purpose prob-
lem-solving system' or 'general problem-solving system'. McCarthy (1958)
proposed using formal languages and deduction to construct such a system,
and suggested allowing the user to give hints or advice on how to answer a
question; he referred to the proposed system as an 'advice taker'. Research
on 'multi-purpose' or 'general problem-solving' tends to differ from question-
answering as described above by placing more emphasis on solving deeper,
more difficult problems and less emphasis on user interaction, formality, and
efficient retrieval of relevant facts from a large data base. The situation is
further confused by the use of 'question-answering' to refer sometimes to
natural language systems, sometimes to information retrieval systems having
little deductive ability, and sometimes to systems with deductive ability
limited to the propositional calculus.

It is important to emphasize the distinction between general versus special-
purpose question-answering. If the class of questions asked of a system is
small, completely specified in advance, and concerned with a particular
subject area, such as the question-answering system of Green, Wolf, Chomsky,
and Laughery (1963) concerned with baseball, or that of Lindsay (1963)
concerned with family relations, then we shall call such a system 'special-
purpose'. Frequently the goal in designing a special-purpose system is to
achieve good performance, measured in terms of running speed and memory
utilization. In this case the best approach may be first to construct a special
data base or memory that is optimized for that subject area and question
class, and then to write special question-answering subroutines that are
optimized for the particular data base and question class. On the other
hand, a 'general' question-answering system is one that allows arbitrary
subject areas, arbitrary questions, and arbitrary interactions between subject
areas during the process of answering a question. This taper describes a rather
formal approach to designing a general question-answering system. A precise
name for our system is 'a general, formal, deductive, question-answering
system.'

2. THEOREM-PROVING

The use of a theorem-prover as a question-answerer can be explained very
simply. The question-answerer's knowledge of the world is expressed as a set
of axioms, and the questions asked it are presented as theorems to be proved.
The process of proving the theorem is the process of deducing the answer to
the question. For example, the fact 'George is at home', is presented as the
axiom, AT(George, home). The question 'Is George at home?' is presented
as the conjectured theorem, AT(George, home). If this theorem is proved
true, the answer is yes. (In this simple example the theorem is obviously true
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since the axiom is the theorem.) The theorem-prover can also be used to find
or construct an object satisfying some specified conditions. For example, the
question 'Where is George?' requires finding the place x satisfying AT (George,
x). The theorem-prover is embedded in a system that controls the theorem-
prover, manages the data base, and interacts with the user. These ideas are
explained in more detail below.
Even though it is clear that theorem-proving can be used for question-

answering, why should one use these very formal methods? Theorem-proving
may be a good approach to the achievement of generality for several reasons:

1. The language is well defined, unambiguous, and rather general, so
that one may hope to describe many desired subjects, questions, or
answers.

2. The proof procedure used allows all possible interaction among the
axioms and is logically 'complete' that is, if a theorem is a logical
consequence of the axioms, then this procedure will find a proof,
given enough time and space. This completeness property is important
since several general question-answering programs have resulted in
incomplete deductive systems, even in the practical sense of being
unable to answer some simple types of questions that are short,
reasonable deductions from the stored facts — for example, the
author's Q Al (Green and Raphael 1968), Raphael's SIR (1964),
Slagle's DEDUCOM (1965), and Safier's SIMPLE SIMON (1965).
(However, the fact that we use a first-order logic theorem-prover
does impose certain important restrictions discussed in section 5.)

3. The theorem-prover is subject-independent, so that to describe a new
subject or modify a previous description of a subject, only the axioms
need to be changed, and it is not necessary to make any changes in the
program.

4. Formal techniques such as those developed here may be generally
valuable to the field of artificial intelligence. The use of a formal
framework can lead to insights and generalizations that are difficult to
develop while working with an ad hoc system. A common, well-
defined framework facilitates communication between researchers,
and helps to unify and relate diverse results that are difficult to compare.

5. Theorem-provers are becoming more efficient. Even though the
theorem-proving method used is theoretically complete, in practice its
ability to find proofs is limited by the availability of computer time
and storage space. However, the method of 'Resolution' (Robinson
1965), used by the program described here, has been developed to the
point of having several good heuristics. Further improvements in
theorem-proving are very likely, and, hopefully, the improvements
will carry over into corresponding improvements in question-answering.
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It should be possible to communicate precisely new theorem-proving
results to other researchers, and it is relatively easy to communicate
precisely particular formalizations or axiomatizations of subjects.

3. EXTENDING THEOREM-PROVING TO QUESTION-
ANSWERING

This section describes, in general, how questions can be asked in first-order
logic, and how answers can be generated. Examples illustrating these methods
are presented. The discussion in this section and the following two assumes
that the reader is somewhat familiar with logic and automatic theorem-
proving. An introduction to automatic theorem-proving is given in Cooper
(1966) and Davis (1963). The theorem-proving methods mentioned in this
paper use the Resolution Principle proposed by J. A. Robinson (1965 and
1967). Additional strategies for using the Resolution principle are presented
byWos etal. (1964,1965 and 1967). This last paper defines terms the 'Extended
Set of Support' strategy, 'degree', and 'singly connectedness', that are used
in section 4.
The explanation of question-answering given in this section will be illus-

trated primarily by the techniques used in a working question-answering
program called Q A3. It is programmed in LISP on the SDS 940 computer,
operating in the time-sharing mode. The user works at a teletype, entering
statements and questions, and receiving replies. The notation in this paper is
slightly different from the actual computer input and output, as the character
set available on the teletype does not contain the symbols we use here. Q A3
is an outgrowth of Q A2 (Green and Raphael 1968), an earlier system, but is
somewhat more sophisticated and practical, and is now being used for several
applications.

