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THE FRAME PROBLEM

One of the central principles upon which intelligent devices seem to operate is
that of maintaining internal models of their external environments. In
artificial systems which have been constructed to date various representations
for this internal model have been used; but in every nontrivial case the need
arises to consider the effect, upon the structure of the model, of the perfor-
mance by the system of actions in the external world, so that their potential
consequences may be reckoned.

How difficult this is, depends upon both the complexity of the model and
its method of representation. In particular, it is usually easy when the
problem is posed in the classical heuristic search paradigm, and the data
structures used to represent static configurations of the puzzle are relatively
unproblematic (arrays, lists, and so on). For in this case [see, for instance,
Manna (1970) and Fikes (1970) for examples] one can use the ordinary
device of assignment to model the changes in the world which result from the
performance of actions. The lack of side-effects reflects the simplicity of the
physics which such models embody. This limitation to elementary forms of
interaction is not, of course, intrinsic to the heuristic search method; but
when more complex models are constructed it becomes less trivial to pursue
the consequences of performing an action. The use of assignment to portray
the doing of actions does seem to presuppose a trivial physics.

Another method of constructing microcosms is to use a logical language to
describe the real world (McCarthy 1959, McCarthy and Hayes 1969). This
approach is more general than the heuristic search method (but the latter —
when it has sufficient expressive power — wins at present by its computational
advantage). The key idea is to use expressions denoting situations to separate
out assertions according to which (static) state of the world they purport to
describe. Assertions mentioning several different situations can then be used to
describe dynamical laws which move us from one situation to another. This
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use of situations ensures that we do not fall into confusing an assertion made
on one occasion with a similar assertion made about a different state of
affairs; and this is clearly desirable. But in some ways the resulting sharp
separations between states of affairs are an embarrassment. For if we dis-
tinguish two situations s; and sz, then from the fact, if such it be, that a
predicate p is true of s;, nothing whatever follows concerning s;. And this is
true even when s; is directly associated with s;. Say s; results from s; by the
performance of some action: s;=do(a, s;) then no matter how remote —
speaking intuitively — the connection between the property p and the action a,
it still does not follow that p is true of s,. If we want it to so follow we must
state this explicitly. Now, unfortunately, there are innumerable facts which
might remain unchanged when actions are performed. So instead of writing a
‘law of motion’ in the form A(s)>B(do(a,s)) where A and B are fairly
short expressions, we are apparently obliged to list systematically all conceiv-
able facts which are not changed. So that the law looks more like
(Ci(s)& ... &C,(s)&A(s))>. '

Ci(do(a,s))& ... &C,(do(a, s))&B(do(a,s))
for some very large n. This works for small problems (such as the familiar
hungry anthropoid), but these are usually better formalized in the heuristic
search paradigm anyway. It is clearly going to become impractical in any
elaborate system. » ‘

That is the frame problem. Several points can be made. First, it should be
clear that the underlying problem is not peculiar to the ‘logical language’
approach to model-building. Rather, it is a fundamental difficulty — delineat-
ing precisely the ways in which actions affect a complicated world — which
appears in the above guise in linguistic models, but which appears every-
where in some form.

Secondly, it is not, contrary to opinion, just an implementation difficulty.
The problem is not simply that long laws give rise to inefficiencies in the
theorem-proving process (although of course they do, and I would not want
to disparage such an argument against them). The problem runs much
deeper. First of all, it is not clear whether we could in all cases write down
adequate ‘long laws’. Whether or no some assertion is affected by some action
may not be determinable once for all. It may depend upon a detailed analysis
of the situation; that is, in the present context, upon a long deduction. It is
not clear how such deductions could proceed within a first-order (even
modal) logic. Moreover, this method of getting round the difficulty is essen-
tially static. Suppose we had a set of ‘long laws’ which were adequate for the
theory so far. Now suppose a new predicate (say) is introduced. Immediately
all the old laws become inadequate: for they do not specify what happens
to assertions involving the new predicate when actions are performed.

Thirdly, the frame problem is distinct from what may be termed the
prediction problem; that is, that any prediction which the system makes is
liable to be subsequently contradicted by its immediate experience. Thus
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some rational way of controlling the editing and updating of its belief
structure is needed, and this can become very difficult to manage properly.
This problem has been confused with the frame problem, perhaps because it
arises from inadequacies in the world-model, and the frame problem often
gives rise to such inadequacies. But they do also have a curious relationship,
as follows. Suppose we decided to end the frame problem for ever by
decreeing that all properties are unchanged by all actions, except those
explicitly mentioned in the laws of motion (that is, the ‘short’ laws). Then
it is extremely likely that the resulting logic would rapidly generate incon-
sistencies, for changes that were forced to occur would yield consequences
which contradicted the blanket assumption. Now if one regards this assump-
tion as a prediction on the meta-level (a prediction that it is consistent to
assume that such changes will not take place), then finding a direct contradic-
tion seems analogous to making a direct observation which condemns some
prediction about the world. Viewed in this way, the blanket assumption of no
change is a (rather simplistic) model of the system itself. The system plays the
role, for this model, of the real world. While this observation is rather
interesting, I shall not explore it further, other than to remark that a good
solution to the prediction problem would clearly yield a partial solution to
the frame problem [this is the sort of approach mentioned in Part 4 of
McCarthy and Hayes (1969)].

Several partial solutions to the frame problem have been suggested. One is
the use of frames (McCarthy and Hayes 1969). A frame is a classification of
statements into groups which are independent in the sense that an action may
alter members of one group without affecting any of the other groups. For
instance, statements about colours can be put in a separate group from
statements about location. Unfortunately the classification can in general
only be rather coarse — as the above example indicates. Thus this goes only a
little way towards solving the problem.

There are simple situations where a frame can be used to good effect. These
are precisely the models which can readily be put into the form described
earlier, so that the effects of actions are easily described by assignment state-
ments. This brings us to the second partial solution to the frame problem:
to consider only sufficiently simple world-models that the assignment method
might always be adequate. This is indeed very popular just now, since many
of the classical puzzles can be described this way. It underlies all the projects
which propose the heuristic search paradigm, or its latest variant, the non-
deterministic algorithm (Foster and Elcock 1969, Fikes 1970, Manna 1970)
as the model representation. These all assume an array-like storage system
and are thus wedded to the assignment method of representing change. But,
as I have argued above, this is not going to be adequate for more complex
domains. Cousider, for instance, a cup on a saucer. If we move the saucer,
the cup moves too: but if we move the cup, the saucer stays where it is. It is
not difficult to invent arbitrarily complicated examples of this kind.
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There are other suggested solutions or partial solutions in the literature,
but none of them seem to be capable of direct use at present (Minsky 1961,
McCarthy and Hayes 1969, Part 3).

