
I

J

I

:i

BASEBALL: AN AUTOMATIC
QUESTION ANSWERER

by Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, &
Kenneth Laughery

Introduction

Men typically communicate with computers in a variety of artificial,
stylized, unambiguous languages that are better adapted to the machine
than to the man. For convenience and speed, many future computer-
centered systems will require men to communicate with computers in
natural language. The business executive, the military commander, and the
scientist need to ask questions of the computer in ordinary English, and
to have the computer answer the questions directly. Baseball is a first step
toward this goal.

Baseball is a computer program that answers questions posed in ordinary
English about data in its store. The program consists of two parts. The
linguistic part reads the question from a punched card, analyzes it
syntactically, and determines what information is given about the data being
requested. The processor searches through the data for the appropriate
"nformation, processes the results of the search, and prints the answer.

The program is written in IPL-V (Newell, et al., 1960e), an informa-
tion processing language that uses lists, and hierarchies of lists, called list
structures, to represent information. Both the data and the dictionary are
'ist structures, in which items of information are expressed as attribute-
value pairs, e.g., Team = Red Sox.

The program operates in the context of baseball data. At present, the
data are the month, day, place, teams and scores for each game in the
American League for one year. In this limited context, a small vocabulary
"s sufficient, the data are simple, and the subject matter is familiar.

207



208 ARTIFICIAL INTELLIGENCE

AL

Some temporaryrestrictions were placed on the input questions so that
the initial program could be relatively straightforward. Questions are
limited to a single clause; by prohibiting structures with dependent clauses
the syntactic analysis is considerably simplified. Logical connectives, such
as and, or, and not, are prohibited, as are constructions implying relations
like most and highest. Finally, questions involving sequential facts, such as
"Did the Red Sox ever win six games in a row?" are prohibited. These
restrictions are temporaryexpedients that will be removed in later versions
of the program. Moreover, they do not seriously reduce the number of
questions that the program is capable of answering. From simple questions
such as "Who did the Red Sox lose to on July 5?" to complex questions
such as "Did every team play at least once in each park in each month?"
lies a vast number of answerable questions.

Specification List
Fundamental to the operation of the baseball program is the concept of
the specification list, or spec list. This list can be viewed as a canonical
expression for the meaning of the question; it represents the information
contained in the question in theform of attribute-value pairs, e.g., Team =
Red Sox. The spec list is generated from the question by the linguistic part
of the program, and it governs the operation of the processor. For example,
the question "Where did the Red Sox play on July 7?" has the spec list:

Month = July
Day = 7.

Some questions cannot be expressed solely in terms of the main attributes
(Month, Day, Place, Team, Score, and Game Serial Number), but require
some modification of these attributes. For example, on the spec list of
"What teams won 10 games in July?", the attribute Team is modified by
Winning, and Game is modified by Number of, yielding

Team (winning) — "
Game (number of) = 10

Dictionary
The dictionary definitions, which are expressed as attribute-value pairs,
are used by the linguistic part of the program in generating the spec list. A
complete definition for a word or idiom includes a part of speech, for use
in determining phrase structure; a meaning, for use in analyzing content;

an indication of whether the entry is a question word, e.g., who or how
many; and an indication of whether a word occurs as part of any stored

Place = ?
Team = Red Sox

Month = July.



I

BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER 209

J

1

idiom. Separate dictionaries are kept for words and idioms, an idiom being
any contiguous set of words that functions as a unit, having a unique
definition.

The meaning of a word can take one of several forms. It may be a main
or derived attribute with an associated value. For example, the meaning
of the word Team is Team = (blank), the meaning of Red Sox is
Team = Red Sox, and the meaning of who is Team = ?. The meaning
may designate a subroutine, together with a particular value, as in the case
of modifiers such as winning, any, six, or how many. For example,
winning has the meaning Subroutine Al = Winning. The subroutine,
which is executed by the content analysis, attaches the modifier Winning
to the attribute of the appropriate noun. Some words have more than one
meaning; the word Boston may mean either Place = Boston or Team =
Red Sox. The dictionary entry for such words contains, in addition to each
meaning, the designation of a subroutine that selects the appropriate mean-
ing according to the context in which the word is encountered. Finally,
some words such as the, did, play, etc., have no meaning.

Data
The data are organized in a hierarchical structure, like an outline, with
each level containing one or more items of information. Relationships
among items are expressed by their occurrence on the same list, or on
associated lists. The main heading, or highest level of the structure, is the
attribute Month. For each month, the data are further subdivided by place.
Below each place under each month is a list of all games played at that
place during that month. The complete set of items for one game is found
by tracing one path through the hierarchy, i.e. one list at each level. Each
path contains values for each of six attributes,e.g.:

Day = 7
Game Serial No. = 96
(Team = Red Sox, Score = 5)
(Team = Yankees, Score = 3)

The parentheses indicate that each Team must be associated with its own
score, which is doneby placing them together on a sublist.

