
17

Knowledge-based programming self-applied

C. Green* and S. J. Westfold*t
Systems Control Inc.
Palo Alto, California

Abstract

A knowledge-based programming system can utilize a very-high-level self des-
cription to rewrite and improve itself. This paper presents a specification, in the
very-high-level language V, of the rule compiler component of the CIII knowledge-
based programming system. From this specification of part of itself, CIII produces
an efficient program satisfying the specification. This represents a modest appli-
cation of a machine intelligence system to a real programming problem, namely
improving one of the programming environment's tools — the rule compiler. The
high-level description and the use of a programming knowledge base provide
potential for system performance to improve with added knowledge.

1. INTRODUCTION

This paper presents a specification of a program in a very-high-level description-
oriented language. Such a specification is suitable for compilation into an efficient
program by a knowledge-based programming system. The program specified is
the rule compiler component of the CIII knowledge-based programming system
(Green et al. 1981). The language used for the specification is V, which is used in
CIII to specify programs as well as to represent programming knowledge (see
Phillips 1982). The compiler portion of CHI can produce an efficient program
from this self description. The availability of a suitable self description allows
not only self compilation, but also enhanced potential for the knowledge-based
system to assist in its own modification and extension.

We use the term 'knowledge-based programming system' to imply that most
of the programming knowledge used by the system is expressed explicitly, usually
in some rule form, and is manipulable in that form. This collection of programming
rules is used by the system to help in selecting implementation techniques, and

• Present address: Kestrel Institute, Palo Alto.
t Also with Computer Science Department, Stanford University.

339

KNOWLEDGE-BASED SYSTEMS

to help in other programming activities such as editing and debugging. By com-
parison a conventional compiler tends to use procedures that compile source
language constructs into preselected choices for data and control structure
implementations rather than exploring alternative implementations.

The programming knowledge base includes stepwise refinement or transfor-
mation rules for optimizing, simplifying and refining data structures and control
structures. The synthesis paradigm of CHI is to select and apply these rules to a
program specification, generating a space of legal alternative implementations.
By applying different refinement rules from CHI's knowledge base in different
orders one gets alternative implementations, whose efficiency characteristics
can be matched to the problem. In general, refinement choices may be made
interactively by the user or automatically by incorporating efficiency estimation
knowledge (see Kant 1979 for a discussion of this important issue). It is our
intent that strategies for rule selection and ordering will be expressed in the
meta-rule language portion of V. But in this paper we just present a particular set
of rules and an order of application rather than alternative synthesis rules and
strategies for selecting among them.

The V language is used not only to specify programs but also to express the
knowledge base of synthesis rules and meta-rules. The high-level primitives of V
include sets, mappings, relations, predicates, enumerations and state transfor-
mation sequences. It is a wide-spectrum language that also includes low-level
constructs. Both declarative and procedural statements are allowed. In this
language there is little distinction between the terms 'program specification,'
'program description' and just 'program'. We use the terms interchangeably.
V is translated into LISP by the compiler portion of CHI.

In choosing a program for use as a start on self modification, we decided to
work with a program that is being used and modified, rather than a contrived
example. We picked RC, a rule compiler written in LISP that compiles the
production rule subset of the V language into efficient LISP code. Since the
program refinement rules are expressed as production rules, the rule compiler
allows refinement rules to be expressed in a simple, readable, and concise syntax
without loss of efficiency. By expressing refinement rules in a clean formalism,
their content is more readily available for scrutiny, improvement, and transfer
to other systems. Since production rules are also a method of specifying programs,
it is possible to specify the rule compiler using this production rule subset of V.
Thus the very-high-level version of the compiler can be tested by compiling
itself.

We have succeeded in creating a very-high-level description of RC in the
V language. The remaining sections of this paper present this description. The
adequacy of the description has been tested by having RC compile itself. More
precisely, the original version of RC in LISP compiled the V description of RC
into LISP. This newly-compiled LISP program was then tested by having it
compile its V description.

We decided that rather than attempting to create an ideal version of the rule

340

GREEN AND WESTFOLD

compiler immediately, we would first create and present a V version that approxi-
mates the input-output performance of the original program. The original program
was written in LISP in 1979 as part of the first version of CHI and had some
undesirable limitations in its input formats and optimizations. The V version is
being extended to overcome the limitations.

The very-high-level V version proves to have several advantages over the
LISP version: size, comprehensibility, and extensibility. The V version is less than
20% of the size of the LISP version (approximately 2 pages versus 10 pages). The
size improvement is due in part to a better understanding of the program, but
is mainly due to the declaratively-oriented description and high-level constructs
that are allowed in the very-high-level language, and the concomitant allowance
of other general progamming knowledge to fill in details that needed to be
explicitly provided in the LISP version. Rules compiled by the V version of RC
are more efficient than those produced by the LISP version of RC, due to some
simplification rules in CHI.

Subjectively, we find RC in V much easier to understand and extend. In
section 3 of this paper we present several possible extensions to the rule compiler,
and discuss how our approach facilitates these extensions. Indeed, the difficulty
of making frequently-required extensions was a reason for using the rule compiler
in this study. A major step would be the extension of the description of the
small compiler RC to a description of the entire V compiler portion of CHI.
Then the rule compiler will not be a separate component, but will be merged
with the knowledge-based compiler portion of CHI. Rules will then be compiled
as is any other V program.

Is the self-application of CHI really different from that done in other
systems? It appears to differ to an extent that may make a difference. Obviously
self-referencing is possible in many languages, from machine language up, and
bootstrapping is often done with compilers. The notion of a language with an
accessible, sophisticated environment expressed in the same language already
occurs in SMALLTALK (Ingalls 1978), INTERLISP (Teitelman & Masinter 1981)
and other languages. These systems provided much of the inspiration for our
work. But there does appear to be a difference, in that CHI is knowledge-based
and CHI's programs are described in a higher-level description-oriented language.
The availability of a very-high-level description provides potential for the use of
additional knowledge in program compilation and modification. The hope is that
this self description and the knowledge base can lead to a set of programming
tools that are more powerful not only for creating target end-user programs but
also for extending the programming environment. Extending the environment
can in turn further facilitate modifying target end-user programs. An example
is in a new application where the program editor or pretty printer (part of the
environment) must be extended to edit or print some new information structure
(part of the target program). The tools provided by the programming environ-
ment can more easily assist in this modification process if the environment is
itself described in terms that the modification tools can deal with. We have

341

KNOWLEDGE-BASED SYSTEMS

shown in this paper the feasibility of describing and implementing the program-
ming environment in the system's own very-high-level language.

