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JARED L. DARLINGTON
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FUR INSTRUMENTELLE MATHEMATIK
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The formulation of the resolution principle by J. A. Robinson (1965a) has
provided the impetus for a number of recent efforts in automatic theorem-
proving. In particular, the program PG1 (Wos et al. 1964, 1965), written by
L. Wos, G. A. Robinson and D. F. Carson for the Control Data 3600,
utilises the resolution principle in conjunction with a 'unit preference strategy'
and a 'set of support strategy' to produce efficient proofs in first-order
functional logic and group theory. The present author also has experimented
with the resolution principle, and has incorporated it into a pair of COMIT
theorem-proving programs written at the Institut Mr Instrumentelle Mathe-
matik in Bonn and currently running on the Institute's IBM 7090. These
programs have generated proofs of some interesting propositions of number
theory, in addition to theorems of first-order functional logic and group
theory.
The resolution principle, like many other theorem-proving methods, is a

refutation algorithm, in the sense that it seeks to generate a contradiction
from an initial set of clauses

CI, C2, • • .

resulting from the negation of the theorem or formula to be tested, usually
in conjunction with some already established axioms or theorems. These
initial or input clauses Ci are a set of logical expressions in conjunctive
normal form: that is, the Ci are regarded as joined by logical 'and', while an
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individual clause is either a single literal L, in which case it is called a 'one-

literal clause' or a 'unit clause', or a disjunction of n literals

vL2v vL„

which case it is called an 'n-literal clause' or simply an 'n-clause'. A 'literal'
is an n-place predicate expression

F(xi, x2, .-. . , x)

F(xi, x2, . , x „)

whose arguments are individual variables, individual constants, or functional
expressions. Quantifiers do not occur in these formulae, since existentially
quantified variables have been replaced by functions of universally quantified
ones, and the remaining variables may therefore be taken as universally
quantified. For example, the number-theoretic proposition

'For all x and y, if x is a divisor of y then there exists some z such that
x times z equals y'

may be symbolised as

D(x, y)v T(x, f(x, y), y)

in which ̀ D(x, y)' stands for ̀ x is a divisor of y' and 7(x, y, z)' stands for
'x times y equals z'. The formula (i) is a 2-literal clause, and may be read as
follows:

'Either xis not a divisor of y, or there is a function f(x, y) of x and y such
that x times f(x, y) equals y'.

Another example is the 'first proposition of Euclid' :

'For all x, y, and z, if x is a prime and xis a divisor of y.z, then xis a
divisor of either y or z',

which may be symbolised as

(ii) P(x)v T(y, z, u)v D(x, u) v D(x, y)v D(x, z).

Both (i) and (ii) are general formulae, which admit of infinitely many
instantiations, or substitution instances, within the positive integers. Exhaus-
tive instantiation, in fact, was the basis of a number of early theorem-proving
programs. Starting with a finite number of individual constants, all possible
substitutions were made in the input clauses, and the resulting conjunction
of substitution instances was tested for truth-functional consistency. If a
contradiction was not obtained, more constants were produced by substituting
the available constants for the variables in the functional expressions f(x, y),
etc., that stood for the existential variables,' and the additional constants
were used to generate more substitution instances. This process continued
until a contradiction was obtained or (the more usual case) the machine ran
out of time or storage. The Herbrand theorem guaranteed that exhaustive
instantiation would eventually produce a proof if one existed, given enough
time and storage, but the large number of irrelevant substitution instances
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generated often prevented the machine finding proofs of even relatively
simple theorems. It soon became evident, therefore, to researchers in the field
that the primary problem in automatic theorem-proving is that of impeding
the generation of irrelevant clauses and inferences. A way in which this might
be done was suggested by D. Prawitz et al. (1960) and elaborated upon by
M. Davis (1963). The basic idea was that any substitution instance of a clause
is bound to be irrelevant to a proof so long as the literals occurring in it are
not 'mated', i.e., negated, by other literals occurring in other clauses. Davis
in fact proved that any substitution instance

