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1. INTRODUCTION
Consider the following sequence of instructions in a list-processing language
With roughly ALGOL 60 syntax and LISP semantics (hd (head) is LISP CAR
and tl (tail) is LISP CDR).

x: = cons(1, nil);
y:=cons(2, x);
hd(x): =3; (compare LISP RPLACA)
print(x); print(y);

The intention is as follows.
x becomes the list (1)
y becomes the list (2, 1)
The head (first element) of the list x becomes 3.

Since y was manufactured from x it 'shares' a list cell with x, and hence is
side-effected by the assignment to hd(x).
When x is printed it is (3) and y when printed is (2, 3) rather than (2, 1)

as it would have been had the last assignment left it undisturbed.
How are we to prove assertions about such programs? Figure 1 traces the

course of events in the traditional picture language of boxes and arrows.
Our task will be to obtain a more formal means of making inferences, which,
unlike the picture language, will deal with general propositions about lists.
We will extend Floyd's proof system for flow diagrams to handle commands
Which process lists. The principles which apply to lists would generalise in a
straightforward way to multi-component data structures with sharing and
circularities.
Although this technique permits proofs, they are rather imperspicuous and

fiddling for lack of appropriate higher level concepts. Investigating the special
case of linear lists in more depth we define 'the list from x to y' and consider
Systems of such lists (or perhaps we should say list fragments) which do not
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Figure 1.

x: = cons (1, nil);

y: = cons (2, x)

2

hd (x): =3

2

1 nil

1 nil

3 nil

share with each other or within themselves. (By a linear list we mean one
which either terminates with nil, such as LISP (A, (B, C), D), or is circular;
by a tree we mean a list structure which terminates with atoms rather than
with nil, such as LISP ((A . B) . (C. D))). We thus get a rather natural way
of describing the states of the machine and the transformations on them and
hence obtain easy proofs for programs. Some ideas from the application of
category theory to tree automata help us to extend this treatment from lists
to trees: fragments of lists or trees turn out to be morphisms in an appro-
priate category. Acquaintance with category-theoretic notions is not however
needed to follow the argument. Our aim has been to obtain proofs which
correspond with the programmer's intuitive ideas about lists and trees.
Extension to other kinds of data structures awaits further investigation.

2. PREVIOUS WORK

Since McCarthy (1963) raised the problem a number of techniques for
proving properties of programs have been proposed. A convenient and natural
method is due to Floyd (1967) and it has formed the basis of applications to
non-trivial programs, for example by London (1970) and Hoare (1971).
Floyd's technique as originally proposed dealt with assignments to numerical
variables, for example, x: = x + 1, but did not cater for assignments to arrays,
for example, a[i]:=a[j]+ 1, or to lists, such as t/(x): =cons(hd(x), 11(11(x))).
McCarthy and Painter (1967) deal with arrays by introducing 'change' and
'access' functions so as to write a[i]:=a[j]+1 as a: = change (a, i, access
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(a, j)+ 1), treating arrays as objects rather than functions. King (1969) in
mechanising Floyd's technique gives a method for such assignments which,
however, introduces case analysis that sometimes becomes unwieldy. Good
(1970) suggests another method which distinguishes by subscripts the various
versions of the array. We will explain below how Good's method can be
adapted to list processing. Although the proofs mentioned above by London
(.1970) and Hoare (1971) involve arrays they do not give rigorous justifica-
tion of the inferences involving array assignments, which are rather straight-
forward.

List processing programs in the form of recursive functions have received
attention from McCarthy (1963), Burstall (1969) and others, but quite
different problems arise when assignments are made to components of lists.
This was discussed in Burstall (1970) as an extension to the axiomatic
semantics of ALGOL, but the emphasis there was on semantic definition
rather than program proof.

Hewitt (1970), Chapter 7, touches on proofs for list Processing programs
with assignments. J. Morris of Berkeley has also done some unpublished work,
so have B.Wegbreit and J.Poupon of Harvard (Ph.D. thesis, forthcoming).

3. FLOYD'S TECHNIQUE
Let us recall briefly the technique of Floyd (1967) for proving correctness of
programs in flow diagram form. We attach assertions to the points in the
flow diagram and then verify that the assertion at each point follows from
those at all the immediately preceding points in the light of the intervening
commands. Floyd shows, by induction on the length of the execution path,
that if this verification has been carried out whenever the program is entered
with a state satisfying the assertion at the entry point it will exit, if at all,
only with a state satisfying the assertion at the exit point.
The rules for verification distinguish two cases: tests and assignments.

(1) A triple consisting of an assertion, a test and another assertion. thus

YES

Si

S2

is said to be verified if Sli PF AS2, that is, assertion S2 is deducible from Si
and test P using some axioms A, say the axioms for integer arithmetic. If 52
IS attached to the NO branch the triple is verified if SI, —IPI-AS2.
(2) A triple consisting of an assertion, an assignment and another assertion,
thus
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I: =E

Si

 S2

where / is some identifier and E some expression, is said to be verified if
S1 FA [S2]f where [S2], means the statement S2 with E substituted for I
throughout. (This is called backward verification by King (1969); it is a
variant of Floyd's original method, which introduces an existentially quanti-
fied variable.)
We will here retain the inductive method of Floyd for dealing with flow

diagrams containing loops, but give methods for coping with more complex
kinds of assignment command.

