
27

Planning and Robots

James Doran*
Department of Machine Intelligence and Perception
University of Edinburgh

Introduction

This paper is a survey and discussion of research work relevant to the task
of constructing some kind of reasoning robot. The emphasis is entirely on the
organization of the reasoning processes, in particular planning, rather than
on hardware. In practice the reasoning would most probably be carried
out within a digital computer.
My objective is to clarify the relationship between some superficially

rather disparate approaches to this task, and simultaneously to indicate
what seem to be the key problem areas.
No new experimental results are presented, but the approach to the subject

which I have adopted is a consequence of earlier experimentation with a
simple computer simulation of a robot (Doran 1968a, 1969).

Heuristic problem-solving programs

Our starting point is heuristic problem-solving by computers. The following
outline of the present state of the subject is very brief, but sufficient for our
purposes. For more detailed information the reader may refer to the valuable
survey by Sandewall (1969).

Heuristic problem-solving has been dominated over the last decade by
what may be called the General Problem Solver (GPO tradition (Newell,
Shaw and Simon 1959, 1960, Hormann 1965, Ernst and Newell 1969, Quinlan
and Hunt 1968). The various versions of the GPS program, its descendants,
and the associated proposals and speculations, form an impressive body of
research. However, although a great deal has been learnt from the GPS work
about how to write a single computer program to solve a variety of problems,
actual performance has always been somewhat disappointing, and the work
has sometimes been marred by a certain vagueness of presentation. Typically
the GPS can, with a substantial amount of human aid, solve quite a wide
range of puzzles of the 'party-game' variety, for example the 'Tower of Hanoi'

*Present address: S.R.C. Atlas Computer Laboratory, Didcot, Berkshire.

519

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

and 'Missionaries and Cannibals' problems, together with very simple
problems in potentially much more complex task areas such as the integral
calculus.
Another substantial body of work on general problem-solving is that

associated with the Graph Traverser program (Doran and Michie 1966,
Doran 1967, Michie 1967, Doran 1968, Michie, Fleming and Oldfield 1968,
Michie and Ross 1970). Work on the Graph Traverser has tended to be rather
more concrete, and less ambitious, than that on the GPS, and has not
claimed to have psychological significance. The performance of the program
in practice is rather better. In the next secion I shall outline the basic Graph
Traverser algorithm and indicate where the GPS differs from it.
Important projects devoted to much more specific applications of heuristic

problem-solving are those of Evans (1964) and Moses (1967). The task
areas are geometric-analogy problems and symbolic integration respectively,
and the performance level attained is quite high.
At the present time several new trends are appearing:

(a) heuristic problem-solving of the GPS or Graph Traverser type is suffi-
ciently familiar to be embedded in more complex programs or programming
languages (for example, Burstall 1968, Popplestone 1970),
(b) the theory, rather than the practice, of heuristic problem-solving is being
explored (for example, Ernst 1968, Nilsson 1969, Banerji 1969, Sandewall
1969a, Pohl 1970),
(c) the problem of automating the process of finding a good problem
representation is being explored (for example, Amarel 1968, 1969),
(d) automatic theorem-proving procedures are being applied to problem-
solving (for example, Green 1969).

All these trends have some relevance to the remainder of this paper.

Problem-solving and planning by robots

In this section and the next we shall consider the transition from heuristic
problem-solving as exemplified by the Graph Traverser, to planning by a
robot as exemplified by my own work and that of Marsh (Doran 1967,
1967a, 1968a, 1969; Marsh 1970; Michie 1967, 1968a; Popplestone 1967).
I do not suggest that the Graph Traverser is the only starting point for such
work. I use this example because I am particularly well acquainted with it.
The primary components of the Graph Traverser 'schema' are as follows.

