
GENERALIZATION As SEARCH / 517

Generalization as Search

Tom M. Mitchell

Computer Science Department
Rutgers University

New Brunswick, NJ 08903

1 Introduction

"Learning" is a broad term covering a wide range of processes. We learn
(memorize) multiplication tables, learn (discover how) to walk, learn (build
UP an understanding of, then an ability to synthesize) languages. Many
subtasks and capabilities are involved in these various kinds of learning.

One capability central to many kinds of learning is the ability to
generalize: to take into account a large number of specific observations, then
to extract and retain the important common features that characterize classes
of these observations. This generalization problem has received considerable
attention for two decades in the fields of Artificial Intelligence,
Psychology, and Pattern Recognition (e.g., [Bruner, 1956], [Nilsson, 1965],
[Minsky, 1969], [Hunt, 19753, [Plotkin, 1970], [Waterman, 1970], [Winston,
1975], [Brown, 1973], [Michalski, 19733, [Hayes-Roth, 1975], [Mitchell, 1977J,
[Buchanan, 1978], [Vere, 1978]). The results so far have been tantalizing:
Partially successful generalization programs have been written for problems
ranging from learning fragments of spoken English to learning rules of
Chemical spectroscopy. But comparing alternative strategies, and developing a
general understanding of techniques has been difficult because of differences
in data representations, terminology, and problem characteristics.

The purpose of this paper is to compare various approaches to
generalization in terms of a single framework. Toward this end,
generalization is cast as a search problem, and alternative methods for
generalization are characterized in terms of the search strategies that they
employ. This characterization uncovers similarities among approaches, and
leads to a comparison of relative capabilities and computational complexities
Of alternative approaches. The characterization allows a precise comparison
Of systems that utilize different representations for learned generalizations.

2 The Problem

The class of generalization problems considered here can be described as
follows: A program accepts input observations (instances) represented in some
language, which we shall call the instance language. Learned generalizations
correspond to sets of these instances, and are formulated by the program as
statements in a second language, which we shall call the generalization
J....aguage. In order to associate instances with generalizations, the program
must possess a matching predicate that tests whether a given instance and
generalization match (i.e., whether the given instance is contained in the
Instance set corresponding to the given generalization).

518 / ADVANCED TOPICS

Given the instance language, generalization language, and matching

predicate, the generalization problem is to infer the identity of some unknown

"target" generalization by observing a sample set of its training instances.

Each training instance is an instance from the given language, along with its

classification as either an instance of the target generalization (positive

instance) or not an instance of the target generalization (negative instance).

This generalization problem can be summarized as follows:

Generalization Problem:

Given: 1. A language in which to describe instances.

2. A language in which to describe generalizations.

3. A matching predicate that matches generalizations
to instances.

4. A set of positive and negative training instances
of a target generalization to be learned.

Determine: Generalizations within the provided language
that are consistent with the presented training
instances (i.e., plausible descriptions of the
target generalization).

Here, a generalization is considered to be consistent with a set of
training instances if and only if it matches every positive instance and no
negative instance in the set. With this strict definition of consistency, we
assume (1) that the training instances contain no errors and (2) that it is
possible to formulate a correct description of the target generalization
within the given generalization language. Although several of the systems
discussed in this paper have attempted to deal with learning from inconsistent
training data, an analysis of performance in such cases is beyond the scope of
this paper.

Throughout this paper we shall refer to a simple example of the above
class of generalization problems, in order to illustrate several approaches to
learning. In this problem, the instances are unordered pairs of simple objects
characterized by three properties. Each object is described by its shape
(e.g., square, circle, triangle), its color (e.g., red, orange, yellow), and
its size (e.g., large, small). The instance language will describe each
instance as an unordered pair of feature vectors, each of which specifies the
size, color, and shape of an object. For example, Instancel below describes
an instance in this language.

Instancel: { (Large Red Square) (Small Yellow Circle))

Generalizations of these instances will be represented in a similar
fashion, except that we may indicate that the color, size, or shape of an
object is unimportant by replacing the value of that feature by a question
mark. Thus, the following generalization represents the set of all instances
containing one small circle and one large object.

GENERALIZATION As SEARCH / 519

Generalizationl: f (Small ? Circle) (Large ? ?))

We define the matching predicate for this instance language and
generalization language so that a generalization matches an instance provided
the features specified in the generalization have counterparts in the features
Specified in the instance. Thus, Generalizationl matches Instancel (note the
instances and generalizations are unordered pairs). More precisely, in this
example problem we will say that a generalization, g, matches an instance, i,
If and only if there is a mapping from the pair of feature vectors of g onto
the pair of feature vectors of i, such that the restrictions on feature values
given in g are consistent with the feature values of i. Here a feature
restriction in g is consistent with a feature value in i if either (a) the
feature restriction in g is identical to the feature value in i, or (b) the
feature restriction in g is a question mark.

a Generalization as Search

The above generalization problem is essentially a search problem. The
generalization language corresponds to an hypothesis space (search space) of
Possible solutions, and the learning task is to examine this hypothesis space,
subject to constraints imposed by the training instances, to determine
Plausible generalizations. This characterization of generalization as search
Is used below to describe generalization methods, independent of the
Particular generalization and instance languages used. This characterization
leads to a useful classification and comparison of various systems.

The Partial Ordering

A key characteristic of the above generalization problem is that there is
an important structure inherent to the generalization language for every such
Problem. This structure, which has been described previously for individual
generalization languages [Plotkin, 1970], [Michalski, 1973], [Hayes-Roth,
1974], [Vere, 1975], [Mitchell, 1977], is based on the relation "more-
specific-than", defined as follows:

More-specific-than relation: Given two generalizations, GI and
G2; GI is "more-specific-than" G2 if and only if {1611
M(G1,0} CZ {i II M(G2,0), where I is the set of all
instances describable in the instance language, and M is the
matching predicate.