1. Types of questions and answers

Facts are presented as statements of first-order logic. The statement is pre-
ceded by STATEMENT to indicate to the program that it is a statement. These
statements (axioms) are automatically converted to clauses and stored in the
memory of the computer. The memory is a list structure indexed by the
predicate letters, function symbols, and constant symbols occurring in each
clause. A statement can be a very specific fact such as

STATEMENT: COLO R(book, red)

corresponding to the common attribute-object-value triple. A statement can
also be a more general description of relations, such as:

STATEMENT: (V x)(V A)(V B)[A gB A X E A=x e B]

meaning that if A is a subset of B and if x is an element of A, then x is an
element of B.

Questions are also presented as statements of first-order logic. QUESTION
is typed before the question. This question becomes a conjecture and Q A3
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attempts to prove the conjecture in order to answer YES. If the conjecture
is not proved, QA3 attempts to prove the negation of this question in order to
answer NO. The theorem-prover attempts a proof by refutation. During the
process of searching for a proof, clauses that may be relevant to a proof are
extracted from memory and utilized as axioms. If the question is neither
proved nor disproved, then a NO PROOF FOUND answer is returned.
ANSWER indicates an answer.
We now present a very simple dialogue with QA3. The dialogue illustrates a

'yes' answer, a 'no' answer, and an 'or' answer. Questions 4, 7, and 8 below
illustrate questions where the answer is a term generated by the proof
procedure. These kinds of answers will be called 'constructive' answers.

1. The first fact is 'Smith is a man.'

STATEMENT: MAN(Smith)

OK

The OK response from QA3 indicates that the statement is accepted, converted
to a clause, and stored in memory.

2. We ask the first question, 'Is Smith a man?'

QUESTION: MAN(Smith)

ANSWER: YES

3. We now state that 'Man is an animal,' or, more precisely, 'If x is a
man then x is an animal.'

STATEMENT: (Vx)[MAN(x)ANIMAL(x)]

OK

4. We now ask 'Who is an animal?' This question can be restated as
'Find some y that is an animal' or 'Does there exist a y such that y
is an animal? If so, exhibit such a y.'

QUESTION: (3y)ANIMAL(y)

ANSWER: YES, y=Smith

The YES answer indicates that the conjecture (3y)ANIMAL(y) has been
proved (from statements 1 and 3 above). 'y = Smith' indicates that 'Smith' is
an instance of y satisfying A NIMAL(y)—i.e., ANIMAL(Smith) is a
theorem.

5. Fact: A robot is a machine.

STATEMENT: (V.Ic)[ROBOT(x)MACHINE(x)]

OK

6. Fact: Rob is a robot.

STATEMENT: ROBOT(Rob)

OK
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7. Fact: No machine is an animal.

STATEMENT: (Vx)[MACHINE(x)ANIMAL(x)]
OK

8. The question 'Is everything an animal?' is answered NO.
A counterexample is exhibited — namely, Rob the robot.

QUESTION: (V x)ANIMAL(x)

ANSWER: NO, x= Rob

The answer indicates that A NI M AL(Rob) is a theorem. Note that a NO
answer produces a counterexample for the universally quantified variable x.
This is the dual of the construction of a satisfying instance for an existentially
quantified variable in a question answered YES.

9. Fact: Either Smith is at work or Jones is at work.

STATEMENT: AT (Smith,work)V AT (Jones,work)
OK

10. Question: 'Is any one at work?'

QUESTION: (3x)(AT(x,work))

ANSWER: YES, x= Smith

or x =Jones

From the previous statement it is possible to prove that someone is at work,
although it is not possible to specify a unique individual.

Statements, questions, and answers can be more complex so that their
corresponding English form is not so simple. Statements and questions can
have many quantifiers and can contain functions. The answer can also con-
tain functions. Consider the question 'Is it true that for all x there exists a y
such that P(x,y) is true ?', where P is some predicate letter. Suppose QA3 is
given the statement,

11. STATEMENT: (V z)P(z,f(z))

where .1 is some function. We ask the question

12. QUESTION: (V x)(3y)P(x,y)
ANSWER: YES, y=f(x)

Notice that the instance of y found to answer the question is a function of x,
indicating the dependence of y on x. Suppose that instead of statement 11
above, QA3 has other statements about P. An answer to question 12 might be

ANSWER: NO, x=a

where a is some instance of x that is a counterexample.
The term(s) that is the answer can be either a constant, a function, a

variable, or some combination thereof. If the answer is a constant or a known
function, then the meaning of the answer is clear. However, the answer may
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be a Skolem function generated by dropping existential quantifiers. In this

case, the answer is an object asserted to exist by the existential quantifier that

generated the Skolem function. To know the meaning of this Skolem function,

the system must exhibit the original input statement that caused the produc-

tion of the Skolem function. Free variables in clauses correspond to universally

quantified variables, so if the answer is a free variable, then any term satisfies

the formula and thus answers the question.
Two more types of answers are NO PROOF FOUND and INSUFFI-

CIENT INFORMATION. Suppose the theorem-prover fails to prove
some conjecture and also fails to disprove the conjecture. If the theorem-
prover runs out of time or space during either the attempted 'yes' proof or the

attempted 'no' proof, then there is the possibility that some proof is possible
if more time or space is available. The answer in this case is NO PROOF

FOUND.
Now suppose both proof attempts fail without exceeding any time or

space limitations. The theorem-proving strategy is complete so that if no

time or space limitation halts the search for a proof and the conjecture is a

logical consequence of the axioms, then a proof will be found. So we know

that neither a 'yes' nor a 'no' answer is possible from the given statements.

The answer returned is INSUFFICIENT INFORMATION. For

example, suppose QA3 has no statements containing the predicate letter 'R':

QUESTION: (3x)R(x)

The negated question is the clause { —R(x)}, and no other clauses in the

memory of QA3 can resolve with it. Thus the system will respond

ANSWER: INSUFFICIENT INFORMATION.