The problem to be solved must be capable of representation as a graph, in
the mathematical sense, where the nodes of the graph correspond in some
sense to possible states of the problem and the arcs to possible operations or
operators which transform one state into another. This problem graph is
defined to the program by specifying the set of possible states and the set of
possible operators and their effects. It must then be possible to interpret the
original problem as either the task of finding a path across the graph from
one particular node (the starting state) to another (the goal state), or the

520

DORAN

task of finding a node with some desired property. In this paper we shall
always be concerned with the former task.
The solution procedure of the Graph Traverser is actually to 'grow', in

the computer store, a larger 'and larger portion of the problem graph in the
form of a search tree rooted at the starting node. Growth continues until the
node or path sought is discovered. In order to do this efficiently the program
uses, in general, a heuristic state evaluation function and heuristic operator
selection techniques to grow the search tree in the most promising direction.
Full details of this process can be obtained from the references quoted.
The GPS diverges substantially from the Graph Traverser by laying great

stress on the difficulty that may arise in applying a selected operator to a
particular state, and the way in which a recursive call of the program can be
used to deal with this difficulty. The converse of this is that the GPS pays less
attention to holding in store a ramified search tree and to the use of a state
evaluation function.

Obviously, there is more to the Graph Traverser than I have described,
and the interested reader is again referred to the source papers. We shall,
however, need here one further concept, that of a partial solution path.
When the program fills the available computer store with its search tree
without finding a solution path, then it commits itself to all or part of a
particular branch of the tree as the first part of the required path. This enables
it to discard part of the search tree and to re-use the store thus freed.
A typical application of the Graph Traverser is to some kind of sliding-

block puzzle, where the states correspond to possible configurations of the
pieces of the puzzle, and the operators to possible movement of the pieces.
The transition from a problem-solving context to that of planning by a

robot is a simple one, at least at first sight. By planning we mean the robot's
need to consider possible courses of action in the light of some desired goal,
and to select and carry out the most promising. Hence all one need do is to
identify the concept of a state, in Graph Traverser terminology, with some
state of the robot and its environment, and to identify the concept of an
operator with some possible act on the part of the robot. A solution path,
once discovered, is then a plan of action which the robot must execute rather
than simply exhibit to the outside world as in the problem-solving case.
My own work, which developed out of some of the earlier Graph Traverser

work, simulated a robot living in a very simple 'cage' environment. A state,
better called a perceived state in this case, corresponded to the little that the
robot could perceive of its surroundings at any time, and an operator to one
of a set of simple movements (stepping, turning to the left or right). A simple
motivational system provided goal states.
The planning tree, corresponding to the Graph Traverser search tree, was

grown by a simple depth first procedure with heuristic cut-off, partly because
a state evaluation function is much less useful as a means of directing the
growth of the tree in a robot situation. However, a simple evaluation function

521

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

was used, with other heuristic procedures, to select partial solution paths,
that is to say partial plans, when a full plan could not be found.

Rather more important was the incorporation into the planning tree of a
form of ̀expectimaxing' (see Michie and Chambers 1968). The need for this
arose because of ambiguity in the robot's perceptual input. Specifically, any
particular perceived state might well be the outcome of a variety of possible
relationships between the robot and its environment. This led to a degree of
uncertainty on the part of the robot as to what the outcome of any particular
act might be. The robot tried to cope with this uncertainty by evaluating
plans in terms of their predicted average benefit, using an expectimaxing
procedure.

Planning and learning

The simulated robot described in the previous section could have had
built into it detailed information about the effects of its possible movements
upon its perceptions, in the same way that the Graph Traverser program is
told what is the immediate effect of any operation on any configuration of
pieces of a sliding-block puzzle. In fact, it was expected to collect such
information from experience. Thus, in this case, planning was very closely
associated with learning. The following types of learning occurred in the
system:
(a) learning of the relationship between acts and perceptions by noting the

effects of individual acts, by making generalizations about the effects of acts,
and by noting that certain complicated transitions from one perceived state
to another can always be achieved,
(b) learning which acts to employ in particular situations and the benefits

to be expected — a kind of habit formation.
These learning capabilities can be regarded as a rather complex form of

the rote learning employed by Samuel in his checkers programs (Samuel
1959, 1967). They by no means exhaust the possibilities for learning in such
a system. Much more powerful forms of generalizations and abstraction are
needed, and some degree of self-optimization of the variety of parameter
settings controlling the planning would be possible. Any work on learning in
heuristic problem-solving systems is potentially relevant (Quinlan 1969,
Michie and Ross 1970). Nor can strategies for discarding information, for
'forgetting', be ignored. They may be crucial to success.
The whole question of learning in such a Graph Traverser based robot

control system has been tackled from a slightly different angle by Marsh

(1970). Here the learning aspects of the system have been clarified and

isolated by the use of 'memo-functions' (Michie 1967a, 1968, Popplestone

1967). Marsh has also obtained experimental results quantifying the benefit
to be obtained by using memo-functions at different points in the planning

process.
Before leaving this section we should note two other areas in which such