In other words, GI is "more-specific-than" G2 if and only if G1 matches a
Proper subset of the instances that G2 matches. This relation partially
orders the hypothesis space through which the learning program must search.
Notice the above definition of this relation is extensional - based upon the
instance sets that the generalizations represent. In order for the more-
Specific-than relation to be practically computable by a computer program, it
must be possible to determine whether GI is more-specific-than G2 by examining
the descriptions of GI and G2, without computing the (possibly infinite) sets
of instances that they match. This requirement places restrictions upon the
nature of generalization languages for which some of the methods below are
SU ited.

A portion of the partially ordered generalization language for the

520 / ADVANCED TOPICS

Section 3.1

Gl: Marge Red Circle) (Large ? ?)

G3: {(? ? Circle) (Large Blue ?)

Figure 1. Portion of Partially Ordered Generalization Language.

example problem is shown in Figure 1. Here, G1 is more-specific-than G2: the
constraints in G2 are logically implied by those in GI, and therefore any
instance which matches GI must also match G2. In contrast, G3 and G1 are not
comparable generalizations according to the more-specific-than relation:
although the sets of instances characterized by G3 and GI intersect, neither
set contains the other.

The more-specific-than relation defined above imposes a partial ordering
over the generalizations in the hypothesis space. This partial ordering is
important because it provides a powerful basis for organizing the search
through the hypothesis space. Note that the definition of this relation (and
the corresponding partial ordering) is dependent only on the defined instance
language, generalization language, and matching predicate. It is independent
of the particular generalization to be learned and the particular training
instances presented.

4 Three Data-Driven Generalization Strategies

If generalization is viewed as a search problem, then generalization
methods can be characterized in terms of the search strategies that they
employ. Many generalization programs employ search strategies that are data-
driven, in the sense that they consider discrepancies between the current
hypothesis and available data in order to determine appropriate revisions to
the current hypothesis. Although no two of these programs employ exactly the
same strategy, it is informative to group them into classes whose members
employ similar strategies and therefore possess similar performance
characteristics. The aim of this section is not to compare alternative
generalization learning programs, but rather alternative classes of data-
driven strategies that existing programs implement in various ways, for

GENERALIZATION As SEARCH / 521

Section 4

various generalization languages. We consider three such classes of search
strategies here. A prototypical program is described for each class, and the
characteristics of the prototype examined. The capabilities and efficiency of
the classes are then compared in terms of these prototypes.

4.1 Depth-first Search

Initialize the current best hypothesis, CBH, to some generalization
that is consistent with the first observed positive training instance.

FOR EACH subsequent instance, i, BEGIN

IF i is a negative instance, and i matches CBH

THEN BEGIN

Consider ways of making CBH more specific so that i no longer
matches it.

Test these possible revisions to find those that match all .
earlier positive instances.

Choose one acceptable revision as the new CBH.

END

ELSE IF i is a positive instance, and i does not match CBH,

THEN BEGIN

Consider ways of making CBH more general so that i matches it.

Test these possible revisions to find those that do not match
any earlier negative instance.

Choose one acceptable revision as the new CBH.

END

IF none of the considered revisions to CBH result in a generalization
consistent with previous instances as well as i,

END

THEN Backtrack to an earlier version of CBH, and try a different
branch in the search, and reprocess instances that have
been processed since that point.

Figure 2. Depth-First Search Strategy.

522 / ADVANCED TOPICS

Section 4.1

Search:
CBH1: { (Large Red Triangle)

(Small Blue Circle)

Training Instances:

Instance

1. f (Large Red Triangle)
(Small Blue Circle)

2. { (Large Blue Circle)
(Small Red Triangle)

CBH2: { (Large ? ?)
(Small ? ?)]

Classification

Figure It Depth-First Search Example.

One data-driven strategy for generalizing from examples is depth-first
search through the hypothesis space. Programs that can be characterized in
this way include [Winston, 1975] and the RULEMOD portion of the Meta-DENDRAL
program as described in [Buchanan, 1978]. In this strategy, a single
generalization is chosen as the current best hypothesis for describing the
identity of the target generalization. This current hypothesis is then tested
against each newly presented training instance, and is altered as needed so
that the resulting generalization is consistent with each new instance. Each
such alteration yields a a new current hypothesis, and corresponds to one step
in a data-driven, depth-first search through the hypothesis space.

A prototypical depth-first search strategy can be described as shown in
Figure 2.

Figure 3 illustrates the Depth-First Search strategy in the context of
the example problem described earlier. This figure shows the effect of two
positive training instances. Here, the first positive training instance leads
to initializing the current best hypothesis to CBH1, which matches no
instances other than the first positive instance. When the second positive
instance is observed, CBH1 must be revised so that it will match the new
positive instance. Notice that there are many plausible revisions to CBH1 in
addition to CBH2, shown in the figure. Systems such as [Winston, 1975] and
[Buchanan, 1978] use domain-specific heuristics to determine which of the
possible revisions to select when many are plausible.

GENERALIZATION As SEARCH / 523

Section 4.1

Search:
(Large Red Triangle)
(Small Blue Circle)

CBH3: (? Red Triangle)
(? Blue Circle)-'} (Small ? ?))

CBH2: f (Large ? ?)

Training Instances:

Instance

3. { (Large Blue Triangle)
(Small Blue Triangle))

Classification

Figure 4. Depth-First Search Example Continued.

Figure 4 illustrates the effect of a third training instance which
conflicts with CBH2. In this case, although CBH2 could be specialized to
exclude the new negative instance, no such revision is consistent with the
observed positive instances. Therefore, the system must backtrack to an
earlier version of the CBH, reconsidering its previous revisions to determine
a revision that will be consistent with the new negative instance as well as
the observed positive instances. This backtracking step is shown
schematically in Figure 4, and results in this case in the new current
hypothesis CBH3.