A drawback of knowledge-based systems is that the addition of new appli-
cation-domain rules often slows down system performance. In our case, where
the application domain is programming, the new knowledge that is introduced
can be utilized to speed CHI up. The speed-up helps to mitigate the slowdown
caused by the introduction of new alternatives to consider during program
synthesis. The net result may well be that system performance improves as new
programming knowledge is added. An example would be that as rules are intro-
duced for implementing sets in some new form, say balanced trees, the new tree
data structure would be used where appropriate by CHI to implement sets when
CHI recompiles itself. In addition, smart self-compilation allows the possibility
that new knowledge can be invoked only at reasonable times so that search time
is not increase-d. Another way the descriptive capability helps as new knowledge
is added, is that different pieces of the environment are driven off the same
internal representations. For example, when a new rule format is added, the
reader, printer, editor and compiler all use the same description of the rule
format so that consistency is maintained.

In a knowledge-based programming system it can be difficult to draw a
boundary between a program specification and general programming knowledge.
For example, the specification of RC contains several rules that are specific to
RC, dealing with particular rule formats and names of CHI functions. Yet other
rules are simplifications such as removing redundant nesting of conjunctions or
optimizations such as moving a test outside the scope of a quantifier where
possible. The philosophy of a knowledge-based programming system is that general
rules such as these are part of the knowledge base and are available to be used
whenever appropriate, and are not part of any particular program. For clarity we
have included all the general rules in this paper, but if we wished to claim further
economy of expression we could argue that the general rules are not a proper
part of RC, and thus the specification is really less than half the size presented
here. One reason most of the rules are general is that RC deals with the mapping
of declarative logic into procedures; the necessary ideas tend to be rather funda-
mental to programming and are more plausibly classified as general.

1.1 Related work

Situation variables in predicate calculus are used in this paper to formally state
the input-output specifications of the desired target code to be produced by the
rule compiler, and are also used to give the semantics of a refinement rule.
However, for convenience the high-level notation omits the explicit dependence
on situations unless necessary. The method of introducing situation variables
into the predicate calculus to describe state changes was first introduced in Green
1968 and expanded in Green 1969a. Current progress in the use of this method
is exemplified in Manna and Waldinger 1980.

Other knowledge-based programming systems are exemplified by the TI

342

GREEN AND WESTFOLD

system (Balzer 1981), and the Programmer's Apprentice (Rich 1980, Shrobe
1979, and Waters 1978). Very-high-level specification languages are exemplified
by GIST (Goldman & Wile, 1979) and SETL (Schonberg et al. 1978). GIST is
currently compiled interactivly with the TI transformation system and SETL
contains some sophisticated compiler optimizations.

A very-high-level self description of part of a compiler to produce programs
from a logic specification using situation variables was first given in Green 1969b.
A theorem prover was the method used to interpret and compile programs
specified in the predicate calculus. The control structure of the theorem prover
(the interpreter and compiler) was itself described in predicate calculus. But this
engine was not powerful enough to either interpret or compile the program. A
logic-based technique was used again, this time with an improved theorem prover
and specification language in PROLOG to describe a compiler, and in this case
PROLOG was able to interpret the compiler (Warren 1980). But the described
program was not part of the PROLOG system itself. In the case of CIII, a system
that was self-described using situation calculus was compiled. Another closely
related work is that of Weyhrauch (Weyhrauch 1980) in which he describes
part of the FOL system in its own logic language. This description can be proce-
durally interpreted to control reasoning in FOL and aids in extending its area of
expertise. MRS (Genesereth and Lenat 1980) also features a framework where
self-description is used to control reasoning in the system.

2. SPECIFICATION OF THE RULE COMPILER

The rules we are considering have the form:

P -* Q

which loosely means 'if P is true in the current situation then transform the
situation to make Q true'. P and Q are conjunctions of predicates involving
pattern variables. An example of a rule is:

class (a) set A element(a)= x
class(a)= mapping A domain(a)= x A range(a)= boolean

which transforms a set data structure into a Boolean mapping data structure.
This is easier to read in the equivalent form with pattern expressions:

a: 'set of x' a :`mapping from x to boolean'

The input/output specification of the rule P -* Q can be stated formally as:

, xn [P(s) Q(succ(s))] (*)

where xi are the free variables of P, P(s) means that P is true in situation s, and
succ(s) is the situation after the rule is applied to situation s. We assume frame
conventions that specify, with certain exceptions, that what is true in the initial
state is true in the successor or final state unless the rule implies otherwise.

343

KNOWLEDGE-BASED SYSTEMS

A predicate can be instantiated with objects from our domain of discourse.
Each instantiated predicate corresponds to a relationt being in the database. An
instantiated left-hand-side predicate is satisfied if the corresponding relation is
in the initial state of the database. An instantiated right-hand-side predicate is
satisfied by putting the corresponding relation in the final state of the database.
Thus the specification can be satisfied by enumerating all instantiations of the
quantified variables and for each instantiation in which all the relations of the
left-hand side are in the initial state of the database, adding the relations of the
right-hand side to the final state of the database. The main task of the rule compiler

is to use constraints in the left-hand side of a rule to limit the number of instan-
tiations that need to be enumerated. This optimization is done on the specifcation
itself by reducing quantification.

RC has four main stages. The initial stage constructs the input/output
specification (*) of the rule. The second stage applies optimizing transformations
to the specification by bounding quantifiers and minimizing their scope. The third
stage specifies how to satisfy logic expressions using standard high-level program-
ming constructs. The last stage converts database accesses to implementation-
specific constructs. We shall be examining stages 2 and 3 in detail.