4. EXTENSION OF THE VERIFICATION PROCEDURE TO
ARRAY ASSIGN MENTS

Consider the following command and assertions

1‘,i< 9 and for all x, such that 1 <x<100, a(x)=x

a((a(i)+1)xa(i+1)):=0

a(ixi+2xi+1)0a(i)

The second assertion does hold if the first one does, but the verification
rule given above for assignments to numeric variables, such as j: =2 x j, is
inadequate for array assignments such as this. Thus attempts to substitute 0
for a((a(i)+1)xa(i+1)) in a(ix i+2 x i+1)0a(i) merely leave it un-
changed, but the unchanged assertion does not follow from the first assertion.
(Floyd's version of the rule, using an existential quantifier is equally in-
applicable.)
Following Good (1970), with a slightly different notation, we can over-

come the difficulty by distinguishing the new version of the array from the
old one by giving it a distinct symbol, say a'. We also make explicit the fact
that other elements have not changed. We thus attempt to show that

1 <i<9, (Vx)(1<x<100a(x)=x), a'((a(i)+1)xa(i+1))=0,
(Vy)(y0(a(i)+1)xa(i+l)a'(y)=a(y))1-. arith a'(ix 1+2 xi+1)0d(i).
Once we note that (a(i)+1)x a(i+1) is (1+1)2, as is (ix 1+2 x i+1) and

that, since 1<i, (1+1)201, we have a'(ix i+ 2 x i+ 1)=0 and a'(0=i, so

26



IIURSTALL

a'(0> 0. The distinction between a and a' and the condition that all elements
which are not assigned to are unchanged reduce the problem to elementary
algebra.

5. COMMANDS, CHANGE SETS AND TRANSFORMATION
SENTENCES

The following technique is a variant of the one given by Good (1970). He
uses it for assignments to arrays but not for list processing.
With each assignment command we associate a set of identifiers called the

change set and a set of sentences called the transformation sentences. (Rules
for specifying these are given below.) The basic rule of inference is:

If a set S of sentences are written before a command C, and C has a set T
of transformation sentences, then we may write a sentence U after C if S,
TI-U', where U' is U with each identifier i in the change set of C replaced by i'.
(1) Simple assignment
Command: I:=E e.g. i: =i+j
Change set: {/} {i}
Transformation sentences: /'=E =i-Fj
Example:

i:=1-Fj

© 
 i>0 j>0
1>1

1>1 is legitimate at a because i> 0, j> 0, i'=i+j1-i'> 1.
Note. By AFB we mean B is provable from A using axioms of arithmetic or
other axioms about the operations of the language.
Note. Variables (identifiers) in the program become constants in the logic.
(2) Array assignment

Command: A[E1]:=E2 e.g. a[a[i]]:=a[i]+a[j]
Change set: (A) (a)
Transformation sentences:
A1(E1)=E2 a'(a(i))=a(i)+a(j)
(ix)(x0E1 A'(x)=A(x)) (Vx)(x0a(i)a'(x)=a(x))

(3) List processing
(a) Command: hd(E1):=E2 e.g. hd(t1(hd(i))):=hd(i)

Change set: {hd) {hd}
Transformation sentences:
hd'(E1)=E2 hd'01(hd(i)))=hd(i)
(Vx)(x Eihd'(x)=hd(x)) (Vx)(x tl(hd(i))hd'(x)=hd(x))

(b) Command: 1/(E1):=E2 . as for hd
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(c) Command: I: = cons(Eli E2)
Change set: {I, used, new}
Transformation sentences:

new'Oused
used' =usedk.) (new')
hd(new' )=
tl(new')=E2
I' =new'

e.g. i: =cons(2, j)
{1, used, new}

new'Oused
used' =usedu {new')
hd(new')=2
tl(new')=j
i' =new'

Note. We assume E1 and E2 do not contain cons. Complex cons expressions
must be decomposed.

It should be clear that the choice of two-element list cells is quite arbitrary,
and exactly analogous rules could be given for a language allowing 'records'
or 'plexes', that is a variety of multi-component cells.

6. CONCEPTS FOR LIST PROCESSING

We could now proceed to give examples of proofs for simple list processing
programs, but with our present limited concepts it would be difficult to
express the theorems and assertions except in a very ad hoc way. We want to
talk about the list pointed to by an identifier i and say that this is distinct
from some other list. We want to be able to define conveniently such concepts
as reversing or concatenating (appending) lists.
To do this we now specialise our discussion to the case where cons, hd and

t/ are used to represent linear lists. Such lists terminate in nil or else in a cycle,
and we do not allow atoms other than nil in the tail position. Thus we exclude
binary trees and more complicated multi-component record structures.

First we define the possible states of a list processing machine.
A machine is characterised by:

C, a denumerable set of cells
nil, a special element
A, a set of atoms (C, {nil} and A are disjoint)
a, a function from finite subsets of C to C, such that a(X) 0 X, a

function for producing a new cell.
It is convenient to write XO for Xu {nil} where Xg. C.

A state is characterised by:
Uc C, the cells in use
hd: U--0 Au Uo
11: U-+ UO(thus we are talking about lists rather than binary trees)

Let X* be the set of all strings over a set X, including the empty string which
we write as 1. Also let T= {true, false}.

It is convenient to define unit strings over Au UO thus
Unit: (Au Uo)* 

Unit (cr).:*.cr e (Au U0)
We can now associate a set 2 of triples with a state. (cc, u, v) e 2 means
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that a is a list from u to v (or perhaps we should say a list fragment from u
to v). Thus

c (Au Uo)* x U0 x U°
a

We shall write u—)v as a mnemonic abbreviation for (a, u, v), hd u for hd (u)
and tl u for 11(u). We define 2 inductively, thus:

(i) €2 for each u e U0
aP

(ii) if u--ve 29 and v—w €2 then u.-+w e
hdu

(iii)u-+ t/ue2foreachu€ U.

ala2a3 a4a5a3 1 a6a7
For example, in figure 2, X-4y, y-9, and z —* nil are all in 2.