2. Constructing answers

The Resolution method of proving theorems allows us to produce correct

constructive answers. This means that if, for example, (3x)P(x)is a theorem

then the proof procedure can find terms t1, t2,. t„ such that P(t2) V P(t2) V

. . . V P(t,i)is a theorem.
First, we shall present some examples of answer construction. After these

examples we shall show how a proof by resolution can be used to generate an

answer.
Examples of answer construction will be explained by means of the

ANSWER predicate used by QA3 to keep track of instantiations. Consider

the question

QUESTION: (3y)ANIMAL(y)

which is negated to produce the clause

{—,ANIMAL(y)).

The special literal, ANSWER(y), is added to this clause to give

{— ANIMAL(y) V ANSWER(y)}.
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The proof process begins with this clause. When the literal ANIMAL(x) is
resolved against the literal ,,,ANIMAL(y), the term y is instantiated to
yield the term x. In the new clause resulting from this resolution, the argument
of ANSWER is then x. In the next resolution the argument of ANSWER
becomes Smith. We list the complete modified proof that terminates with the
clause

{ANSWER(Smith)}.

1. {—ANIMAL(y) V ANSWER(y)} Modified negation of the question.

2. { MAN(x)V ANIMAL(x)}

3. { MAN(x)V ANSWER(x)}

4. {MAN(Smith)}

5. {ANSWER(Smith)}

Axiom fetched from memory.

From resolving 1 and 2.

Axiom fetched from memory.

`Contradiction' from 3 and 4 for
y=Smith.

The argument of the ANSWER predicate is the instance of y — namely,
Smith— that answers the question. Q A3 returns

ANSWER: YES, y=Smith.

This answer means, as will be explained later, that

ANIMAL(Smith)

is a theorem.
The ANSWER literal is added to each clause in the negation of the

question. The arguments of ANSWER are the existentially quantified
variables in the question. When a new clause is created, each ANSWER
literal in the new clause is instantiated in the same manner as any other
literal from the parent clause. However, the ANSWER literal is treated
specially; it is considered to be invisible to resolution in the sense that no
literal is resolved against it and it does not contribute to the length (size) of

the clause containing it. We call a clause containing only ANSWER literals
an ̀ answer clause.' The search for an answer (proof) successfully terminates
when an answer clause is generated. The addition of the ANSWER
predicate to the clauses representing the negation of the theorem does not
affect the completeness of this modified proof procedure. The theorem-
prover generates the same clauses, except for the ANSWER predicate, as

the conventional theorem-prover. Thus in this system an answer clause is
equivalent to the empty clause that establishes a contradiction in a conven-

tional system.
An answer clause specifies the sets of values that the existentially quantified

variables in the question may take in order to preserve the provability of the
question. The precise meaning of the answer will be specified in terms of a

question Q that is proved from a set of axioms B={B1,B2,. .
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As an example illustrating some difficulties with Skolem functions, let the
axioms B consist of a single statement,

STATEMENT: (V z)(3w)P(z,w)

Suppose this is converted to the clause

IP(z,f(z))} ,

where f(z) is the Skolem function due to the elimination of the quantifier
(3w). We ask the question Q,

QUESTION: (V y)(3x)P(y,x).

The negation of the question is — Q,

(3y)(V

The clause representing — Q is

{—P(b,x)} ,

where b is the constant (function of no variables) introduced by the elimina-
tion of (3y). The proof, obtained by resolving these two clauses, yields the
answer clause

{ANS WE R(f(b))}

The Skolem Function b is replaced by y, and the answer printed out is

ANSWER: YES, x=f(y). ( 1 )

At present in QA 3 the Skolem function f(y) is left in the answer. To help
see the meaning of some Skolem function in the answer, the user can ask the
system to display the original statement that, when converted to clauses,
caused the generation of the Skolem function.
As an illustration, consider the following interpretation of the statement

and question of this example. Let P(u,v) be true if u is a person at work and v
is this person's desk. Then the statement (V z)(3w)P(z,w) asserts that every
person at work has a desk, but the statement does not name the desk. The
Skolem function f(z) is created internally by the program during the process
of converting the statement (Vz)( 3w)P(z,w) into the clause {P(z,f(z))} .
The function f(z) may be thought of as the program's internal name for z's
desk. (The term f(z) could perhaps be written more meaningfully in terms of
the descriptive operator i as `iw.P(z,w),' i.e., 'the w such that P(z,w)',
although w is not necessarily unique.)
The question (V y)(9x)P(y,x) asks if for every person y there exists a

correspondingdesk. The denial of the question, (3y)(Vx) -,P(y,x), postulates
that there exists a person such that for all x, it is not the case that x is his desk.
The Skolem function of no arguments, b, is also created internally by the
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program as it generates the clause { —P(b,x)} . The function b is thus the
program's internal name for the hypothetical person who has no desk.
The one-step proof merely finds that b does have a desk, namely f(b). The

user of the system does not normally see the internal clause representations
unless he specifically requests such information. If the term f(b) that appears
in the answer clause were given to the user as the answer, e.g. YES, x=f(b),
the symbols fand b would be meaningless to him. But the program remembers
that b corresponds toy, so b is replaced by y, yielding a slightly more meaning-
ful answer, YES, x=f(y). The user then knows that y is the same y he used
in the question. The significance of the Skolem function f is slightly more
difficult to express. The program must tell the user where f came from. This
is done by returning the original statement (V z)P(z,f(z)) to the user (alterna-
tively, the descriptive operator could be used to specify thatf(z)isiw.P(z,w)).
As a rule, the user remembers, or has before his eyes, the question, but the
specific form of the statements (axioms) is forgotten. In this very simple
example the meaning off is specified completely in terms of the question
predicate P, but in general the meanings of Skolem functions will be expressed
in terms of other predicates, constants, etc.
We will now show how to construct an 'answer statement', and then we will

prove that the answer statement is a logical consequence of the axiom clauses.
The user may require that an answer statement be exhibited, in order better
to understand a complicated answer.