In order to make the specification cleaner we have presented a few of the
rules in a form which RC cannot compile. In section 3 we show how RC can be
extended to compile all the rules presented.

2.1 Guide to rule subset of the V language

The rules are constructed from predicates that correspond to relations in the
database. The rules of RC transform logic expressions and program expressions,
so we need to show how such expressions are represented as relations in the
database. For example, the expression i f p (x,y) then f(x) is represented internally
by an object w1 with the following attribute-value relations:

class(wi)= conditional, condition (w1) = w2, action (w1) = w3

where w1 and w2 are objects with the following properties:

class (w2) = p, arg1(w2) = v1, arg2(w2) = v2,
class (w3) = f, arg1(w3)= v1,
class (vi) = var, name (vi) = x,
class (v2) = var, name (v2) = y.

One rule conjunction which matches this representation is:

class(a) = conditional A condition (a) = PA action (a) = Q

t In our system the relation R:X X Y is stored as a function of the form f:X Y, where
y = f(x) iff R(x,y) if R is one to one or many to one, or f: X 1-■ set of Y, where y Ef(x)
iff R(x,y) if R is one to many or many to many. The inverse relation is represented by a
function in a similar way. Functions may also be computed.

344

GREEN AND WESTFOLD

with instantiations: a 4-- w1; P w2; Q +- w3. Because rule conjunctions refer to
the representation of the expression to be matched rather than the expression
itself, it can be difficult to understand them. Therefore we introduce an alternate
notation for rule conjunctions which we call pattern expressions. The pattern
expression for the previous conjunction is:

a :`if P then Q'.

Pattern expressions are useful for the reader to see the form of the expressions
that the rule refers to, but it is the conjunctive form that is compiled by RC.

In this paper we follow certain naming conventions for pattern variables.
Variables starting with S stand for sets of objects. All other pattern variables
stand for individual objects. Thus in the pattern a:`VS[C = P], S matches the
set of quantified variables of a, whereas in the pattern a: ̀Vx x matches the
single quantifier variable of a. The other variable naming conventions do not
affect the way the rules are compiled. They are: P, Q, R and C match boolean-
valued expressions (C is used specifically for conjunctions); u, v and t match
terms; p and q match predicates; f matches functions.

2.2 The rule compiler rules

We first present the rules without examples of their use. Then, in section 2.3, we
present the steps in the compilation of a rule, which involves applications of all
the rules in the current section. It may be useful for the reader to read these
two sections together.

Stage 1: Conversion to input/output specification

Creating the specification of the rule involves determining the quantification of
variables. The quantification convention is that variables that appear only on the
right-hand side are existentially quantified over the right-hand side and variables
on the left-hand side are universally quantified over the entire rule. The reason
for variables on the right being existentially quantified is that we want to create
new objects in the new situation, and this can be expressed by stating existence.

The rule that does the conversion is:

Q' A FreeVars(P)= So A FreeVars(Q)— So= S1
-4 a :`Satisfy(VS0[P = S1 [Q]])' (SatisfySpec)

where FreeVars(P) is the set of free variables in the expression P except for those
declared to be bound global to the rule. Note that we have not specified that P
refers to the initial state and Q refers to the succeeding state. This could be done
by marking predicates as referring to either the initial state or the succeeding
state. It turns out that in the current version of RC this marking is unnecessary
because the initial separation of left- and right-hand-side predicates is maintained.
At the end of stage 3, predicates that refer to the final state are marked as having
to be Satisfied. How RC can be extended to take advantage of situational tags is
discussed in section 3.2.

345

KNOWLEDGE-BASED SYSTEMS

Stage 2: Optimizing transformations

The rules in this stage do most of the optimizations currently in RC, using
equivalence transformations. We do this within logic rather than on a procedural

form of the rule because there is a well-understood repertory of logical equivalence
transformations. The choice of equivalence transformations is made with a proce-

dural interpretation in mind. The effect of these transformations is to explicate

constraints on the evaluation order of the left-hand-side conjuncts. This reflects

in the logic form as dependencies being explicit, for example an expression being
outside a quantification rather than unnecessarily inside it.

To give an idea of the overall effect of stages 2 and 3, we show the compilation

of the rule SubstBind before and after these stages. Its purpose is not important

here.
a :`Satisfy (P1S0)' Ay E So Ay : ̀x/t'

a: 'bind S1 do Satisfy (P)' A z E SI Az : ̀z <— t' (SubstBind)

We abbreviate the right-hand side to RHS as we are concentrating on the left-
hand side. At the beginning of stage 2, the rule has been transformed to:

Satisfy (VS0,y,x,.t[class (a) = substitute A satisfy (a) A substexp (a) = P
A substset(a)= So Ay ESOA class(y)= subst A var(y) = x
A substval(y)= t RHS1) (2.1)

At the end of stage 2:

Satisfy (class (a) = substitute A satisfy (a)
(Vy E So [class(y) = subst (RHS/{x/ var(y), tIsubstval(y)))])

1{P1 substexp (a), Solsubstset(a)}) (2.2)

At the end of stage 3:

if Test(class(a)= substitute A satisfy (a)) then
bind P 4- subst exp (a), So substset(a)
do enumerate y in So (2.3)

do if Test(class(y)= subst) then
bind x 4— var(y), t substval(y)
do RHS

The rule compiler determines the order and manner in which each of the eight
left-hand-side conjuncts of (2.1) is treated. The fate of the conjuncts can be seen
in (2.3). The conjuncts class (a) = substitute and satisfy (a) can be tested imme-
diately because they depend only on the variable a which is bound externally.
The conjunct substexp (a) = P requires that the value of the unknown variable P
be equal to an expression in the known variable a, so it is selected next and used
to compute the value of P. Similarly, the conjunct substset(a)= So is used to
compute the value of .50. Of the remaining conjuncts, y E so is selected next
because it contains only the unknown y and so can be used to compute the

possible values ofy, which is done using an enumeration. This leaves class (y)= subst
with no unknown variables so it is used as a test, and var(y)= x and substval(y)= t

346

GREEN AND WESTFOLD

give known expressions equal to x and t respectively and so are used to compute
values for x and t. Briefly, RC turns conjuncts with no unknown variables into
tests and conjuncts with one unknown variable into computations to find the
possible values(s) of this variable. At present RC cannot handle conjuncts with
more than one unknown variable.