Figure 2.

a3 a4 a5

Identity lists are defined thus
Identity:

a

Identity (u—, v)<=ne = 1
A partial operation of composition (.) between lists is defined thus

• :2x2-+T
a p aft

(14-40 • (1)-+W)=14—W

Thus a list from u to v can be composed with one from v' to w if and only if
Vary'.
The reader familiar with category theory will notice that 2 forms a

category with U as objects and the lists (triples in 2) as morphisms. (A
definition of 'category' is given in the Appendix.) Indeed it is the free category

hdu

generated by the graph whose arrows are the lists u—+ 11 u for each u. There is
a forgetful functor from 2' to (A u U°)*, where the latter is regarded as a
category with one object. This functor gives the string represented by a list
fragment (cf. Wegbreit and Poupon's notion of covering function in the un-
published work mentioned on p. 25).
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We define the number of occurrences of a cell in a list by induction
(5: Ux..T-4N

(i) 6(v-,v)=0

(ii) 6,4(x-oa t/ x-02 w)=6,a(t1 x:-,w)+1 if x=u
a

=3„(t1 x-+w) if xOu
It follows by an obvious induction that 6„(A • p)=3„(A)+6„(p).
To keep track of the effects of assignments we now define a relation of

distinctness between lists, that is, they have no cells in common.
Distinct: 2' x 21-4T
Distinct(A, 1t)<=15„(A) =0 or 5p) =0 for all u e U.

We also define a property of non-repetition for lists
Nonrep: 21-+T
Nonrep(A)<*15„(A)< 1 for all UE U

Lemma 1
1

(i) Distinct(A,u-+u) for all A and u

(ii) Nonrep(u-4u) for all u
(iii) Distinct(A, p) and Nonrep(A) and Nonrep(p)•=•Nonrep(A • p), if

A p is defined.
Proof. Immediate.
We are now equipped to state the correctness criterion for a simple list

processing program and to supply and prove the assertions. Consider the
problem of reversing a list by altering the pointers without using any new
space (figure 3). We first need to define an auxiliary function to reverse a
string

rev: X*-4 X*
rev (1) =1
rev (xa)=rev(a)x for XE X, a e X*

Before

After

nil

Figure 3.
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• j =RE VER S E(k)
Assume rev: U*4 U* reverses strings.
K is a constant string.

':=nil 1

K IC
— -k-nil e Nonrep(k3ni1).

a a
— --(343)[k->ni1e 2.j3nile 2. Nonrep (k-> nil). Nonrep (j-> nil).

Distinct(k- a> nil,] -1-3>nil). rev (a)fl =rev (K)].

:= ilk

YES rev(K)
j --> nil e 2.

(314)[k4t1 k e nil 11 k-; n e 2. Anil e 2. Nonrep k-a>ni1).
a

Nonrep(j->ni1). Distinct(k-> ilk, ii k-3ni1).
a P 1  

Distinct (t1 k-> nil,)->ni1). Distinct (j->nil, k-> k).

Unit (k411 k). rev (1413 =rev (K)].

1 P
°- -- — — (3143)[k-> tike 2. i;nil e 2. j-> nil e 2. NonrepOni1).

P 1 a

Nonrep (j--)ni1). Distinct (k-> ilk, i-)nil).
a P P 1

Distinct (13 nil, j->ni1). Distinct (j->nil, k-> tl k).
i

Unit (k->t1 k). rev (a)113 =rev (K)].
ilk  =j I

a 1 P a

6- — — ---(314)[i->nil e 2. k->j e 2. p> nil e 2. Nonrep(i->n11).

Nonrep (j-> nil). Distinct(k4j, i->nil).
a Is P :

Distinct(i3nil,j-)ni1). Distinct (j -nil, k-)j).
:

j:=k Unit (k--)j). rev (a)1,3 =rev (K)].

k:=i

Figure 4. Reversing a list.
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By well-known methods of induction on the length of the string (structural
induction) we can prove simple lemmas such as

rev (ai3)=rev(13) rev(a) for; fie X*
Notice the distinction between the function rev which works on strings

and has easily proved properties and the function or procedure REVERSE
to reverse lists using assignment, which we are about to define. The latter is
essentially a function from machine states to machine states, where a machine
state is characterised by the two functions hd and
The flow diagram for REVERSE with assertions is given in figure 4.

Notice that the assertions are long and tedious. We can verify the assertions
by using the techniques given above, distinguishing between d and ti' and
consequently between List, Distinct and List', Distinct'. The verification
proofs are quite long for such a simple matter and very boring. We will not
weary the reader with them; instead we will try to do better.

7. DISTINCT NON-REPEATING LIST SYSTEMS

We will now gather together the concepts introduced so far into a single
notion, that of a Distinct Non-repeating List System (DNRL System). Using
a suitable abbreviated notation we can render the assertions brief and
perspicuous. To make the verification proofs equally attractive we show how
the various kinds of commands, namely assignment to head or tail and
cons commands, correspond to simple transformations of these systems.
We can prove this once and for all using our previous technique and then use
the results on a variety of programs.
We define a Distinct Non-repeating List System as an n-tuple of triples

1i, 1=1,. . n, such that
(i) Ai e 2' for each i= 1,.. n
(ii) Nonrep(1i) for each i = 1,. ..,n
(iii) If j0 i then Distinct(2,, 2) for each i, j = 1,. . n

It is clear that if S is a DNRL System then so is any permutation of S.
Thus the ordering of the sequence is immaterial. We should not think of S
merely as a set of triples, however, since it is important whether S contains

a

a triple x-+y once only or more than once (in the latter case it fails to be a
DNRL System unless a =1).

