The Inference of Regular LISP Programs from Examples

ALAN W. BIERMANN

Abstract—A class of LISP programs that is analogous to the finite-state automata is defined, and an algorithm is given for constructing such programs from examples of their input-output behavior. It is shown that the algorithm has robust performance for a wide variety of inputs and that it converges to a solution on the basis of minimum input information.

I. INTRODUCTION

THE DREAM of many a computer programmer has been a system that would accept a few randomly chosen examples of the desired behavior and that would immediately print out a general program for achieving the desired behavior in all possible situations. Thus the system user might type in the input-output pairs (6, 13), (2, 3), (7, 17), and (1, 2) and expect to have the system type out a program that reads an integer i (such as 6) and then prints the i-th prime number (13 in this case). The system has the incredibly difficult task of discovering from this weak source of information

1) an algorithm for doing the desired computation, and
2) a correct implementation of the algorithm in some programming language.

It is, in fact, doubtful that any system could ever exist which could create a class of large and general programs from such minimal information within a practical amount of time.

There are, however, some very limited domains in which such performance is achievable, and one of those domains, the class of small "regular" LISP programs, is the subject of this paper. The synthesis of LISP programs from input-output behaviors is at least minimally tractable because these behaviors are given in terms of LISP S-expressions, and such expressions contain considerable structural information about how they were formed. For example, if a program is to be constructed such that input \(X = ((A \cdot B) \cdot C) \) is to yield its reversal \(Y = (C \cdot (B \cdot A)) \), we know that \(Y \) can be computed from \(X \) using the primitive LISP functions \(\text{CONS}, \text{CAR}, \) and \(\text{CDR} \) (described below) as follows:

\[
Y = (\text{CONS}(\text{CDR} X)(\text{CONS}(\text{CDR}(\text{CAR} X))(\text{CAR}(\text{CAR} X))))
\]

This ability to directly decompose \(Y \) in terms of \(X \) is a huge step in the direction of creating a general program for reversing any S-expression and is the key reason that at least some LISP programs can be generated from just input-output information.

Having adjusted to the fact that we will probably never be able to generate very large and general classes of programs from such weak information, it is interesting to see how good a synthesis system can be built for a limited class. It is specifically desired that the synthesis system have the following properties (described below):

1) robust behavior for a variety of inputs,
2) convergence to a solution on the basis of minimum input information,
3) convergence to a known class of programs.

Concerning 1), it is desired that the program that is generated be relatively independent of whichever examples are presented. Thus it is desired that the program for reversing an S-expression should be generated from any one of the following input-output pairs or from any similar input-output pairs which might be presented by anyone.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A \cdot B))</td>
<td>((B \cdot A))</td>
</tr>
<tr>
<td>((A \cdot (B \cdot C)))</td>
<td>(((C \cdot B) \cdot A))</td>
</tr>
<tr>
<td>(((G \cdot F) \cdot (H \cdot A)))</td>
<td>(((A \cdot H) \cdot (F \cdot G)))</td>
</tr>
<tr>
<td>((D \cdot R))</td>
<td>((R \cdot D))</td>
</tr>
<tr>
<td>(((A \cdot B) \cdot (R \cdot Z)) \cdot X)</td>
<td>((X \cdot ((Z \cdot B) \cdot (B \cdot A))))</td>
</tr>
<tr>
<td>((A \cdot (B \cdot (R \cdot (M \cdot (V \cdot Q)))))))</td>
<td>(((Q \cdot (Y \cdot (M \cdot (R \cdot B) \cdot A)))))</td>
</tr>
</tbody>
</table>

Furthermore, the system should correctly generate the program if any subset of these examples is used, if all of them are presented, or if any similar set is chosen. The system should be similarly robust on every program within its range.

Concerning 2), suppose a user inputs a behavior example and is dissatisfied with the program that is generated. That is, he has found the created program to be incorrect either by testing it on some other examples or studying its code. Then he should be able to input a second example, a third example, and so forth, with the knowledge that the system will find the desired solution after only a finite number of examples. In fact, we would like our system to be such that not only will it find the solution, but it will have the property...
that no other system could generate all programs on the basis of fewer examples than our current system. That is, we want our system to, in some sense, use input information optimally.

Concerning 3), we are interested in being able to predict exactly when a particular target program can be generated by the system and when it cannot. For our system the regular LISP programs are exactly the class of programs that can be converged to in the sense of 2). Membership in the class of regular LISP programs is decidable, and a method is given in Section V for showing that certain LISP computations cannot be done by any regular LISP program. Furthermore, the length of time required to generate a program grows exponentially with the size of the program, and because of this, our system is not able to generate programs that are much more then about five or six lines in length without using many minutes or hours of computation time. In summary, we can assure our user that the system will converge to a program to do the desired computation after a finite number of examples if there is a regular LISP program to do that computation. It will converge to the target program within a reasonable length of time if it has no more than about five or six lines of code.

These three properties are achieved by the system described in the paper by employing an enumerative synthesis algorithm. The search, of course, is highly pruned through the use of the structural information from the example input–output behaviors. General inference techniques using enumeration are described in [6]–[8], and the current work is built upon these results. Two critical theorems are restated and rephrased in terms of the terminology of this paper in Section VI.

LISP program synthesis has been studied previously by Green et al. [9], Hardy [10], Shaw et al. [12], Siklóssy and Sykes [13], and Summers [14], [15]. The approach of this paper is particularly influenced by Summers, who created "fragments" much like our "computations traces" and who will be called an atom. An example S-expression is although it obviously may take an unacceptable amount of time to generate large ones). Also, none of these other efforts result in a more interesting class of synthesized functions.

The program synthesis method will function by assembling a program from a set of primitive functions of the form \((F, X) = (\text{LISP code})\), where \((\text{LISP code})\) could be theoretically almost any LISP program. In this paper only five different forms have been considered:

\[\begin{align*}
(F_1, X) &= \text{NIL} \\
(F_2, X) &= X \\
(F_3, X) &= (F_1(c\text{AR}(X))) \\
(F_4, X) &= (F_1(c\text{DR}(X))) \\
(F_5, X) &= (\text{CONS}(F_1, X))(F_2, X).
\end{align*}\]

Other primitive functions could have been used, such as \((F, X) = (c\text{AR}(F_1, X))\) or \((F, X) = (\text{CONS}(c\text{AR}(F_1, X))\) \((F_1, X))\), but modifications to the original set did not seem to result in a more interesting class of synthesized functions.