Lo/L2v vL„

that contains at least one unmated literal may be erased without affecting
consistency, and that the test for consistency may be confined to 'linked
conjuncts', i.e., conjuncts (or clauses) wherein each literal Li is negated by a
mate Li occurring in some other clause. This 'theorem on linked conjuncts'
provides a necessary, though not a sufficient, condition of relevance: any
substitution instance containing an unmated literal is demonstrably irrelevant
to consistency and may be deleted forthwith, but the remaining substitution
instances are not necessarily all relevant. Davis showed (1963) that a theorem-
proving strategy based on the search for linked conjuncts is capable of produc-
ing short proofs of many theorems, and gave as a detailed example the
proposition that any left inverse in an associative group is also a right inverse.
The resolution principle takes over the idea of searching for mated literals,

but applies it directly to the original clauses rather than to their substitution
instances. Instead of searching for mates among the substitution instances,
the resolution principle employs an algorithmic procedure to determine in
advance whether two literals L1 and L2 in two different clauses could yield
contradictory substitution instances. For example, if LI and L2 are

(iii)

and
(iv)

T(G(x, y), x, y)

T(G(u, K(v)), w, K(v)),

respectively, it may be determined that these two clauses will yield contra-
dictory substitution instances, and that these (apart from the negation sign
in (iv)) are all instances of the formula

(v) T(G(x, K(y)), x, K(y)).

In the terminology of J. R. Guard (1964), formula (v) may be called a 'general
matching formula' ('GMF') for Li and L2, since it stands for all the common
substitution instances of L1 and L2. Whenever a pair of clauses C1 and C2
can be found that contain literals Li and L2 such that L1 matches L2, i.e.,
such that Li and L2 have common substitution instances, then a 'resolvent'
of C1 and C2 may be generated by disjunctively joining C1' and C21, where
C1' is formed by making the same substitutions throughout C1—L1 that are
necessary to make L1 equal to the GMF, and C2' is formed by making the
same substitutions throughout C2-L2 that are necessary to make L2 equal
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to the GMF. For example, suppose (iv) is replaced by the 2-literal clause

(vi) T(G(u, K(v)), w, K(v))v T(u, v, w)

in which the first literal is identical to (iv). Then (v) is the GMF of (iii) and

the negation of the first literal in (vi), and the latter will equal the GMF (v)

so long as the following substitutions are made throughout (vi):

u=x, v=y, w=x
This leaves

(vii) T(x, y, x)

as the resolvent of (iii) and (vi). Resolution is thus a functional logic analogue
of the operation of 'cut' in propositional logic, whereby a single clause

Ko vICo v vKm vLovLov vLn

can be deduced from the two separate clauses

v v . . . v Kni

/CI vLo v . . . v Ln.

If C1 and C2 are both unit clauses, as in (iii) and (iv), then there is nothing
left over after the resolvent is formed: that is, the sole resolvent of two
contradictory unit clauses is the null clause. Such a result amounts to a proof

that the initial set C of clauses is unsatisfiable. The resolution principle

searches for a contradiction between two unit clauses, and if none can be
found, it generates more resolvents until a pair of contradictory unit clauses
is produced. The algorithm in its original form called for the generation of

So, SI, S2, • • . . . .

where So is the set of input clauses, and Si consists of S'1_1 plus all resolvents
and ̀factors' (see below) of resolvents of the elements of S11. This procedure,

though provably complete (as shown by Robinson in 1965a), is extremely

wasteful, and is hardly more efficient than the earlier methods based on

exhaustive instantiation. The reason for this inefficiency is that resolution

normally produces longer and longer clauses (a resolvent of a 3-clause and a

4-clause, for example, is ordinarily a 5-clause, unless one or more of its

literals are redundant), while a proof of unsatisfiability requires the generation

of shorter, and ultimately unit, clauses. One way of generating shorter clauses

is by means of a technique called ̀ factoring' (by Robinson), whereby a clause

Ci may be factored if it contains two matching literals L1 and L2. The factor

is formed by making the same substitutions throughout Ci that are necessary

to make L1 equal to L2, and then deleting one of these two literals along with

any other redundant literals. The following clause

(viii) P(x)v T(y, y, u)v , u) v D(x, y)

is a factor of the earlier example (ii), formed in an obvious way by substituting

y for z throughout (ii) and then deleting the redundant literal D(x, y).