There are two awkward characteristics of this depth-first search

strategy:

1) Cost of maintaining consistency with past instances:
It is costly to test each alteration to the current hypothesis
for consistency with past training instances. Some systems
(e.g., [Winston, 1975]) sacrifice assured consistency with
past instances by not reexamining them when the current
hypothesis is altered. Others (e.g., [Buchanan, 1978]) test
past instances, and therefore require progressively longer
computations for each successive training instance.

2) Need to backtrack: Once the program has determined a
set of acceptable alterations to the current generalization,
it must choose one of these as the new current hypothesis. In
the event that subsequent instances reveal an incorrect choice
has been made, the program must backtrack to reconsider
previously processec training instances and generalizations.

524 / ADVANCED TOPICS

Section 4.2

4.2 Specific-to-General Breadth-first Search

In contrast to depth-first search programs, programs which employ a
breadth-first strategy maintain a set of several alternative hypotheses.
Systems which fall into this class include those reported in [Plotkin, 1970],
[Hayes-Roth, 1974], and [Vere, 1975]. Each of these programs takes advantage
of the general-to-specific partial ordering to efficiently organize the
breadth-first search. Starting with the most specific generalizations, the
search is organized to follow the branches of the partial ordering so that
progressively more general generalizations are considered each time the
current set must be modified. The set of alternative plausible hypotheses
computed by this specific-to-general breadth-first search is the set (which we
shall call S) of maximally specific generalizations consistent with the
observed training instances; that is

S = {s I s is a generalization that is consistent with the
observed instances, and there is no generalization which
is both more specific than s, and consistent with the
observed instances}.

A prototypical specific-to-general breadth-first search is described in
Figure 5.

Initialize the set of current hypotheses, S, to the set of maximally
specific generalizations that are consistent with the first
observed positive training instance.

FOR EACH subsequent instance, i, BEGIN

IF i is a negative instance,

THEN Retain in S only those generalizations which do not
match i.

ELSE IF i is a positive instance,

END

THEN BEGIN

Generalize members of S that do not match i, along each branch
of the partial ordering, but only to to the extent required to
allow them to match i.

Remove from S any element that either (1) is more general than
some other element in S, or (2) matches a previously observed
negative instance.

Fioure 5, Breadth-First Search Strategy.

GENERALIZATION As SEARCH / 525

Section 4.2

Notice that this algorithm involves comparing generalizations in order to
determine whether one is more general than another. The generalization
language must allow making this test efficiently; that is, the test should be
made by examining the descriptions of the two generalizations directly,
Without having to consider explicitly the sets of instances that they
represent. This requirement represents a restriction on the kind of
generalization languages for which this approach is practical.

Figure 6 illustrates this search strategy, using the same two positive
instances considered in Figure 3. The set Si is determined in response to the
first positive instance. It contains the most specific generalization
consistent with the observed instance. Si is then revised in response to the
second positive instance, as shown in Figure 6. Here, the generalization in
SI is generalized along each branch of the partial ordering, to the extent
needed to match the new positive instance. The resulting set, 52, is the set
of maximally specific describable generalizations consistent with the two
Observed positive instances.

Search:

Si: f (Large Red Triangle)
(Small Blue Circle) }

S2: f (7 Red Triangle)
(? Blue Circle) }

Training Instances:

Instance

1. f (Large Red Triangle)
(Small Blue Circle) }

2. { (Large Blue Circle)
(Small Red Triangle) }

{ (Large ? ?) 1
(Small ? ?) 1

Classification

+

+

Figure 6. Specific-to-General Breadth-First Search Example.

526 / ADVANCED TOPICS

Section 4.2

Figure 7 illustrates the effect of a subsequent negative training
instance. In this case, one of the members of S2 was found to match the
negative instance, and was therefore removed from the revised set of current
hypotheses, S3. Notice that there is no possibility of finding an acceptable
specialization of the offending generalization, since by definition, no more
specific generalization is consistent with the observed positive instances.
At the same time, no further generalization is acceptable since this will also
match the new negative instance.

S2: [(? Red Triangle) f (Large ? ?)

[
(7 Blue Circle) } (Small ? ?) }

S3: [(? Red Triangle)

(7 Blue Circle) }
]

Training Instances:

Instance

3. f (Large Blue Triangle)
(Small Blue Triangle) }

Classification

1

Figure /2. Breadth-First Search Example Continued.

In general, positive training instances force the set S to contain
progressively more general generalizations. Each revision to (further
generalization of) a member of S corresponds to searching deeper into the
partial ordering along one branch of the breadth-first search. Negative
instances eliminate generalizations from S, and thereby prune branches of the
search which have become overly general. This search proceeds monotonically
from specific to general generalizations.

One advantage of this strategy over depth-first search stems from the
fact that the set S represents a threshold in the hypothesis space.
Generalizations more specific than this threshold are not consistent with all
the observed positive instances, whereas those more general than this
threshold are. Thus, when a generalization in S must be revised, it can only
be made more general, and this revision therefore need not be tested for
consistency with past positive instances. Revisions must still, however, be
tested against previous negative instances to assure that that the revised
generalization is not overly general.

GENERALIZATION As SEARCH / 527

Section 4.3

Version Space Strategy

The version space strategy for examining the hypothesis space involves
representing and revising the set of all hypotheses that are describable
Within the given generalization language and that are consistent with the
observed training instances. This set of generalizations is referred to as the
version space of the target generalization, with respect to the given
generalization language and observed training instances. The term version
Space is used to refer to this set because it contains all plausible versions
of the emerging concept.

This strategy begins by representing the set of all generalizations
consistent with the first positive training instance, then eliminates from
consideration any generalization found inconsistent with subsequent instances.
Programs that implement this strategy for various generalization languages are
described in [Mitchell, 1977], [Mitchell, 1978], and [Mitchell, 1980].

The version space approach is feasible because the general-to-specific
ordering of generalizations allows a compact representaion for version
Spaces. In particular, a version space can be represented by two sets of
generalizations: the set S as defined above, and the dual set G, where

G = {g I g is consistent with the observed instances, and
there is no generalization which is both more
general than g, and consistent with the instances }.