Consider a proof of question Q from the set of axioms B. {B1,B2, BO •
B logically implies Q if and only if B A Q is unsatisfiable. The statement
B A Q can be written in prenex form P M(Y, X), where P is the quantifier
prefix, M(Y, X) is the matrix, Y= {y ,y2, . . y„} is the set of existentially
quantified variables in P, and X= {x1,x2, . . xe} is the set of universally
quantified variables in P.

Eliminating the quantifier prefix P by introducing Skolem functions to
replace existential quantifiers and dropping the universal quantifiers produces
the formula M(U, X). Here U is the set of terms { ti1,u2, . . uu}, such that
for each existentially quantified variable yi in P, ui is the corresponding
Skolem function applied to all the universally quantified variables in P
preceding yi. Let M(U, X) be called S. The statement B A Q is unsatisfiable
if and only if the corresponding statement S is unsatisfiable. Associated with
S is a Herbrand Universe of terms H that includes X, the set of free variables
of S. If = { tilxi, t242, . t„/x„ } represents a substitution of terms t1, t2,
t„ from H for the variables xi, x2, . x„, then SO denotes the instance of S
over H formed by substituting the terms ti, t2, t. from H for the corres-
ponding variables xi, x2, x„ in S.
Let Si represent a variant of S, i.e., a copy of S with the free variables

renamed. Let the free variables be renamed in such a way that no two variants
Si and Si have variables in common. By the Skolem-Lowenheim-Godel
theorem (Robinson 1967), S is unsatisfiable if and only if there exists an
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instance of a finite conjunction of variants of S that is truth-functionally
unsatisfiable. A resolution theorem prover can be interpreted as proving S
unsatisfiable by finding such a finite conjunction.
Suppose the proof of Q from B finds the conjunction Si A S2 A ... A Sk and

the substitution 0 such that

(Si A S2 A ... A Sk)0

is truth-functionally unsatisfiable. Let F0 denote the formula (S1 A S2 A...
A Sk) 0. Let L be the conjunction of variants of M(Y, X),

L=M( Yi.,XL) A M( Y2,X2) A ... A M( Yk,Xk)

and let A be the substitution of Skolem function terms for variables such that

LA= M(L11,14) A M( U2,X2) A . A M( Uk,Xk)

=Si A S2 A ... A Sk.

Thus L20 = F0.
Before constructing the answer statement, observe that the Skolem

functions of F0 can be removed as follows. Consider the set U= {141,u2, • •
tia} of Skolem-function terms in S. Find in F0 one instance, say WI, of a
term in U. Select a symbol, zi, that does not occur in F0. Replace every
occurrence of Uj in F0 by zi, producing statement Ft. Now again apply this
procedure to F1, substituting a new variable throughout F1 for each occurrence
of some remaining instance of a Skolem-function term in Ft, yielding F2.
This process can be continued until no further instances of terms from U
are left in F„, for some n.
The statement Fi for 0.4 i<n is also truth-functionally unsatisfiable for the

following reasons. Consider any two occurrences of atomic formulae, say
ma and mb, in F0. If ma and mb in F0 are identical, then the corresponding two
transformed atomic formulae mat and mbi in F2 are identical. If mo and Int•
are not identical, then mat and mu are not identical. Thus, F1 must have the
same truth table, hence truth value, as F0. This property holds at each step in
the construction, so F0, Ft, . . Fa must each be truth-functionally unsatis-
fiable.

This term replacement operation can be carried out directly on the sub-
stitutions, i.e., for each statement F„ 0 i<n, there exists a substitution cri
such that F1=Lai. We prove this by showing how such a ai is constructed.
Let a0= AO= t2/v2, • • •9 tplVp} •
By definition, Fo =Lao. Let ti denote the term formed by replacing every

occurrence of 1.41 in tj by zt. The substitution al= { t2'/v2, t;/v}
applied to L yields Ft, i.e., F1= Lai. Similarly one constructs al and shows, by
induction, Fi=La I, for 0:5 i<n.
Now let us examine some of the internal structure of F0. Assume that

S=M( U,X) is formed as follows. The axioms may be represented as
PBB( YB,KB), where Pg is the quantifier prefix, Irg is the set of universally-
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quantified variables, and XB is the set of existentially-quantified variables.
These axioms are converted to a set of clauses denoted by B( Y8, UB), where
UB is the set of Skolem-function terms created by eliminating XB.
The question may be represented as PQQ(YQ,X0), where PQ is the quanti-

fier prefix, YQ is the set of universally-quantified variables, and X2 is the set of
existentially-quantified variables. Assume that the variables of the question
are distinct from the variables of the axioms. The negation of the question is
converted into a set of clauses denoted by — Q(UQ,;), where UQ is the set
of Skolem-function terms created by eliminating YQ. The function symbols in
UQ are distinct from the function symbols in UB. Thus M( U, X) = [B(YB,UB)
A — Q(UQ,XQ)]. Now let LB= [B(Y81,Xei) A B(YB2,XB2) A . . A
B(YBk,XBk)] and let —LQ = Q( YQI,X01) A — Q(YQ2,XQ2) A . .A

Q( 1■210X(2k)]. Thus L =LB A —LQ.
Observe that one can construct a sequence of statements F0, F, . .

similar to Fo, F1,. . F,, in which the only terms replaced by variables are
instances of terms in UQ. This construction terminates when for some m the
set of clauses F,;, contains no further instances of terms in UQ. By the same
argument given earlier for the formulas F, each formula Fi is truth-function-
ally unsatisfiable. Similarly one can construct a sequence of substitutions
a0, al,. . an', such that Lai = for O i m. Let a = a„',. Substitute a into LQ,
forming

Loa= [Q(YQ1,X0i)a V Q(YQ2,XQ2)a V. . . V Q(YQk,XQk)a].