522

DORAN

a system will ultimately have to show learning ability. These are time and
attention.
A robot, if it is to exist in a dynamic environment, must be able to estimate

the passage of time, to allow for the time it takes to form and execute plans
(see Toda 1962), and to estimate how a complex dynamic situation (for
example, traffic at a road junction) will develop in time.
A robot must also be able to decide which sensors to read when. The point

here is that a system with any degree of serial reasoning cannot be attending
to the input from all of its sensors all of the time. It follows that the robot's
attention strategy is a highly important part of its planning process. Too
little attention to the outside world could lead to sudden disaster, confusion,
or, more subtly, to a growing misconception by the robot of just what its
situation actually is! Too much attention could waste time and hinder
action.

Parallel processing

When a planning system of the type which we have been discussing is required
to learn from experience the effects of the acts available to it, then it will
build up a network of state—act—state transitions in its memory. This
network is the equivalent of the problem graph in the problem-solving
situation, but unlike the problem graph, it is actually kept as a network of
data-structures and pointers in the computer store, at least until specific
compression mechanisms go to work.

Planning is then not a question of reconstructing a fragment of this
memory network, but of tracing out the planning tree on the already con-
structed network. This means that any planning algorithm which uses state
evaluation followed by ̀ backing-up' of values, for example, expectimaxing,
can plausibly be reinterpreted as a network flow process of the following
general type:

(1) 'excitation' is inserted into the network at the goal state, and
(2) continuously transmitted by the arcs,
(3) continuously redistributed by the nodes, and
(4) detected by a receiver at the node corresponding to the robot's current
state, which
(5) implements the act corresponding to the incoming arc carrying the
greatest excitation.

A system of this type, the sTeLLA learning machine, has been explored in
detail by Andreae (see Andreae and Cashin 1969) though in practical simula-
tion work the parallel aspects of the machine had to be simulated on a serial
computer. The model of animal learning behaviour put forward by Deutsch
(1964) also has this general form, but is less precisely specified than the
sTe LL A automaton.

In each of these two examples the networks through which excitation

523

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

flows are formed by receptor—motor units which automatically link up in
accordance with the behaviour of the system's perceptual environment.
Network flow systems are attractive partly because they seem 'natural' in

some sense, and partly because once one postulates a parallel processing
capability of this type, the problems associated with the computational load
and organizational complexity of major tree searches promise to disappear.
However, it is far from clear how such network systems can be persuaded
to yield really complex behaviour. The results of the work on perceptrons
and other such self-organizing systems do not encourage optimism (Minsky
and Papert 1969).
We should also note two important research projects which involve

parallel processing and robot control, though not planning. These are the
simulation studies on instinctive behaviour by Friedman (1969) and on the
function of the reticular formation in the vertebrate by Kilmer and others
(Kilmer, McCulloch and Blum 1969).

Complex planning

So far I have used the word 'planning' to refer to a robot's ability to consider
alternative sequences of acts and to select the most promising among them.
A close parallel has been drawn with the operation of a particular heuristic
problem-solving program, the Graph Traverser.
However, in the context of heuristic problem-solving the word 'planning'

has almost invariably been used for some more complex procedure added to
the basic heuristic search in order to make it more effective. I shall employ the
term complex planning for such additional procedures.
One form of complex planning is the use of macro-operators. What happens

is that the original problem graph has added to it new arcs corresponding to
concatenations of the original operators. These macro-operators are then used
in the usual way to help grow the search tree. Clearly one needs some way
of automatically constructing such operators, and equally some way of
decomposing them when they appear in a solution path or plan.
The use of macro-operators in heuristic problem-solving has been tried

out by, among others, Travis (1964), Hormann (1965) and Michie (1967).
The concept is closely related to the mathematical concepts of a lemma and
a theorem. Examples of the use of macro-operators in robot simulation work
are provided by Nilsson and Raphael (1967) and Doran (1969). In each of

these two latter examples the situation is complicated by the fact that the
definitions of the macro-operators, or better macro-acts, are not available at

plan execution time, so that when such an act is to be carried out a complex
sub-process is set in motion.
The use of macro-operators is only one rather simple form of complex

planning. The planning procedure proposed for the GPS (Newell, Shaw and

Simon 1959) envisaged the abstraction both of the states and of the operators
of the original problem formulation, in order to create a new simplified