The program synthesis method will proceed approximately as follows. If it is desired to generate a LISP program which converts, for example, \(X = ((A \cdot B) \cdot C)\) to \(Y = (C \cdot (B \cdot A))\), the first step is to write \(Y\) in terms of \(X\) as was given in the previous section. Decomposing this expres-
scription into the primitive functions given above results in
$Y = (F_1 X)$, where F_1 is the top-level function in the decom-
pertion and where F_1 and the lower level functions are
defined as follows:

\[
Y = (F_1 X)
\]

where

\[
\begin{align*}
(F_1 X) &= (\text{cons}(F_2 X)(F_3 X)) \\
(F_2 X) &= (F_4(\text{cdr} X)) \\
(F_3 X) &= (F_5(\text{car} X)) \\
(F_4 X) &= X \\
(F_5 X) &= (\text{cons}(F_6 X)(F_7 X)) \\
(F_6 X) &= (F_8(\text{cdr} X)) \\
(F_7 X) &= (F_9(\text{car} X)) \\
(F_8 X) &= X \\
(F_9 X) &= X.
\end{align*}
\]

The synthesis procedure then searches for a way to merge
these nine functions to obtain a program of minimum size.
The only tool used is the insertion of McCarthy conditionals
[11] with their associated predicate tests. In this example the
functions are partitioned as $\{F_1, F_4, F_5, F_8, F_9\}$,
and $\{F_2, F_6, F_7\}$ to obtain the program

\[
(F_1 X) = (\text{cond}(\text{atom} X)X)
\]

\[
= (\text{tr}(\text{cons}(F_2 X)(F_3 X)))
\]

\[
= (F_1(\text{cdr} X))
\]

\[
(F_3 X) = (F_1(\text{car} X)).
\]

The \text{cond} function is defined in Section IV and means in this
case, "If X is an atom yield X. Otherwise yield
$\text{cons}(F_2 X)(F_3 X)$."

This whole process may be visualized graphically as shown in Fig. 2, where the composition of Y in terms of X
with all intermediately defined functions is shown at the left
and the synthesized program after merger is shown at right.
The resemblance to finite-state automata is clear, giving rise
to the name of the class of programs to be studied here: the
"regular" LISP programs. We will, in fact, often represent
LISP programs in this graphic fashion and refer to the parts
of a program using graphic terminology. For example, we
will say that F_1 has two transitions leading away, $\text{atom} X)$
and $\text{tr}(\text{cons}(F_2 X)(F_3 X)))$. The only significant deviation from the usual graph notions is that the transitions
leading away from a program node will have an order,
namely the order indicated in the McCarthy conditional
representation.

Section III will study the problem of finding a unique
decomposition of Y into primitive functions. Section IV will
give a definition of regular programs, Section V will discuss
one of their properties, and Section VI will give the synthesis
method. The final two sections will give examples of system
behavior and a discussion of results.

III. THE GENERATION OF COMPUTATION
TRACES FROM EXAMPLES

We will be interested in finding a unique sequence of LISP
operations for converting an input S-expression X into some
output S-expression Y. In order to assure uniqueness, we
will first require that all atoms in X be non-nil and distinct.
This means that it will be known that whenever an atom
appears in Y it will have come from a uniquely defined
position in X. Therefore, $(A\cdot B\cdot C)$ will be an allowed
argument X while $(A\cdot B\cdot A)$ will not be. The philosophy
is that the user of the automatic program synthesizer should
want to express through his examples the desired computation
in as direct a manner as possible and should not want to
introduce unnecessary ambiguities. This assumption about
argument X will be maintained throughout this paper.

The composition $c(X, Y)$ of Y in terms of X can thus be
uniquely defined as

\[
c(X, Y) = \begin{cases}
\text{NIL,} & \text{if } Y \text{ is NIL} \\
\text{Y written in terms of X,} & \text{if } Y \text{ is equal to some atom of } X \\
\text{cons}(c(X, (\text{car} Y))c(X, (\text{cdr} Y))), & \text{otherwise.}
\end{cases}
\]

Thus for the example X and Y from Section II,

\[
c(X, Y) = (\text{cons}(c(X, C)c(X, (B\cdot A))))
\]

\[
= (\text{cons}(\text{cdr} X)(\text{cons} c(X, B)c(X, A)))
\]

\[
= (\text{cons}(\text{cdr} X)(\text{cons}(\text{cdr}(\text{car} X)))
\]

\[
= (\text{car}(\text{car} X))).
\]

While $c(X, Y)$ specifies which operations must be applied
to X to obtain Y, the computation trace $t(X, Y)$ will specify
the exact order in which those operations are to be applied.
That is, the composition $c(X, Y)$ does not uniquely define
the sequence of computations in terms of the primitive
functions. This can be verified by noting that the example Y given
above could also be computed by the following set of primitives:

\[
\begin{align*}
(F_1 X) &= (\text{CONS}(F_2 X)(F_3 X)) \\
(F_2 X) &= (F_4(\text{CDR} X)) \\
(F_3 X) &= (\text{CONS}(F_5 X)(F_6 X)) \\
(F_4 X) &= X \\
(F_5 X) &= (F_7(\text{CAR} X)) \\
(F_6 X) &= (F_8(\text{CAR} X)) \\
(F_7 X) &= (F_9(\text{CDR} X)) \\
(F_8 X) &= (F_{10}(\text{CAR} X)) \\
(F_9 X) &= X \\
(F_{10} X) &= X.
\end{align*}
\]

There may be many possible orderings for the primitive operations, and the efficiency of the program synthesis technique depends on discovering the correct one directly and without search. \(t(X, Y)\) succeeds in doing this by giving \text{CAR} and \text{CDR} a higher precedence than \text{CONS}. Thus if there is ever a choice between applying a \text{CAR} or \text{CDR} operation to \(X\) or applying \text{CONS} to build output \(Y\), the \text{CAR} or \text{CDR} operation is always executed first. Therefore, in the example \(X\) and \(Y\) given, \((F_3 X)\) could have been defined as \((F_{5}(\text{CAR} X))\) or \((\text{CONS}(F_5 X)(F_6 X))\), as shown here. \(t(X, Y)\) resolves this ambiguity by choosing the former and computing \((\text{CAR} X)\) first.