Since a replaces the elements of YQJ by variables, let the set of variables ZQJ
denote Ywa. Thus

Locr .[Q(Zoi,Xma)V Q(42,Xer)V ...V Q(4k,Xcika)].

Now, let Z be the set of all variables occurring in Ler. The answer statement is
defined to be (VZ) Loa. In its expanded form the answer statement is

(VZ)[Q(Zoi,Xma)V Q(Z22,42a)V ... V Q(Zok,Xeka)]. (2)

We now prove that the answer statement is a logical consequence of the
axioms in their clausal form. Suppose not, then B( YB, UB) A ,(VZ)LQa is
satisfiable, thus B(UB,IB) A (3Z) —42a is satisfiable, implying that the
conjunction of its instances LBA A (3Z) —Lecr is satisfiable. Now drop the
existential quantifiers (3Z). Letting the elements of Z in "-Loa denote a set of
constant symbols or Skolem functions of no arguments, the resulting formula
LBA A — Loa is also satisfiable.

Note that LBa is an instance of LBA. To see this, let AB be the restriction of 1
to variables in LB. Thus, LBA=LBAB. Suppose 0= {rilwb r2/w2, • • rnIwn} •
Recall that a is formed from 20 by replacing in the terms of 20 occurrences of
instances 14 of 'question' Skolem terms by appropriate variables. (The
'axiom' Skolem functions are distinct from question Skolem functions and
occur only in the terms of AB.) Thus no such u4 is an instance of an axiom
Skolem term, therefore each occurrence of each such /44 in ABB must arise
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from an occurrence of //4 in some rj in 0. It follows then that LBa=LBABO
where 0= 1r r2'/w2, • • r'/w} is formed from 0 by replacing each u!, in
each rf by an appropriate variable. Since LBA=LBAB,LBA4)=LBa. Since the
only free variables of LB), A ,LQa occur in LEA, [Ld. A —Locr)4)=LBAO A

The formula LB) A —Le logically implies all of its instances, in particular
the instance LB20 A ,--,42cr. Thus, if LB). A —Le is satisfiable, its instance
L1310 A —LQcr is satisfiable. Since [L1120 A —Le] =[LEa A —Ler]. [LB A
—421a =La.--F„; for some m, F„', must be satisfiable. This contradicts our
earlier result that FA is truth-functionally unsatisfiable, and thus proves that
the answer statement is a logical consequence of the axioms.
We make one further refinement of the answer statement (2). It is un-

necessary to include the jth disjunct if Xwa= XQJ, i.e., if a does not instan-
tiate X2i. Without loss of generality, we can assume that for r ..4k, the last k—r
disjuncts are not instantiated, i.e.,

XQr+lcrXQr+1, 4.4.20-= 4+29 • • •, X(2ka X,2k•

Then the stronger answer statement

(VZ)[ Q(41,X2icr) V Q(Zcl1,X07)V ...V Q(Z(2„Xo.cr)] (3)
is logically equivalent to (2). (Since the matrix of (3) is a sub-disjunct of (2),
(3) implies (2). Ifj<r, the jth disjunct of (2) implies the jth disjunct of (3).
If r<j<k, the jth disjunct of (2) implies all of its instances, in particular all
disjuncts of (3).)
The ANS WE R predicate provides a simple means of finding the instances

of Q in (3). Before the proof attempt begins, the literal A NS WER(XQ) is
added to each clause in — Q(UQ,XQ). The normal resolution proof procedure
then has the effect of creating new variants of XQ as needed. The jth variant,
ANS WER(Xo), thus receives the instantiations of — Q(Uci,X0). When a
proof is found, the answer clause will be

{ANSWER(X00)V ANSWER(X(220) ...V ANSWER(40)}.

Variables are then substituted for the appropriate Skolem functions to yield

{ANSWER(Xwa)V A NSWER(42a). ..V ANS WER(4,7)).
Let XQJ. . • •, xj„,} •
Let a restricted to X0.1 be { ti2/xj2, . .• /unix:JO.

The answer terms printed out by QA3 are

[xii=t11 and x12= /12 . . . and xim= tin] (4)
or [x21 =t21 and x22=122 . . . and x2.= tzml

or [xd = tyi and Xr2tr2. . . and xrm = Gm] •
According to (3), all the free variables in the set Z that appear in the answer
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are universally quantified. Thus any two occurrences of some free variable in
two terms must take on the same value in any interpretation of the answer.
In the example given above, whose answer (1) had the single answer term

f(y), the complete answer statement is

(VY)P(Y,f(Y)).

In section 3.3 we present two more examples. The answer in the second
example has four answer terms, illustrating the subcase of (4),

[xij=tii and x12= t12]
or [ x2i= t2i and X22= t22 •

The answer statement proved can sometimes be simplified. For example,
consider

QUESTION: (3x)P(x)
ANSWER: YES, x=a

or x=b,

meaning that the answer statement proved is

[P(a)V P(b)].

Suppose it is possible to prove P(b) from other axioms. Then a simpler
answer is provable, namely

ANSWER: YES, x=a.