A second and more generally applicable technique for generating shorter

clauses is to resolve unit clauses against clauses of length n(n?..- 1), thereby
60

and



DARLINGTON

producing clauses of length n — 1 or less. It turns out in fact that many theo-
rems can be proven by generating only resolvents that have at least one unit
clause as parent ('resolvend), and the resulting simplification of proofs is
Considerable.
There are several ways of writing a program that gives priority to unit

clauses and the resolvents descended from them. In addition to our two
COMIT programs, which we may call 'D 1 ' and 'D2', there is the afore-mentioned
program PG1 of Wos et al. D1 proceeds by generating successively So, SI, S2,
etc., exactly as the original resolution algorithm, but with the restriction that
each resolvent must have at least one unit clause as a parent, or (to allow for
the possibility that there may initially be no unit clauses) at least one n-
clause (n 1) as a parent, where n is the length of the shortest clause. D2
proceeds by resolving the unit clauses (or the n-clauses, as in DI) first against
each other, then against the first 2-clause, the second 2-clause, etc., then
against the first 3-clause, the second 3-clause, etc. Whenever two clauses
C1 and C2 produce one or more resolvents RI, R2, etc., then the Ri take
priority over the older clauses in the sense that they are stored at the front of
their appropriate lists (unit clauses, 2-clauses, etc.) and the last R to be
generated is the first to be resolved against the unit clauses. PG1 is similar
to D2, the main difference being that, while D2 generates all the resolvents
RI, R2, etc., of a pair of clauses C1 and C2 before proceeding further, PG1
generates only the first resolvent R1 (or the ith resolvent R, if has already
been generated) of C1 and C2 and then immediately proceeds to resolve
R1 (or Ri) against the unit clauses (or the n-clauses, where n, as in DI and D2,
is the length of the shortest clause).
The three methods described may be compared in terms of how many

resolvents they generate at a time. D1 generates all the resolvents (provided
that each resolvent has at least one n-clause as a parent) of a set C; D2
generates all the resolvents of a given pair C1 and C2 (provided that either
C1 or C2 is an n-clause); and PG1 generates only one resolvent of C1 and C2
at a time. The difference between the three programs may be illustrated in
terms of the 'Gilmore problem', i.e., the set of clauses

(1) F(x, y)
(2) G(x, y) v F(y, P(x, y))v F(P(x, y), P(x, y))
(3) F(y, P(x, y))v F(P(x, y), P(x, y))v G(x,P(x, y))v C(P(x, y), P(x, y))

first used as an example by P. C. Gilmore (1960). DI generated the following
proof of this example in 19 seconds (in this and subsequent examples, we
shall omit parentheses within literals where no ambiguity can result):

DI proof of Gilmore example (19 seconds)

(1) Fxy premise
(2) Gxy v FyPxy v FPxyPxy premise
(3) FyPxy v FPxyPxy v GxPxy v GPxyPxy premise
(4) Gxyv FPxyPxy (1) & (2)
(5) Gxy v TyPxy (1) & (2)
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(6) FPxyPxyv GxPxyv GPxyPxy (1)& (3)
(7) FyPxyv GxPxyv GPxyPxy (1)& (3)
(8) Gxy (1)&(4)
(9) Gxy (1)&(5)
(10) GxPxy v GPxyPxy (1)&(6)
(11) GxPxy v GPxyPxy (1)& (7)
(12) GPxyPxy (8)& (10)

(22) contradiction (8)& (12)

The gap between (12) and (22) is because nine extra clauses were generated
before the contradiction between (8) and (12) was discovered. DI in fact will
usually generate additional clauses after a contradictory pair has been gener-
ated, because it does not test each unit clause immediately upon generation,
as does PG1, but waits until its 'generation' is complete. Furthermore, clauses
(5), (7), (9) and (11) are irrelevant to the proof, and need not be shown in the
final printout. Two of these, (9) and (11), are actually redundant, and may be
deleted.
D2 generated the following proof, in 10 seconds:

D2 proof of Gilmore example (10 seconds)

(1) Fxy premise
(2) Gxyv FyPxyv FPxyPxy premise
(3) FyPxy v FPxyPxyv GxPxy v GPxyPxy premise
(4) Gxy v FPxyPxy (1) 8c (2)
(5) Gxy v F yPxy (1) & (2)
(6) Gxy (1) & (5)
(7) FyPxyvFPxyPxyv GPxyPxy (3) & (6)
(8) FyPxyvFPxyPxyv OxPxy (3) & (6)
(9) FyPxyvFPxyPxy (6) & (8)
(10) FPxyPxy (1) & (9)
(11) F yPxy (1) & (9)
(12) contradiction (1) & (11)

Clauses (4), (7) and (10) are superfluous, and may be omitted from the final
printout. In addition, an extra Gxy was generated, from (1) and (4), but was
immediately deleted.

Finally, we may present the proof that PG1 would produce if it were given
the gilmore example.

PG1 proof of Gilmore example

(1) Fxy premise
(2) Gxy v F yPxy v FPxyPxy premise
(3) F yPxy v FPxyPxyv OxPxyv GPxyPxy premise
(4) Gxyv FPxyPxy (1) & (2)
(5) Gxy (1) & (4)
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(6) Gxy v F yPxy
(7) FyPxy v FPxyPxy v GPxyPxy
(8) FyPxyvFPxyPxy
(9) FPxyPxy
(10) contradiction

Only two superfluous clauses are generated: (6), and
(1) and (6).
On the basis of the Gilmore example, it would appear that PG1 is the best,

and D1 the worst, of the three programs described, with D2 falling some-
where in between but rather nearer to PG1. This judgment is confirmed by
many examples, of which we may present one more: the proof of the group-
theoretical proposition, which we may call 'RI', that any associative system
that has left and right solutions contains a right identity element.

(1) &(2)

(3) & (5)
(5) & (7)
(1) &(8)

(1) &(9)

an extra Gxy from

First D1 proof of RI (322 seconds)

(1) TGxyxy
(2) TxHxyy
(3) TxyFxy
(4) TKxxKx
(5) Txyuv Tyzvv Txvwv Tuzw)
(6) Txyuv Tyzvv Tuzwv Txvwf
(8) Txyuv Tyzyv Tuzu

existence of left solution
existence of right solution
closure
no right identity

associativity

factor of (5)
(20) Txyzv TzHyyz
(33) TyzKxv Tzxz
(73) TyHxxy
(77) Txyx
(250) contradiction

(2) & (8)
(4) & (8)
(1) & (20)
(1) & (33)
(73) & (77)

Second D1 proof of RI (117 seconds)

(1) TGxyxy
(2) TxHxyy
(3) TxyFxy
(4) TKxxKx
(5) Txyuv Tyzvv Txvw v Tuzw
(6) Txyuv Tyzvv Tuzw v Txvw
(7) TyzKxv Tzxuv TyuKx (4)&(5)
(9) Txyzv TGxKyzKy (1)&(7)
(24) Txyx (1)&(9)
(69) contradiction (2)&(24)

D2 proof of .RI (11 seconds)

(1) TGxyxy
(2) TxHxyy
(3) TxyFxy
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(4) TKxxKx
(5) Txyuv Tyzv v Txvwv Tuzw
(6) Txyu v Tyzv v Tuzwv Txvw
(7) TyzKx v Tzxuv TyuKx (4)& (5)
(10) TGxKyzKyv Tzyx (1)& (7)
(11) Txyx (1)&(10)
(13) contradiction (2)&(11)

PGI produced a proof of RI essentially the same as that generated by D2
(though PG1 runs much faster than DI or D2, and obtained its proof of RI
in 35 milliseconds).
The latter two proofs depicted above employ an additional heuristic, the