(S1 CC2 2k-1 as a2

Abbreviation. We will write ui-4u2-u3 . -4 uk, for u1-4u2, u2-4143,
ak -

14_1 U.

We also write *S for 'S is a DNRL System'.
For example, an abbreviated state description for the state shown in

figure 2 is
alas as a4as as al as

*(X u-*y --+ u, z--q1 w--41 z)
or a less explicit description

a a p y a
(3aafly(5)(*(x--,u-9,-)u, z-)nil) and *(w--nil) and Atom(a))
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j=REVERSE(k)

Assume rev: (Au U)*->(Au U)* reverses strings.
K is a constant string.. Assume a, b, c. . a, Ay are existentially quantified
before each assertion.

a fi

— — *(k3 nil, j-> nil). rev (a)fl =rev (K).

ay p
rev(ay)fl=rev(K). Unit(a).

a 7 P

— — *(k-)i->nil, nil). rev(ay)fl=rev(K). Unit(a).

afl 7
— — *(k3j->nil, rev(y)al3=rev(K).

Figure 5. Reversing a list.
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Figure 5 shows the REVERSE program again with much pithier asser-
tions. We will now consider how to verify assertions such as these painlessly.
The following proposition which enables us to manipulate DNRL Systems

follows easily from the definitions above.
Proposition 1

(i) Permutation
*S*S' if S' is a permutation of S.

(ii) Deletion

*Pi, • • An) *(22, • • An)
(iii) Identity

*Pi, • • An) *(u--+u, Ai, • • An)
(iv) Composition

a p ap
*(u--)v-w, 11, Ali . An)
and conversely

as a

*(14-4W, Alp • • .0 An)(3v)*(u-ov-+w, An)
(v) Distinctness

a p
*(u-*v, u-+w)cc= 1 or ig =1

(vi) Inequality
a

*(uv) and u v(3bi3)(Unit(b) and cc =0).
Proof. (i) and (ii) Immediate from the definition of *.

(iii) By Lemma 1 (i) and (ii).
(iv) By Lemma 1 (iii).

(v) lf a 1 and $1 then 6.(u--■ v)= 1 and (5„(u-4w)=1 so they are
not distinct.

(vi) By definition of 2'.
We are now able to give the transformation sentences associated with the

various commands, in terms of * rather than in terms of hd and 11. They
enable us to verify the assertions in figure 5 very easily. The transformation
sentences all involve replacing or inserting a component of a *-expression,
leaving the other components unchanged. They are displayed in figure 6.
We will make some comments on these transformation sentences and how to
use them. Their correctness may be proved using the transformation sentences
given earlier for hd and ti and the following lemma.
Lemma 2. Suppose for all y x, hd'y=hd y and tl'y. = tl y. Then for all A e 2'
such that 3(A)=0 we have A e 21' and 5(A) =ö(A) for all y.
Corollary. Under the same suppostion if A, /I e 2' and 5n(2)=0 and 3„04)=0
then Nonrep(A)Nonrep'(A) and Distinct(A, p)Distince(A,
Proof. By an obvious induction on 2'.
The rule for assignment to a simple identifier is as before.
Transformation sentences are given for the YES and No branches of a test,

even though these do not alter the state (their change sets are empty).
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Assume n, Ai,.. ., An, x, y, a are universally quantified. The trans-
formation sentences are shown to the right of the command.
We assume that E, E1 and E2 do not contain cons.

II:=E I

YES

NO

hdEI:=E21

ii : = E2

E:=cons(Eb E2)

Change set = {I}

1' =E

Change set = { }

=E2

Change set ={

E1 E2.

Change set ={17d,
a

..., A„) and Unit(a)=.
E2

*'(El 4Y, Al f • • 'I An)

Change set ={ ti, *
a

*(E1-)y, A1, An) and Unit(a)

*'(E14E2, A1, An)

Change set ={*, I}

• 

• • An)

*'(E ->E2, A1, • • An)

Figure 6. Transformation sentences for state descriptions.
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Consider for example the NO branch of the test 'lc =nil' in the REVERSE
program of figure 5.

Before the command we have
a

(3211)r rev(a)f3=rev(K)] (1)
The transformation sentence, putting n =1, is

kOnil. (2)
After the command, we have

a7

(3ayf3)[*(k->nil,j-mil). rev(ay)I3=rev(K). Unit(a)] (3)
But (3) follows immediately from (1) and (2) using Proposition 1 (vi).
In general, Proposition 1 will be used to reorder or otherwise manipulate

the *-expressions and if E1 or E2 contain references to hd or ti these will need
to be removed by replacing them by E1 and E2 using Proposition 2. Still,
the verification is quite trivial.
Consider another example from the REVERSE program, the command

'ilk: =j'.
Before the command, we have

a 7

(3ayfl)[*(k--4-)ni0->ni1). rev(ay)fl=rev(K). Unit(a)] (1)
The transformation sentence, putting n =2, is

a

*(k--)y, 21, 22)
a

*'(k->j, 21,12), for all a, y, Ali 12
Rewriting the statement after the command with *' for *, we have

p
(9ay13)[*' (k-+j--+nil, rev(y)(213 =rev(K)] (3)