These structural changes, which reflect dependencies among the conjuncts,
are performed in stage 2 within logic. In stage 3 implications 'become' if state-
ments, substitutions 'become' varible bindings, and bounded universal quantifi-
cations 'become' enumerations.

Note that for convenience we have given the conjuncts of the rule in the
order in which they are used in the compiled rule, but this is not required by RC.

Another view of RC is that it produces a procedure to find the anchored
matches of simple graph patterns. Variables are nodes of the graph and conjuncts
are links. At any point there are known nodes and unknown nodes. An unknown
node becomes known by following a link from a known node. The structure of
variable binding in the target program (2.3) corresponds to a spanning tree of
the graph pattern. Consider the expression RHS/{x/var(y), tIsubstval(y)} which
is matched when SubstBind itself is being compiled. a has the whole expression
as its value (actually the object representing the expression); Phas the value RHS;
So has the set {x/var(y), t Isubstval(y)} as its value ;y first has the value x I var(y),
x the value x, and z the value var(y); y then has the value tIsubstval(y), x the
value t, and z the value substval(y).

2a) Reducing quantification scope

The following rule, when applicable, moves expressions outside the scope of a
quantification. If the quantification later becomes an enumeration, the evaluation
will be done outside the enumeration instead of inside. The equivalence can be
loosely stated: if p is not dependent on x then (Vx[p A q rp (p Vx[q r]).

The corresponding rule expression of this ist:

a :`VS[Co Q]' A P E conjuncts (Co) A NoVarsOf(P,S)
-'a: VS[Co Q]' A class(Ci) = conjunction

A P E conjuncts (CI) A P conjuncts(C0) (ReduceScope)

where NoVarsOf(P,S) is true when the expression P is not a function of any of
the variables S. Note that there may be more than one conjunct P for which the
left-hand side is true, in which case C1 will have more than one conjunct. Because
of the later procedural interpretation of implication (Impllf) the conjuncts
added to C1 will be tested before those remaining in Co. However, there is no
necessary ordering among the conjuncts of C1. Note also that we want Ci to have
only those conjuncts P such that P E conjuncts (Co) A NoVarsOf(P,S), but this is

1. We use the convention that the antecedent of an implication is always a conjunction,
possibly with only one conjunct.

347

KNOWLEDGE-BASED SYSTEMS

not explicitly stated. It is implicit that the compiled rule produces the minimal
situation that satisfies the specification.

2b) Bounding quantifiers

The following two rules recognize explicit bounds on quantifiers and move the
quantification of these variables outside the quantification of any as-yet-
unbounded quantifiers. This often enables these rules (and also ReduceScope) to
be applicable to the inner quantification. This splitting explicates an implicit
dependency of the internal quantification on the external quantifiers.

The first rule uses the idea of the following logical equivalence:

Vx[(xESAp)] Vx E S[p q]

The actual rule is more complicated mainly because there may be more than one
quantifier, and the bounded quantification is separated and moved outside any
remaining unbound quantifiers.

This allows the inner quantified expression to be manipulated independently.

y: VS0 [C Q]' A a E conjuncts (C) A a :`x t' Ax E So ANoVarsOf(t,S0)
y :VSI[VS0[C Or A x SI Ax ES0 A univset(x)= t
A a EA conjuncts (C) (BoundForall)

where univset(x)= t means that x can only take values in the set given by the
term t.

The following rule is a special case where a quantifier can only take on one
value because it is asserted to be equal to some term independent of the quantifiers.
We express this by stating that the quantifier is substituted by this term in the
expression, but we do not actually perform the substitution.

a :VS0[C Q]'AyEconjuncts(C) Ay : 'x = t' A x ES° ANo VarsOf(t, So)
—> a :`VS0[C 01S1' A z ES1 Az: ̀.x/t' A x E; So A y ctconjuncts(C)

(ForallSubst)
Stage 3: Interpreting input/output specification procedurally

In this stage the rule is converted from predicate calculus to procedural language.
We assume the initial situation is given and that actions necessary to create the
successor situation from the initial situation must be performed so that the rule
specification is satisfied. Each rule specifies a high-level procedural form for
satisfying a particular logical form.

Implication becomes an if statement.

a: ̀Satisfy(C R)' a :`if Test(C) then Satisfy (R)' (ImplIf)

Test(C) is true if C is satisfied in the initial state. Test is not explicitly used by
any of the following rules, but predicates which are not to be Satisfied are to be
Tested.

The following rule says that 'substitution' is actually done using variable
binding rather than substitution.

a :`Satisfy(PIS0)' A y E So A y : tx/t'
.4. a: 'bind S1 do Satisfy (P)' A z E SI Az: 4— t' (SubstBind)

348

GREEN AND WESTFOLD

An existential variable appearing in the new situation is handled by creating a
new object with the specified properties.

a :Watisfy(3So[P])' A y E So
-pa: 'bind S1 do Satisfy (P)' A x E Si Ax: 'y ±- (NewObject)'

(ExistBindNew)

A conjunction can be satisfied by satisfying each of the conjuncts. In this specifi-
cation we assume that they can be satisfied independently.

a: 'Satisfy (C)' A class(C)= conjunction APE conjuncts(C)
class(a)= block A Q E steps(a) A Q:`Satisfy(P)' (AndBlock)

Bounded quantification becomes an enumeration:

a :`Satisfy(Vx ES [R])' -0. a :`enumerate x in S do Satisfy (R)'
(ForallEnum)

Stage 4: Refine to standard database access functions
4a) Rules for object-centered database implementation
The following rules convert references to functions into references to the data-
base. The particular database representation we use is that the function value
f(u) is stored as the f property of the object u. Objects are thus mappings from
function names to values. This arrangement may be thought of either as a
distributed representation of functions or as the function being indexed by its
argument.

a: 'f(u)' -0. a :`(GetMap u (MakeGetMap)

a: ̀Satisfy(f(u)= v)' -0. a :`(ExtendMap u f v)' (MakeExtMap)

a:Watisfy(p(u))' -4. a :`(ExtendMap u p True)' (MakeExtMapT)

Note that we have not made all the preconditions for MakeGetMap explicit.
It should only be applicable when MakeExtMap and MakeExtMapT are not
applicable.