3
Together, the sets S and G precisely delimit the version space . It is

thus possible to determine whether a given generalization is contained in the
version space delimited by sets S and G:

A generalization, x, is contained in the version space represented
by S and G

if and only if

(1) x is more specific than or equal to some member of G, and
(2) .x is more general than or equal to some member of S.

The set S is computed in a manner similar to that described for the
specific-to-general breadth-first search strategy described above. The set G
can be computed by conducting a second, complementary, breadth-first search
from general to specific generalizations. The version space strategy can thus
be viewed as an extension of the above breadth-first search strategy into a
bi-directional search, and can be described as shown in Figure 8.

2 The version space is "represented" in the sense that it is possible to
generate and recognize any generalization in the version space by examining
its representation.

3 The version space relative to any given set of training instances forms
a convex set with respect to the partial ordering of the search space. For a
formal description and analysis of this approach, see [Mitchell, 1978].

528 / ADVANCED TOPICS

Section 4.3

Initialize the sets S and G, respectively, to the sets of maximally
specific and maximally general generalizations that are
consistent with the first observed positive training instance.

FOR EACH subsequent instance, i, BEGIN

IF i is a negative instance,

THEN BEGIN

Retain in S only those generalizations which do not
match i.

Make generalizations in G that match i more specific,
only to to the extent required so that they no longer match i,
and only in such ways that each remains more general than
some generalization in S.

Remove from G any element that is more specific than some other
element in G.

END

ELSE IF i is a positive instance,

THEN BEGIN

Retain in G only those generalizations which match i.

END

Generalize members of S that do not match i, only to to the
extent required to allow them to match i, and only in such
ways that each remains more specific than some generalization
in G.

Remove from S any element that is more general that some other
element in S.

END

Figure 8. Version Space Strategy.

Figure 9 shows the effect of the same two positive instances shown in
the previous examples. The situation is very similar to that for the breadth-
first search, except that the additional set G is initialized as shown. The
generalization used to initialize the set G is the most general generalization
describable within the given language, and matches every possible instance.
Because it is consistent with the two positive training instances shown in
this figure, the set C it unaltered by these instances.

GENERALIZATION As SEARCH / 529

Section 4.3

Search:

Si: [(Large Red Triangle)
(Small Blue Circle))

[
.

[(Large ? ?)
(? Blue Circle) } " , (Small ? ?) }

]S2: { (7 Red Triangle)

Gl, G2: (? ? ?) I

Training Instances:

Instance

1. [(Large Red Triangle)
(Small Blue Circle) }

2. (Large Blue Circle)
(Small Red Triangle))

Classification

Figure 2, Version Space Example.

Figure 10 illustrates the effect of a negative training instance on the
version space. Here, the set S2 is revised as in the breadth-first search.
The set G2 is also revised since the negative instance reveals that the
current member of G2 is overly general. The generalization in G2 is therefore
Specialized along all possible branches of the partial ordering that lead
toward some member of S3. Along each such branch, it is specialized only to
the extent required so that the generalization no longer matches the new
negative instance.

The revised S and G sets illustrated in Figure 10 represent the version
Space of all generalizations in the provided language which are consistent
With the three observed training instances. The version space at this point
contains the members of S3 and G3, as well as all generalizations that lie
between these two sets in the partially ordered hypothesis space. Subsequent

530 / ADVANCED TOPICS

Section 4.3

Search:

S2: { (7 Red Triangle) { (Large ? ?)

[
(7 Blue Circle) } (Small ? ?) }

S3: [(7 Red Triangle)

[
(7 Blue Circle) }

G3: [(? Red ?) [(? ? Circle)

[
(? ? ?) 1 , (7 ? ?) }

G2: (7 ? ?)
(? ? 7) 1

Training Instances:

Instance

3. [(Large Blue Triangle)
(Small Blue Triangle) 1

Classification

1

Figure 10. Version Space, Example Continued.

positive training instances may force S to become more general, while
subsequent negative training instances may force G to become more specific.
Given enough additional training instances, S and G may eventually converge to
sets containing the same description. At this point the system will have
converged to the only consistent generalization within the given
generalization language.

As with specific-to-general breadth first search, the version space
approach is practical only for problems in which the "more-specific-than"
relation can be computed by direct examination of described generalizations.
There is also a minor theoretical restriction on the form of the
generalization language: in order for the sets S and G to correctly delimit
any version space that can arise, every chain in the partially ordered
generalization language must have a most specific and most general member.

GENERALIZATION As SEARCH / 531

Section 4.11

The advantage of the version space strategy lies in the fact that the set
G summarizes the information implicit in the negative instances that bounds
the acceptable level of generality of hypotheses, while the set S summarizes
the information from the positive instances that limits the acceptable level
of specialization of hypothesis. Therefore, testing whether a given
generalization is consistent with all the observed instances is logically
equivalent to testing whether it lies between the sets S and G in the partial
ordering of generalizations.

The version space method is assured to find all generalizations (within
the given generalization language) that are consistent with the observed
training instances, independent of the order of presentation of training
instances. The sets S and G represent the version space in an efficient
manner, summarizing the information from the observed training instances so
that no training instances need be stored for later reconsideration.

4.4 Capabilities

In comparing alternative strategies for generalization, the important
issues concern relative capabilities rather than efficiency. The major
differences in capabilities among the above three data-driven strategies
derive from the number of plausible generalizations carried along at each
step, and from the use of the partial ordering in guiding the search. Below,
we consider two desirable capabilities for a generalization program.

1) The ability to detect the point at which the target
generalization is completely determined by the training
instances, and, when necessary, to use incompletely determined
generalizations in a reasonable manner.

2) The ability to direct the presentation of training
instances to obtain informative instances.