We must prove this from (1) and (2).
Combining (1) with (2) we get

a 7

(3ay13)[*1(k-V, rev(ay)13=rev(K). Unit(a)]
' But permuting the *' expression (Proposition 1 (i)) and using obvious
properties of rev we get (3).
The sentences for hd and cons are used in an analogous way.
Because their meaning changes in a relatively complex way it is advisable

to debar hd and ti from appearing in state descriptions and work in terms of
* alone. We now consider how to reduce an expression involving hd or tl
with respect to a state description so as to eliminate references to these.
For example the expression hd(t1(t1(0)) with respect to the state description

a c

..) with Unit(a), Unit(b), Unit(c) reduces to c. If such an
expression occurs in a transformation sentence we reduce it to obtain an
equivalent transformation sentence not involving hd or ti.
The reduction of an expression E with respect to a state description D,

written E, is defined recursively by
(i) If E is an identifier, a constant or a variable then E=E

(ii) If E is hd El and D contains *(EI x, .) and Unit(a) then f=a

(2)
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(iii) If E is 11E1 and D contains *(E\--*a x, .) and Unit(a) then E=x.
Proposition 2. D t= E.
The proof is straightforward by induction on the structure of E, using the
definition of *.

8. EXAMPLES OF PROOFS FOR LIST PROCESSING
The transformation sentences can best be understood by seeing how we use
them in proving some simple list processing programs which alter the list
structures. Although these programs are short their mode of operation,
and hence their correctness, is not immediately obvious. We have already
looked at the program REVERSE.

Another example, involving cons, is concatenation of two lists, copying
the first and terminating it with a pointer to the second, see figure 7. Notice
that the input lists need not necessarily be distinct. The other, destructive,
method of concatenation is to overwrite the final nil of the first list with a
Pointer to the second. In this case our initial condition would have to be

ensuring distinctness.
Our next example, figure 8, is reversing a cyclic list, where instead of

terminating with nil the list eventually reaches the starting cell again.
The next example, figure 9, involves a list with sub-lists. A list of lists are to

be concatenated together and the REVERSE and CONCAT routines
already defined are used. The suspicious reader may notice that we are making
free with .' in the assertions, but we can always replace (s1, by,
say, (si)7.,1 or sequence(s,l,n), so nothing mysterious is involved.
Some of the attractions of such proofs seems to come from the fact that

the form of the assertions is graph-like and so (at least in figures 6, 7 and 8)
strictly analogous to the structures they describe.

9. TREES
We will now pass from lists to trees. We will consider general 'record' or
plex' structures with various kinds of cell each having a specified number of
components, as for example in Wirth and Hoare (1966). A particular
case is that of binary trees. Thus, instead of

hd: U--+Auuo
U—■UO

we now allow
hd: U--+AuU
11: U—AuU

(nil has no special place in binary trees; it can be considered an atom like
any other).
More generally we may replace trees built using cons with trees (terms or

expressions) built using any number of operators with arbitrary numbers of
arguments, corresponding to different kinds of records.
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m=CONCAT(k,l)
K and L are constant strings of atoms, a and b units.

  *(k-I.> nil). *(1-14ni1).

YES

*(k->nil). *(13ni1). K=1.

m: =I

L _ _ _ _ see EXIT below
a p L

*(k4x4ni1). *(I->nil). pig = K.

j: =k

in: = cons (hd j,
nil)

j: =tIj
i:=171

1 aP L
 *(k->j->nil). *(1->ni1). al3= K.

1 aft a

 *(k4 j-.> nil, m->ni1).
L a

*(I->nil, afl = K.

i: =I

ea If a a

• *(k->j->nil, i ->x).
L a a

*(19nil, in? ix). aafl = K.

aa a a

*(k->nil, i
a 4

*(I->nil, m->i->x). ow= K.

!EXIT K K KL

— — -- *(k-> nil, m41). *(m4I-->nil).
aa by a a

*(k3j-)nil, in-> i ->x).
L a a

:0(0 nil, n13 i -)x). aaby= K.
11 = cons (hd j,

nil)

j: =11j
I:= tl

Figure 7. Concatenation.

aa by a ab

*(k->j->nil, m-> 4y).
L a ab

*(I->nil, m31-3y). aaby = K.
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j=CYCLICREVERSE(1)

YES

BURSTALL

(*(/->ni/) and L=1) or (*(1-->I) and L=a).

j:-

tl I: =j

*(g1). L=a.

rev(L)

*(1:13k41). rev (a)a =rev (L).

p a a

*(j-314)C,k41). rev (a)fla =rev(L).

/i a
*(j-)l—>x). fici =rev (L).

# a b 7

-•• *(F> 14x, k-->y -)1). rev(by)fla =rev (L).

# a b

  *(j413x, k—> i-->1). rev (by)fl a =rev (L).

---*(k;$Ax, 41). rev (by)fla =rev (L).

rev(L)

*(j

Figure 8. Reversing a cyclic list.
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1=M ULTICONCAT(i)

Assume N, C1,. CN, Aj, AN are constants.

=RE VE RS E(i)

j:=i

C■ • • •CN At AN

nil, Cir> nil).

rev(Cf . • • CN) At AN

*   nil, Cr> nil, . CN.->ni1).

1 rev(Ci...CN) At AN

"• *(j3j > nil, Ci--> nil, . Cpr>

: =nil

11••■

I:=CONCAT(hd j,1)

=tlj

CN.. • Cm Cm-1 • ..C1 Ary

— —)J >nil,l )nil,
At AN

CN-->ni1).

CN. • .Cm Cm- I ••• 2 . . .Cl Am... AN

- > j —> x --> ni1,1—> nil,
At. AN

C1--> nil, . C„—>ni1).