The idea of precedence for \text{CAR} and \text{CDR} can also be thought of in another way. If not all of input \(X\) is used in computing output \(Y\), then that portion of \(X\) which is not used is thrown away immediately before any \text{CONS} operations are applied. In the above example, no portion of \((\text{CDR} X)\) appears in the result of \((F_3 X)\); so \((\text{CDR} X)\) is thrown away immediately, and \((\text{CAR} X)\) is computed and passed on to the next stage of computation. This method of computation is called direct, as described in the next section.

The computation trace \(t(X, Y)\) for computing \(Y\) from \(X\) is defined as

\[
\begin{align*}
&((\text{N}), \quad \text{if } c(X, Y) = \text{NIL} \\
&(I), \quad \text{if } c(X, Y) = X \\
&(I \ t((\text{CAR} X), Y)), \\
&\quad \text{if } (\text{CAR} X) \text{ appears in } c(X, Y) \text{ and no } \\
&(\text{CDR} X) \text{ or } X \text{ as an argument of } \text{CONS} \text{ or } \\
&(X \text{ alone appears in } c(X, Y)) \\
&(D \ t((\text{CDR} X), Y)), \\
&\quad \text{if } (\text{CDR} X) \text{ appears in } c(X, Y) \text{ and no } \\
&(\text{CAR} X) \text{ or } X \text{ as an argument of } \text{CONS} \text{ or } \\
&(X \text{ alone appears in } c(X, Y)) \\
&(O \ t((X, (\text{CAR} Y))) \ t((X, (\text{CDR} Y))], \quad \text{otherwise}.
\end{align*}
\]

Intuitively, the codes \(\text{N}, I, A, D,\) and \(O\) represent the application of the operators \(\text{nil}, \text{identity}, \text{CAR}, \text{CDR},\) and \(\text{CONS},\) respectively. The \(\text{nil}\) operator always yields \(\text{NIL}\) as its result regardless of the input. The identity operator yields an output which is equal to its input. This notation \((N, I, A, D, O)\) is used instead of \((\text{NIL}, \text{identity}, \text{CAR}, \text{CDR}, \text{CONS})\) to prevent confusion between the composition \(c(X, Y)\) and the trace \(t(X, Y)\).

Computing \(t(X, Y)\) for the example \(X\) and \(Y\) yields

\[
\begin{align*}
t(X, Y) &= (O(D t((C, C))) t((A \cdot B), (B \cdot A))) \\
&= (O(D(I))) t((A \cdot B), (B t((A \cdot B), (A))) \\
&= (O(D(I))) t((A) (O(D t((B, B))) (A t((A, A))))) \\
&= (O(D(I))) t((A) (O(D(I))) (A))).
\end{align*}
\]

This expression can be represented graphically as shown in Fig. 3.

The interpretation of Fig. 3 is that \(Y\) is computed from \(X\) as follows. \(Y\) is equal to two things \text{CONS}ed together. The first item is found by computing \((\text{CDR} X)\) and returning the result. The second item is found by computing \((\text{CAR} X)\) and passing the result \(X' = (A \cdot B)\) to another calculation. In this calculation, two things are \text{CONS}ed together, the results of computing \((\text{CDR} X')\) and \((\text{CAR} X')\), respectively. Thus the total computation yields the value \(Y = (C \cdot (B \cdot A))\).

The program synthesis method of this paper begins with a set of input–output pairs \((X, Y, i)\) for the desired program and first computes the associated traces \(t(X, Y, i)\) as described in this section. These traces then form the basis for the synthesis procedure which is presented in Section VI.

IV. Regular LISP Programs

This section will begin by defining the concept of a "semiregular" LISP program. Then the regular programs will be defined to be a certain well-behaved subset of the semiregular programs. Two theorems will be proven, one showing that the property of regularity is decidable and the other showing that the \(t\) operator of the previous section provides the correct trace for the synthesis of regular programs.

Many times the \text{CAR} and \text{CDR} functions are composed to a considerable depth; so space can be saved with an abbreviated form. Specifically, the middle letters of the composed functions can be concatenated between a \(c\) and \(r\) to represent the composition. Thus \((\text{CDR}(\text{CAR} X))\) will be written \((\text{CDDAR} X)\). The set of such expressions can be written \((c(a + d)^{r} X)\) with the understanding that \((\text{CR} X)\) is just the identity function.
The conditional operator in LISP is written
\[
\text{COND}(p_1, f_1) \\
(\quad p_2, f_2) \\
\vdots \\
(\quad p_n, f_n)
\]
and is evaluated as follows. The predicates \(p_i, i = 1, 2, \ldots, n, \)
are evaluated sequentially until one is found which yields true. In this study it will be assumed that \(p_n \) is the predicate \(T \) which is always true so that there will always be a first \(k \) such that \(p_k \) is true. Then the value returned by the \text{COND} function is the value of the function \(f_k \).

A chain of predicates will be defined to be a sequence of predicates \(p_1, p_2, \ldots, p_n \) such that

1) \(p_i = (\text{ATOM}(c w, r X)), \) where \(w_i \in (A + D)^* \) for \(i = 1, 2, \ldots, n - 1 \) and where \(w_i \) is a proper suffix of \(w_{i+1} \) for \(i = 1, 2, \ldots, n - 2, \) and
2) \(p_n = T. \)

Predicates synthesized by the system described here will be in such chains. An example chain of predicates is

\[
\begin{align*}
p_1 &= (\text{ATOM}((\text{CAR} X)) \\
p_2 &= (\text{ATOM}((\text{CADAR} X)) \\
p_3 &= (\text{ATOM}((\text{CDADAR} X))) \\
p_4 &= T.
\end{align*}
\]

A semiregular LISP program \(P \) will be defined to be a finite nonempty set of component programs \(F_i, i = 1, \ldots, m, \) with one of them \(F_1 \) being designated as the initial component. The value of \(P \) operating on \(X \), written \((P X) \), is equal to \((F_1 X) \). A component program \(F \) of \(P \) is of the form

\[
(F, X) = (\text{COND}(p_1, f_1) \\
(\quad p_2, f_2) \\
\vdots \\
(\quad p_n, f_n))
\]

where \(p_1, p_2, \ldots, p_n \) is a chain of predicates with arguments \(X \) and where each \(f_{ij}, i = 1, \ldots, n, \) is one of the following:

1) the \text{nil} function,
2) the identity function,
3) \((F_2(X)) \),
4) \((F_3(c X)) \),
5) \((\text{CONS}(F_4 X)(F_5 X)) \).

where \(F_4 \) and \(F_5 \) are component programs of \(P \).