The weakness of all these methods is that they are too inflexible. They do
not allow interaction between the details of the world-model and the changes
resulting from the performance of actions. Thus they impose rigid classifica-
tions which are therefore either weak, or else admit only a trivial physics. It is
the aim of this paper to provide a more flexible interface between the physics
of the world-model and the formal behaviour of the logic.

ACTIONS AND CAUSALITY

The basic idea is this. The only way of moving from one situation to another
is by performing an action. To each action there corresponds a certain (small)
set of individuals, those which are directly affected by the action. When the
action is performed, these individuals associated with it are liable to change
their properties. It would be pleasant if we could assert that all other indi-
viduals have all their properties unchanged: but this is to assume too much.
For individuals may be connected together in all sorts of ways, and actions
may touch off long chains of cause and effect. We shall assume that this causal
connection between individuals is axiomatized by a binary relation written
‘—’, Thus (a—b) is to mean that some property of (the value of some
predicate or function applied to) a is causally related to some property of b,
so that if the latter changes the former is liable to.

The utility of this is that when we can prove that ~ (a—b), then we know
that no change to b will cause any change to a. This immediately suggests a
rule of inference which can take advantage of such facts. For if we know that
a does not bear the — relation to any of the individuals directly affected by an
action, then we can infer that all properties of a are preserved during the
performance of the action.

This approach to the frame problem makes few presuppositions. The two
most important are that the world is deterministic, that is, changes do not
occur spontaneously; and that there is only one agent in the universe.

This latter constraint is not essential and the theory could be elaborated to
allow several agents: but with the important proviso that we have at present
no idea how to handle the simultaneous performance of actions by two or
more individuals.

Before progressing to details it seems appropriate to mention some further
weaknesses. I do not consider any of the problems which arise when one
allows actions to have the structure of programs, with loops, and so on
(McCarthy and Hayes 1969). Also I do not consider the problems arising
from attempting to mix talk of actions with tensed statements; nor with any ’
other modal operators. The whole theory will be couched in ordinary first-
order logic. This is deliberate, as these extras would make the whole system
very complicated and would obscure the point. And in any case, I do not
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know how best to handle these problems. In particular, the whole field of
computation theory seems to be very active at present, and I imagine that
most of the current theories could be adapted to the present system.

These matters will be taken up again later.

LOGICAL CONVENTIONS AND NOTATION

In general we shall follow the version of first-order logic described in
Schoenfield’s textbook (1967), except that our theories will be sorted (see
below). We shall also follow Schoenfield’s notation, so that A, B, C, etc.
denote arbitrary statements, u, v, arbitrary wffs; p, q, predicate symbols; f, g,
function symbols; e, constant symbols (that is, function symbols of degree 0);
X, Y, Z, variables; a, b, ¢, d, terms. Also h denotes an arbitrary nonlogical
symbol. We shall, however, use the symbols ~, v, &, o, = for the logical
connectives, reserving the symbol — for the causality relation.

We shall also use the Church dot convention and the usual theorem-proving
terminology: an atom is a predicate with arguments; a literal is an atom or its
negation; a ground wif is one without variables. An occurrence of a term
(with range {s}: see below) in an expression is maximal if the term does not
occur as a proper subterm of any term (with the same range) occurring in the
expression.

The expression ux[a] denotes the result of substituting a for x in u. We may
omit the x when no confusion will result, so that u[a] denotes an expression
containing a in which all occurrences of a are distinguished.

A theory T is (as usual)

(1) a finite set of nonlogical symbols (predicate and function symbols).
(2) a denumerable set of nonlogical axioms, each of which is a wf statement
written using the nonlogical symbols and the equality symbol =.
(3) the set of logical axioms appropriate to the vocabulary.
A theory T is sorted when there is
(1) a finite set Sy of sorts.
(2) for each nonlogical symbol h of 7, a partial function ho of the same
degree from Sy to Sy.
(3) a total function=0 from S7 xSy to Sr.

Suppose ¢ is a mapping from variables to sorts: then clearly we can
- extend ¢ inductively to a partial mapping ¢ from terms and atoms to sorts.
As ¢ varies through such mappings, ¢9(a) varies through Sy. Let a be a term
occurring in u, then the range of a in u is the subset of S:

{#°(a)| ¢ is a mapping from variables to sorts and ¢0(v) is defined for
every term or atom v occurring in u},

The range of a term a is the range of a in a. Clearly, the range of a ground
term is a singleton.

In the usual recursive definition of a wif we insist that every subterm has
a ronempty range in the wif. If Ox . u is a wff, where Q is some quantifier,
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then the quantification is understood to be relativized to the range of x in u.

The idea is that each function symbol f has certain combinations of sorts
allowable for its arguments, and the sort of its value is a function of the sorts
of its arguments. When a combination is not allowable we make f0 be
undefined: hence the f0 are partial functions. In the case of predicates, we
do not need to specify the sort of the value, so we say that a set of arguments
are of sorts acceptable to p just in case po is defined, regardless of its actual
value.

This notion of sorts is the most general one I have seen. Usually we shall
not need to use its full power.

There is no difficulty in mechanizing such a sort structure provided that the
functions ho are somehow conveyed to the machine in an easily computable
form. Also, it does not materially affect the formal behaviour of the logic.
The use of the expression u,[a] will be taken to imply that the wiff being
mentioned is well formed, as this is no longer automatic. The range cf a
term b in u,[a] is a subset of its range in u. We need to add axioms enabling
us to infer that ~(a=b) whenever the ranges of a and b in the equality are
disjoint. This can be done by using classifying predicates, that is, for each
s e S, a unary predicate symbol P,, such that P{ is true everywhere. P, is
to be true just when its argument has sort s, but of course this is a constraint
upon the semantics. We shall assume that our theories contain classifying
predicates.

The P, are logical symbols. However it is clear that to any sorted theory
with classifying predicates there corresponds an unsorted theory in which
the classifying predicates are ordinary nonlogical symbols. The unsorted
theory will in general be much Jarger (more symbols and more axioms) than
the sorted theory.

Semantics

A structure for T is:
(1) a nonempty set |/,| for each se.S;. We define ].dl—ul.szﬁ’ | as the
universe of /.
(2) for each function symbol f of T, with degree n, a partial function £y
from |2/ |" to | &]. '

If x; €|, | for 1<i<n, then fu(x1,. . ., Xp) € [ H1o(ss -« o3 5]
provided f0(sy, . . ., 5,) is defined ; otherwise fu(x1, . . ., X,) is to be undefined.
(3) for the equality symbol, the predicate = which is true when its arguments
are equal and false otherwise.
(4) for each classifying predicate P,, the monadic predicate P, which is true
in | o,| and false everywhere else in | &/]. ‘
(5) for each predicate symbol p of 7, with degree n, a partial predicate p«
on||"Ifx, €|, | for 1<1<n,thcnp,.,(x1, « o0y X,) is defined iff po(sy, . . .,

S,) is.
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We shall adjoin to T, following Schoenfield, a new constant for each element
of ||, called the name of the individual (i and j will denote names). The
range of iis to be {s} when the individual named by i is in | &/].