The processing routines are written to accept any organization of the
data. In fact, they will accept a nonparallel organization in which, for
example, the data might be as above for all games through July 31, and
then organized by place, with month under place, for the rest of the season.
The processing routines will also accept a one-level structure in which
each game is a list of all attribute-value pairs for that game. The possibility

Month = July
Place = Boston



210 ARTIFICIAL INTELLIGENCE

L

of hierarchical organization was included for generality and potential ef-
ficiency. The basic rule is that any one path through the data, including
one list at each level, must contain all of the facts for a single game. Also,

on every such path, each attribute may occur at most once, unless it
occurs on parallel sublists.

Details of the Program

The program is organized into several successive, essentially independent
routines, each operating on the output of its predecessor and producing an
input for the routine that follows. The linguistic routines include question
read-in, dictionary look-up, syntactic analysis, and content analysis. The
processing routines include theprocessor and theresponder.

Linguistic Routines

QUESTION

READ-IN

A question for the program is read into the computer from punched cards.
The question is formed into a sequential list of words.

DICTIONARY LOOK-UP

Each word on the question list is looked up in the word dictionary and its
definition copied. Any undefined words are printed out. (In the

future,

with a direct-entry keyboard, the computer can ask the questioner to

define the unknown words in terms of words that it knows, and so augment
its vocabulary.) The list is scanned for possible idioms; any contiguous
words that form an idiom are replaced by a single entry on the question
list, and an associated definition from the idiom dictionary. At this point,
each entry on the list has associated with it a definition, including a part of
speech, a meaning, and perhaps other indicators.

SYNTAX

The syntactic analysis is based on the parts of speech, which are syntactic
categories assigned to words for use by the syntax routine. There are 14
parts of speech and several ambiguity markers.

First, the question is scanned for ambiguities in part of speech, whicn
are resolved in some cases by looking at the adjoining words, and in other
cases by inspecting the entire question. For example, the word score may
be either a noun or a verb; our rule is that, if there is no other main verb
in the question, then score is a verb, otherwise it is a noun.

Next, the syntactic routine locates and brackets the noun phrases, [Ql
and the prepositional and adverbial phrases, (□)" The verb is left un-



r

BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER 211

{

A.

bracketed. This routine is patterned after the work of Harris and his
associates at the University of Pennsylvania (Harris, 1960). Bracketing
proceeds from the end of the question to the beginning. Noun phrases, for
example, are bracketed in the following manner: certain parts of speech
indicate the end of a noun phrase; within a noun phrase, a part of speech
may indicate that the word is within the phrase, or that the word starts
the phrase, or that the word is not in the phrase, which means that the
previous word started the phrase. Prepositional phrases consist of a prepo-
sition immediately preceding a noun phrase. The entire sequence, preposi-
tion and noun phrase, is enclosed in prepositional brackets. An example
of a bracketed questionis shown below:

[How many games] did [the Yankees] play (in [July])?
When the question has been bracketed, any unbracketed preposition is
attached to the first noun phrase in the sentence, and prepositional brackets
added. For example, "Who did the Red Sox lose to on July 5?" becomes
"(To [who]) did [the Red Sox] lose (on [July 5])?"

Following the phrase analysis, the syntax routine determines whether
the verb is active or passive and locates its subject and object. Specifically,
the verb is passive if and only if the last verb element in the question is a
main verb and the preceding verb element is some form of the verb to be.
For questions with active verbs, if a free noun phrase (one not enclosed in
prepositional brackets) is found between two verb elements, it is marked
Subject, and the first free noun phrase in the question is marked Object.
Otherwise the first free noun phrase is the subject, the next, if any, is the
object. For passive verbs, the first free noun phrase is marked Object (since
it is the object in the active form of the question) and all prepositional
Phrases with the preposition by have the noun phrase within them marked
Subject. If there is more than one, the content analysis later chooses among
them on the basis of meaning.

Finally, the syntactic analysis checks to see if any of the words is marked
as a question word. If not, a signal is set to indicate that the question re-
quires a yes/no answer.