The predicates \(p_{ij}, j = 1, 2, \ldots, n, \) in the above definition are known as the predicates associated with component \(F_i \). An argument \(X \) will be said to satisfy a particular predicate \(p_{ij} \) if

\[
p_{ij}(X) = \text{false}, \quad \text{for } k = 1, 2, \ldots, j - 1
\]

and

\[
p_{ij}(X) = \text{true}.
\]

The pairs \((p_{ij}, f_{ij}) \) are said to be parts or transitions of \(F \).

Finally, if \(n = 1 \) in the above definition, we will often write \((F, X) = f_1 \) rather than \((F, X) = (\text{COND}(p_1, f_1)) \), where \(p_1 = T \). An example of a semiregular program appears in Section II.

An S-expression \# is a possible argument for component \(F \) in \(P \) if there is an S-expression \(X \) such that evaluation of \((P X) \) involves (depends on) evaluation of \((F, \#) \). For example, if \(P \) has initial component

\[
(F_1 X) = (\text{COND}(\text{ATOM}(cAR X))(F_2(cAR X))) \\
(\quad T(F_3(cDR X)))))
\]

then we know that possible arguments for \(F_2 \) include all S-expressions \# such that \((\text{ATOM}(cDR \#)) \) is true. Furthermore, \(F_3 \) can have absolutely any S-expression as a possible argument. An algorithm for determining the set of possible arguments for all of the components of a semiregular program is given in the Appendix.

The regular LISP programs will be differentiated from the semiregular programs by two properties, the first of which will be referred to as directness. Suppose \(X = (A \cdot B) \) and \(Y = (A \cdot A) \). Then we can write \(Y = (F_1 X) \), where

\[
(F_1 X) = (\text{CONS}(F_2 X)(F_3 X)) \\
(F_2 X) = (F_4(cAR X)) \\
(F_3 X) = (F_5(cAR X)) \\
(F_4 X) = X \\
(F_5 X) = X.
\]

However, \(Y \) can also be written as \((F_1 X), \) where

\[
(F_1 X) = (F_2(cAR X)) \\
(F_2 X) = (\text{CONS}(F_3 X)(F_4 X)) \\
(F_3 X) = X \\
(F_4 X) = X.
\]

Here \(\text{CAR} \) is to be applied to both of the arguments of the \text{CONS} operator so that the decision must be made whether to apply it after the \text{CONS} operator, as shown in the first case, or before, as shown in the second case. Regular programs will always use the second more efficient option and are differentiated from the semiregular programs by this characteristic.

The other major characteristic of regular programs concerns the absence of "\text{CAR-NIL}" or "\text{CDR-NIL}" instances. Suppose a program \(F_1 \) has the form

\[
(F_1 X) = (F_2(cAR X)) \\
(F_2 X) = \text{NIL}.
\]

Then it is clear that the value of \((F_1 X) \) is \text{NIL} and that the computation of \((cAR X) \) is wasted. This is called a \text{CAR-NIL}
instance, and it can be avoided by defining \(F_1 \) as \(F_1 X = \text{NIL} \). The existence of a \text{CAR-NIL} or \text{CDR-NIL} instance is not always as obvious as in the example because one may have

\[
(F, X) = (\text{COND}(p_1, f_{11})
\]

where \((F, (\text{CAR} X))\) may occur somewhere else in the program. If it ever occurs that \((F, (\text{CAR} X))\) is evaluated and \(p_{ij} \) is true, then a \text{CAR-NIL} instance will have occurred.

Another example of a \text{CAR-NIL} instance occurs here:

\[
(F, X) = (F_1 (\text{CAR} X))
\]

\[
(F_1, X) = (\text{COND}(p_1, f_{11}))
\]

\[
(F_2, X) = (\text{CONS}(F_3, X))
\]

\[
(F_3, X) = (\text{NIL})
\]

In this case, \(F_1 \) will have a value (NIL • NIL), but one must trace down through \(F_2, F_3, \) and \(F_4 \) to discover that the \text{CAR} operation is wasted. These ideas are made more precise in the following paragraphs.

An executable \text{CONS} tree for a semi-regular program \(P \) is a binary tree of component-associated predicate pairs \((F, p)\) such that there is a possible argument \# for the top component of the tree which satisfies every predicate in the tree and such that

1) if \((F_1, p_{1k})\) is a nonleaf node in the tree, then
 \((p_{1k}(\text{CONS}(F_{2k}, X)(F_{2k}, X))) \) is a part of \(F_1 \), and \((F_{2k}, p_{1k}) \) and \((F_{2k}, p_{2k}) \) are the immediate successor nodes to \((F_1, p_{1k}) \) in the tree, and
2) if \((F_1, p_{1k})\) is a leaf node in the tree, then it is not true that
 \((p_{1k}(\text{CONS} Z_1 Z_2)) \) is a part of \(F_1 \) for any \(Z_1 \) or \(Z_2 \).

Any given program \(P \) may have many such executable \text{CONS} trees. Suppose \((F_1, X) = (\text{CONS}(F_2, X)(F_3, X))\), \((F_2, X) = (\text{CONS}(F_4, X)(F_5, X))\), and \((F_3, X) = X\) for \(j = 3, 4, \) and 5. Then the associated \text{CONS} tree appears in Fig. 4.