With these modifications, the rest of the theory is as in Schoenfield (1967,
p. 19). The above definition of the range of a name ensures that the quanti-
fiers receive the proper meaning. In the recursive definition of the truthvalue
of a closed formula one must remember that B,[i] must be well formed.

The usual idea of the value uy of a closed wif u is assumed. It is easy to
show that u, is always defined and belongs to |s/,|, where {s} is the range
of u. We also assume the notions of ¢ being valid in s/, o/ being a model of
T, (every axiom of T'is valid in &), and A being valid (A is valid in every &/).

A detailed account of first-order sorted logic is in preparation.

STATIC AND KINEMATIC THEORIES
A sorted first-order theory T will be called a static theory just in case it has a
binary predicate — and the following axioms
Vx(x—x) -
Vxyz . ((x-p) &(y—2))>(x-2) (=2)
That is, — is a quasi-ordering.

A static theory is intended to provide the means of describing a fixed state
of affairs. There are not to be any situations mentioned in the statics language.
Situations and actions will be introduced into the kinematic theories, described
below.

No constraints are imposed upon the statics theory other than it provide
statements of causality. This causality relation will be used by the kinematic
theory to infer that certain actions do not change the propertics of certain
objects.

Bearing in mind that (a—b) means that some property of a is liable to
change iff some property of b changes, it is I think obvious that axioms
(1) and (—2) are intuitively true. One might ask whether any further
conditions can be imposed upon the relation. In figure 1 we illustrate counter-
examples to two of the more plausible of such conjectures. These are both
constructed in a world of toy building blocks.

Let T be a static theory, and let \¥ be the set of nonlogical symbols of T.
Let O be a nonempty subset of . We shall define the notion cf a kinematic
extension K (=Ke(T)) of T on © (or simply a kinematic theory).

First, the sorts of K are to be those of T plus the two new ones, situation
and action. The logical symbols of K are to be those of T plus the classifying

"predicates Piiuarion and Pacriont We assume that equality is extended to the new
sorts, Now, let h be a nonlogical symbol of T with degree », but not —.
Then h is a new nonlogical symbol of degree n+1 whose sort function ho is
defined:

RO(S1y o o vy Sus1)=hO(s1, . o o 8,) if Suy1 is situation;
=undefined otherwise.
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Figure 1, (a) —is not a partial ordering (((x—>y) &(y—>z))>x->z); (b) another
example; (¢) — does not have sups or infs,

If h is —, let h be a three-place predicate letter whose sort function is
defined just when the first argument is an appropriate sort of 7, the second
argument an appropriate sort of T or action, and the third argument is
situation. We shall use — for this new symbol also and write (a—b, ¢)

rather than —(a, b, ¢).
Let © be {h: he ®}. Then the nonlogical symbols of K are
(Y-0)uoud
where @ is some set of new symbols containing the binary function symbol -
do with
do®(action, situation)= situation
do%(s1, s;) =undefined otherwise.
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If h € ® we insist that ho is undefined whenever any but its Jast argument is
situation. ’

If a is a term of K whose range contains some sort other than situation or
action we shall call a a T-term.

A term a occurs crucially in a wff u when u contains h(ay, . . ., a,, b), where
b has range {situation} in u, and a is h(ay, ..., a,, b) or is some a,.

Suppose u is a wff of T containing some symbols in ©, and let a be a term
of K whose range includes situation. Then u [a] denotes the wff of K obtained
by replacing every he © occurring in u by h, and writing a in the final
argument place of each such h. More generally u[a] will denote some wff of
K in which every occurrence of a term with range {situation} in u is an occur-
rence of a.

The nonlogical axioms of X are to be

(1) Every axiom of T which is a wff of K,

(2) For every other axiom A of T, the axiom VxA[x].
(3) A set of wif containing some symbols from &.

(4) The axiom schema (—3):

Aly]= - (~(a[y]-%x V) &. .. &~(a,[y]-x y))>A[do(x,¥)]
where A is a literal and ay, . . ., a, are all the T-terms which occur crucially
in A.

This completes the definition of Ke(T).

The set © comprises the names of all the properties whose value can be
affected by the performance of actions. The set ® may contain, for instance,
predicates of actions and functions for constructing actions from objects or
other actions. The inclusion of the axioms mentioned in (1) and (2) above
ensures that if A is a theorem of T'then either A or VxA [x ] is a theorem of K.
This is the sense in which X is an extension of 7. The axioms mentioned in
(3) are intended to include whatever theory of actions is thought appropriate
and also laws of motion, that is, assertions of the form:

(A[a]&B[b])>C[do(a,b)].
It will be by compounding such laws that plans are formed. As was remarked
earlier, the only plans which can be constructed in this logic are simple
unbranching sequences of actions. The schema (—3) is the heart of the system.
. It allows us to infer that facts do not change when actions are performed.

Extending—3
It might be thought that the schema (—3) was unduly restrictive in its
insistence upon A being a literal. We shall rectify this at once.

It would be pleasant if we could allow A to be any statement, but this is not
possible. The difficulty arises over negation. Let us say that A is in
~ —miniscope form when it contains negation signs only in literals, and other-
wise contains only the connectives & and v. Every A is equivalent to some
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B in ~ —miniscope form. It will turn out that (—3) can be generalized to
statements in ~ —miniscope form, but that these statements undergo a certain
transformation, as follows.

Let a and b be terms whose ranges contain respectively action and situation,
and let A be a wif of K in ~ —miniscope form. Then A, is the wif which
results when every quantifier Qx .. .in A, where x is a T-term in A, is replaced
by

Ox((ci[b]—a,b)v ... v(c,[b]-a,b))v ...
where ¢y, . . ., ¢, are all those T-terms which:
(1) occur crucially in the scope of Q;
(2) are free in the scope of Q; and
(3) contain x.
This is the transformation we wanted to define. Although the description is
somewhat complicated the idea is simple: every quantification over objects
(as opposed to situations or actions) is restricted to those objects which are
not connected to the action a in situation b. The second and third conditions
on the ¢; ensure that scope conventions are not violated. If A is in
~ — miniscope form, so is Afp).

We can now state and prove the first consequence of (—3).

Lemma 1
Suppose A [x ] is in ~ —miniscope form, and let ¢y, . . ., ¢, be all the T-terms
which occur crucially and are free in A. Then

Alx]= . ¥y. ((ci=y, X))V ... v (c,»Y, X)) V(A[do(y, x) Dby
is a theorem of K.