524

DORAN

version of it. The solution to this simple problem would then guide the solu-
tion of the original problem. Minsky (1961) has discussed complex planning
of this 'homomorphic model' type, and has stressed the potential reduction
in total search effort to be won. In the same paper he has also considered the
use of ̀semantic models' as a form of complex planning in a mathematical
context. The successful geometry theorem-proving program of Gelernter
(1959), which used a ̀diagram' to test the validity of propositions, is a well-
known example of this form of planning.

Recently Sandewall (1969) has defined a Planning Problem Solver (P P
This is an attempt to explore in detail complex planning of the ̀ homomorphic
model' type as applied to the GPS. His lengthy discussion covers the use of
what I have called ̀ expectimaxing' at the complex planning level (compare
Minsky's remarks, 1961), and indicates how concepts drawn from board
game—playing programs such as oc—j3 pruning can be carried over to this
situation. He also proves certain optimality results for the PPS.

Sandewall's optimality results take us some way towards answering the
very general question: ̀ When is complex planning beneficial, in the sense
that it reduces the total amount of computation needed to solve the problem
(or find a plan), and when is it more trouble than it is worth?' The answer
to this question is clearly bound up with the problem of characterizing and

actually finding good complex planning models for particular problems.

And this problem itself is very closely related to the problem of problem
representation as treated by Amarel (1968, 1969) and others.

Planning and formal systems

The present Stanford Research Institute (SRI) hardware robot project

(Nilsson 1969a), not to be confused with the preliminary simulation work
mentioned earlier, has experimented with more than one ad hoc heuristic
search method for planning. These have made use of the ̀ map' or ̀ grid
model' with which the robot is provided.
Of greater interest is the use of a first-order predicate calculus resolution

theorem-prover to control the robot, as described by Green (1969). In
barest outline, the procedure followed in order to have the robot carry out
some task is to require the theorem-prover to prove the theorem that a
situation can exist in which the task has been completed. During the proof
procedure the theorem-prover constructs the sequence of acts, that is the

plan, which the robot must execute to perform the task. Everything which the

robot has to know in order to perform the task is formulated by the experi-

menter as a set of axioms (the ̀ axiom model') within the formal language of
predicate calculus. Achieving this formulation may itself be far from straight-

forward, and at the present time the system can cope only with very simple

tasks. In his paper Green discusses such complications as acts with more than

one possible outcome, and tasks such that the robot's plan must include

making some observation and using its result.

525

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

Green's work falls broadly within the Advice Taker tradition. The Advice
Taker was proposed by McCarthy (1959) as a program capable of 'common-
sense' reasoning, and capable of accepting and using advice whilst solving a
problem. The program was to reason by manipulating sentences in formal
languages, and therefore would have a very powerful means of storing and
using its knowledge of the world. As a means to this end, McCarthy advocated
the formalization of such everyday concepts as situation, causality, ability,
and knowledge.
From this initial impetus a great deal of valuable work has resulted.

However some of the more philosophical problems at the heart of the Advice
Taker project still seem to defy any very coherent solution (McCarthy and
Hayes 1969).
Since the Advice Taker work is much concerned with reasoning about

actions and what they can achieve, it is not surprising that the gulf between
this work and, say, the G P S work is less wide than at first appears (Hubermann
1965). For example, the concepts of situation, fluent, action, and strategy
discussed by McCarthy and Hayes (1969) correspond roughly to the concepts
of a state, a property of a state, an act, and a plan as used in this paper. It
remains to be seen whether the attempt to formalize such concepts within
a coherent logical system, rather than merely to incorporate them within some
actual computer program or hardware device, is the only or even the best
way to make progress.