An executable \text{CONS} tree is \text{direct} if it is finite and if one of the following hold:

1) at least one leaf \((F_i, p_{ij})\) is such that \((p_{ij}(F_4, (\text{CAR} X)))\) is a part of \(F_i \), and at least one leaf \((F_i, p_{ij})\) is such that \((p_{ij}(F_4, (\text{CDR} X)))\) is a part of \(F_i \);
2) at least one leaf \((F_i, p_{ij})\) is such that \((p_{ij} X)\) is a part of \(F_i \);
3) every leaf \((F_i, p_{ij})\) is such that \((p_{ij} \text{NIL})\) is a part of \(F_i \).

For example, the \text{CONS} tree of Fig. 4 would not be direct if the \(F_i \) were defined as follows because none of 1), 2), or 3) would hold:

\[
(F_1 X) = (\text{COND}(p_{11}, (\text{CONS}(F_2, X)(F_3, X))))
\]

\[
(F_2 X) = (\text{COND}(p_{21}, (\text{CONS}(F_2, X)(F_3, X))))
\]

\[
(F_3 X) = (\text{COND}(p_{31}, (\text{CONS}(F_4, \text{CAR} X))))
\]

\[
(F_4 X) = (\text{COND}(p_{41}, \text{NIL}))
\]

\[
(F_5 X) = (\text{COND}(p_{51}, \text{NIL})).
\]

However, if the definition of \(F_4 \) were changed to \((F_4 X) = (\text{CONS}(F_5, \text{CAR} X))\), then Fig. 4 would give a direct \text{CONS} tree because 1) would be satisfied. If \(F_4 \) were not changed but \(F_3 \) were modified to be \((F_3 X) = (\text{CONS}(p_{31}, X))\), then Fig. 4 would give a direct \text{CONS} tree by 2). The idea of directness is related to the idea of \text{CAR-CDR} precedence discussed in the previous section. If all unused information in argument \(X \) is thrown away by applying a series of \text{CAR}’s and \text{CDR}’s before using the \text{CONS} operator, then every \text{CONS} tree that has references to \(X \) will be followed by references to all of \(X \), either 1) both \(\text{CAR} \) and \(\text{CDR} \) or 2) simply \(X \).

An executable \text{CAR-NIL} instance for a semi-regular program \(P \) is a quadruple \((F_n, p_{nk}, F_p, p_{pk})\) such that there is a possible argument \# for the top component of the tree which satisfies \(p_{nk} \); \((p_{nk}(F_n, X))\) is a part of \(F_n \); \((\text{CAR X})\) satisfies \(p_{pk} \); and either

1) \((p_{nk} \text{NIL})\) is a part of \(F_n \); or
2) \((F_p, p_{nk})\) is the top node of an executable \text{CONS} tree where every leaf \((F_p, p_{nk})\) is such that \((p_{nk} \text{NIL})\) is a part of \(F_n \).

An executable \text{CDR-NIL} instance is similarly defined. An executable \text{CAR-NIL} or \text{CDR-NIL} instance represents wasted computation in that the \text{CAR} or \text{CDR} operation is performed on the argument even though it will never be used because \text{NIL} will be returned as the value. If \((F_1 X) = (F_2, \text{CAR} X)\) and \((F_2 X) = \text{NIL}\), then \((F_1, p_{11}, F_2, p_{21})\) is a \text{CAR-NIL} instance (where \(p_{11} = \text{T} \) and \(p_{21} = \text{T} \)).

A semi-regular program is \text{regular} if every executable \text{CONS} tree is direct and if there are no executable \text{CAR-NIL} or \text{CDR-NIL} instances. In other words, the regular programs are the well-behaved members of the semi-regular class which always do direct computations without any wasted \text{CAR} or \text{CDR} operations.

There are two important results about regular programs that will be asserted. First, we will note that it is possible to test whether a given program is regular so that we will have a precise characterization of the class of programs which can be generated by the system. Second, we will observe that if \(P \) is a regular program, there is always an equivalent regular program \(P' \) which performs its computations in the order given by \(t(X, Y) \). Thus we can be sure that if we want to
generate \(P \) or an equivalent program, synthesis on the basis of traces \(t(X, Y) \) is a correct approach to the problem.

Theorem 1: There exists an algorithm to determine whether semiregular program \(P \) is regular.

Proof: Construct all \(\text{cons} \) trees for \(P \) and check whether they are direct. Use the procedure given in the Appendix to determine whether any of the nondirect \(\text{cons} \) trees are executable. That is, determine whether \(P \) is a correct approach to the problem. Here again, the input-output characteristics of \(P \) will be unchanged, and Property A will be made to hold. So the desired \(P_0 \) can be constructed from \(P \) and \(P_0 = P \).

Assume that \((P_0 X) = (F_1 X) \), where \(F_1 \) is the initial component of \(P_0 \). We can show by induction on the length of the trace \((P_0 X) \) that for each \(F_i \), if \((F_i X) = Y \), then \((F_i X) = (F_i X) = (F_i X) \). Assume in each case that \(X \) satisfies \(p_i \), and \((p_i f_i) \) is a part of \(F_i \); then

\[
t'(F_i X) = \begin{cases} (N), & \text{if } f_i = \text{NIL} \\ (1), & \text{if } f_i = X \\ (A \ t'(F_k, (\text{CAR} X))), & \text{if } f_i = (F_k(\text{CAR} X)) \\ (D \ t'(F_k, (\text{CDR} X))), & \text{if } f_i = (F_k(\text{CDR} X)) \\ (\bar{O} \ t'(F_k, X) t'(F_k, X)), & \text{if } f_i = (\text{CONS}(F_k X)(F_k X)) \\ \end{cases}
\]

A trace \(t' \) is a tree like the one shown in Fig. 3, and all graph-associated concepts may be used. For example, the parent of any node is the node immediately above it in the tree.

Two programs \(P_i \) and \(P_j \) will be called equivalent (written \(P_i = P_j \)) if \((P_i X) \) is defined, if and only if \((P_j X) \) is defined, and if \((P_i X) = (P_j X) \) when both are defined.

Theorem 2: If \(P \) is a regular program, then there is an equivalent regular program \(P_0 \) such that \((P_0 X) = Y \) implies \(t'(P_0, X) = t(X, Y) \).