The proof is by induction on the length of A. If A is a literal then the result
follows directly from (—3). If A is (B& C) or (B v C) then the result follows
by propositional calculus. So suppose 4 is Ox.B. Let ¢y, .. ., ¢, be all the
T-terms which occur crucially and are free in B, and let CJ be ((¢;~y, X)V ...
v (¢;-y, X)). Then the induction hypothesis is

KiB[x]> .Vy.Civ(B[do(y, x) D&x
where without losing generality we may take x and y distinct from c. Then by
the distribution rule (Schoenfield, page 32) _
Kr(QzB[x])> .QzVy.Civ(B[do(y,x)] )0
Now suppose without loss of generality that ¢, ..., c, are all those ¢,
which do not contain z. Then the consequent of the above implication implies
Vy . CTV QZ . C;+1V(Bﬂ:d0(y’ x):ﬂ)‘(“y,x)
thatis, Vy.Cjv(Qz.B[do(y,x)])&. by definition of *
thatis, Vy.C7v(A[do(y,x)])&.0
We have proved
KrA[x]= . VyCrv(A[do(y, x)]& .
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where ¢y, . . ., ¢, are all those T-terms which occur crucially and are free in A,

QED
Another apparent weakness of (—3) is that it allows us to infer that facts
do not change, but not directly that values of functions do not change.
However, (—3) has the further consequence:

Lemma 2

Let a= a[[x]] be a T-term of K, and let a,,...,a, be all the 7-terms, other
than a, occurring crucially in a. Then

Vy. (a-y, X)v(a;=y, X)V ... v(a,~y, x)v(a=a[do(y, x)])
is a theorem of K.
Proof. Let z be a variable which does not occur in a.

Then an instance of (—3) is:
(a=z)> .Vy.(a-y, x)v(@a->y, xX)v ...
v(a,~y, x)v(a[do(y, x)]=2)
and the instance of this obtained by substituting a for z yields the result.
QED

Making definitions

A certain amount of care is necessary when introducing new non-logical
symbols into a kinematic theory. The difficulty is that the schema (—3) will
apply to statements involving the new symbols. Thus in extending the
vocabulary of a kinematic theory one inevitably has to allow new axioms to
be produced. For instance, consider the following set of axioms:

P(f(a), b) (1)
~P(f(a), do(c, b)) (2)
~(a—-c, b) (3)
These are consistent But if we add
Q(x)=P(f(x)) (4)
where Q is a new predicate letter, then we can easily derlvc a contradiction:
0(a, b) from (1) and (4) (5)
Q(a,do(c, b)) from (5), (3) and (—3) (6)
~ Q(a, do(c, b)) from (2) and (4) 7

Clearly, the contradiction arises because the definition suppresses a term
upon which the value of the definiens depends.

In ordinary first-order logic we have the theorem that if a theory T is
consistent, it remains so when we introduce a new predicate symbol q and the
axiom q(xy, ..., X,)=A, where A is some statement not containing q. In a
kinematic theory this theorem is still true provided that A contains no
expressions with range {situation}. In the general case we have a weaker
theorem:
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Lemma 3

If a kinematic theory is consistent then so is the theory obtained by adding a
new predicate symbol q and the axiom
3y (Paction(y) &((21-y, X) Vv ... v (a,~y, X)) V.
q(X1, ... X, X)=A[X]

where a; are all the terms which occur crucially in A but not in q(xy, ...,
X, X).

We shall omit the proof, which involves checking that no contradiction can
be derived from this axiom using (—3).

I have declared that the three axioms displayed above are consistent.
However, to substantiate this it will be necessary to define an appropriate
notion of semantics for kinematic theories. This will now be done,

Configurations and scenarios
Let T be a static theory and Ke(T)=K a kinematic extension of it. We shall
assume the notational conventions already used above. A model & of T
is called a configuration. It represents an actual static state of affairs. K is
designed to reason about just such arrangements and how actions change
one into another. It would be natural for expressions with range {situation}
to denote configurations, and expressions with range {action} to denote
functions from configurations to configurations. We shall define structures
for K which have these properties.

A scenario &£ for Ke(T) is
1. A nonempty set | &,| for each sort s of T.

We define | & |=U| | to be the universe of /.
2. For each nonlogical symbol h in ¥ — O, a function or predicate h.s of the
appropriate degree in | &/|. ‘
3. A set S, of interpretations of T. Each s € S, has universe | /|, and the
interpretation of he W— 0 is hy specified above. Let hS, be the function or
predicate denoted by hin s € S,
4. A set A of functions from S to S..
5. A function Ay from A X S, into subsets of | /],
6. For each nonlogical symbol in ®, a function or predicate of the appro-
priate degree in |&f|UAxUSy, Where Ay contains all denotata of action
expressions.
7. For the logical predicates = and P,, the obvious predicates on | &/ |UA L
S :

We have not specified any special interpretation for nonlogical symbols in
0,, —, or do. However,
8. do denotes the function which takes ae A and s € Sy into a(s) € Su.

9. If h e ®%, then h denotes the function which takes xy, ..., x, € | /| and
se€Syinto b3 (x1,. .., X,).
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10. —denotes that predicate which is true of {xi, x2, x3> when

(a) =3 (x1, x2) is true and x3 € | | '
or

(b) X1 € Ad(.x), X3) and X2 € Ad.

(Notice here that — in (a) is a symbol of T rather than of X.)

It should be clear that a scenario has all the structure which one would
expect in an interpretation of K. The function A is intended to be the link
between objects (members of |&/|) and actions: x e Ay(a, s) when x is
causally connected to the action a in situation s, so that performing the
action is liable to change some property of x.

A scenario defines the truth-values of ground atoms in the obvious way.
We shall assume that this truth definition is extended to all statements of K
by the usual recursion, where expressions with range {situation} denote
members of S, and those with range {action} denote members of 4. We will
also take over the ideas of a model, and of a formula being valid in a scenario.

A kinematic theory K is of course an ordinary first-order theory and
therefore the usual first-order model theory applies to it. The question
immediately arises as to the relationship between first-order interpretations
of K and scenarios of K.

Lemma 4

There is a 1—1 truth-preserving correspondence between scenarios of a
kinematic theory K and first-order interpretations of K. (Remark: if this
seems intuitively obvious to the reader, good. Otherwise, the proofis intended
to persuade rather than convince. A full proof would be very long and
tedious.)

The notational conventions used earlier will be assumed.

We will give five necessary and sufficient conditions for a first-order
structure &/ and a scenario & to be in correspondence.
Condition 1. | o/ ;| =|%| for each s € Srt.