Plans and programs

McCarthy and Hayes (1969) explore in some detail the parallel between a
plan or course of action and a computer program. Their aim is partly to have
procedures which prove results about computer programs do the same for
plans.
Almost all programs involve loops, where a certain sequence of operations

is repeated until some test is satisfied. One is led to consider plans with a
similar property. The 'San Diego' problem, attributed to McCarthy in this
context, is illuminating. The problem is to formulate a plan by which a
motorist can get from San Francisco, say, to San Diego given the following
information:

(a) there is no map obtainable with both San Francisco and San Diego
marked on it,
(b) any filling station will provide a map of its local area, which will both

indicate the direction of San Diego and show the location of at least one
other filling station in that direction,
(c) the motorist is now at a filling station in San Francisco.
The solution to the problem is the following plan:

'Collect a map from the filling station you are at and drive to the filling
station shown on the map which is furthest in the direction of San Diego.
Repeat this procedure until you arrive in San Diego.'

526

DO RAN

Clearly the plan is one big loop and test. Equally clearly no planning pro-
cedure of the Graph Traverser type is going to generate such a plan (Michie
and Popplestone 1969).
A different approach to this general topic is that of the psychologists,

Miller, Galanter, and Pribram (1960), in their well-known book Plans and
the Structure of Behaviour. They also point to the parallel between a computer
program and a plan (/c. cit., p. 16). Their TOTE unit (Test—Operate—Test—
Exit unit), which they propose as the fundamental building block of plans, is
just the ̀ loop and test' combination we are considering. For example, they
exhibit a plan for knocking a nail into a plank which, simplifying somewhat,
is 'repeat the operation of hitting the nail with the hammer until its head is
flush with the surface of the plank'.

Unfortunately, the discussion of Miller and his colleagues stops well short
of an automatic procedure for generating such plans. It does imply, however,
that plan generation should involve loops from the outset. Does this mean
that we should abandon informal problem-solving methods for planning,
and instead turn to the work concerned with the automatic generation of
computer programs (see, for example, Green 1969) ? The prospect is not too
inviting for those with an interest in human as well as machine intelligence.
What might be a 'natural' way to solve the San Diego problem — that is,

a way which common sense and introspection suggest might be the way in
which a person might solve it? By trying to answer this question we may
obtain some productive new ideas. Consider the following procedure:

(1) visualize a very crude outline map of California with San Diego and
San Francisco marked, and also with the motorist's location marked
(initially at San Francisco),
(2) consider possible sequences of 'relevant' acts for the motorist — driving
to filling stations, buying maps, and so on — manipulating his location on
the image map as seems appropriate,
(3) observe that one possible sequence of acts has two interesting properties
— that the acts form a repeating pattern and that the sequence corresponds
to a roughly linear motion of the motorist's location on the image map,
(4) by extrapolating the motion on the map observe that if the repetition
of acts is continued, then the motorist will reach San Diego,
(5) convert this observation into the required plan.

The reader may or may not feel that this solution procedure is plausible or in
any way illuminating. He should compare Amarel's analysis of the 'mutilated
chequer-board' problem (Amarel 1969). It does suggest that the key steps
in the solution of such a problem may be abstraction followed by a rather
simple form of extrapolation, in this case extrapolation of motion in a visual
image.

Models and percepts

A robot must acquire or be given knowledge about its environment and itself.

527

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

This knowledge is often called its 'world model'. Examples of different kinds
of world model which we have encountered are:

(a) the SRI robot's axiom model for use by the resolution theorem-prover
(Nilsson 1969a),
(b) the SRI robot's grid model which can loosely be described as a 'map' of
its surroundings (Nilsson 1969a),
(c) perceptual cause and effect models which store perceived states and the
way in which they are modified by acts (Deutsch, 1964; Doran, 1968,
1969; Andreae and Cashin, 1969).

We can reasonably add to this list:

(d) semantic memory systems of one kind or another (for example, Quillian
1969, Becker 1969),
(e) belief systems such as those developed by Colby and his co-workers
(Colby and Smith 1969).

The precise relationships between these superficially very different ways of
storing and using knowledge about the world have not been much explored.
I have two minor comments:

(1) Colby's term 'belief system' should perhaps be rather more widely used.
It has advantages compared with 'world model' in that it avoids any associa-
tion with physical 'scale' models, and correctly implies that a robot's
'knowledge' is bound in practice to include approximations to the truth as
well as outright errors. It also encourages consideration of the 'conviction'
with which a robot should hold a belief.
(2) A key heuristic problem for the robot is that of selecting the beliefs
relevant to the prediction of the outcome of any particular course of action.
This problem has been discussed by, for example, Nilsson and Raphael
(1967, p. 243) and McCarthy and Hayes (1969 — the 'frame problem').