CN. . Cm Cm-1 Cm- 2 .. • Ct Am—I Am.. .AN
x-4 nil, 1—> y —> nil,

At AN

C1-)'nil,.. CN-)nil).

CN ...C1 At AN

*(i nil,! ---> nil, C r-> nil).

1:=REVERSE(i)

C1 ...CN AI • • • AN Af AN

*(i > ni1,1--)nil,Cr>

Figure 9. Multiple concatenation.
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Our previous discussion depended rather heavily on the concatenation
operation for lists. Fortunately Lawvere (1963) with his notion of a 'Free
Theory' has shown how concatenation can be extended from strings to trees
(see also Eilenberg and Wright 1967). His category theory approach is
convenient in view of the remark in an earlier section that 2 forms a category.
We will not present our ideas in category-theoretic language, since this may
not be familiar to some readers, but will be content to point out where the
concept of category is appropriate.
Our first task is to define a system of trees or expressions with a composition

operation, analogous to the strings used above. We will then apply them to
tree-like data structures under assignment commands.
Let 12 = tfln), n=0, 1, . . . be a sequence of sets of operators, (xi}, i = 1,

2,. • . a sequence of distinct variables, and let X„, =
We define a sequence of sets of terms (or trees) T =[Tn(X„,)},m =0, 1.....

TrI(X,,,) means all terms, in the usual sense of logic, in the operators fl and
variables X,„. We can regard Tn(X,„) as a subset of the strings (Uf2uX„,)*
and define it inductively thus

(i) x eTn(X„,) if x e X,„
(ii) coti t„ e Tn(X,„) if a) e 12„ for some n and th t„e

(Algebraically speaking Tn(X„,) forms the word algebra or generic algebra
over f2 with generating set X„,.)
If t e Tn(X„,) and (Si, s„,) e Tn(X„)m, m 0, by the composition

t • (s1,. s„,) we mean the term in T(X) obtained by substituting si for
xi in t, 1, . .
To preserve the analagy with our previous treatment of strings we would

like to make composition associative. For this we consider n-tuples of trees.
Thus, more generally, if Oh . ti) e Tn(X„,)I and (Si,. s„,) e
we define the composition by

(ti, • • ti) • (si, s„,)=(ti • (si, • . •, sm), • ••ti • (si, • • •, Sin)).
This composition is in T0(S„,)1.
For example if C22= {cons}, C20= {a, b, c,. .}, and we allow ourselves to

write parentheses in the terms for readability
(cons(xli a), cons(x2, xi), b) E Tn( Xz)3
(c, xi) e XI )2

and their composition is
(cons(c, a), cons(xi, c), b) e T(X1)3.

The composition is now associative and (xi, x) T0(X) " is an
identity for each n. It is, however, a partial operation (compare matrix
multiplication, which is only defined for matrices of matching sizes).
We see now that the disjoint union of the Tn(X„) forms a category, Tn,

with as objects the integers n=0,1, . . . and with a set of morphisms Tn(X„)"'
from in to n for each m, n. Indeed, this is just what Lawvere calls the
Free Theory on f2. Eilenberg and Wright (1967) use it to extend automata
theory to trees as well as strings, giving a category theory presentation (see
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also Arbib and Giv'eon (1968)). The category T0 replaces the monoid
(Au U)* used in our treatment of lists, the main difference being that the
composition operation, unlike string concatenation, is only partial. The
strings over an alphabet E can be regarded as a special case by taking f/1
to be E and S20 to be {nil}. In the Appendix we summarise the abstract
definition of a Free Theory as given by Eilenberg and Wright. We will not
use any category theory here, but it is perhaps comforting to know what kind
of structure one is dealing with.
We will consider a fixed n and X for the time being and write T,„„ for

Tri(X„)m, the set of m-tuples of terms in n variables. If co e n. we will take
the liberty of writing co for the term coxi x„ in T1„. This abbreviation may
appear more natural if we think of an element r of T1„ as corresponding to
the function txi x„ • t from T0(25)" to T(Ø). For example cons is short
for 2x1, x2 cons (xi, x2), but not of course for 2x1, X2. cons(x2,
We will write 1 for the identity (x1,.. x„) e T„„ and 0 for the 0-tuple

o G To,,. We will sometimes identify the 1-tuple (x) with x.

10. STATE DESCRIPTIONS USING TREES

We can now use the m-tuples of terms, T„,„, just as we previously used strings
to provide state descriptions.
Suppose now that each co e n =0, 1, corresponds to a class of

cells U0 (records) with n-components and that these components can be
selected by functions

Sr: e UQ), 1=1, . . n

We put U=U U0,:co e US1).
For example if n2 = { cons}, Slo= A and Q,=Ø for 0)00 or 2 then

6cions is hd: U Ucons--. H_ cons A
32"'s is th cons--* UconsU A

(here we have put U,, ={a) for each a e A, and Ucons is just our previous U,
the set of list cells).
A state is defined by the U and the br and we associate with it a set

of triples, just as the set 2 was previously associated with a state.
If a triple (r, u, v) is in .9" then for some m, n, u e Urn, v e U" and r e T„,„.