Now let x € | & siruarion| . We can define a structure €, for T as follows. For
each sort s of T, we have the set | &/;|. If h is a nonlogical symbol of T, then

he (X1, .0 X,)=ho(x1,..., x,x)ifhe®
= hy(xy,..., x,) otherwise
(It follows directly from the definition of kinematic extension that the hy, are
defined at the proper places.) For the logical symbols = and P,, we have the
obvious predicates on u|«/,|: clearly these are the restrictions to the
smaller universe of the predicates denoted by these symbols in 7.
Condition 2. Sa={%, : X € | Y iuation| } -
Now let y € | yi0n|- We can define a function £, from Sa to Sa by
f:v((g )= %dod(y x)*

Condmon 3. Aﬂ"‘{f; Y& |‘Q/actlon|}'
Define a function Ay from | & gpaion] X | &7 acion] to subsets of |sZ| by:
x€Au(p, z) iff- 4(x, y, 2) is true.
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Condition 4. Ay=Ag.
Condition 5. The mappings x<¥%,, y«f,, defined above extend to an iso-
morphism between the interpretations hy and hg of symbols in @,

Clearly this correspondence is 1 —1 up to isomorphism, and preserves the
truth-values of ground atoms.

QED

This shows that the completeness theorem can be transferred immediately
to the intuitive semantics.

It remains to show that the three causality axioms do indeed capture the
intuitions outlined in the introduction. We shall require one more lemma
before the main result can be stated.

Lemma 5*

A first-order theory (with the morphology of a kinematic theory) contains
all instances of the schema (—3) iff it contains all mstances of the two
schemas

(x1-y,X)V ... vV (X,-Y, x)v .
p(xli ooy Xy x)Ep(xl’ ooy Xy do(y, X)) (-’4)
(X1-Y, X)V ... V(X,2Y, X)V(E(X1, . . s Xy X)2Y, X)V

£(x1, « o oo Xpo X)=1(X1, . . ., X, do(y, X)) (=5)

The proof of ‘only if” is trivial since (—4) follows directly from two instances
of (=3), and (—5) follows directly from lemma 2.

Now suppose a theory contains all instances of (—5). We shall show by
induction on the structure of the term a that the theory contains all instances
of the schema

(a=y, X)V(a-y, X)V ... v (2,5, x)v(a=a[do(y, x)]) (-6)
where a=a[x ] is a T-term and the a, are all the terms other than a occurring
crucially in a (cf. lemma 2).

If a containg just one function symbol then (—6) is (—5), by definition of

‘crucially’. Now suppose a is f(ay,...,a,,x), then the terms occurring
crucially in a are a itself, the a;, and every term which occurs crucially in
some a;. By induction hypothesis, (=6) holds for each a,. Moreover, by
(—5), we have
(a1~y, X)V ... v(a,~Y, xX)v(a-y,x)va={(ay,.. ., a, do(y, x)).
The substitutivity of equality then yields (—6) directly. Now suppose a is
f(ay, . . ., a,) where a,, is not x. Then no other a, is x (by the morphological
rules for a kinematic theory) and so the terms occurring crucially in a are
just those occurring crucially in some a;. Using the induction hypothesis and
the substitutivity of equality gives (—6) directly.

Now, suppose a theory contains (—4) and (—6). Let A[x] be a literal.

IfA=p(ay, . . ., 4, X) OF ~p(ay, . . ., a,, X) then the terms occurring crucially

* This lemma was suggested by a remark of Gordon Plotkin.
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in A are the a; and these terms which occur crucially in some a,. Using the
following instance of (—4), ‘
(a1-y,X)V ... v(3,~Y,X)V .
p(ai, ..., a, x)=p(ay...,a, do(y, x)),
the appropriate instances of (—6) for each a;, and the substitutivity of
equality, gives (—3).If A=p(ay, .. ., a,) where a,, is not x, we need only use
(—6) and equality, as in the second case above.
QED
Now the main result can be proved.
Theorem
(1) The axiom (—1) is valid in a scenario & iff -7, is reflexive for every
xeSy.
(2) The axiom (—2) is valid in a scenario & iff =7, is transitive for every
x € Sy, and in addition
xeAg(p, ) and —3,(z, x) together imply ze Ay (y, 5).
(3) The axiom schema (—3) is valid in a scenario &/ iff &/ obeys the causality
condition:
X oo Xph (X, 00x,)¢A,(a,s)

then h%, (X, ..., %, )=h% (x4, .. . X,)

for every he ©.
Proof. (1) Trivial. (2) Easy. (3) The schema (—3) is valid in & iff both of
(—4) and (—5) are, by lemmas 4 and 5. Now suppose &/ satisfies the causality
condition for each h € ©, and suppose (—4) is not valid in &/. Then for some
predicate symbol p, we have ((ii—j, i)v ... v(i,—=j,D)v .p(, ..., i,i)=
p(s, . . . i, do(§, 1)) =false. Le., where i is the name of i, etc., we have
iy oo in@ Ag(,§) and ply(it, . . . i) #pIP (1, . o oy d,). Clearly pl(in, .« o
i,) ¢ Ax(J, i) and thus p violates the causality condition. The argument when
(—5) is not valid in 7 is exactly similar.

Now suppose that both of (—4), (—5) are valid in /. Then we can show
directly, using the same sort of construction as above and remembering that
every individual in &/ has a name in the language, that the causality condition
is satisfied for each he ©.

QED
We can now display a model of the axioms mentioned earlier:

(1) P(f(a),b)  (2) ~P(f(a),do(c, b))  (3) ~(a—c,b)

Let ¢; and ¢; be two structures with universe {a, d} in which — denotes
identity and f(a)=f(d)=d. In ¢y, P is true of d and false of a; in ¢z, P is
everywhere false. Let S« be {c1, c2}. Let Ay be {c} where ¢(c1)=c; and
c(er)=c2. Let Ay(c, c1)=Au(c, c2)={a}.Let P, f, a and c denote themselves
and b denote ¢;. Then &/ is a scenario which is a model of (1)-(3) and (—1)
-(-3).
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The causality condition can be seen as a specification that the effect of any
action should be local. It guarantees that the configurations before and after
an action are isomorphic, except on the individuals singled out by A.

AN EXAMPLE: THE MONKEY AND THE BANANAS
In this section I shall give a set of axioms which partly describe a simple
world such as might be inhabited by a primitive monkey. [The toy world
described in this section is based upon Robin Popplestone’s axioms for
Freddy, the Edinburgh robot (Popplestone 1970).] The axioms are not
complete and their shortcomings will be discussed, but they are sufficient to
prove that the monkey in the classical puzzle can get his bananas.