4.4.1 Using Incompletely Learned Generalizations

One important capability for learning programs is the ability to detect
When the observed training data are sufficient to precisely determine the
target generalization. That is, to detect the point at which only a single
generalization from the provided language remains consistent with the observed
data. Of course the generalization is "learned" at this point only under the
assumption that the generalization language contains a correct description of
the generalization, and that the training instances are correct. The
capability to detect this condition is important if the learned information is
to be later applied to classify unknown instances. Equally important is the
capability to make use of incompletely learned generalizations when only
limited training data are available.

The version space strategy provides an easy method for detecting the
point at which a generalization is completely determined by a set of training
Instances, with respect to the given generalization language. This condition
Is satisfied if and only if the computed sets S and G are equal and contain
only one generalization. In contrast, it is difficult to recognize this
condition when maintaining only a single current hypothesis, as with the

532 / ADVANCED TOPICS

Section 4.4.1

depth-first search strategy, or when maintaining only the set S, as with the
breadth-first search strategy.

Because availability of training instances is limited in many domains,
and because for some generalization languages no finite

4
set of training

.
iinstances is sufficient to determine a unique generalizatIon, , t is crucial

to be able to apply incompletely learned generalizations in a reasonable way.
For example, suppose that the training instances shown in the previous figures
are the only training instances available for that problem. Consider the task
of using what has been learned thus far in order to classify the three new
instances shown in Figure 11 as positive or negative.

instancel: ((Small Red Triangle) (Large Blue Circle))

instance2: ((Large Blue Triangle) (Small Blue Square))

instance3: ((Small Red Circle) (Small Blue Circle))

Figure H. Instances with Unknown Classification.

The sets S and G that represent the version space provide a handle on the
problem of representing and using incompletely learned generalizations. Even
though the exact identity of the target generalization is not fully determined
by the three training instances in the preceding example, it is assumed that
the correct description of the target generalization lies somewhere within the
version space delimited by S3 and G3 of Figure 10. Therefore, if a new
instance matches every generalization in the version space (equivalently, if
it matches every element in the set S), then it can be classified as a
positive instance with the same certainty as if a unique generalization had
been determined by the training instances. This is the case for Instancel in
Figure 11.

Similarly, if the instance matches no generalization in the version space
(i.e., it matches no element of the set G), then it is certain that the
instance does not match any description of the target generalization that
would be determined by examining additional instances. This is the case for
Instance2 in Figure 11. Thus, for such instances it is possible to obtain
classifications that are just as unambiguous as if the learned generalization
had been completely determined by the training instances.

In contrast, instances that match some, but not all generalizations in
the version space cannot be unambiguously classified until further training
instances are available. This is the case for Instance3 in Figure 11. Of
course, by considering outside knowledge or by examining the proportion of

4 Finite sets of training instances from an infinite instance language
are not in general sufficient to determine a unique generalization.

GENERALIZATION As SEARCH / 533

Section 4.4.1

generalizations in the version space which match the instance, one might still
estimate the classification of such instances.

When an instance is unambiguously classified by the version space, then
regardless of which member of the version space is the correct description of
the target generalization, the classification of the given instance- will be
the same. All the observed training instances will therefore receive an
unambiguous classification by the associated version space. Surprisingly, even
instances which have not been observed during training may receive an
unambiguous classification, as does Instance2 in Figure 11. If the instance
has not been observed as a training instance by the learning system, then how
can the system produce an unambiguous classification of this instance? Are
such unambiguous classifications reliable?

It can be proven that any such unambiguous classification is a correct
classification, provided that (1) the observed training instances were
correct, and (2) the generalization language allows describing the target
generalization. Notice that the generalization language used in our example
is biased, in the sense that it does not allow describing every possible set
of instances. This biased generalization language, together with the observed
data leads to an unambiguous classification of Instance2. Provided that this
biased generalization language allows describing the correct generalization,
the unambiguous classification of Instance2 is the correct classification.
This example provides an interesting insight into the significance of jnitial
biases for allowing inductive leaps during generalization. [Mitchell, 1980a]
contains a discussion of the importance of and sources of biases for learning
and generalization.

Because the specific-to-general breadth-first strategy computes the set
S, this strategy allows unambiguously classifying the same positive instances
as the version space strategy. Since it does not compute the set G, however,
it cannot distinguish between instances which the version space strategy would
classify as negative instances, and those which cannot be unambiguously
classified. The breadth-first strategy would therefore be able to classify
Instancel from Figure 11 as a positive instance, but would not allow a
reliable classification of either Instance2 or Instance3.

4.4.2 Selecting New Training Instances

A further capability afforded by comput:ng the sets S and G is the
selection of informative new training instances. Consider the following
Problem: after processing some sequence of training instances, a program is
Provided a set of further instances, without their classifications as positive
or negative instances, and is allowed to request the correct classification of
any one of them.

The instance whose classification should be requested in this case (the
instance which will provide on the average the most useful information) is the
instance which comes closest to matching one half of the generalizations in
the version space. Regardless of its classification, finding out its
classification will allow rejecting one half of the currently plausible
generalizations. Thus, by testing each instance to determine what proportion
of the generalizations in the version space it matches, the most informative
training instance can be selected.

534 / ADVANCED TOPICS

Section 4.4.2

If instead of selecting from a list of possible instances, the program is
able to itself generate at each step an instance that matches half the
generalizations in the current version space, then the program can itself
generate an optimal5 sequence of training instances for learning the target
generalization.

As a simple illustration of using the represented version space to direct
the presentation of training instances, suppose that after being shown the
three training instances in the example problem above, the learning program is
allowed to request the classification of any one of the instances shown in
Figure 11. In this case, Instance3 is an instance whose classification would
be useful to know -- it is an instance that matches some, but not all the
members of the current version space. On the other hand, since the
classifications of Instance) and Instance2 are already determined by the
version space, no new information would be obtained by requesting their
classification. Thus, the instances whose classification would be informative
are precisely those that cannot be reliably classified by the current version
space.