Proof: In order to obtain the desired result that \((P_0 X) = Y \) implies \(t'(P_0, X) = t(X, Y) \), we must have the guarantee that (call this Property A), whenever the identity function is executed in the computation of \(Y \) performed by \(P_0 \), it operates with an atom as an argument. In other words, because \(t(X, Y) \) expresses \(Y \) in terms of the atoms of \(X \), \(t(P_0, X) = t(X, Y) \) only if \(P_0 \) computes \(Y \) from the atoms of \(X \). Consider as an example the case of computing the identity function. If \(X = (A \cdot B) \) and \(Y = (A \cdot B) \), then \(t(X, Y) = (O(A(I))(D(I))) \), and an identity function \(P_0 \) must be found such that \((P_0 X) = Y \) and \(t'(P_0, X) = (O(A(I))(D(I))) \).

In fact, \(P_0 \) may be defined as follows:

\[
(P_0 X) = (F_1 X) = (\text{CONS}(\text{ATOM} X)(X)) \\
(\text{CONS}(F_2 X)(F_3 X))) \\
(F_2 X) = (F_1(\text{CAR} X)) \\
(F_3 X) = (F_1(\text{CDR} X)).
\]

It is easy to construct \(P_0 \) in general such that Property A will hold. Suppose \((FX) = X \) is a component of \(P \); then \(F \) may be replaced by \(F_1 \), \(F_2 \), and \(F_3 \) of the above paragraph without affecting the input-output behavior of \(P \). Suppose \((P_0 X) = (P_0 X) \) is a part of some component of \(P \), where \(p \) is not \((\text{ATOM} X) \). Then this component may be replaced by \((p_1 \text{CONS}(F_2 X)(F_3 X))) \) using the same \(F_1 \), \(F_2 \), and \(F_3 \) from the above paragraph. Here again, the input-output characteristics of \(P \) will be unchanged, and Property A will be made to hold. So the desired \(P_0 \) can be constructed from \(P \) and \(P_0 = P \).

Assume that \((P_0 X) = (F_1 X) \), where \(F_1 \) is the initial component of \(P_0 \). We can show by induction on the length of the trace \((P_0 X) \) that for each \(F_i \), if \((F_i X) = Y \), then \((F_i X) = (F_i X) = (F_i X) \). Assume in each case that \(X \) satisfies \(p_i \), and \((p_i f_i) \) is a part of \(F_i \).

Induction: Assume the length of the trace \((F_i X) \) is greater than one so that \(f_i \) is either \(\text{NIL} \) or the identity function. Then in these two cases \((F_i X) \) is either \((N) \) or \((I) \), respectively. Also \(c(X, Y) \) is \(\text{NIL} \) or \(X \) using Property A, meaning \(t(X, Y) \) is \((N) \) or \((I) \), respectively. Therefore, \(t(F_i X) = t(X, Y) \).

The above assumption that \(Y \) contains at least one reference to \(X \) must hold by definition of the regularity of \(P \). If \(Y \) contained no reference to \(X \), then all atoms in \(Y \) would be \(\text{NIL} \) and \((F_i, p_i, f_i, p_k, f_k) \) would constitute a disallowed \(\text{CONS} \) instance in \(P \). The induction argument for the case where \(f_i = (F_k(\text{CDR} X)) \) is similar to the argument just given.

Suppose \(f_i = (\text{CONS}(F_k X)(F_k X)) \) for some \(F_k \) and \(F_k \). Then \((F_i, p_i) \) is the head of an executable \(\text{CONS} \) tree for this program. Then by the definition of regularity this \(\text{CONS} \) tree must be direct, meaning that either 1) \(2 \), or 3) of the definition of \(\text{CONS} \) tree directness must hold. One can check that in all three cases

\[
t(X, Y) = (O(t(X, (\text{CAR} Y))(t(X, (\text{CDR} Y)))) by definition of \(t(X, Y) \)
and \text{CONS} \text{ tree directness}
= (O(t(F_i X)) t'(F_i, X))
by the induction argument
= t'(F_i, X)
by definition of \(t(F_i, X) \).
\]

This completes the proof of Theorem 2.
V. ON THE BEHAVIOR OF REGULAR LISP PROGRAMS

If someone has a LISP function in mind, he may wish to know whether there is a regular LISP program which can compute that function. It is shown in [1] that the set of executable paths (defined below) through a semiregular program is a finite-state language. If the computation of the desired function involves the execution of paths which do not constitute a finite-state language, the desired function cannot be computed by any semiregular program.

An executable path through a semiregular program P is a string $a_1a_2\cdots a_i$ such that $a_j \in \{N, I, A, D, O\}$ for $j = 1, 2, \ldots, i$ and such that there is an S-expression X with the property that in tree $t(P, X)$, a_j is a parent of a_{j+1} for $j = 1, 2, \ldots, i - 1$.

Theorem 3: The set of executable paths through a semiregular program P is a finite-state language.

The proof of Theorem 3 appears in [1], and an example of its usage is as follows. Suppose it is desired to generate a program which converts $(A \cdot (B \cdot (C \cdot \text{NIL})))$ into $(A \cdot (B \cdot (C \cdot (C \cdot (C \cdot \text{NIL}))))))$, where in general, the ith item in the input appears i times in the output. But a study of the form of the traces $t(X, Y)$ for this computation reveals that they have paths of the form

$$0D0D0D0D0D0D0D0D\cdots D0^i0^i,$$

where w has length $i + 2$ or less. But this is not a regular set, proving that no regular LISP program can do the desired computation.

VI. PROGRAM SYNTHESIS

A class of programs will be called admissible if it is enumerable and if the halting problem is solvable for each member of the class. Let $C = \{P_i \mid i = 1, 2, 3, \ldots\}$ be any admissible class of programs. A method for generating a program from a set S of example input–output pairs (X_i, Y_i) is to examine sequentially P_1, P_2, P_3, \ldots until P_i is found such that $(P_i X) = Y_i$ for all $(X_i, Y_i) \in S$. This technique has the advantage that it always finds a program which can do the given examples (soundness) and that it can always generate every program (or its equivalent) in the class C (completeness). Such a technique can also be shown to make optimal use of its input information (the input–output pairs) in the sense that no other synthesis technique can be found which will generate every program P_j on the basis of less input output information than the technique given here.