There are four sorts in the static language: thing, place, integer and monkey.
The nonlogical symbols in the static language are: HELD and PLATFORM,
predicates on things; M, a constant of sort monkey; PLACE, a function from
{thing, monkey} to places; ON and UNDER, functions from things to places;
HEIGHT and LOCATION, functions from places to integers; HT, a function
from things to integers, and finally the arithmetic symbols < and +. We
shall also of course have the binary predicate — and it will be convenient to
assume that the ranges of the arguments of — do not include place or integer,
thus avoiding the axioms Py (¥)> .(x—y, s)2x=y and Pieper (X)= ©
(x-y,8)Dx=). ,

The ideas behind these are as follows. Things are ordinary physical objects;
places are positions in some homomorph of Euclidean 3-space. The functions
height and location define the coordinate system in this space. I envisage a
fairly precise vertical distance measure but a rather loose and tolerant
horizontal measure (which is, however, coded into integers in some way), so
that several different objects can be at the same place. The place of an object
is the place it is sitting at: the place which is on an object is the top of it (for
example, the box): the place under an object is the patch of floor beneath it.
The ht of an object is the vertical distance between the place of it and on of
it. An object is a Platform when it is firm and large enough for the monkey
to stand on it. A thing is Held when the monkey has it in his hand.

We shall assume that the static theory contains the following axioms:

“pl. place (x)=on (y)>(x-y)

p2. place (x)#on (x)

P3. height (x)=0>3y(x=o0n (y))

p4. (M-x)> . x=Mv place (M)=on (x)

P5. location (on (x))=Ilocation (place (x)) :
&height (on (x))=height (place (x))+ht (x)

P6. Yz (place (x)#on (z))> . location (under (x))=location ( pldce (x))
&height (under (x))=0

P7. (x—y)> . location (place (x))=location (place (y))

P8. Held (x)> .(x-y)=y=M
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This is not a complete set of axioms, of course, and I do not have such a
set. Their interpretation should be fairly obvious. p3 says that things on the
floor are indeed on something: p4 says that the only way in which the monkey
can be attached to a thing is by being on it. The antecedent of p6 stops the
monkey inferring anything about places under objects. P7 says there is no
causality at a distance. P8 says that Held objects are attached only to the
monkey. )

The chief shortcoming of this theory at present is that there is no way of
expressing facts of solidity or weight. These both seem to present formidable
problems.

Now we shall extend this theory to a kinematic theory. The set @ is to be
{place, on, under, —, Held}. We add the nonlogical symbols: MOVE, a
function from places to actions, and CLIMB, UNCLIMB, GET and PUT,
functions from things to actions, as well as do. For each action we have to
supply the appropriate law of motion defining the direct effect of the action,
and also specify what objects are directly connected to actions. We shall
assume the following axioms:

Move

Ml. ((x—move (y))=(x->M))[s]
M2. (height (place (M, s))=height (y)=0 & (x—> M, 5))
oplace (x, do (move (y), 5))=y
M3. do (move (place (M, s)), s)=s5 "
M4. Held (x, s)> Held (x, do (move (»), 5))
Climb
cl. ((x—climb (y))y=(x—unclimb (y))=(x-M))[s]
C2. (Platform (x) & ht (x)<3 & Vy(~ Held (y, 5)))>.
(place (M, s)=place (x, s) > place (M, do ((climb (x), s))=on(x, 5))
& (place (M, s)=on(x, s)>place(M,do(unclimb (x),s))=place(x,s))
Get and Put
6l. ((x—get (9)=(x-put (1)) =(x-y) [s]
G.2 (height (place (x, s)) <height (place (M, $))+3
& location (place (x, s)) =location (place (M, s)))>
Held (x, do (get (x), s))
G3. Held (x,5)>(~(x—>M) & place (x)=place (M))[do (put (x), 5)]
Causality
ca. (x-y,8)> . (z-x,do (p,5))>(z-x,s)
These are all fairly obvious except perhaps for ca. M2 lets the monkey move
to any place along the floor, and take things with him. M3 says that doing
nothing really is doing nothing. M4 says the monkey does not drop things.
€2 lets the monkey climb onto and off platforms which are not too high,
provided his hands are free. G2 lets him get hold of things which are not too
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far above him. 63 lets him put things down at his feet (as opposed to throwing
them away). The special causality axiom is extremely useful: it says that the
objects affected by an action do not themselves pick up other objects as the
action is performed. This can be done, and the axiom thereby falsified, by
sliding an object underneath another while supporting the latter in some way,
as shown for instance in figure 2. (ca might be called the ‘no-hooks’ axiom).
We shall assume the monkey is not so clever.

s
c
c b gblj
N2
a d a d
y d—>y
 do(y,9)
i ¢
[ s ] b
T T 4N,
Figure 2

Again, this is obviously not a completed theory. However, we can now set
up the puzzle and let the monkey get the bananas. We need some facts about
the initial situation sp, and we shall use the symbols BOX and BA(nanas):

ol. height (place (Box, so))=height (place (M, s50))=0

-02. height (place (Ba, s9))=3

03. Platform (Box) & ht (Box)=2

o4, (x>M, s0)ox=M

05. (x—Box, s9)>x=Box

06. place (Ba, so)7#on (x, So)

A proof that the monkey can get the bananas follows. He has to go to the
box, get it, move under the bananas, put the box, climb on it, and get the
bananas. Let a=move (place (Box, o)), s1=do (a, so0), b=get (Box), s;=
do (b, s;).

1. place (M, s1)=place (Box, s0) from ol., _)1,, M2,

2. (x—a,s)=x=M from M1., 04, — 1.
Using 2., we can infer

3. place ( Box, sy ) =place ( Box, so) from 2., Lemma 2,
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4. (x—Box,s1)> .x=Box vx=M from 2., 05, —3.
5. place (M, s1)=place (Box, s;)#on (Box,s;) from 1., 3., p2.
6. (x—Box, s;)>x=DBox from 4., 5., P4.
7. Held (Box, s;) from 5., G2.
8. (x—>b,s;)=x=Box from 6., g1, - 1.
9. place (M, s;)=place (M, s;) from 8., Lemma 2,
10. height (place (M, s;))=0 from 9., 1., 0l.
Now, the monkey can move under the bananas, since
11. height (under (Ba, 59))=0 & from 06, p6..

location (under ( Ba, so))=location (place ( Ba, $;))
Thus, let c=move (under (Ba, 59)), s3=do (¢, 3).

12. place (M, s3)=under ( Ba, so) from 10; 11; —»1; M2,
13. place (Box, s3)=under ( Ba, so) from 10., 11., 7., P8.; M2.
14. (x—>¢,82)=(x-M,s;) from M1.

In order to make 14, useful we have to find out what is attached to the
monkey.

15. ((x»>M, s;)o . (x=M, s1) v x=Box) from 8., - 3.

&(x->M,s1)> . x=M from 2., 04., ca.
16. (x—c¢,8)= .x=Mv x=Box from 14., 15., —1.
17. Held (Box, s3) from 7., M4.

Now, the monkey must drop the box before he can climb onto it.
Let d=put (Box), s3=do (4, s3).

18. ~(Box—M, ss) & place (Box, s4)= from 17., G3., 13.
place (M, s4)
19. (x—d, s3)=(x—Box, s3) from Gl.
In order to make 19. useful we must find out what is attached to the box.
20. (x— Box, s3)>(x—Box, s3) from 16., ca.
& (x-»Box, s;) > (x— Box, s1) from 8., ca.
hence
21. (x—Box, s3}=x=Box from 20., 6., = 1.
22. (x—d, s;)=x=Box from 19., 21.