The breadth-first strategy also provides some information for selecting
new training instances. The strategy of selecting instances which match half
the generalizations in the computed set S is reasonable, although less
complete than the strategy which takes into account the entire version space.

Complexity and Efficiency

The overall space and time efficiency of each approach is determined by a
number of factors, including the order of presentation of training instances,
the chosen generalization language and the branching of the associated partial
ordering, the cost of matching generalizations to training instances, and the
amount of space needed to store generalizations and observed instances.

A complete analysis is beyond the scope of this paper, but it is possible
to characterize the time and space complexity as a function of the number of
training instances, under reasonable assumptions. In particular, we assume
that positive and negative instances are distributed uniformly throughout the
sequence of training instances.

Under this assumption, bounds on the time and space complexity of the
prototype data-driven strategies described earlier are summarized in Table 1.
Here p indicates the number of positive training instances, n indicates the
number of negative training instances, s indicates the largest size obtained
by the set S, and g represents the largest size obtained by the set G. The
time complexity bounds indicate bounds on the number of comparisons between
generalizations and instances, and comparisons between generalizations.
Notice that for some generalization and instance languages, each such
comparison may itself be an NP problem. For example, some structural

5 This strategy determines the identity of the target generalization in
the shortest possible number of training instances, assuming no prior
knowledge of the identity of the target generalization. Choosing instances
under this handicap is a much different problem than the problem faced by a
teacher who knows the generalization, and must choose good instances. Results
from information theory involvino optimal binary codes apply here.

GENERALIZATION As SEARCH / 535

Section 4.5

Table 1

Bounds on processing time and maximum storage costs.

Strategy

Depth-first
search

Specific-to-general
Breadth-first search

Version space
strategy

Processing Storage
Time Space

0 (pn) 0 (p+n)

2
0 (spn + s p) 0 (s+n)

2 2
(sg (p+n) + s p + g n) 0 (s+g)

This table describes the complexity of the various prototype -
algorithms, under assumptions described in the text.

description languages (e.g., that used in Meta-DENDRAL) involve testing
subgraph isomorphism (an NP-complete problem) as part of this comparison.

The complexity of the depth-first strategy stems from the need to
reexamine past instances after each revision to the current generalization.
Note from the earlier description of this strategy that each time a positive
instance forces a change to the current hypothesis, all past negative
instances must be examined. Thus, time requirements are 0(n) for each such
Positive instance, or 0(pn) in total. Revising the current hypothesis in
response to negative instances yields a similar result. Because all instances
must be stored for later reexamination, the space requirements are linear with
the number of observed instances, 0(p+n).

For the prototype specific-to-general breadth-first strategy, only
negative instances need be stored for later examination, so that space
requirements are 0(s+n). In the time complexity, the term 0(spn) arises
because each time that a positive instance alters the set S, each altered
hyplAthesis must be compared against all past negative instances. The term
0(p) arises because each revised element of S must be tested to determine
Whether it is more general than another element of S.

Since the version space strategy computes both S and G, no training
instances need be saved, and space complexity is 0(s+g). Notice that for this
strategy, processing time grows linearly with the number of training instances
(p+n), whereas for the other two strategies time grows as the product pn.
However, in this case processing time grows as the square of both S and G.

536 / ADVANCED TOPICS

Section 4.5

In interpreting the above results it is important to know how the sizes
of the sets S and G vary over the training sequence. For the generalization
languages for. which the version space strategy has been implemented, these
sets have been observed to first grow in size, then level off, and finally
decrease in size as the version space converges toward the correct description
of the target generalization. Under such conditions, the dominant term in
determining time complexity is the first term in each of the expressions in
table 1. The exact sizes of the sets S and G depend, of course, upon the
nature of the generalization language.

A further consideration in determining overall efficiency which has not
been considered here is the effect of ordering and selection of training
instances. Short, informative training sequences certainly lower demand for
computer resources, as well as demands on the supplier of these instances. By
investing some time in ordering or selecting training instances, it is
possible that a program might lower its total resource requirements. A
related issue is the (not well understood) possibility of controlling the
sizes of the sets S and G by prudent ordering and selection of training
instances.

5 Other Generalization Strategies

The generalization strategies surveyed in the previous section are data-
driven in the sense that revisions to current hypotheses are made in response
to -- and directed by -- observed discrepancies with the data. This section
notes two other classes of generalization strategies that have been used
successfully in various domains.

Generate-and-Test Strategies

Data-driven search involves considering discrepancies between the current
hypotheses and available data, in order to determine appropriate revisions to
the current hypotheses. An alternative class of search strategies, which we
shall call generate-and-test strategies, generates new hypotheses according to
a predetermined procedure that is independent of the input data6 . Each newly
generated hypothesis is then tested against the entire set of available
training data, and identified as either an acceptable generalization, a node
to be expanded further by the generator, or a node to be pruned from the
search.

Generate-and-test strategies typically consider all available training
instances at each step of the search to test newly generated hypotheses.
Because they judge the generated hypotheses by their performance over many
instances, rather than making decisions based upon individual training
instances, they can accommodate quite severe errors in the training data. On
the other hand, generate-and-test strategies are not well suited to
incremental processing of training data -- should unexpected data become

6 This distinction between generate-and-test and data-driven methods is
similar to the distinction in [Simon, 1973] between "the rule induction
version of the generate and test method" and the "rule induction version of
the heuristic search method".

GENERALIZATION As SEARCH / 537

Section 5.1

available, the generate-and-test search may have to be completely reexecuted.
Furthermore, since the generation of hypotheses is not influenced by the data,
the search can be quite branchy and expensive.

An interesting combination of generate-and-test and data-driven search
Procedures is found in the Meta-DENDRAL program [Buchanan, 1978]. One portion
of the program, called RULEGEN [Buchanan, 1978], conducts a coarse, generate-
and-test search to form approximate rules of mass spectroscopy based upon
highly unreliable training instances. These approximate rules are then used
as starting points for a data-driven strategy (either RULEMOD [Buchanan, 1978],
or VS [Mitchell, 1978]) which conducts a more detailed search to refine each
rule, using both the original training data and additional available data.
Thus, the advantages of generate-and-test search for dealing with inconsistent
data are blended with the advantages of data-driven search for a more focused
search based on incremental use of the data.