'set of support strategy' of Wos et al. (1964, 1965), according to which a
subset S of the get C of input clauses is singled out as the 'set of support' of C.
This means that every resolvent produced must be a descendant of at least
one element of S, i.e., no resolvents are formed entirely from elements of
C— S. The most natural choice of S is the set of clauses that formulate the
special assumptions of the proof and the negation of the conclusion. .In the
proofs just presented, the set of support consists of the single unit clause (4),
the assumption that there exists no right identity element.
Another aspect of the above proofs of RI that should be mentioned is that

factoring turns out not to be essential, and is omitted from the latter two
proofs, though it is included in the first proof of RI. It is often possible to
obtain proofs without factoring, and it is advisable to try to do so, since the
generation of factors has the tendency to produce clauses that are too specific
to be of any use in a proof. There are, however, some examples in which
factoring appears to be essential, such as the following, which we may call
'W5', since it is based on the fifth example of H. Wang (1964) in the appendix
(Wang attributes the example to Quine).

DI proof of W5 (15 seconds)

(1) Gyav Gyw v Gwy premise
(2) Gyav GyPy premise
(3) Gyav GPyy premise
(4) Gya v Gay factor of (1)
(6) Gya v Gyy factor of (1)
(7) Gat: factor of (6)
(9) GaPa (2) & (7)
(10) GPaa (3) & (7)
(11) ,CPaa (4) & (9)
(20) contradiction (10) & (11)

In the above proof, factoring plays an essential role in the derivation of the
key unit clause (7) in two steps from (1). It is not essential, however, in the
derivation of (11), which could have been produced directly by resolution of
(1) and (9), instead of first factoring (1) to obtain (4) and then resolving (4)
and (9) to obtain (11).
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The superiority, implicit in the foregoing examples, of D2 and PG1 over
DI is not always realised in practice, since there are some proofs for which
Dl's horizontal or across-the-board method of generating clauses is more
suitable than the vertical or up-the-ladder procedure of D2 and PG1. One
such example is the number-theoretic proof that every integer greater than
one has a prime divisor, which was used as an example by S. A. Cook
(1965), and which we may call 'CI'.

D1 proof of Cl (51 seconds)

(1) Lla
(2) Px v Dxa
(3) Zlx v Lxa vPKx )

(4) Zlxv Exa v DKxx

(5) Dxx
(6) Pxv Ll Qx
(7) Pxv LQxx
(8) Pxv DQxx
(9) 15xy v Dyz v Dxz
(14) Pa
(15) LI Qa
(16) LQaa
(17) DQaa
(21) 11Qa v PKQa
(22) Z1 Qa v DKQaQa
(24) DxQav Dxa
(28) PKQa
(29) DKQaQa
(35) DKQaa
(36) DKQaa
(43) contradiction

(Note that clause (1) is not essential to the
(6)-(8).)

Incomplete D2 proof of Cl (116 seconds)

(1)-(9), as in the DI proof of CI
(10) Pa
(11) Ll Qa
(12) LQaa
(13) DQaa
(14) PQa
(15) L1QQa
(16) LQQaQa
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a is greater than 1
a has no prime divisor
assumption for induc-
tion: every x greater
than 1 but less than a
has a prime divisor
reflexivity of 'divisor'
if x is not a prime, then
x has a divisor greater
than 1 but less than x
transitivity of 'divisor'
(2) & (5)
(6) &(14)
(7) &(14)
(8) & (14)
(3) & (16)
(4) &(16)
(9) &(17)
(15) & (21)
(15) & (22)
(2) & (28)
(24) & (29)
(35) & (36)

proof, since it is implicit in clauses
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(17) DQQaQa (8)&(14)
(18) .15 Qaz v DQQaz (9)& (17)
(19) DxQQav DxQa (9)&(17)
(20) DQQaa s (13) & (18)
(21) PQQa (2)& (20)
(22) Ll Q Q Qa (6)&(21)
(23) LQQQaQQa (7)& (21)
(24) DQQQaQQa (8)&(21)
(25) DQQQaQa (19) & (24)
(26) Qaz v DQQQaz
(27) 15 xQQQav DxQa
(28) DQQQaa