Now we can infer that the monkey has not moved;
23. place (M, ss)=place (M, s3)=under (Ba, sy) from 22., Lemma 2, 12.
and hence
24. place (Box, s4)=under (Ba, s¢) from 23., 18.

Now we need to show that the nionkey’s hands are free. This is fairly direct,
but we shall do it in detail for clarity:

25. (x> M, s2)> . x=Mv x=Box from 15..

26. (x=>M, s3)>(x—->M,s;) from 16., ca.
27. (x=M,s3)> . x=Mv x=Box from 25., 26.
28, ((x»M, s4)>2(x—M, s3)) v x=DBox from 22., =3.
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29. (x> M,s4)> . x=MV x=Box . from 27., 28.
30. (x> M,s4)2x=M from 29., 18.
31. ~Held(x,ss) from 30., P8.

Now his hands are free, he can climb on the box. Let e=climb (Box),
Ss=d0 (e, 54).

32. place (M, ss)=on (Box, s4) : from 03., 31.; 23., 24.; c2.-
33, (x—e,88)=x=M from cl., 31., —1.

Now we can infer that the bananas are still where they were: .
34. place (Ba, ss)=place ( Ba, so) from 2., 8., 16., 22., 33.,

Lemma 2 (5 times)
Now tracing back, we see that
35. location (place (M, ss))=location (Ba, ss)) from 32, P5., 24., 11., 35.
Now we have to find out how high the monkey is, and this is easy:

36. place (Box, ss)=place (Box, s4) from 33., Lemma 2.
37. height (place (Box, s5))=0 from 36., 24., 11,
38. height (place (M, ss))=2 from 37., 32., P5., 03,
39. height (place (Ba, s5))=3 from 34., 02.

And thus, finally:
40. Held (Ba, do (get (Ba), ss)) from 35., 38., 39., G2.

The reader might like to try proving that the monkey can get down off
the box, with the bananas. It is not as easy as it looks, since his hands have
to be free before he can climb down.

This proof, although long, is fairly natural. Its length is due partly to the
fact that I have carried it out in detail at several points. Familiarity with
kinematic systems enables one to see immediately such consequences as 31
from 25: clearly one would want to incorporate such ‘macro’ deductions in
some efficient way in a mechanized proof-seeking procedure. I do not claim
that kinematic systems as presented here are particularly machine-oriented,
only that one can in fact set up puzzles and solve them within the system,
They are intended to be epistemologically, rather than heurtstzcally, adequate
(cf. McCarthy and Hayes 1969).

The axioms presented earlier do not contain many ‘frame axioms. The
most unattractive such is M4. The need for M4 arises because a thing held is
attached to the monkey and therefore to the action move (z). Thus nothing
can be inferred about its properties when move (z) is performed. This illus-
trates a general weakness of kinematic theories. When some property, how-
ever trivial, of an object is altered by an action, then the object must have been
connected to the action, by (—3), and therefore any property of the object
is liable to have changed when the action is performed. This is the Jocal
version of the frame problem. The global problem is handled by (—3). Now,
some obvious progress can be made here by re-introducing the notion of a
frame, as will be remarked later. But it is still a difficulty, and will become
more serious as axiom systems become richer. Thus suppose we had predicates
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of colour: then we would be obliged to have an axiom saying that objects
attached to the monkey do not change their colour during a move.

The monkey axioms are capable of extension in several directions. In
particular, one can have the monkey building towers of bricks. Here an
interesting point emerges. It turns out to be a useful heuristic to pay attention
most to those objects to which few other objects are causally related. For
instance, if one wants a brick, take it off the top of a tower rather than the
bottom.

One of the most useful aspects of developing axiom systems within
kinematic theories is the way in which such heutistic principles seem to emerge.
Another one was followed in constructing the above proof: to wit, when a
new action is contemplated, first find out exactly what objects are connected
to it. This information is usually rapidly obtainable (at least in this simple
world) and almost certain to be useful subsequently.

DISCUSSION
Presuppositions and non-deductive reasoning

The reader will no doubt have been adversely impressed by the length of the
proof that the monkey can get the bananas. This contrasts quite dramatically
with the proofs obtained by, for example, Cordell Green from his axiomatiza-
tions of the puzzle. To some extent this is due to the lack of special ‘banana’
axioms, or similar tricks, in the present formulation. However there does
arise in a kinematic system the necessity of continually proving that objects
are not connected to one another or to actions. Such subproofs occupy a
considerable amount of time for our monkey.

Now, it may be argued that this is unintuitive and that a better system
could be got by arranging that such facts were somehow assumed to be true
unless there were explicit statements to the contrary. Introspection seems to
show that humans do not continually find the need to prove that objects are
not connected together. For instance, if one presents the usual verbal account
to someone, and he suggests the obvious solution, and you then tell him that
it will not work because the string from which the bananas are hanging
passes over two pulleys and is connected to the box, so that when the monkey
moves the box under the bananas they ascend out of his reach; then he will
probably object that you should have told him that in the first place. He will
not be impressed by your arguments that you have not said anything which is
contradicted by the statement of the problem, but only added a little to the
description of the world. He will have assumed that such complexity is not
present since it was nct mentioned. Is there a logic which embodies assump-
tions like this? The answer, unfortunately, is no: assuming, that is, that
‘logic’ means a deductive system. Clearly, so long as it is consistent to add
statements asserting that objects are connected, it is inconsistent to infer,
without adequate grounds, that they are not so connected. Thus, let S be a
formal transcription of an intuitive formulation of the monkey and bananas
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puzzle. Then in such a logic, a statement C asserting that (say) the box is
not connected to the bananas follows from S: SEC. But the negation of C
is supposed to be consistent with S.

There are two remarks which can be made. First, if the monkey has eyes,
then he can see that objects are not connected after the performance of
actions. Secondly, one can envisage the construction of a non-deductive
logical system based upon a kinematic system K which would operate by
making such assumptions, that is, by strengthening instances of (—3) by
deleting some of their antecedents. Such a system would have shorter proofs
than K, could be more intuitive in its reasoning than K, and would, of course,
be inconsistent. However, the inconsistency would be of a rather mild kind
and hopefully comparatively easy to control. It should not be too difficult,
when the contradiction arises, to identify the particular presupposition which
engendered it. [Gerald Sussman has pointed out to me that Planner, the robot
deduction engine developed at MIT by Carl Hewitt (1969), prov1des facilities
for just this kind of procedure.]