As before we write u-+v for (r, u, v). We define .T inductively thus:
(i) If e T,„„ is (xi„ xi,,,) and if e {1, ..., n} for j=1, m (that

,is, r involves only variables and not operators) then (ui„ .
) is in

T

(ii) If u---ov e and v—'w e 9" then their composition (u—+ v) • (v--0 w) is
T•41

defined as u-+w, and it is in ".
(t1) (to at, • • to

(iii)If(u1) —■ v, . . (10 —0 v are in .9- then (ui, . • u„)--4 v is in

(iv) If co e S2„ and br(u)= vi for i =1, n then (u)--■(vi, v„) is in 9.
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Taking the case where f2 consists of cons and atoms, (iv) means that
cons a

(u) (v, w) E g. if hd(u)=v and 11(u) =w, also that (a)-() is in .9" for
each atom a e A.
An example will make this clearer. In the state pictured in figure 10 5"

contains the following triples, amongst others,

(i) 
cons(cons(cons(c,d),a),cons(cons(c,d),b))

cons(cons(xl,a),cons(xi,b))
(ii) (j) 

cons(c,d)

(iii) (j)---°
cons(cons(xl,a),x 2)

(iV) (   (j, k)
cons(x 1,x i)

(V) (1)---4(1)
The first of these is the composition of the second and third.

Figure 10.

It will be noticed that „9" forms a category with objects u for each u e U",
n. 1, . . . . The triples (T, u, v) in .9" are the morphisms from a to v. There
is a forgetful functor represents: „g".-a'.
We can now define a Distinct Non-repeating Tree System analogous to a

Distinct Non-repeating List System. We take over the definitions of Distinct-•
ness and Non-repetition almost unchanged except that they now apply to
.r rather than to 2.
We call (T, u, v) e elementary if involves variables and operators in

Oo but none in 1"2„, n> 1 (for example, trees which share only elementary
constituents can share atoms but not list cells).
We now define, as for lists, the number of occurrences of a cell in an

n-tuple of trees, thus
6: Ux,-*N

(i) 6„(v--% w) =0 if u is elementary
CO T

(ii) 6„((x)-■v--w)=3„(v->w) +1 if XU )>f 
WE 0„, n>

=6„(v-uv) if xOu
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(Tit • • •• Tn

(iii) WU', • • •9 un)--410 -=-Ou((u1)-+ 0+ • • +Ou((u1)- )

a

Notice that for a e Slo we have (5„((a)—q)) =0, since we do not wish to
notice sharing of atoms, which is innocuous.
The definitions of Distinct and Nonrep are as before replacing 2' by .9".

Lemma 1 holds unchanged with the obvious addition that Distinctness and
Non-repetition are preserved by formation of n-tuples in the same way as
by composition.
The definition of a Distinct Non-repeating Tree System is, as before,

a k-tuple of elements of .9-, Ai, i =1, . . k, such that
(i) Ai is in .9- for 1=1, . . k
(ii) Nonrep (A i) for each i =1, . n
(iii) IfjOi then Distinct (Ai, Ai) for each i,j e 1, . . k.

We employ the same abbreviation as before, writing *S for 'S is a Distinct
Non-repeating Tree System'.
We can adapt Proposition 1 and specify some useful properties of such

systems.
Proposition 3.

(i) Permutation
*S*S' if S' is a permutation of S.

(ii) Deletion

*(21, • • 2k) *(22, • • 2k).
(iii) Rearrangement of variables

*(alf • • .9 itk) *((Uilf • • •/ (u/ • • •, un), At, • • •P 111)

if ije {1, ..., n} for j=1,...,m.
(iv) Composition

T Vet

Alt • • .1 11134#'*(11— Wf 21, • • ef 2k)

and conversely
T•ef T

*(ii-4W, Alt • • •, iliC)(31) *(11-)V-"V, Alf • • 2k)

(v) Tupling

Ai, Ak)
(TI• • • ••Tm)

4**(011, • • •, 21, • • •, 2k) (n> 0).

(vi) Distinctness
T

*(11"- , 11-+W)14-4/7 is elementary
a

or u-4 iv is elementary.
(vii) Inequality

*((14)(VI, • • 10) and uOvi, i=1,. n
and u e (r =co • o-).

Proof. Obvious using Lemma 1 adapted for trees.
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In the case of cons and atoms we assume a predicate Atom,
Atom(u)<*u e A, that is, u E U, for some a e A,

and (vii) yields

v„)) and u vi, i =1, . . n and Atom(u)
(Ba). r=u • a
and Atom(u)(3a)r =cons • a.

In figure 11 we give the transformation sentences for this case. Their
correctness is provable easily in just the same manner as those for lists. The
extension to a general L2 should be obvious. The sentences for I: =E and
E1=E2 are unchanged and for the test Atom(E) we just add the sentence
Atom(E) or its negation. Proposition 2 and the definition of E go through
unchanged.

1
hdE1 =E2

=e011S(E1, E2)

Change set = {hd,*}
cons

*((E1) (11, v), Ai,
cons

*VE1) --> (E2, 0, Al, A„)

Change set = { ti, * }
cons

*((E1) --> (u, v), At, • • A„)
cons

*VE1) --> (u, E2), At, . • •,

Change set = {*, 1)

*Pt, • •
cons

*V11) -> (Et, E2), Ali • •

Figure 11. Transformation sentences for tree processing.

We now give a couple of examples of tree processing (or perhaps we
Should say 'expression processing'). Figure 12 gives a program in the form
of a recursive subroutine for reversing a tree; for example cons(a, cons(b, c))
becomes cons(cons(c, b), a). We have identified the one-tuple (t) with T to
save on parentheses. The proof is by induction on the structure oft. Strictly
We are doing induction on the free theory T. We define a tree reversing func-
tion recursively by

rev (a)=a if a is an atom
rev (cons (c, •c))= (cons(rev(T), rev (a)).
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j=REVERSE(i)

L EXIT

*( ( 4( )).