An enumerative approach to program synthesis would be totally impractical if it were naively implemented, because most programs of any interest will have astronomically large indexes in the enumeration. However, in the case of regular LISP programs, the computation trace for obtaining each Y_i from its associated X_i is known (because of the regularity assumption). This means that the only programs which need be examined are those which can execute the given traces, and very powerful techniques exist for hurrying through this enumeration. This section will present a synthesis algorithm which is efficient enough to generate LISP programs of significant complexity and which has all of the desirable properties of a completely enumerative program.

Before beginning these discussions, it is important to note that the halting problem for the regular LISP programs is decidable.

Theorem 4: If P is a regular LISP program, then P will halt after a finite time on any argument.

Proof: If P fails to halt when operating on argument X, then $t(P, X)$ must have an infinite path $w = a_1a_2a_3\cdots$, $a_j \in \{N, I, A, D, O\}$ could not have an N or an I because this would terminate the path. It could not have an infinite number of A's or D's because this would imply an infinite number of CAR's or CDR's applied to finite X resulting in an undefined (thus halting) operation on an atom at some point. Thus $w = w_1w_2$, where $w_1 \in \{A, D, O\}^*$ has finite length and where w_2 is an infinite string of O's. But regular LISP programs are incapable of executing an infinite string of O's because this would imply an infinite executable CONS tree which contradicts the directness requirement included in the definition of regularity.

The general enumerative algorithm for program synthesis will now be given along with statements of some of its properties.

Algorithm A1:

Input: A finite set S of input-output pairs (X_i, Y_i) for the desired program.
Output: A program P_j from class C with the property that $(P_j X_i) = Y_i$ for each given $(X_i, Y_j) \in S$.

1) $j \leftarrow 1$.
2) while there is $(X_1, Y_1) \in S$ such that $(P_1 X_1) \neq Y_1$, increment j.
3) return with result P_j.

The result obtained if algorithm $A1$ enumerates class C and has input S will be denoted $A1(C, S)$.

A program synthesis algorithm A will be called sound if, whenever S represents the behavior of a program in C, $A(C, \{X_i \mid i = 1, 2, 3, \ldots\}) = Y_i$ for each $(X_i, Y_i) \in S$.

Program P_j will be said to cover program P_i if the fact that $(P_i X_i) = Y_i$ for all $(X_i, Y_i) \in S$. This technique has the advantage that it always finds a program which can do the given examples (soundness) and that it can always generate every program (or its equivalent) in the class C (completeness). Such a technique can also be shown to make optimal use of its input information (the input–output pairs) in the sense that no other synthesis technique can be found which will generate every program P_j on the basis of less input output information than the technique given here.

Program P_j will be said to cover program P_i if the fact that $(P_i X_i) = Y_i$ for all $(X_i, Y_i) \in S$. This technique has the advantage that it always finds a program which can do the given examples (soundness) and that it can always generate every program (or its equivalent) in the class C (completeness). Such a technique can also be shown to make optimal use of its input information (the input–output pairs) in the sense that no other synthesis technique can be found which will generate every program P_j on the basis of less input output information than the technique given here.

An enumerative approach to program synthesis would be totally impractical if it were naively implemented, because most programs of any interest will have astronomically large indexes in the enumeration. However, in the case of regular LISP programs, the computation trace for obtaining each Y_i from its associated X_i is known (because of the regularity assumption). This means that the only programs which need be examined are those which can execute the given traces, and very powerful techniques exist for hurrying through this enumeration. This section will present a synthesis algorithm which is efficient enough to generate LISP programs of significant complexity and which has all of the desirable properties of a completely enumerative program.

Before beginning these discussions, it is important to note that the halting problem for the regular LISP programs is decidable.

Theorem 4: If P is a regular LISP program, then P will halt after a finite time on any argument.

Proof: If P fails to halt when operating on argument X, then $t(P, X)$ must have an infinite path $w = a_1a_2a_3\cdots$, $a_j \in \{N, I, A, D, O\}$ could not have an N or an I because this would terminate the path. It could not have an infinite number of A's or D's because this would imply an infinite number of CAR's or CDR's applied to finite X resulting in an undefined (thus halting) operation on an atom at some point. Thus $w = w_1w_2$, where $w_1 \in \{A, D, O\}^*$ has finite length and where w_2 is an infinite string of O's. But regular LISP programs are incapable of executing an infinite string of O's because this would imply an infinite executable CONS tree which contradicts the directness requirement included in the definition of regularity.

The general enumerative algorithm for program synthesis will now be given along with statements of some of its properties.

Algorithm A1:

Input: A finite set S of input-output pairs (X_i, Y_i) for the desired program.
Output: A program P_j from class C with the property that $(P_j X_i) = Y_i$ for each given $(X_i, Y_i) \in S$.

1) $j \leftarrow 1$.
2) while there is $(X_1, Y_1) \in S$ such that $(P_1 X_1) \neq Y_1$, increment j.
3) return with result P_j.

The result obtained if algorithm $A1$ enumerates class C and has input S will be denoted $A1(C, S)$.

A program synthesis algorithm A will be called sound if, whenever S represents the behavior of a program in C, $A(C, \{X_i \mid i = 1, 2, 3, \ldots\}) = Y_i$ for each $(X_i, Y_i) \in S$.

Program P_j will be said to cover program P_i if the fact that $(P_i X_i) = Y_i$ for all $(X_i, Y_i) \in S$. This technique has the advantage that it always finds a program which can do the given examples (soundness) and that it can always generate every program (or its equivalent) in the class C (completeness). Such a technique can also be shown to make optimal use of its input information (the input–output pairs) in the sense that no other synthesis technique can be found which will generate every program P_j on the basis of less input output information than the technique given here.

An enumerative approach to program synthesis would be totally impractical if it were naively implemented, because most programs of any interest will have astronomically large indexes in the enumeration. However, in the case of regular LISP programs, the computation trace for obtaining each Y_i from its associated X_i is known (because of the regularity assumption). This means that the only programs which need be examined are those which can execute the given traces, and very powerful techniques exist for hurrying through this enumeration. This section will present a synthesis algorithm which is efficient enough to generate LISP programs of significant complexity and which has all of the desirable properties of a completely enumerative program.
the definition of P_j. If $A1$ operates on finite set $S = \{(X, Y)\}_{i=1,2,\cdots, j-1}$, it will halt and return P_j as its answer. This completes the proof.