Modal logic and plans

Clearly, scenarios bear close resemblances to the standard Kripke semantics
for modal logics. Situations are possible worlds; each action defines an
alternativeness relation; do enables us to write modal-ish statements. The
reader may wonder why none of the notorious difficulties of referential
opacity arise in kinematic systems. The reason is that we assume that indi-
viduals are not created or destroyed by actions. Thus every member of the set
of situations has the same universe. I have discussed elsewhere some circum-
stances in which one might want to relax such an assumption (Hayes 1970),
but there are others more pressing.

It might be thought that most objects in a robot’s environment are likely
to be fairly permanent, and I would agree with this provided it is understood
to refer to physical objects. However it is more plausible that actions may
come into and go out of existence as time passes. If we allowed this to happen,
the logic would become considerably more complicated and special rules
about quantification over actions would have to be constructed. The utility
of this would be that the robot would be able to assert that in some future
situation an action of a required kind will exist. Such a statement can be
regarded as a statement of confidence in the robot’s own abilities to think of a
plan. Such statements seem to play an essential role in the formulation, within
first-order logic, of Gps-like means-end analysis.

This idea can be taken a stage further by allowing a special class of actions
called intellectual actions. Then an assertion of the kind mentioned above .
might be phrased in the following way:

us]=3x. v[x] & x € do (subplan, s)
where subplan is an intellectual action and e denotes existence in a situation.
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It seems to me that this provides a natural way of incorporating means-end
analysis into logical plan-making. It provides yet another reason for wanting
an adequate mechanization of first-order modal logic.

Frames

The notion of a frame can be carried over with advantage to kinematic
systems. Recall that a frame is a classification of the nonlogical symbols of a
theory so that changes to the values of symbols in one part of the classification
do not affect the values of symbols in the other parts. Thus predicates of
colour and predicates of location might be classified apart in a frame. To
extend the idea to a kinematic system we have only to provide a causality
relation for each block of the classification. The axioms (- 1) and (—2) are
stated for each of these relations separately, and in the statement of (—3) we
need only mention terms and atoms whose main symbol is in the same part
of the classification as the particular causality relation being used.

The use of a device like this would have greatly simplified the monkey and
bananas proof. The frame would have had two blocks, one containing state-
ments of position and the other containing statements of connection.

A more flexible approach to the same goal would be to add an extra
argument place to the causality relation, and a new sort to the theory, called
mode. The new argument place is to accept only terms with range {mode}.
There should be enough modes to distinguish the various blocks of the frame,
but we now have the ability to state general laws of causality and also to
state laws which move across frame boundaries in potentially complicated
ways. For instance, the space of modes might have any structure, for example,
that of a semigroup.

Theory of computation ‘
It is of course essential to provide eventually some means of constructing
plans with loops, or some device of equal power. I do not foresee any major
problems in grafting on to the present system some theory of algorithms,
but it does seem that the constraints which the causality axioms impose upon
plan formation will result in a comparatively weak theory. That is, it will be
rather more difficult than usual to prove desirable properties of programs
such as termination and equivalence. In the case of a simple loop, for
" instance, the induction hypothesis for the proof of termination must ensure
that the preconditions of freedom for the nth iteration have not been violated
by what was done during the (n—1)th iteration.

It seems useful to regard the present theory as an initial attempt at a
theory of data structures which model the real world, as opposed to a theory of
algorithms operating on these data structures.

The natural logical language in which to embed a theory of algorithms is
3-valued, rather than the classical 2-valued, predicate calculus. The use of
this, in fact, would have yielded a more natural system even at the present
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level of complexity. For instance, the statement of the necessary conditions
for the feasibility of an action, and the statement of the effect of doing the
action, could be separated. At present it is necessary to merge them into a
single implication (as in the first move axiom in the monkey and bananas
problem). In the semantics, it would no longer be necessary to insist that
every action was a total function on the set of situations, a requirement which
may have already struck the reader as unnatural.

Naturalness

In spite of its length, I would claim that every step in the monkey and bananas
proof is intuitively convincing. If one had to convince an intellectual moron
that the monkey could get the bananas, one might use similar arguments to
counter objections he might raise about things moving spontaneously. Such
principles as there being no action at a distance, and the rather unusual ca3,
seem to correspond to our fundamental intuitions about the physical world.
Of course, both Freddy’s and the monkey’s worlds are highly simplified. It is
interesting, and quite difficult, to invent principles of causation which are
valid in a wider context and are as useful as, for instance, ca3.

Any solution of the frame problem will involve some analysis of the idea
of causality. The fact that it is a problem at all reflects what Simon has called
* the ‘empty world hypothesis’ (Simon 1967). For, if the real world was highly
interconnected so that small changes in one place invariably led to drastic
alterations in large areas, then it would not be surprising that one could not
infer anything about one situation given some facts about another. The
sense of frustration one experiences in attempting to prove simple strategies
reflects our intuitive knowledge that the world is a fairly quiet place. One
does not, therefore, expect that a purely ‘logical’ device will yield an adequate
solution since the problem is essentially a ‘physical’ one. The aim of this
paper has been to initiate a study of logical theories of physical causality.

MECHANIZATION

No conventional theorem-proving program could hope to find the monkey
and bananas proof from the axioms without some very sophisticated
heuristics, even supposing it had some method of handling the axiom schema
(—3). Gordon Plotkin (personal communication) has devised such a method
which fits into the usual resolution format for first-order logic. This is
possible because (—3) applies to literals, rather than more complicated
formulae. But such a restriction makes the proof even longer, since we are
unable to use lemma 1 and lemma 2 directly, but have, in effect, to prove
them over again each time they are to be used. ‘
Some progress might be made within the conventional framework by
inventing clever heuristics. Thus it seems a good idea to determine as soon
as possible what objects are attached to actions, and subsequently delay
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using (-»3) until it is necessary to prove that some propetty is unchanged.
However even to recognize such a need is a fairly sophisticated matter, pre-
supposing some kind of goal-oriented search.

It seems to me that real progress will be made only by constructing a more
rigid control structure from within which to conduct a search for a proof.
The kind of supervisor sketched in McCarthy (1959) is an example. It seems
reasonable that the axioms for such a special notion as causality would need
special treatment. One would not expect a general treatment suitable for any
axiom system, such as heuristic search, to take adequate account of such an
axiom set.

Such a control structure would also facilitate the use of *‘macro’ inferences;
that is, standard small subproofs with few parameters that need to be re-used
many times. There is a clear need for such macros in conducting such vroofs
as the one for the monkey and bananas. However, the use of macros can,
unless very carefully controlled, give rise to a combinatorial explosion of its
own peculiar kind, especially if it is relatively easy to produce new macros.
It is very difficult to control macro generation and expansion from within
the simple heuristic search mechanism.

It will be quite difficult to produce such a theorem-proving executive.
For the present, the more pressing problems seem to be improving and extend-
ing the logic and gaining experience with particular axiomatizations. Any
practical implementation must wait upon an adequate theoretical foundation.
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