4b) System-specific transformations

The rules of this section are specific to the conventions we use to implement the
abstract database. We only present the two of them that reflect issues particularly
relevant to the problem of compiling logic specifications. The others convert
accesses to abstract datatypes, such as mappings, into accesses to concrete
datatypes. These are part of the standard CIII system.

The first rule is for the case where the class of an object gets changed. There
are frame conventions which say which of the other properties of the object are
still valid. The function Ttransform enforces these conventions at rule execution
time.

a :`(ExtendMap u class v)' a:`(Ttransform u (MakeTtransform)

349

KNOWLEDGE-BASED SYSTEMS

Creating a new 'object in the database requires that its own class be known; the

object is created as an instance of its class.

a: '(ExtendMap u class v)' A a E steps (F) Az: ̀u ±- (NewObject)'
z :`14 4— (Tinstance A a EP steps(P) (MakeTinstance)

Simplification rules

The following are general simplification rules that are needed by RC to canonica-

lize expressions to ensure that other rules will be applicable when appropriate.

class(a)= conjunction A class(C)= conjunction A a E conjuncts(C)

APE conjuncts(a)
P e conjuncts(C) A a EP conjuncts(C) (SimpAndAnd)

a: Q' A Null(conjuncts(C))—> Replace(a,Q) (SimpImpl)

(Replace(a,P) causes a to be replaced by P in the expression tree. Formalizing
Replace is beyond the scope of this paper.)

a :`VS[P]'A Null(S) -+ Replace(a,P) (SimpForall)

2.3 Sample rule compilation

We present the steps in compiling a representative rule, ExistBindNew:

a :`Satisfy (3 So[P])' A y E So
-+ a :`bind S1 do Satisfy (P)' A x E Si A x:'y +- (NewObject)'

Replacing pattern expression by conjunctions:t

class(a)= exists A satisfy (a) A quantifiers(a)= So
A matrix (a) =P Ay E So
class(a)= bind A x E bindings(a) A body (a) = P

A satisfy (P) A class(x)= binding A var(x)= y

A initval(x)= el A class(e1) = NewObject]])

We now apply SatisfySpec assuming that a is given as a parameter to the rule so

is not quantified within the rule:

Satisfy (VS0,P,y[class(a) = exists A satisfy (a) A quantifiers(a)= So
A matrix (a) = P Ay E So
3 x, e1[class(a)= bind Ax E bindings (a)

A body (a) = P A satisfy (P)
A class(x)= binding A var(x)= y
A initval(x)= el A class(e1) = NewObject]])

Note that Satisfy is distinct from satisfy. Their relationship is not important for

purposes of this example.
We next apply the stage 2 rules to the specification to reduce quantification.

For now we abbreviate the existential expression to RHS as it does not influence

anything for awhile, and concentrate on the universal quantification.

t We have also eliminated the unnecessary variable S, by replacing (bindings (a)= S, Ax E)
by x E bindings (a).

350

GREEN AND WESTFOLD

Apply ReduceScope to move class (a) = exists and satisfy (a) outside the quanti-
fication:

class (a) = exists A satisfy (a)
VS0,P,y[quantifiers(a)= So A matrix(a)=PAyE So RHS]

Apply ForallSubst to fix values for So and Pin terms of a:

class(a)= exists A satisfy (a)
(Vy [y E So RHS]l {Solquantifiers (a), Plmatrbc (a)))

Apply BoundForall to bound the remaining universal quantifier and simplify
away the inner implication with Simplmpl:

class (a) = exists A satisfy (a)
(Vy E So [RH511{Solquantifiers(a),Plmatrix (a)))

Bring back RHS and focus on the universal quantification expression:

(Vy ES0)(3x,e1)[class(a) = bind A body (a) = PA satisfy (P)
Ax E bindings (a) A class(x)= binding A var(x)= y
A initval(x)= el A class(el) = NewObject]

Moving expressions not depending on y, x and el outside the quantifications
(the rules that do this have not been shown before and will be defined in section
3.2):

class (a) = bind A body (a) = PA satisfy (P)
A (Vy E S0)(3x, el)[x E bindings (a) A class(x)= binding

A var(x)= y A initval(x)= el A class (el) = NewObject]

This brings us to the end of stage 2 rules:
(Note that we could have interleaved the following applications of stage 3

rules with those of stage 2 without affecting the final outcome.) The complete
rule is:

Satisfy (class (a) = exists A satisfy (a)
(class(a)= bind A body(a)= PA satisfy(P)
A (Vy E So)(3x, ei)[x E bindings (a) A class (x) = binding

A var(x)= y A initval(x)= el A class(ei) = NewObject]
)1 {Solquantifiers(a), Plmatrix (a)))

Applying Implif:

if Test(class (a) = exists A satisfy (a)) then
Satisfy ((class (a) = bind A body (a) = P A satisfy (P)

A (Vy E So)(3x,e1)[x E bindings (a) A class(x)= binding
A var(x)= y A initval(x)= el A class (e1) = NewObject]

{So/quantifiers (a), Plmatrix (a)))

351

KNOWLEDGE-BASED SYSTEMS

Applying SubstBind:

if Test(class (a) = exists A satisfy (a)) then
(bind So 4-- quantifiers(a), P- matrix (a)

do Satisfy (class(a) = bind A body (a) = PA satisfy (P)
A (Vy E S0)(3x,e1)[x E bindings (a) A class(x)= binding

A initval(x)= el A class(ei) = NewObject])

Applying AndBlock:

if Test(class(a)= exists A satisfy (a)) then
(bind So <- quantifiers(a), P <- matrix (a)

do Satisfy (class (a) = bind)
Satisfy (body (a) =P)
Satisfy (satisfy (P))
Satisfy ((Vy EV(3x, ei)[x E bindings(a) A class(x)= binding
A var(x)= y A initval(x)= el A class(e1) = NewObject])