I shall end with some speculative remarks to be associated with entry
(c) in the foregoing list — perceptual cause and effect models. These remarks
concern reasoning processes which operate in terms of perceptual images or
'percepts'. We are all familiar with subjective perceptual images and, for
example, some people seem to 'think' in terms of visual images far more than
others. What does reasoning in terms of perceptual images mean, if anything,
when we are talking about a robot?
Suppose that a robot is observing, through a TV camera, two cylinders

standing upright on a flat surface. We may suppose that, as the result of' a
complex piece of picture processing (possibly involving the robot's expecta-
tion of what is to be seen, as well as what is actually there) a data structure is
generated, representing in some sense the important information in the
observation. This abstracted picture we may reasonably call a visual percept.
If the robot now stores away this percept as it is, then it has also implicitly
stored away such beliefs as: 'the tall object is wider than the short object'.
However the robot may continue the processing and formulate and store

528

DO RAN

derived beliefs in some quite different coding, for example, a predicate
calculus axiom model. Since this coding does not arise naturally from the

picture processor, it is reasonable that it should not be called perceptual.
In human begins we can point to the distinction between, on the one hand.

a fuzzy abstracted visual image of a tall wide object beside a short narrow
object and, on the other hand, a fuzzy abstracted aural image of the words:
'the tall object is wider than the short object'. This is a rather special example
because the coding into which the visual percept is translated itself involves

perceptual (aural) images.

What form might reasoning in terms of visual percepts take? One possi-
bility has already been indicated in connection with the San Diego problem.
The key process might be as follows. Given two such percepts, and constraints
which effectively specify what constitutes a valid visual percept (compare
Clowes 1969), it will often be possible to merge them to form a third. The

information implicit in the new percept will then have been deduced, in some
sense, from the information implicit in the originals. Experimental psycholo-
gists have studied examples of such reasoning (Huttenlocher 1968, Handel,
London and DeSoto 1968).
I am not suggesting that what I have called perceptual reasoning could not

be encompassed, in theory, within some suitable formal system (compare
Hayes 1970). What I am suggesting is that it might have practical advantages
for robot systems operating in the real world.

Acknowledgements

This paper has been written during my tenure of a Science Research Council Fellowship.
I have benefited from many discussions with Professor Donald Michie and Dr R. Burstall,
both of the Department of Machine Intelligence and Perception, University of Edinburgh

REFERENCES

Amarel, S. (1968) On representations of problems of reasoning about actions.
Machine Intelligence 3, pp. 131-72 (ed. Michie, D.). Edinburgh: Edinburgh
University Press.

Amarel, S. (1969) Problem solving and decision making by computer: an overview.
Paper distributed at the Symposium on Cognitive Studies and Artificial Intelligence
Research, 2-8 March 1969. University of Chicago Center for Continuing Education.

Andreae, J. H. & Cashin, P.M. (1969) A learning machine with monologue. Int.
Journal of Man-Machine Studies, 1, 1-20.

Banerji, R. B. (1969) Theory of problem solving. New York: Elsevier.
Becker, J. D. (1969) The modelling of simple analogic and inductive processes in a
semantic memory system. Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 655-68 (eds Walker D. E. & Norton, L. M.). New York:
Association for Computing Machinery.

Burstall, R.M. (1968) Writing search algorithms in functional form. Machine Intelligence
3, pp. 373-86 (ed. Michie D.). Edinburgh: Edinburgh University Press.

Clowes, M.B. (1969) Pictorial relationships - a syntactic approach. Machine Intelligence
4, pp. 361-84 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

MM 529

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

Colby, K. M. & Smith, D.C. (1969) Dialogues between humans and an artificial belief
system. Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 319-24 (eds Walker, D.E. & Norton, L. M.). New York: Association for Com-
puting Machinery.

Deutsch, J.A. (1964) The Structural Basis of Behavior. Cambridge: University Press.
Doran, J.E. (1967) An approach to automatic problem-solving. Machine Intelligence 1,
pp. 105-23 (eds Collins, N. L. & Michie, D.). Edinburgh: Oliver and Boyd.

Doran, J.E. (1967a) Designing a pleasure-seeking automaton. Research Memorandum
MIP-R-28. Department of Machine Intelligence and Perception, University of
Edinburgh.