*((i)-->( )). Atom(i).

k:=hd i

hd i =RE VER S E(t1 i)

11 1: = R E V ER S E(k)

4,(u)r.VC ».
cons (ri.T2)

*((i)—> (Xs )1) )).

cons (r1, T2) =T.

COM T1 T2

Y), (k)3( ), (Y)4( )).
cons (ri, 01.2)=.r.

cons rev(r2)

*((i)—>(v,y), (v)—> (k)4( )).
cons (ri, T2) =t

cons (rev(r2),rev(ti))
•

•:=I

[EXIT

Figure 12. Reversing a tree.

*((i)--3 (v, k) >( )).
cons (ri, "(2) =T.

rev(T)

*((s)---)( ))*
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13URSTALL

k=SUBST(i, a, j). Substitute i for a in j. a is an atom.

YES

k:=i

[EXIT

YES

k: =j

lid] =SUB ST(i, a, lid j)

ii]: = S U B ST(i, a, ii])

j).-;( ), (i)-e>( )). Atom(a).

'4(4( )). T =a.

*((k);( )). subst (a, a, T)=o..

-*Ki):)( (4( )). xa.

a

*((j)3( ), (i)4( )). Atom(r). a.

- -*((k)-4( )). subst(a, a, T) =T.
cons r s2

*((j)--) (-1.2 y), (x)4( )2 (y)4( )).

cons subst(a,a,r2) r2

—*((j)—)(112 Y)2 (11)-----( (y)4( )).

cons subst(a,a,r I) subst(a,a,r2)

*((j)-3(u, v), (ii)-4( ), )).

L 
EXIT subst(a,a,r)

->( )).

Figure 13. Substitution in a tree.

47



PROGRAM PROOF AND MANIPULATION

Figure 13 gives a recursive subroutine for substituting one tree into
another wherever a given atom appears. Again the proof is by induction on
the structure of T. We define substitution for morphisms of T by

subst(o-, a, a)=a
subst (cr, a, b)=b if ba and b is an atom
subst(o-, a, cons ('r1, T2)) = cons (subst (cr, a, TO, subst (o-, a, T2)).

We should really have included some arbitrary extra morphisms Ai in the
* expressions at entry and exit so as to carry through the induction, since the
recursive calls act in the presence of other distinct morphisms; but this is
clearly admissible and we have omitted it.
In our examples we have used the LISP case of cons and atoms, but even

for LISP programs it might be useful to consider a more general S. List
structures are often used to represent expressions such as arithmetic expres-
sions, using cons (`PL U S', cons (x, cons (y, nil))) for 'x +y', similarly for
x y'. We can then allow T to have binary operators + and x defining

(u)—)(v, w) if hd(u)=PLUS' and hd(t1(u))=v and hd(1/2(u))= w. This
enables us to write the assertions intelligibly in terms of + and x. In fact
this representation of expressions corresponds to an injective functor between
the category T+, x and the category Tams.A.

Free Theories as above seem appropriate where the trees have internal
sharing only at known points. Data structures other than lists and trees
remain to be investigated. More general categories of graphs with inputs and
outputs might be worth considering. In general the choice of a suitable
category analogous to T would seem to depend on the subject matter of the
computation, since we wish the vocabulary of the assertions to be meaningful
to the programmer.
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APPENDIX: FREE THEORIES
Categories

By a category C we mean a set 0 of objects and a set M of morphisms,
together with a pair of functions a°, 31:M-00 (domain and co-domain),
a partial operation of composition, • :M-+M, and an identity operation 1:0-4
M such that

(i)f • g is defined iff =Dog ,
(ii) Iff • g and g h are both defined then (f g) • h = f • (g • h)
(iii) ao(i.)---01(l.) =a
(iv) If Oof =a and elf =b then la • f =f=f • lb

We write f: a.-b as an abbreviation for aof=a and Dif=b and write
C(a, b) for the set of all f such that f: a-ob in C. (For further development
see, for example, MacLane 1971.)

Functions over finite sets
For each integer we write [n] for the set 1, . n}.
We write 0 for [0] and /for [1] and notice that there are unique functions
-*[n] and [n]-'! for any n. A set [n] and an integer ie [n] determine a

unique function I-[n] which we will denote by
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The free theory on Cl
Let SI = {n„}, n=0, 1,... be a sequence of sets of operators.

We define the free theory on Q inductively as the smallest category T
such that

(i) The objects of Tare the sets [ii], n =0, 1,.
(ii) There is a function d from the morphisms of T to the non-negative

integers. We call d(f) the degree of the morphism f, and write
TA[m],[n]) for the set of all morphisms of degree] from in to n.

(iii) To([n],[m]) is the set of all functions from the set [n] to the set
[m]. Composition and identity are defined as usual for functions.

(iv) There is an operation of ̀tupling' on morphisms from I (as well as
composition and identity). Thus for each n-tuple of morphisms
f 1=1, . . n there is a unique morphism f, written

.,f„> such that i f=fi for each i=1, . . n. (Recall that
1: 1--,[n], is the function taking 1 to i in [n].) From the uniqueness
we see that for any f:[n]-4[k], f= <1 f, . n • f>.
The degree of (fi, . .,f> is d(fi)+ . . . + d(f„).

(v) SI„g_ Ti(I,[n]).
(vi) If co e Cl,,, and f e T Jam], [n]) then co • f e Ti+j(I,[n]), and con-

versely if g e [n]) for j 0 then there is a unique m, a unique
• co e Om and a unique f such that g = co • f.

Now T„,„ in the body of the paper may be equated (to within an iso-
morphism) with yri([m], [n]) here.
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