Applying ForallEnum to the last Satisfy expression:

if Test(class(a)= exists A satisfy (a)) then
(bind So <- quantifiers (a), P 4- matrix (a)

do Satisfy (class (a) = bind)
Satisfy (body (a) = P)
Satisfy (satisfy (P))
enumerate y in so
do Satisfy (3x, e1 [x E bindings (a) A class(x)= binding
A var(x)= y initval(x) = el A class(el) = NewObject])

Applying ExistBindNew to the last Satisfy (it is here that we are applying the
rule to part of itself):

if Test (class (a) = exists A satisfy (a)) then
(bind so 4-- quantifiers (a), P 4- matrix (a)

do Satisfy (class(a) = bind)
Satisfy (body (a) = P)
Satisfy (satisfy (P))
enumerate y in So
do (bind x (NewObject), e1 4-- (NewObject)

do Satisfy (x E bindings (a) A class(x)= binding A var(x)= y
A initval(x)= el A class (el) = NewObject)))

Applying AndBlock to the last Satisfy:

if Test(class(a)= exists A satisfy (a)) then
(bind So quantifiers(a), P 4- ma trix (a)

do Satisfy (class(a) = bind)
Satisfy (body (a) = .11)
Satisfy (satisfy (P))
enumerate y in So

352

GREEN AND WESTFOLD

do (bind x 4- (NewObject), el 4- (NewObject)
do Satisfy (x E bindings (a))

Satisfy(class(x)= binding)
Satisfy(var(x)= y)
Satisfy(initval(x)= el)
Satisfy(class(ei) = NewObject)))

This is the end of stage 3. After applying the stage 4 rules we get the following
program which is LISP code except for certain function names and minor syntac-
tical differences.

(if (GetMap a 'class) = 'exists and (GetMap a 'satisfy) then
(bind so <- (GetMap a 'quantifiers), P 4-- (GetMap a 'matrix)

do (Ttransform a 'bind)
(ExtendMap a 'body P)
(ExtendMap P 'satisfy True)
(for y in So

do (bind x (Tinstance 'binding),
el (Tinstance 'NewObject)

do (AddElement x (GetMap a 'bindings))
(ExtendMap x 'vary)
(ExtendMap x 'intval e1)))))

2.4 Control structure of rule compiler

We have largely succeeded in making the preconditions of the rule compiler rules
explicit in the rules themselves, allowing the rules to be used in a wide variety of
control structures. The choice of control structure can then concentrate on the
issues of efficiency of compilation and efficiency of the target code produced by
the compiler. At one extreme the user may interactively control the order of the
rule application in order to produce the most efficeint code. At the other, the
rules can be incorporated into a program which exploits their interrelations:
commonalities in preconditions of rules can be used to produce a decision tree;
dependencies between rules, such as the action of one rule enabling the precon-
ditions of others, can be used to direct the order in which rules are tried.

There are some rules whose preconditions we have not made explicit.
MakeGetMap should not be applied before MakeExtMap and MakeExtMapT.
This constraint could be incorporated explicitly into MakeGetMap by adding
negations of the distinguishing predicates of MakeExtMap and MakeExtMapT.
The system could embody the general principle that a rule that has a weaker
precondition than others should be applied after them, or, alternatively, dis-
tinguishing predicates could be added to the weaker rule by the system. This
would give the user the choice of specifying the preconditions of a rule implicitly
by reference to other rules rather than explicitly within the rule itself.

The control structure we are currently using to automatically compile rules
is very simple but provides a reasonable compromise between efficiency of

353

KNOWLEDGE-BASED SYSTEMS

execution, efficiency of the code produced, and flexibility (changing one rule
• does not require that the entire rule compiler be recompiled). The expression
tree for the rule being compiled is traversed depth-first applying each rule to
each object on the way down. If an object is transformed by a rule then the
traversal continues from this object. The order in which rules are applied to a
particular node affects the efficiency of the code produced. In particular it is
desirable to apply ReduceScope before ForallSubst and ForallSubst before
BoundForall.

3. EXTENSIONS TO THE RULE COMPILER

One of the main tests of our high-level description of RC is how easy it is to
extend. In this section we show how it can be extended along various dimensions:
improving efficiency of the target code, augmenting the rule language, improving
the user interface, and adapting to other system tasks.

3.1 Improving efficiency

We give examples of adding rules in order to improve the execution efficiency of
compiled rules. Adding rules will tend to slow down the rule compiler, but as
RC is specified primarily in terms of rules, after recompiling its own rules RC
may become substantially faster. This section considers a number of different
areas where efficiency can be improved.

Frequently it is possible to express the same program in two ways where one
way is simpler or more uniform, but compiles into more inefficient code. The trade-
off can be circumvented by modifying a compiler so that it translates the simpler
form into the more efficient form. For example, the LISP macro facility allows
the user to do this to some extent. Adding new rules to RC provides a more
general way of doing this in a more convenient language. A simple example is
using a more specific access function for a special case of a general access function.
The following rule would be useful if an object were stored as a list whose first
element is the class of the object:

a: ̀(GetMap u 'class)' a: ̀(car u)'

Such a speed-up should be derived by CHI from knowledge of how objects are
stored. That the rule compiler can be extended easily can be exploited by the
rest of CHI as well as by the user directly.

A more extensive change to RC would be to use a different implementation for
the database. In particular, a less general data structure could be used for repre-
senting the rules. If singly-linked lists were used, the compiled rules could
no longer follow inverse links. To compensate for this, the control structure
surrounding the rules would have to keep more context in free variables for the
compiled rules to refer to. Rather than rewriting the rules that previously used
inverse links, only the rules that compile uses of inverse relations need be rewritten.

A useful improvement in efficiency could be gained by combining sets of
rules into a single function as indicated in section 2.4. There would be relative
advantages in doing the combination using the original rule form or with the

354

GREEN AND WESTFOLD

forms produced by stage 2. The changes necessary to RC would be modifications
of the control structure so that it could take more than one rule and a new set of
rules to do the combining. Few changes to existing rules would be necessary.