3. Processes described as a state transformation

In some of the applications of QA3 mentioned in section 5 it is necessary to
solve problems of the kind: 'Find a sequence of actions that will achieve
some goal.' One method for solving this type of problem is to use the notion
of transformations of states. We show here how processes involving changes
of state can be described in first-order logic and how this formalism is used.
The process of finding the values of existentially quantified variables by
theorem-proving can be used to find the sequence of actions necessary to reach
a goal.
The basic mechanism is very simple. A first-order logic function corres-

ponds to an action or operator. This function maps states into new states. An
axiom takes the following form:

P(sI) A (f(si)=s2)Q(s2)
where

Si is the initial state

P(3.1) is a predicate describing the initial state

f(si) is a function (corresponding to an action)

S2 is the value of the function, the new state

Q(s2) is a predicate describing the new state.
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The equality can be eliminated, giving

P(si)Q(Asi))•
As an example, consider how one might describe the movements of a robot
Each state will correspond to one possible position of the robot. Consider
the statement 'If the robot is at point a in some state Si, and performs the
action of moving from a to b, then the robot will be at position b in some
resulting state 52? The axiom is

(Vsi)(Vs2)[AT(a,si) A (move(a,b,s1)=s2) AT(b,s2)l•
The function move (a,b,si) is the action corresponding to moving from a to
b. The predicate AT(a,si) is true if and only if the robot is at point a in state
The predicate AT(b,s2) is true if and only if the robot is at point bin state 52.

start a

Figure I

 •
goal

Now consider an example showing how the theorem-prover can be used to
find a sequence of actions that reach a goal. The robot starts at position a in
initial state S. From a he can move either to b or d. From b he can move to C.
From d he can move to b. The allowed moves are shown in figure 1.
The axioms are:

Al. AT(a,s0)
A2. (Vsi)[AT(a,si) AT(b,move(a,b,si))]
A3

. (VS2)[AT(a,s2) AT(d,move(a,d,s2))]
A4. (VS3)[AT(b,s3)AT(c,move(b,c,s3))]
A5. (V s4)[AT(d,s4) AT(b,move(d,b,s4))]

Axiom A1 states that the robot starts at position a in State S. Axioms A2, A3
Ai, and A1 describe the allowed moves.
We now ask for a sequence of actions that will move the robot to position c.

We present this question in the form 'Does there exist a state in which the
robot is at position c?'

QUESTION: (3s)AT(c,$)
ANSWER: YES, s=move(b,c,move(a,b,s0))

By executing this resulting function move(b,c,move(a,b,s0)) our hypothetical
robot could effect the desired sequence of actions. The normal order of
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evaluating functions, starting with the innermost and working outward, gives
the order of performing the actions: move from a to b and then move from
b to c. In general, this technique of function composition can be used to
specify sequences of actions.
The proof of the answer by resolution is given below, with comments.

The negation of the question is (Vs) A T(c,$), and the refutation process
finds, by instantiation, the value of s that leads to a contradiction. The
successive instantiations of s appear as arguments of the special predicate,
ANS WE R. The constants area, b, c, and so. The free variables ares, si, 52, s3,
and 54.

Proof
1. {— AT(c,s V ANSWER(s))}

2. { A T(b,s3) VA T(c,move (b,c,s3))}

3. { — A T(b,s3) V A NS WE R(move(b,c,s3))}

4. { — A T(a,s1) VA T(b,move(a,b,si)))

5. A T(a,si) V A NS WE R(move(b,c,move(a,b,s3)))}

6. {AT(a,s0)}

7. {ANS WE R(move(b,c,move(a,b,

Negation of

question
Axiom A4

From resolving 1
and 2
Axiom A2
From resolving 3
and 4
Axiom Ai

From resolving 5
and 6

Note that the process of proving the theorem corresponds to starting at the
goal node c and finding a path back to the initial node a.

Consider a second example. Two players pi and p2 play a game. In some
state S, player pi is either at position a or position b.

Bl. A T(pi,a,s3)V A T(Plib,si)

If in state Si, player p2 can move anywhere.

B2. (Vy)AT(p2,y,move(p2,Y41))
The position of player pi is not affected by p2's movement.

B3. (Vx)(Vy)( s)[A T(pi,x,$) AT(plix,move (p2a,$))]

Does there exist some state (sequence) such that pi and p2 are together?

QUESTION: (3x)(3s)[AT(plix,$) V AT(p2,x,$)]
ANSWER: YES, [x= a and s=move(p2,a,si)]

or

[x=b and s=move(p2,b,s3)]

This answer indicates that two meeting possibilities exist; either (1) player

pi is at position a and player p2 moves to a, meeting pi at a, or (2) player pi
is at position b and player p2 moves to b, meeting pi at b. However, the 'or'

answer indicates that we do not know which one move will lead to a meeting.
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The 'or' answer is due to the fact that Axiom B1 did not specify player pi's
position. The answer statement that has been proved is

[A T(Plia,move (P2,a,si)) A AT(P2,a,move(p2,a,s1))]
V [A T(Pi,b,move(p2,b.si)) A A AP2,b,move(p2,b,s1))].

Proof
1. { A T(pi,x,$) V — A T(p2,x,$) V A NS WE R(x,$)} Negation of

question
2. { A T(p2,y,move (p2,Y,$))1 Axiom B2
3. { — A T(pi,x,move(P2,x,s1)) V A NS WE R(x,move(p2,x,s1))} From 1, 2
4. { A nplix ,$) V A T(pi,x,move (p2,y,$))} Axiom B3
5. { — A T(PhY vsi) V A NS WE R(y,move(p2,Y,s0)} From 3, 4
6. {AT(pba,si) V AT(pi,b,s1)} Axiom B1
7. (AT(pi,b,si) VANS WE R(a,move(p2,a,s1))} From 5, 6
8. (A NS WE R(a,move(p2,a,s1)) V

A NS WE R(b,move(p2,b,s1))) From 5, 7

It is possible to formalize other general problem-solving tasks in first-order
logic, so that theorem-proving methods can be used to produce solutions.
For a discussion of formalizations of several general concepts including
cause, 'can', knowledge, time, and situations, see McCarthy and Hayes (1969).