Some generate-and-test strategies for generalization follow the partial
ordering of the hypothesis space to control hypothesis generation. [Banerji,
1980] describes and compares two such generalization strategies - one that
searches from general to specific hypotheses, and one that searches from
specific to general. Figure 12 shows the relationship among the search
strategies employed by several existing generalization programs.

Generalization Strategies

Data-driven

I \\\\\
Depth Breadth Version
First First Space
Search Search Strategy

[Winston]

Rulemod
[Buchanan]

Thoth
[Vere]

Sprouter
[Hayes-Roth]

Generate-and-Test

//////
General

to
Specific

Specific
to

General

LEX, VS Rulegen Confucius
[Mitchell] [Buchanan] [Cohen]

Induce 1.2
[Michalski]

Figure 12. Some Classes of Search Strategies for Generalization.

538 / ADVANCED TOPICS

Section 5.1

5.2 Statistical Pattern Recognition

The field of statistical pattern recognition deals with one important
subclass of generalization problems. In this subclass, the instances are
represented by points in n-space, and the generalizations are represented by
decision surfaces in n-space (e.g., hyperplanes, polynomials of specified
degree). The matching predicate corresponds to determining whether a given
point (instance) lies on one side or another of a given decision surface
(generalization). The field of Statistical Pattern Recognition has developed
very good generalization methocis for particular classes of decision surfaces.
Many of these methods are relatively insensitive to errors in the data and
some have well understood statistical convergence properties, under certain
assumptions about the probability distribution of input instances.

In contrast to work in Statistical Pattern Recognition, work on the
generalization problem within Artificial Intelligence has focused on problems
involving a different class of instance and generalization languages. These
languages are incompatible with numerically oriented representations that
describe objects as feature vectors in n-space. For example, Winston's program
[Winston, 1975] for learning descriptions of simple block structures such as
arches and towers, represents instance block structures in terms of their
component blocks and relationships among these. In this domain, the natural
representation for instances is a generalized graph rather than a feature
vector. Even the simple generalization problem used as an example in this
paper cannot be mapped directly into points and decision surfaces in n-space.
Many of the methods of Statistical Pattern Recognition are specialized to
numerical feature vector representations, and therefore cannot be applied to
these other representations. As a result, methods such as those described in
this paper have been developed to handle these new representations.

6 Further Issues

This section notes several issues suggested by the preceding discussion,
which relate to significant open problems in machine learning.

6.1 The Generalization Language

In order to compare approaches that employ different generalization
languages, we have described strategies and stated results in terms
independent of the generalization language used. The choice of a
generalization language does, however, have a major influence on the
capabilities and efficiency of the learning system.

In choosing a generalization language, the designer fixes the domain of
generalizations which the program may describe, and therefore learn. Most
current systems employ generalization languages that are biased in the sense
that they are capable of representing only some of the possible sets of
describable instances. With the choice of a generalization language, the
system designer builds in his biases concerning useful and irrelevant
generalizations in the domain. This bias constitutes both a strength and a
weakness for the system: if the bias is inappropriate, it can prevent the
system from ever inferring correct generalizations. If the bias is

GENERALIZATION As SEARCH / 539

Section 6.1

appropriate, it can provide the basis for important inductive leaps beyond
information directly available from the training instances. The effect of a
biased generalization language on classifying unobserved instances was
illustrated in the earlier section on utilizing partially learned
generalizations. [Mitchell, 1980a] provides a general discussion of the
importance of bias in learning.

The choice of "good" generalization languages, and the impact of this
choice on the selection of a good learning strategy is poorly understood at
present. Methods by which a program could automatically detect and repair
deficiencies in its generalization language would represent a significant
advance in this field.

In addition to influencing system capabilities, the choice of
generalization language also has a strong influence on the resource
requirements of the system. For example, the complexity of the matching
predicate for generalizations represented by graphs can be exponential, while
the complexity for generalizations represented by feature vectors is linear.
Secondly, a language for which the general-to-specific ordering is shallow and
branchy will typically yield larger sets S and G than a language in which the
ordering is narrow but deep. In particular, the introduction of disjunction
into the generalization language greatly increases the branching in the
partial ordering, thereby aggravating the combinatorial explosion faced by the
learning program.

6.2 Using Expectations and Prior Knowledge

In this discussion we defined "acceptable" generalizations primarily in
terms of consistency with the training data. Generalizations may also be
Judged in terms of consistency with prior knowledge or expectations. As noted
above, one method of imposing such expectation-based, or model-based
constraints on a learning system is to build them into the generalization
language. A second method is to build them into the generator of hypotheses,
as is done in some generate-and-test searches. In most existing programs the
blending of expectations together with constraints imposed by the training
data is either done in an ad hoc manner or not done at all. In complex
systems the constraints imposed by prior knowledge may be critical to making
appropriate inductive leaps, and to controlling the combinatorics inherent in
learning. Developing general methods for combining prior knowledge
effectively with training data to constrain learning is a significant open
problem.

6.3. Inconsistency

In order to simplify the analysis attempted above, it has been necessary
to consider only problems in which the generalization language contains some
generalization consistent with every training instance. This condition might
not be satisfied if either (1) the generalization language is insufficient to
describe the target generalization, or (2) the training instances contain
errors. In general, there will be no way for the program to determine which
of these two problems is the cause of the inconsistency. In such cases, the
learning program must be able to detect inconsistency, and recover from it in
a reasonable way.