A special case of combining rules is where one rule always follows another.
This is true for a number of pairs of rules in RC: BoundForall is followed by
ForallEnum; ForallSubst is followed by SubstBind. We could have specified RC
with these rules combined at the cost of less clarity, and less generality of the
individual rules. The combination of BoundForall and ForallEnum is:

y :`Satisfy (VS0[C QV A a E conjuncts (C) A a:5c E t' A x E S0
A NoVarsOf(t,S)-> a :`enumerate x in t do Satisfy (VS0[C CT'
Ax So A a conjuncts (C)

which is comparable in complexity to BoundForall alone. However, it blurs the
two things which are going on that are distinguished in the individual rules: a
logical equivalence and how procedurally to satisfy a universal quantification.
Having the two ideas in separate rules means that they can be applied separately
elsewhere. However it may well be desirable to compile them together to increase
efficiency.

3.2 Extending the rule language

There are two classes of extensions to the rule language. New constructs and
abbreviations can be incorporated by adding rules to stage 1 which translate the
new constructs into standard logic constructs compilable by the lower part of
RC. The second class of extension is the addition of rules to stage 2 and/or stage
3 to increase RC's coverage of logic constructs. An addition of the first class may
require additions to lower parts of RC in order that the new pattern be compilable.

The following two rules free the user from having to decide whether it is
necessary to use a particular relation or its inverse. They also loosen constraints
on which variables may be chosen as parameters to the rule or as enumeration
variables. They are required in order to compile a number of the rules without
unnecessary enumerations, including BoundForall when a is the parameter.

y : VS [C Q]' A a E conjuncts(y) A a :`f(u) = t' A NoVarsOf(t,S)
A OneToOne(f) a :`u = f -1 (t)'

y :4VS[C Q]' A a E conjuncts(y) A a:Wu) = t' A No VarsOf(t, S)
A ManyToOne(f) -0 a :`u E f -I (t)'

A number of rules, including ExistBindNew, require the following two rules in
order to compile correctly. Like ReduceScope, they move expressions outside
the scope of quantifications.

a: S [C]' A class (C) = conjunction A Pe conjuncts (C) A No VarsOf(P, S)
-+ class (a) = conjunction APE conjuncts (a) Ay E conjuncts (a) Ay :'3S[C]'

A P ct conjuncts (C)
a: ̀VS [C]' A class (C) = conjunction APE conjuncts (C) A No VarsOf(P, S)

class (a) = conjunction APE conjucts (a) Ay E conjucts (a) Ay: ̀VS CT
A P ct conjuncts (C)

355

KNOWLEDGE-BASED SYSTEMS

The main part of RC involves compiling the satisfaction of an input/output
specification. In the remainder of this section we consider extensions to RC that
increase the types of acceptable input/output specifications.

By explicitly marking functions as referring to either the initial or succeeding
state we get more freedom in how to mix them in the specification and more
freedom in how the specification can be manipulated in stage 2. We use the
convention that functions or expressions marked with a single prime, as in f',
refer to the initial state, and those marked with a double prime refer to the
succeeding state, as in f".

Consider the case where we allow disjunctions in the input/output specifi-
cantion. For example, consider the expression Satisfy (A' B") in the disjunctive
form Satisfy(-1A1 V B"). To get from the latter to an expression similar to that
obtained from applying ImplIf to the former expression, one can apply the rule:

a: 'Satisfy (P V Q)' a: 'if UnSatisfiable (P) then Satisfy (Q)'

giving if UnSatisfiable(-14 then Satisfy (B"). Comparing this with if Test(A')
then Satisfy (B") we see that Test(x) corresponds to UnSatisfiabie(—ix). Note
that we could also have derived the program if UnSatisfiable(B") then Satisfy
(-1,4'), but if we have no procedures for testing unsatisfiability in the final state or
satisfying things in the initial state, then this choice will lead to a dead end.

In general, relaxing the restrictions on the form of the specification requires
additional Stage 3 rules rather than changes to existing ones, but the rules may
lead to dead ends, so a more sophisticated control structure is necessary. On the
other hand, the Stage 4a rules do require the addition of preconditions concerning
whether functions refer to the initial or final state.

For example, MakeExtMap becomes:

a:'Satisfy(f"(u)= v)' a:`(ExtendMap u f v)'

with restrictions also necessary on u and v if these are allowed to be expressions
more general than variables.

RC in its present form can be used to compile rules that derive implications
of the current state rather than transform it. The specification for such rules is
exactly the same as (*) except that it is not necessary to distinguish the initial
and succeeding states. This distinction is not actually used by RC so therefore
RC can compile these rules. The rule MakeTtransfonn is not applicable to com-
piling such implication rules. Its preconditions being true would imply that the
implication rule does not reflect a valid implication.

3.3 Improving user interface

The user interface can be improved in a variety of ways. Extending the rule
language, discussed above, is one way. Another is to put error detection rules
which report problems in the rule or indicate when the rule is beyond the scope
of the rule compiler. This is also useful as self-documentation of the rule compiler.

356

GREEN AND WESTFOLD

The following rule can be used to detect any unbound quantifers left after the
application of stage 2 rules:

a: 'Satisfy (VS [P])' Ax ESA --1univset (x) -+ Error(x, Unbound)

In another dimension, RC can be extended to produce target code that is oriented
to the user's use of it. The main use of compiled rules outside the rule compiler
is in refining high level programs under user guidance. At each decision point the
user wants to know which rules are relevant. The system should help in providing
such a list. We have added a set of rules to RC in V that extracts part of the
left-hand side to use as a filter. The rule language provides a convenient way for the
user to express and experiment with heuristics for determining the relevant parts
to test.

3.4 Relation to the rest of the system

In this section we discuss specifically how the rule compiler can benefit the
System and how the rest of the system can benefit the rule compiler, apart
from the primary purpose of the rule compiler of compiling rules.