(9) & (25)
(9) & (25)
(13) & (26)

(29) PQQQa (2)&(28)
(30) L1QQQQa (6)&(29)
(31) LQQQQaQQQa (7)&(29)
(32) DQQQQaQQQa (8)&(29)
(33) DQQQQaQa (27) & (32)
(34) DQazv DQQQQaz (9)&(33)
(35) DxQQQQav DxQa (9)&(33)
(36) DQQQQaa (13) & (34)

(37) 15 QQQQa (2) & (36)

Clauses (1)-(4) in the above two examples are taken as the set of support;
together they formulate the assumption that there exists some a> 1 that has
no prime divisor, but every 1 <x <a has a prime divisor. The trouble with the
attempted D2 proof of Cl is that it has got itself into a loop, and is unable to
form any resolvents from clauses (3) or (4). In order to obtain the proof, it is
necessary to rtsolve (3) and (4) against (11) and (12), thereby producing
PKQa and DKQaQa, but this requires that unit clauses be resolved against
3-clauses, and there are always 2-clauses that take priority. A simpler example
of looping is the tendency of the pair of clauses

Px, Px v PFx

to produce
PFx, PFFx, PFFFx, etc.

ad infinitum. This sort of looping was recognised as a problem by the authors
of PG1; who programmed around the difficulty by placing a limit, called a
'level bound', on the number of times the unit clauses can be resolved
against clauses of length m before going on to the m+ 1-clauses. This limit is
usually set in advance of computation, at around 4 or 5. The 'level' of the
input clauses C is 0, the level of a factor of Ci equals the level of C, and the
level of a resolvent R of C and C2 is greater by 1 than the maximum of the
levels of C1 and C2. If the level bound is set at k, then unit clauses whose level
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exceeds k, and non-unit clauses whose level exceeds k-1, are simply not
generated. In the attempted D2 proof of Cl, for example, none of the clauses
beyond (17) would be generated if k were set at 5, and the program would
be forced to back up and generate the correct resolvents. The level bound
strategy depends for its effectiveness upon choosing the correct value of k:
if k is too small, the program cannot generate a proof, and if k is too large,
the resulting irrelevant unit clauses could seriously delay the generation of a
contradiction.
The procedure of D2 and P01 of exhausting the consequences of the shorter

clauses before proceeding to the longer ones creates another kind of difficulty,
which becomes evident in problems like the proof of the irrationality of the
square root of a prime, which proposition we may call ̀ SRP'.

D1 proof of SRP (437 seconds)