540 / ADVANCED TOPICS

Section 621

Statistical methods typically deal with inconsistency better than the
descriptive methods considered here. As noted earlier, generate-and-test
search procedures appear better suited to deal with inconsistency since they
base the selection among alternative hypotheses on sets of training instances
rather than single instances. Some data-driven strategies have been extended
to deal with inconsistent data [Hayes-Roth, 1974], [Mitchell, 1978].
Inconsistency is unavoidable in many real-world applications. Well understood
methods for learning in the presence of such inconsistency are needed.

6.4 Partially Learned Generalizations

As a practical matter, it is essential to develop methods for
representing and reasoning about "partially" learned generalizations. It is
unlikely in realistic applications that sufficient training data will be
available to fully determine every needed generalization. Therefore, the
problem of representing and utilizing incompletely learned generalizations is
critical to using generalization methods for practical applications. The
techniques noted above for dealing with this issue constitute an initial
approach to the problem. Extending these ideas to take advantage of prior
knowledge of the domain, and to operate in the presence of inconsistency are
important open problems.

Summary

The problem of generalization may be viewed as a search problem involving
a large hypothesis space of possible generalizations. The process of
generalization can be viewed as examining this space under constraints imposed
by the training instances, as well as prior knowledge and expectations. In
this light, it is informative to characterize alternative approaches to
generalization in terms of the strategy that each employs in examining this
hypothesis space.

A general-to-specific partial ordering gives structure to the hypothesis
space for generalization problems. Several data-directed generalization
strategies have been described and compared in terms of the way in which they
organize the search relative to this partial ordering. This examination leads
to a comparison of their relative capabilities and computational complexity,
as well as to a useful perspective on generalization and significant topics
for future work.

8 Acknowledgments

The ideas presented in this paper have evolved over discussions with many
people. John S. Brown, Bruce Buchanan, John Burge, Rick Hayes-Roth, and Nils
Nilsson have provided especially useful comments on various drafts of this
paper. This work has been supported by NIH under grant RR-643-09, and by NSF
under grant MCS80-08889.

REFERENCES / 541

References

[Banerji, 1980]
Banerji, R.B., and T.M. Mitchell, Description languages and learning
algorithms: A paradigm for comparison. International Journal of Policy
Analysis and Information Systems, special issue on Knowledge Acquisition
and Induction, vol. 4, p. 197, 1980.

[Brown, 1973]
Brown, J. S., Steps toward automatic theory formation. Procedings of
IJCAI3, Stanford University, 1973, pp. 20-23.

[Bruner, 1956]
Bruner, J. S., J. J. Goodnow, and G. A. Austin, A Study of Thinking.
Wiley, New York, 1956.

[Buchanan, 1978]
Buchanan B. G., and T. M. Mitchell, Model-directed learning of production
rules, In Pattern-Directed Inference Systems (D. A. Waterman and F.
Hayes-Roth, Eds.), Academic Press, New York, 1978.

[Hayes-Roth, 1974]
Hayes-Roth, F., Schematic classification problems and their solution.
Pattern Recognition, 6, pp. 105-113 (1974).

[Hayes-Roth, 1975]
Hayes-Roth F., and D Mostow, An automatically compilable recognition
network for structured patterns. IJCAI4, Cambridge, MA, September 1975,
pp. 356-362.

[Hunt, 1975]
Hunt, E. B., Artificial Intelligence. Academic Press, New York, 1975.

[Michalski, 1973]
Michalski, R. S., AQVAL/1 - Computer implementation of a variable valued
logic system VL1 and examples of its application to pattern recognition.
Procedings 1st International Joint Conference on Pattern Recognition,
Washington, D.C., 1973, pp. 3-17.

[Minsky, 1969]
Minsky M., and S. Papert, Perceptrons, MIT Press, Cambridge, Mass., 1969.

[Mitchell, 1977]
Mitchell, T. M., Version Spaces: A candidate elimination approach to rule
learning. IJCA1/2, MIT, Cambridge, MA, August 1977, pp. 305-310.

[Mitchell, 1978]
Mitchell, T. M., Version Spaces: An approach to concept learning. Ph.D.
thesis, Stanford University, December, 1978. Also Stanford CS report
STAN-CS-78-711, HPP-79-2.

542 / REFERENCES

[Mitchell, 1980]
Mitchell, T.M., P.E., Utgoff, and R.B. Banerji, Learning problem-solving
heuristics by experimentation. Proceedings of the Workshop on Machine
Learning, C-MU, July, 1980.

[Mitchell, 1980a]
Mitchell, T.M., The need for biases in learning generalizations. Rutgers
Computer Science Technical Report CBM-TR-117.

Nilsson 1965]
Nilsson, N.J., Learning Machines McGraw-Hill, New York, 1965.

[Plotkin, 1970]
Plotkin, G. D. A note on inductive generalization, Machine Intelligence 5
(B. Meltzer and D. Michie, Eds.), Edinburgh University Press, Edinburgh,
1970, pp. 153-163.

[Popplestone, 1970]
Popplestone, R. J., An Experiment in Automatic Induction. Machine
Intelligence - 5 (B. Meltzer and D. Michie, Eds.), Edinburgh University
Press, 1970, pp. 204-215.

[Simon, 1973]
Simon H. A., and G. Lea, Problem solving and rule induction: a unified
view. Knowledge and Cognition (L.W. Gregg, Ed.), Lawrence Erlbaum
Associates, Potomac, Maryland, 1974, pp. 105-127.

[Vere, 1975]
Vere, S. A., Induction of concepts in the predicate calculus. IJCAI4,
Tbilisi, USSR, 1975, pp. 281-287.

[Vere, 1978]
Vere, S. A., Inductive learning of relational productions. Pattern-
Directed Inference Systems (D.A. Waterman and F. Hayes-Roth, Eds.),
Academic Press, New York, 1978.

[Waterman, 1970]
Waterman, D. A., Generalization learning techniques for automating the
learning of heuristics. Artificial Intelligence, 1(1,2), pp. 121-170
(1970).

[Winston, 1975]
Winston, P. H., (Ed.), The Psychology of Computer Vision, McGraw-Hill,
New York, 1975.