CONTENT ANALYSIS

The content analysis uses the dictionary meanings and the results of the
syntactic analysis to set up a specification list for the processing program.
First any subroutine found in the meaning of any word or idiom in the
question is executed. The subroutines are of two basic types; those that
deal with the meaning of the word itself and those that in some way
change the meaning of another word. The first type chooses the appropriate
meaning for a word with multiple meanings, as, for example, the sub-
routine mentioned above that decides, for names of cities, whether the



212 ARTIFICIAL INTELLIGENCE

J

meaning is Team =At or Place = Ap. The second type alters or modifies
the attribute or value of an appropriate syntactically related word. For
example, one such subroutine puts its value in place of the value of the
main noun in its phrase. Thus Team = (blank) in the phrase each team
becomes Team = each; in the phrase what team, it becomes Team = ?.
Another modifies the attribute of a main noun. Thus Team = (blank) in
the phrase winning team becomes Team(winning) = (blank). In the ques-
tion "Who beat the Yankees on July 4?", this subroutine, found in the
meaning of beat, modifies the attribute of the subject and object, so that
Team = ? and Team = Yankees are rendered Team(wi nnin g) = ? and
Team(Ioain!!) = Yankees. Another subroutine combines these two opera-
tions : it both modifies the attribute and changes the value of the main noun.
Thus, Game = (blank) in the phrase six games becomes Game(number on =
6, and in the phrase how many games becomes Game („Umber on = ?"

After the subroutines have been executed, the question is scanned to
consolidate those attribute-value pairs that must be represented on the
specification list as a single entry. For example, in "Who was the winning

team . . ." Team = ? and Team(wlnnln!!;) = (blank) must be collapsed
into Team(winning) = ?. Next, successive scans will create any sublists
implied by the syntactic structure of the question. Finally, the composite
information for each phrase is entered onto the spec list. Depending on its
complexity, each phrase furnishes one or more entries for the list. The
resulting spec list is printed in outline form, to provide the questioner with
some intermediate feedback.

Processing Routines

PROCESSOR

The specification list indicates to the processor what part of the stored
data is relevant for answering the input question. The processor extracts
the matching information from the data and produces, for the responder,
the answer to the question in the form of a list structure.

The core of the processor is a search routine that attempts to find a
match, on each path of a given data structure, for all the attribute-value
pairs on the spec list; when a match for the whole spec list is found on a
given path, those pairs relevant to the spec list are entered on a found list.
A particular spec list is considered matched when its attribute has been
found on a data path and either the data value is the same as the spec
value, or the spec value is ? or each, in which case any value of the
particular attribute is a match. Matching is not always straightforward.
Derived attributes and some modified attributes are functions of a number
of attributes on a path and must be computed before the values can be
matched. For example, if the spec entry is Home Team = Red Sox, the



I

213BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER

i

■[

V

actual home team for a particular path must be computed from the place
and teams on that path before the spec value Red Sox can be matched
with the computed data value. Sublists also require special handling be-
cause the entries on the sublist must sometimes be considered separately
and sometimes as a unit in various permutations.

The found list produced by the search routine is a hierarchical list struc-
ture containing one main or derived attribute on each level of each path.
Each path on the found list represents the information extracted from one
or more paths of the data. For example, for the question "Where did each
team play in July?", a single path exists, on the found list, for each team
which played in July. On the level below each team, all places in which
that team played in July occur on a list that is the value of the attribute
Place. Each path on the found list may thus represent a condensation of
the information existing on many paths of the search data.

Many input questions contain only one query, as in the question above,
ie., Place = ?. These questions are answered, with no further processing,
by the found list produced by one execution of the search routine. Others
require simple processing on all occurrences of the queried attribute on
the generatedfound list. The question "In how many places did each team
Play in July?" requires a count of the places for each team, after the
search routine has generated the list of places for each team.

Other questions imply more than one search as well as additional
Processing. For a spec attribute with the value every, a comparison with
a list of all possible values for that attribute must be made after the search
routine has generatedlists of found values for that attribute. Then, since
°nly those found list paths for which all possible values of the attribute
exist should remain on the found list as the answer to the question, the
search routine, operating on this found list as the data, is again executed.
It now generates a new found list containing all the data paths for which
aH possible values of the attribute were found. Likewise, questions involv-
lng a specified number, such as 4 teams, imply a search for which teams, a
count of the teams found on each path, and a search of the found list for
Paths containing 4 teams.

In general, a question may contain several implicit or explicit queries.
Since these queries must be answered one at a time, several searches, with
uitermediate processing, are required. The first search operates on the
stored data while successive searches operate on the found list generated
by the preceding search operation. As an example, consider the question
"On how many days in July did eight teams play?" The spec list is

Day(mimi)er 0f) —

/;

Month = July;
Team(number on = 8.



214 ARTIFICIAL INTELLIGENCE

On the first pass, the implicit question which teams is answered. The spec
list for thefirst search is

Day = Each;
Month = July;
Team = ?.