(1) PP
(2) TpKbKa
(3) Dxav Dxbv x=1
(4) OP1
(5) Txx Kx
(6) Txyzv Dxz

(7) Dxy v TxFxyy

(8) Dxy v Dyzv Dxz
(9) Txyz v Tzuvv Txwv v Tuyw

(10) Pxv Tyzuv Dxuv Dxyv Dxz
(11) DpKa
(14) Tpyzv TzuKa v TuyKb
(15) Tyzuv Dpuv Dpy v Dpz
(17) Dpav Dpb
(32) Tpyav TayKb
(35) DpKxv Dpx
(48) Dpa
(57) Dpb
(58) TpFpaa
(60) Da: v Dpz
(95) DpKb
(97) TaFpaKb
(145) DaKb
(156) DaKb
(250) contradiction
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p is a prime
p.b2=a2
a and b are relatively prime
p is not equal to 1
x. x = x2
if x.y=z, then xis a divisor
of z
if x is a divisor of y, then
x. Fxy=y
transitivity of 'divisor'
special form of cancellation
theorem: if x.y.u=x.w,
then u.y=w (consequent is
commuted form of y. u = w)
'first proposition of Euclid'
(2) & (6)
(2) & (9)
(1) & (10)
(3) & (4)
(5) & (14)
(5) &(15)
(11) & (35)
(17) & (48)
(7) & (48)
(8) & (48)
(35) & (57)
(32) & (58)
(60) & (95)
(6) & (97)
(145) & (156)
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In the above proof the first three clauses, which formulate the assumption
that there exists a prime whose square root is rational, were taken as the set
of support. Without the set of support strategy, DI was unable to generate
a proof of SRP within the storage limitations of the machine. Even with the
aid of the set of support strategy, D2 was unable to generate a proof of SRP
in 30 minutes, since it never got round to generating the essential clause (35),
which is a consequence of (1), (5) and (10), and which states that if p is a
divisor of x2 then p is a divisor of x. An efficient proof requires that (35)
be generated fairly early on, but D2 will not form any resolvents with (10),
which is the longest clause in the set, until it has first exhausted the conse-
quences of (1)-(9). Furthermore, when D2 starts to work on (10) it resolves
it against the most recently generated unit clauses, but the generation of (35)
requires that (10) be resolved against the original unit clauses. In other words,
D2 (and PG1), which attacks the shortest clauses first, will not produce
efficient proofs in cases (such as SRP) where efficiency demands that the
longest clauses be attacked first, but DI, which attacks the short and the long
clauses more or less equally, will occasionally produce moderately efficient
proofs in such cases.
There remains to discuss one further type of example, that which requires

the deduction of a contradiction from a set of non-unit clauses. Factoring,
as in the case of W5, will sometimes suffice to generate the unit clauses
essential to the operation of the programs described here. In other cases, it is
necessary to produce unit clauses through resolution of non-unit clauses.
This is a matter of finding or generating a pair of 2-clauses

Ci V C2 Cs V Ca
that yield a resolvent

C5 V C5

that collapses into a unit clause, C5 upon deletion of one of the redundant
literals as, for example, in the deduction of

PFFGy

from
PFxv Px, PFGyv PFFGy.

PG1 makes provision for this sort of inference by the inclusion of a 'non-unit
section', which takes over if the 'unit section' fails to generate a proof within
the stated level bound. DI and D2 also implicitly contain non-unit sections,
in that they give priority to the n-clauses, which are the shortest non-unit
clauses in the event that there are no unit clauses, and their descendants.
DI and D2, however, have no provision for passing to a non-unit section in
the event that the unit clauses and their resolvents fail to produce a proof
within given limits. An example of how a non-unit section can contribute to
a proof is the following, which we may call 'W3', since it is a somewhat
simplified version of the third example given by H. Wang (1964) in the
appendix (Wang attributes the problem to Church).
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DI proof of W3 (271 seconds)

(1) FPxv Fx
(2) FIPxv Hx
(3) RPxv Gx
(4) .GPx v Fx
(5) FPxv GPxv Hx
(6) FQxv GQxv fiQx
(7) FPxv HPx v Gx

premise
premise
premise
premise
premise
premise
premise

(9) RPPxv Fx (3) &(4)
(19) RPQxvFQxv 17Qx (3) &(6)
(20) FxvFPxv Hx (4) &(5)
(78) Fxv Hx (1) &(20)
(89) flPQx v F Qx (2) &(19)
(129) FPxv Hx (2) &(78)
(131) /7PQx v RPPQx (9) &(89)
(145) HPxvGx (7) &(78)
(213) 17PPQx (2) &(131)
(257) Hxv GPx (5) &(129)
(269) GPPPQx (213)& (257)
(272) RPPPQx (2) &(213)
(273) HPPPPQx (145)& (269)
(280) RPPPPQx (2) &(272)
(281) contradiction (273)& (280)