Doran, J.E. (1968) New developments of the Graph Traverser. Machine Intelligence 2,
pp. 119-35 (eds Dale, E. & Michie, D.). Edinburgh: Oliver and Boyd.

Doran, J.E. (1968a) Experiments with a pleasure-seeking automaton. Machine
Intelligence 3, pp. 195-215 (ed. Michie, D.). Edinburgh: Edinburgh University Press.

Doran, J.E. (1969) Planning and generalization in an automaton/environment system.
Machine Intelligence 4, pp. 433-54 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Doran, J.E. & Michie, D. (1966) Experiments with the Graph Traverser program.
Proc. R. Soc. A, 294, 235-59.

Ernst, G.W. (1968) Sufficient conditions for the success of GPS. Memorandum SRC-
68-17. Systems Research Center, Case Western Reserve University.

Ernst, G.W. & Newell, A. (1969) GPS: a Case Study in Generality and Problem
Solving. ACM Monograph Series. New York: Academic Press.

Evans, T. G. (1964) A heuristic program to solve geometric-analogy problems.
AFIPS, 25, 327-38. SJ CC, Baltimore: Spartan Books.

Feigenbaum, E.A. & Feldman, J. (eds) (1963) Computers and Thought. New York:
McGraw-Hill.

Friedman, L. (1969) Robot control strategy. Proceedings of the International Joint
Conference on Artificial Intelligence (eds Walker, D.E. & Norton, L.M.) pp. 527-40.
New York: Association for Computing Machinery.

Gelemter, H. (1959) Realization of a geometry-theorem proving machine. Proceedings
of an International Conference on Information Processing, pp. 273-82. Paris:
UNESCO House. Reprinted in Feigenbaum and Feldman (1963).

Green, C. (1969) Application of theorem proving to problem solving. Proceedings of
the International Joint Conference on Artificial Intelligence, pp. 219-39 (eds Walker,.
D.E. & Norton, L. M.). New York: Association for Computing Machinery.

Handel, S., London, M. & DeSoto, C. (1968) Reasoning and spatial representations.
J. of Verbal Learning and Verbal Behavior, 2.

Hayes, P.J. (1970) Robotologic. Machine Intelligence 5, pp. 533-54 (eds Meltzer, B. &
Michie, D.). Edinburgh: Edinburgh University Press.

Hormann, A. (1965) Gaku: an artificial student. Behav. ScL,10, 88-107.
Hubermann, B. (1965) The Advice Taker and GPS. Research Memorandum No. 33.
Stanford Artificial Intelligence Project, Stanford University.

Huttenlocher, J. (1969) Constructing spatial images: a strategy in reasoning. Paper
distributed to the Annual Conference of the British Psychological Society.

Kilmer, W.L., McCulloch, W.S. & Blum, J. (1969) A model of the vertebrate central
command system. Int. J. Man-Machine Studies, 1, 279-309.

Marsh D. (1970) Memo functions, the Graph Traverser and a simple control situation.
Machine Intelligence 5, pp. 281-300 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

McCarthy, J. (1959) Programs with common sense. Proceedings of a Symposium on the
the Mechanization of Thought Processes, pp. 75-91. London: Imo. Reprinted in
Minsky (1968).

530

DORAN

McCarthy, J. & Hayes, P. J. (1969) Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence 4, pp. 463-502 (eds Meltzer, B. &
Michie, D.) . Edinburgh: Edinburgh University Press.

Michie, D. (1967) Strategy-building with the Graph Traverser. Machine Intelligence I,
pp. 137-54 (eds Collins, N.L. & Michie D.) . Edinburgh: Oliver and Boyd.

Michie, D. (1967a) Memo functions: a language feature with 'rote-learning' properties.
Research Memorandum MIP-R-29, Department of Machine Intelligence and
Perception, University of Edinburgh.

Michie, D. (1968) 'Memo' functions and machine learning. Nature, 218, 19-22.
Michie, D. (1968a) Information and behaviour: a commentary on a note by R. L.
Gregory. Research Memorandum MIP-R-37, Department of Machine Intelligence
and Perception, University of Edinburgh.

Michie, D. & Chambers, R.A. (1968) BOXES: an experiment in adaptive control.
Machine Intelligence 2, pp. 137-52 (eds Dale, E. & Michie, D.). Edinburgh:
Oliver and Boyd.