4. PROGRAM ORGANIZATION

The organization of the question-answering program IQ A3 differs from that
of a 'pure' theorem-proving program in some of the capabilities it emphasizes:
a proof strategy intended for the quick answering of easy questions even with
a large data base of axioms, a high level of interaction between the user and
both the question-answering program and the data base in a suitable command
language, and some flexibility in the question-answering process so that the
program can be fitted to various applications. In this section we describe the
principal features of the system.

1. Program control

The user can control the proof process in several ways.
1. The user can request a search for just a 'yes' answer, instead of both

'yes' and 'no'.
2. The user can request the program to keep trying, by increasing its

effort if no proof is found within preset limits. This lets Q A 3 search
for a more difficult proof.

3. When a proof is found it can be printed out. Included with the proof
are statistics on the search: the number of clauses generated, the
number of clauses subsumed out of the number attempted, the
number of successful resolutions out of the number attempted, and
the number of successful factors generated out of the number
attempted.
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4. The user can request that the course of the search be exhibited as it is
in progress by printing out each new clause as it is generated or
selected from memory, along with specified information about the
clause.

5. The user can request that existentially quantified variables in the
question be not traced.

6. The user can designate predicates and functions that are to be
evaluated by LISP programs. For example, the predicate 1 <2
might be evaluated by LISP to yield the truth value T. This feature
also allows the transfer of control to peripheral devices.

7. Parameters controlling the proof strategy, such as degree and set of
support are accessible to the more knowledgeable user.

8. A number of editing facilities on the clauses in memory are useful:
(a) A new axiom can be entered into memory,
(b) An axiom in memory can be deleted, and
(c) The axioms containing any predicate letter can be listed.

2. Special uses of the theorem-prover

'The theorem-prover' refers to a collection of LISP functions used during the
theorem-proving process — e.g. RESOLVE, FACTOR, PROVE, PRENEX,
cHEcKsussummoN, etc.
The management of the data in memory is aided by the theorem-prover.

A statement is stored in memory only if it is neither a tautology nor a con-
tradiction. A new clause is not stored in memory if there already exists in
memory another clause of equal length or shorter length that subsumes the
new clause. Two other acceptance tests are possible although they are not
now implemented. A statement given the system can be checked for con-
sistency with the current data base by attempting to prove the negation of the
statement. If the statement is proved inconsistent, it would not be stored.
As another possible test, the theorem-prover could attempt to prove a new
statement in only 1 or 2 steps. If the proof is sufficiently easy, the new state-
ment could be considered redundant and could be rejected.
The theorem-prover can also be used to simplify the answer, as described

in section 3.

3. Strategy

The theorem-proving strategy used in QA 3 is similar to the unit-preference
strategy, using an extended set-of-support and subsumption.
The principal modification for the purposes of the question-answering

system is to have two sets of clauses during an attempted proof. The first set,
called 'Memory', contains all the statements (axioms) given the system.
The second set, called 'Clauselist' is the active set of clauses containing only
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the axioms being used in the current proof attempt and the new clauses being
generated. Clauselist is intended to contain only the clauses most relevant to
the question.

There is a high cost, in computer time and space, for each clause actively
associated with the theorem-prover. The cost is due to the search time spent
when the clause is considered as a candidate for resolution, factoring, or
subsumption, and the extra space necessary for book-keeping on the clause.
Since most clauses in Memory are irrelevant to the current proof, it is un-
desirable to have them in Clauselist, unnecessarily consuming this time and
space. So the basic strategy is to work only on the clauses in Clauselist,
periodically transferring new, possibly relevant clauses from Memory into
Clauselist. If a clause that cannot lead to a proof is brought into Clauselist,
this clause can generate many unusable clauses. To help avoid this problem
the strategy is reluctant to enter a non-unit clause into Clauselist.
The proof strategy of the program is modified frequently, but we shall

present an approximate overview of the proof strategy. When a question is
asked, Clauselist will initially contain only the negation of the question,
which is the set-of-support. A modified unit preference strategy is followed
on Clauselist, using a bound on degree. As this strategy is being carried out,
clauses from Memory that resolve with clauses in Clauselist are added to
Clauselist. This strategy is carried out on Clauselist until no more resolutions
are possible for a given degree bound.

Finally, the bound is reached. Clauselist, with all of its book-keeping, is
temporarily saved. If the theorem-prover was attempting a 'yes' answer, it
now attempts a 'no' answer. If attempting a 'no' answer, it also saves the 'no'
Clauselist, and returns a NO PROOF FOUND answer. The user may then
continue the search requesting CONTINUE. If the bound is not reached in
either the yes or no case, the INSUFFICIENT INFORMATION
answer is returned. The strategy has the following refinements:

1. After a newly created unit fails to resolve with any units in Clauselist,
it is checked against the units in Memory for a contradiction. This
helps to find short proofs quickly.

2. Frequently, in the question-answering applications being studied, a
proof consists of a chain of applications of two-clauses, i.e., clauses
of length two. Semantically it usually means that set-membership of
some element is being found by chaining through successive supersets
or subsets. To speed up this process, a special fast section is included
that resolves units in Clauselist with two-clauses in Memory. Our
experience so far is that this heuristic is worthwhile.

3. Each new clause generated is checked to see if it is subsumed by
another shorter clause in Clauselist. All longer clauses in Clauselist
are checked to see if they are subsumed by the new clause. The longer
subsumed clauses are deleted.
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4. Hart's theorem (1965) shows how binary resolution can generate
redundant equivalent proofs. Equivalent proofs are eliminated from
the unit section. Wos terms this property, 'Singly-connectedness'.
Currently this has not yet been implemented for the non-unit section.

5. An extended set-of-support is used, allowing pairs of clauses in
Clauselist but not in the set-of-support to resolve with one another
up to a level of 2.