Some ways in which the rule compiler can benefit the system have already
been covered, such as in providing filters to screen irrelevant rules from the
user. The primary contribution of the rule compiler is the provision of a useful
high-level language that can be used elsewhere. One immediately applicable
example is in compiling user database queries. These are exactly like rules
except that they usually do not have any parameters and the actions are typically
to display the matching objects (although editing could be performed if desired).
An example query may be to print out all rules that apply to universal quantifi-
cations:

y: ̀C Q' APE conjuncts (C) AP: 'class (x) = forall' -0. Display (y)

Improvements in the rest of the system can have benefits for the rule compiler.
As mentioned above, the whole program synthesis system may be brought to
bear on compiling an important rule. General efficiency knowledge for deter-
mining which of several implementations is most efficient would carry over to
rule compilation. Also, additions made to take advantage of dataflow or for
manipulating enumerations could be applicable to the rule compiler. All the tools
for maintaining programs written in V are applicable to maintaining the rule
compiler program, including editors, consistency maintenance systems and the
System for answering user queries about programs.

Acknowledgements

We would like to acknowledge J. Phillips for numerous key ideas in the design
of CHI and V and for suggestions for describing the rule compiler in V. S.
Angebranndt helped implement and debug RC in V. T. Pressburger developed an
implementation-independent description of CHI's knowledge base. S. Tappel
helped to define V and wrote the original version of RC in LISP. R. Floyd and

357

KNOWLEDGE-BASED SYSTEMS

B. Mont-Reynaud provided considerable technical and editing assistance with

this paper.
This work describes research done in Kestrel Institute and Systems Control Inc.

This research is supported in part by the Defense Advanced Research Projects

Agency Contracts N00014-79-C-0127 and N00014-81-C-0582 monitored by the
Office of Naval Research. The views and conclusions in this paper are those of the
authors and should not be interpreted as representing the official policies, either

expressed or implied, of Kestrel, SCI, DARPA, ONR or the U.S. Government.

REFERENCES

Balzer, R. (1981). Transformational implementation: an example, IEEE Transactions on
Software Engineering, Jan. 1981, 3-14.

Genesereth, M. R. and Leant, D. B. (1980). "A modifiable representation system: HPP-
80-26, Stanford: Computer Science Department, Stanford University.

Goldman, N. M., and Wile, D. S. (1979). A relational data base foundation for process
specifications, Int. Conf. on Entity-Relationship Approach to Systems Analysis and
Design, pp. 413-432 (ed. Chem., pp).

Green, C. C. (1969). Theorem proving by resolution as a basis for question answering
systems, Machine Intelligence 4, pp. 183-205, (eds. Meltzer, B. and Michie, D.). Edin-
burgh: Edinburgh University Press.

Green, C. C. (1969a). Application of theorem-proving to problem-solving, Proc. Int. Jnt.
Conf. Art. Int. (LJCAI-69), pp. 219-239, eds. Walker, D. A. and Morton, L. M. London
and New York: Gordon and Breach.

Green, C. C. (1969). The application of theorem-proving to question-answering systems,
Ph.D. Thesis, Electrical Engineering Department, Stanford University. Also printed as
,AIM-96, and STAN-CS-69-138. Stanford: Artificial Intelligence Laboratory, Computer
Science Department, Stanford University, also reprinted 1979. New York: Garland
Publishing, Inc.

Green, C. C., Phillips, J., Westfold, S., Pressburger, T., Angebranndt, S., Kedzierski, B., Mont-
Reynaud, B., and Chapiro (1981). Progress in knowledge-based programming and
algorithm design, Technical Report KES.U.81.I, Palo Alto: Kestrel Institute.

Ingalls, D. H. (1978). The SMALLTALK-76 programming system: design and implementation,

Fifth Annual ACM Symposium on Principles of Programming Languages, pp. 9-16.

Tucson, Arzona, January, 1978.
Kant, E. (1979). Efficiency considerations in program synthesis: A knowledge based approach,

Ph.D. Thesis. Also published as AIM-331, and STAN-CS-79-755. Stanford: Computer
Science Department, Stanford University; also as Efficiency in program synthesis. Ann

Arbour: UMI Research Press (1981).

• Kowalski, R. (1979). Logic for Programming, Amsterdam, New York, Oxford: North
Holland.

Manna, Z., and Waldinger, R. (1980). Problematic features of programming languages: a
situational calculus approach, STAN-CS-80-779. Stanford: Department of Computer
Science, Stanford University.

Phillips, J. P. Self-described programming environments: an application of a theory of design
to programming systems. Ph.D. Thesis. Stanford. Departments of Electrical Engineering
and Computer Science, Stanford University.

Phillips, J., and Green, C. C. (1980). Towards self-described programming environments,
Technical Report, SCLICS.L.81. 3, Palo Alto: Computer Science Department, Systems
Control Inc.

Rich, C. (1981). Inspection methods of programming, Ph.D. Thesis, MIT/AI/TR-604,
Cambridge, Mass: MIT.

358

GREEN AND WESTFOLD

Schonberg, J., Schwartz, J. T. and Sharir, M. (1978). Automatic data selection in SETL,
Proc. Fifth ACM Symposium on Principles of Programming Languages, Tucson, Arizona,
Jan. 1978.

Shrobe, II., Dependency directed reasoning for complex program understanding, Ph.D. Thesis,
MITIAIMI7'R-503, Cambridge, Mass: MIT.

Teitelman, W., and Masinter, L. (1981). The INTERLISP programming environment, Computer,
14,4.

Warren, D. H. D., Pereira, L. and Pereira, F. (1977). PROLOG: the language and its imple-
mentaion compared with LISP, Proc. Symposium and Al and Programming Languages,
SIGPLANISIGART, 12, No. 8.

Warren, D. H. D. (1980). Logic programming and compiler writing, Software-Practice and
Experience, 97-125.

Waters, W. (1978). Automatic analysis of the logical structure of programs, Ph.D. Thesis,
MIT/AI/TR-492, Cambridge, Mass: MIT.

Weyhrauch, R. W. (1980). Prolegomena to a theory of mechanized formal reasoning,
Artificial Intelligence 13, 133-170.

359