Michie, D., Fleming, J. G. & Oldfield, J.V. (1968) Comparison of heuristic, interactive
and unaided methods of solving a shortest route problem. Machine Intelligence 3,
pp. 245-55 (ed. Michie, D.). Edinburgh: Edinburgh University Press.

Michie, D. & Popplestone, R.J. (1969) Freddy's first three years. Experimental Program-
ming 1968-1969. Department of Machine Intelligence and Perception, University of
Edinburgh.

Michie, D. & Ross, R. (1970) Experiments with the adaptive Graph Traverser. Machine
Intelligence 5, pp. 301-18 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh
University Press.

Miller, G.A., Galanter, E. & Pribram, K.H. (1960) Plans and the Structure of Behavior.
New York: Holt, Rinehart and Winston Inc.

Minsky, M. (1961) Steps towards artificial intelligence. Proc. Inst. Radio Engineers, 49,
8-30. Reprinted in Feigenbaum and Feldman (1963).

Minsky, M. (ed.) (1968) Semantic Information Processing. Cambridge Mass. and
London: MIT Press.

Minsky, M. & Papert, S. (1969) Perceptrons. Cambridge Mass. and London: MIT Press.
Moses, J. (1967) Symbolic Integration. Ph.D. dissertation, mu' Mathematics Department.
Newell, A., Shaw, J. C. & Simon, H.A. (1959) Report on a general problem-solving
program. Proceedings of an International Conference on Information Processing,
pp. 256-64. Paris: UNESCO.

Newell, A., Shaw, J.C. & Simon, H.A. (1960) A variety of intelligent learning in a
general problem solver. Self-organizing Systems, pp. 153-89 (eds Yovits, M. C. &
Cameron, S.). London: Pergamon Press.

Nilsson, N.J. (1969) Searching problem-solving and game-playing trees for minimal cost
solutions. Proceedings of the IFIP Congress 1968. Amsterdam: North Holland.

Nilsson, N.J. (1969a) A mobile automaton: an application of artificial intelligence
techniques. Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 509-20 (eds Walker, D. E. & Norton, L. M.). New York: Association for Com-
puting Machinery.

Nilsson, N.J. & Raphael, B. (1967) Preliminary design of an intelligent robot. Computer
and Information Sciences II, pp. 235-59 (ed. Tou, J.). New York: Academic Press.

Pohl, I. (1970) First results on the effect of error in heuristic search. Machine Intelligence
5, pp. 219-36 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

Popplestone, R.J. (1967) Memo functions and the Po -2 language. Research
Memorandum MIP-R-30. Department of Machine Intelligence and Perception,
University of Edinburgh.

Popplestone, R.J. (1970) Experiments with automatic induction. Machine Intelligence S,
pp. 203-16 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

531

PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

Quillian, M.R. (1969) The teachable language comprehender: a simulation program
and theory of language. Comm. Ass. comput. Mach., 12, 459-76.

Quinlan, J.R. (1969) A task-independent experience-gathering scheme for a problem-
solver. Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 193-7 (eds Walker, D. E. & Norton, L. M.). New York: Association for Computing
Machinery.

Quinlan, J.R. & Hunt, E.B. (1968) A formal deductive problem-solving system.
J. Ass. comput. Mach., 15, 625-46.

Samuel, A.L. (1959) Some studies in machine learning using the game of checkers.
IBM J. of Res. and Dev., 3, 211-29. Reprinted in Feigenbaum and Feldman (1963).

Samuel, A.L. (1967) Some studies in machine learning using the game of checkers,
2— recent progress. IBM J. of Res. and Dev., 11, 601-17.

Sandewall, E.J. (1969) Concepts and methods for heuristic search. Proceedings of the
International Joint Conference on Artificial Intelligence (eds Walker, D. E. & Norton,

L. M.). New York: Association for Computing Machinery.
Sandewall, E.J. (1969a) A planning problem solver based on look-ahead in stochastic
game trees. J. Ass. comput. Mach., 16, 364-82.

Toda, M. (1962) The design of a fungus-eater: a model of human behavior in an
unsophisticated environment. Behav. Sc., 7, 164-83.

Travis, L.G. (1964) Experiments with a theorem utilizing program. AFIPS, 25,
339-58. SJC C. Baltimore: Spartan Books.

532