6. The sets, Memory and Clauselist, are indexed to facilitate search.
The clauses in Memory are indexed by predicate letters and, under
each predicate letter, by length. The clauses in Clauselist are indexed
by length.
In searching Memory for relevant clauses to add to Clauselist,

clauses already in Clauselist are not considered. The clauses of each
length are kept on a list, with new clauses being added at the end of
the list. Pointers, or place-keepers, are kept for these lists, and are
used to prevent reconsidering resolving two clauses and also to
prevent generating equivalent proofs.
The strategy is 'complete' in the sense that it will eventually find

any proof that exists within the degree and space bound.

5. PERFORMANCE OF CiA3

1. Applications

The program has been tested on several question sets used by earlier question-
answering programs. In addition, QA 3 is now being used in other applications.
The subjects for the first question set given Q A2, reported in Green and
Raphael (1968), consisted of some set-membership, set-inclusion, part-whole
relationship and similar problems.

Raphael's SIR (1964b) program gave a similar but larger problem set also
having the interesting feature of requiring facts or axioms from several
subjects to interact in answering a question. SIR used a different subroutine
to answer each type of question, and when a new relation was added to the
system, not only was a new subroutine required to deal with that relation
but also changes throughout the system were usually necessary to handle the
interaction of the new relation with the previous relations. This programming
difficulty was the basic obstacle in enlarging SIR. Raphael proposed a
'formalized question-answerer' as the solution. Q A 3 was tested on the SIR
problem set with the following results: in two hours of sitting at the teletype
all the facts programmed into or told to SIR were entered into the Q A3
memory as axioms of first-order logic and Q A3 answered essentially all the
questions answered by SIR. The questions skipped used the special SIR
heuristic, the 'exception principle'. It was possible to translate, as they were
read, questions and facts stated in SIR'S restricted English into first-order
logic.
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Slagle, in his paper on DEDUCOM, a question-answering system (1965),
presented a broader, though less interactive, problem set consisting of
gathered questions either answered by programs of, or else proposed by,
Raphael (1964a), Black (1964), Safier (1963), McCarthy (1963), Cooper
(1964), and Simon (1963). Included in this set were several examples of
sequential processes, including one of McCarthy's End Game Questions
(1963), Safier's Mikado Question (1963), McCarthy's Monkey-and-Bananas
Question (1963), and one of Simon's State Description Compiler Questions
(1963). Using the technique discussed in section 3.3 to describe processes, it
was possible to axiomatize all the facts and answer all the questions printed
in Slagle's paper. Furthermore, QA3 overcame some of the defects of
DEDUCOM: QA3 could answer all answerable questions, the order of pre-
senting the axioms did not affect its ability to answer questions, and no
redundant facts were required. QA3 was then tested on the entire set of
twenty-three questions presented in Cooper (1964). QA3 correctly answered
all the questions, including four not answered by Cooper's program and
sixteen not answered by DEDUCOM.
QA3 also solved the Wolf, Goat, and Cabbage puzzle in which a farmer

must transport the wolf, goat, and cabbage across the river in a boat that can

hold only himself and one other. The wolf cannot be left alone with the goat
and the goat cannot be left alone with the cabbage.
In all of the problems mentioned above, QA3 was given the facts and

questions in first-order logic. Raphael's program and Cooper's program

used a restricted English input.
Using the English-to-logic translator developed by Coles (1968), Coles and

Raphael have begun studying some medical question-answering applications

of QA3.
QA3 is being tested in the Stanford Research Institute Automaton (robot)

on problem-solving tasks.

2. Limitations

A few limitations should be emphasized. Firstly, QA3 is still not a finished
system. One very important feature that is missing is the automatic handling

of the equality relation, and this is not a trivial problem. Without an auto-

matic equality capability, QA3 is very awkward on certain problems that are
conveniently stated in terms of equality. The equality relation is but one

instance of other 'higher-order' concepts (e.g. set theory) that either (i) can-
not be described in first-order logic, or (ii) require some meta-level operations

such as an axiom schema, or (iii) are awkward and impractical in first-order

logic. However, it is not yet clear just what are the practical limitations of a

first-order logic system having suitable 'tricks'.
One of the virtues of QA3 is that relatively subject-independent heuristics

are used. All subject dependence comes from the particular axioms stored in

memory, the theorem being proved, and the particular representation chosen
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for each statement. This adds elegance and generality, yet yields a reasonably
powerful system. However, for harder problems it may be necessary to be
able to add subject-dependent search heuristics, or 'advice' for particular
problems. Such an advice-taking capability will require a flexible and easily
modifiable search strategy.
The particular heuristics used in QA 3 are experimental and have not been

thoroughly tested in question-answering applications (although the changes
and heuristics added appear to have improved the system). As each modifica-
tion of the strategy was added, the performance did improve on a particular
class of problems. To help remedy some of this uncertainty several measures
of performance are now automatically printed out after each question and
will be used to evaluate questionable heuristics.
Another qualification is that the questions and subjects investigated were

chosen from conjectured test problems or else from test problems used by
other question-answering or problem-solving systems. This facilitates com-
parison, but does not necessarily indicate performance on more practical
problems. •
The new and more difficult applications being considered might lead to a

better understanding of the exact limitations of Q A3, or of theorem-proving
techniques, for question-answering.

3. Performance

To answer any of the questions mentioned above, Q A3 requires from a few
seconds to a few minutes. We can roughly measure the problem-solving
capacity of QA 3 by giving the depth of search allowed and the free space
available for storing clauses produced in searching for a proof. The space
available for storing clauses produced during a proof typically allows a few
hundred clauses to be stored. The depth of search is given by degree bound,
normally set at 10. It is interesting to note that the many 'common sense'
reasoning problems mentioned herein were within these bounds of QA 3,
and thus were not difficult proofs, compared to some of the mathematical
proofs attempted by theorem-provers.
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