The found data is a list of days in July; for each day there is a list of teams
that played on that date. Following this search, the processor counts the
teams for each day and associates the count with the attribute Team. On
the second search, the spec list is

Teani(number on — 8.

The found data is a list of days in July on which eight teams played. After
this pass, the processor counts the days, adds the count to the found list,
and is finished.

RESPONDER

No attempt has yet been made to respond in grammatical English sentences.
Instead, the final found list is printed in outline form. For questions re-
quiring a yes/no answer, YES is printed along with the found list. If the
search routine found no matching data, NO is printed for yes/no questions,
and NO DATA for all other cases.

Discussion

The differences between Baseball and both automatic language transla-
tion and information retrieval should now be evident. The linguistic part
of the Baseball program has as its main goal the understanding of the
meaning of the question as embodied in the canonical specification list-
Syntax must be considered and ambiguities resolved in order to represent
the meaning adequately. Translation programs have a different goal: trans-
forming the input passage from one natural language to another. Meanings
must be considered and ambiguities resolved to the extent that they affect
the correctness of the final translation. In general, translation programs are
concerned more with syntax and less with meaning than the Baseball
program.

Baseball differs from most retrieval systems in the nature of its data.
Generally the retrieval problem is to locate relevant documents. Each
document has an associated set of index numbers describing its content.
The retrieval system must find the appropriate index numbers for each
input request and then search for all documents bearing those index numb-

Day = ?;
Month = July;



t

BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER 215

i

J

i

ers. The basic problem in such systems is the assignment of index cate-
gories. In Baseball, on the other hand, the attributes of the data are very
well specified. There is no confusion about them. However, Baseball's
derived attributes and modifiers imply a great deal more data processing
than most document retrieval programs. (Baseball does bear a close rela-
tion with the ACSI-MATIC system discussed by Miller et al. at the 1960
Western Joint Computer Conference.)

The concept of the spec list can be used to define the class of questions
that the Baseball program can answer. It can answer all questions whose
spec list consists of attribute-value pairs that the program recognizes. The
attributes may be modified or derived, and the values may be definite or
queries. Any combination of attribute-value pairs constitutes a specifica-
tion list. Many will be nonsense, but all can be answered. The number of
questionsin the class is, of course, infinite, because of the numerical values.
But even if all numbers are restricted to two digits, theprogram can answer
millions of meaningful questions.

The present program, despite its restrictions, is a very useful communica-
tion device. Any complex question that does not meet the restrictions can
always be broken up into several simpler questions. The program usually
rejects questions it cannot handle, in which case the questioner may
rephrase his question. He can also check the printed spec list to see if the
computer is on the right track, in case the linguistic program has erred and
failed to detect its own error. Finally, he can often judge whether the
answer is reasonable.

Next Steps

No important difficulty is expected in augmenting the program to include
logical connectives, negatives, and relation words. The inclusion of
multiple-clause questions also seems fairly straightforward, if the questioner
will mark off for the computer the boundaries of his clauses. The program
can then deal with the subordinate clauses one at a time before it deals
with the main clause, using existing routines. On the other hand, if the
syntax analysis is required to determine the clause boundaries as well as
the phrase structure, a much more sophisticated program would be
required.

The problem of recognizing and resolving semantic ambiguities remains
largely unsolved. Determining what is meant by the question "Did the
Red Sox win most of their games in July?" depends on a much larger
context than the immediate question. The computer might answer all
tfieaningful versions of the question (we know of five), or might ask the
questioner which meaning he intended. In general, the facility for the
computer to query the questioner is likely to be the most powerful im-



<-> V

t.

216 ARTIFICIAL INTELLIGENCE

provement. This would allow the computer to increase its vocabulary, to
resolve ambiguities, and perhaps even to train the questioner in the use of
the program.

Considerable pains were taken to keep the program general. Most of the
program will remain unchanged and intact in a new context, such as voting
records. The processing program will handle data in any sort of hierarchical
form, and is indifferent to the attributes used. The syntax program is based
entirely on parts of speech, which can easily be assigned to a new set of
words for a new context. On the other hand, some of the subroutines con-
tained in the dictionary meanings are certainly specific to baseball; prob-
ably each new context would require certain subroutines specific to it. Also,
each context might introduce a number of modifiers and derived attributes
that would have to be defined in terms of special subroutines for the
processor. Hopefully, all such occasions for change have been isolated in a
small area of special subroutines, so that the main routines can be un-
altered. However, until we have actually switched contexts, we cannot say
definitely that we have been successful in producing a general question-
answering program.