Upon the generation of the unit clause (213), the value of n was lowered from
2 to 1, and the 'unit section' took over, producing a series of additional unit
clauses that quickly resulted in a contradiction. In order to produce the above
proof in a reasonable time, it was necessary to employ a special-purpose
deletion heuristic, based on the assumption that a resolvent R of C1 and C2,
that is no shorter than the longer of C1 and C2, is of use in a proof if and only
if it assists in the generation of shorter clauses. After a reasonable time,
therefore, such resolvents R may be deleted. In the above proof of W3, for
example, the resolvents R that are no shorter than the longer of their parents
are deleted after clauses shorter than Rare produced. This entails the deletion
of clauses (19) and (20), along with a great mass of other 3-clauses, after the
2-clauses (78) and (89) are generated. This deletion heuristic was tailored
specially to fit W3, and there is no guarantee that it would work in very many
cases, but some such heuristic is essential if W3 is to be proven in a reasonable
time, since the combinatorial possibilities between the various clauses are very
great and the amount of garbage produced therefore increases at a rapid rate.
W3 is another example for which the procedure of DI is somewhat more

efficient than that of D2, since DI resolves the 2-clauses fairly immediately
against the 3-clauses, thereby generating the important 3-clauses (19) and
(20) at an early stage in the proof, while D2 (and PGI) must exhaust the
consequences of the 2-clauses before proceeding to resolve the 2-clauses
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against the 3-clauses. D2, moreover, cannot prove W3 at all without some
sort of level bound restriction, since otherwise it will get into a loop within
the 2-clauses and generate

./7PPx v Fx, iiPPPxv Fx, 17PPPPxv Fx, . . . .

Since the results described in this paper were obtained, several new
strategies for limiting the number of resolvents generated have been proposed,
most notably J. A. Robinson's ̀ P1-deduction' (1965b) and B. Meltzer's 'Pr-
deduction' (1966) and ̀ sharpened set of support' (Meltzer & Poggi 1966),
which are all based on Robinson's ̀ P1-deduction theorem', i.e., the theorem
that the null clause can always be deduced from an unsatisfiable set C via a
chain of resolutions RI, R2, etc., such that one parent of each Ri is ̀ positive'
in the sense of containing no negated literals. Meltzer has shown that the
predicates of an unsatisfiable set C can be renamed so that the set of positive
clauses is in some sense minimal, and that this can usually be done so that all
the positive clauses appear as a subset T' of T, where Tis the set of clauses that
formulate the special hypotheses of the proof and the negation of the con-
clusion. One may then use T' as a set of support, in conjunction with the
restriction that one parent of each resolvent must be positive. This is a
`sharpened' set of support strategy, since T' is usually a proper subset of T, and
since the restriction that one parent of each resolvent must be positive rules
out some resolvents that the ordinary set of support strategy would permit.
Preliminary investigation shows that T' can often be reduced to just one
clause, as in our earlier example CI (minus the superfluous first clause),
wherein replacing P by P', P by P', D by ry , and D by D' leaves (2) as the
only positive clause. Examples given by Meltzer show that the 'sharpened'
set of support strategy is capable of generating short proofs for many theorems,
though few data have so far been obtained on the relative efficiency of this
strategy in comparison with the ordinary set of support strategy with unit
preference. The former strategy does rule out some inferences involving
unit clauses that the latter strategy permits, e.g.,

Fx, Pxv ax,

and the ̀ non-unit section' of one's program will therefore become relatively
more important under the sharpened set of support strategy.
We have so far said nothing about the completeness of the methods

discussed. DI and D2 were not designed to be complete theorem-proving
algorithms, but were intended rather as methods of producing efficient proofs
for certain types of theorems. In order for them to be complete algorithms,
it would be necessary to include an explicit ̀ non-unit section', as in PG1,
general enough to provide for all cases in which the proof depends, in whole
or in part, upon the generation of resolvents from pairs of non-unit clauses.
The authors of PG1 have shown that their method is complete, so long as
the level bound k is equal to or greater than the number of generations

So, SI, S2, . ,
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that the original resolution algorithm would have to produce in order to
obtain a proof, and so long as the set of support S is chosen in such a way
that C— S is satisfiable (i.e., such that the contradiction depends upon adding
S to an otherwise consistent set of clauses). P1-deduction and its variants are
also provably complete. There is no necessary connection, however, between
efficiency and completeness, and if and when really significant mathematical
theorems are proven mechanically, the proofs will probably be generated by
special-purpose heuristics rather than by theoretically complete general

methods.
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