Suppose AO is a program synthesis algorithm which is sound, complete, and stable over C. If for every S there is an associated $S' \subseteq S$ such that $AO(C, S') = AI(C, S)$ and if not all such S with associated S' are such that $AI(C, S') = AI(C, S)$, then AO will be said to be more input efficient than AI.

Theorem 6: If a program synthesis algorithm AO is sound, complete, and stable over C, then AO is not more input efficient than AI.

Proof: Assume AO is more input efficient than AI. Then there must be an S and an $S' \subseteq S$ such that $AI(C, S) = P_j$, $AO(C, S') = P_i$, and $AI(C, S') = P_i$ for $i < j$. Then there must be a subset $S' \subseteq S$ such that $AO(C, S' - S) = P_i$, since AO is more input efficient than AI, and AO is complete. But for each $(X, Y) \in S'$, $(P, X) = Y$ by the soundness of AI. So by the stability property of AO, $AO(C, (S' - S) \cup S') = P_i$. But this contradicts the fact that $AO(C, S') = P_i$ for $i < j$, so it must not be true that AO is more input efficient than AI. This completes the proof.

Theorems 5 and 6 are adaptations of results by Gold [8] to the domain of this study.

Returning to the example of Section I, it is desired to generate a program that outputs $Y = (C \cdot (B \cdot A))$ from input $X = (A \cdot B \cdot C)$. If the desired program is regular, we know that the trace of the computation must be as shown in Fig. 5. A wise synthesis procedure is to carry out the enumeration P_1, P_2, P_3, \cdots of the regular LISP programs, being sure to skip every program which cannot execute the “first part” of this trace $t(X, Y)$. “First part” in this case means all of the trace out to the trace frontier, which is an imaginary line across the trace showing how much of the trace has been processed at any given time. Fig. 5 shows one such frontier and a partial program which can execute the trace up to the indicated frontier. The synthesis procedure given here is thus strictly enumerative in the sense of algorithm AI, but the trace is used to drastically reduce the search.

Two S-expressions will be said to have identical templates if they become identical when all atoms are changed to NIL. Thus $((A \cdot B) \cdot C)$ and $((B \cdot NIL) \cdot D)$ have identical templates.

Notice that in the trace of Fig. 5 each node has an associated input S-expression. Thus node 3 has $((A \cdot B) \cdot C)$ which becomes $(A \cdot B)$ at node 5 after the CAR operation. Notice also that each trace node above the frontier has associated with it the component name from the partial program which executed that portion of the trace. At each point in the synthesis process, a set of active nodes will be chosen along the frontier for processing. The set of active nodes will have the property that they all have the same associated component names and identical associated input templates. Along the frontier shown, there are three possible (singleton) sets of active nodes to choose from: $[2]$ with associated component F_2 and template $\{(\text{NIL} \cdot \text{NIL}) \cdot \text{NIL}\}$, $[6]$ with associated component F_6 and template $\{(\text{NIL} \cdot \text{NIL}) \cdot \text{NIL}\}$, and $[7]$ with associated component F_7 and template $\{(\text{NIL} \cdot \text{NIL}) \cdot \text{NIL}\}$. In general, a set of active nodes may be quite large so that many nodes in the trace can be processed in one algorithmic step. The component of the program which is associated with the active nodes is called the active component.

The synthesis procedure chooses a set of active nodes on the frontier and attempts to advance the frontier at those nodes by adding, if necessary, a transition to the active component of the program. Suppose that $[2]$ is chosen as the set of active nodes. Then a transition in the program from active component F_2 on an input of the form $((\text{NIL} \cdot \text{NIL}) \cdot \text{NIL})$ to be added to the program. In terms of LISP, F_2 is about to be defined as $(F_2X) = (F_1(\text{CDR } X))$, where each $i = 1, 2, 3,$ and 4 is tried. All possible values of i are tried because we are enumerating all possible programs which could execute the trace. In this case $i = 1$ succeeds, leaving the definition as $(F_2X) = (F_1(\text{CDR } X))$. The frontier is thus advanced from $[2, 6, 7]$ to $[4, 6, 7]$ and a new set of active nodes may be chosen.

If $[6]$ is chosen as the next set of active nodes, we notice that the above definition of F_2 provides the proper CDR operation enabling the procedure to advance the frontier to $[4, 8, 7]$ without additional modifications to the partial program. Here we say that the trace transition below $[6]$ was merged with a transition from F_2. If node 6 had been followed by an i instead of B, the merge would have failed, and the definition of F_2 would have been modified (if possible) to yield a CDR operation for inputs of type $(\text{NIL} \cdot \text{NIL}) \cdot \text{NIL})$ and a CAR operation for inputs of type $(\text{NIL} \cdot \text{NIL})$:

$$(F_2X) = ((\text{ATOM CAR } X)|(F_1(\text{CAR } X))$$

$$(t(F_1(\text{CDR } X)))$$

for some $i = 1, 2, 3, 4,$ or 5.

The regular LISP program synthesizer will be called AI. It has three major routines: MAIN which sets the maximum allowed number of synthesizable transitions and then sends the system off looking for a solution, NODE PROCESSOR which
attempts to find a way to advance the frontier either by creating a new program transition or by merging trace transitions with a program transition as explained above, and CREATE NEW TRANSITION which creates a new transition in the program.

The program MAIN sets the maximum allowed number of transitions (MAXTRANS) to one, and then the complete space of one transition programs is searched for a program which can execute the given traces. If NODE PROCESSOR returns having found no solution, MAXTRANS is incremented and the search begins again. The program MAIN may be summarized as follows.

```
MAIN:
MAXTRANS = 1;
NO SOLUTION FOUND = TRUE;
WHILE NO SOLUTION FOUND;
   INITIALIZE SYNTHESIZED PROGRAM AS ONE COMPONENT
   AND NO TRANSITIONS;
   CALL NODE PROCESSOR
   MAXTRANS = MAXTRANS + 1;
END.
```

The program NODE PROCESSOR begins by updating the frontier on the traces and picking out a set of active nodes. If a contradiction is found among the active nodes, NODE PROCESSOR immediately fails and returns to the calling routine. Thus if two active nodes are both associated with component F_2 and have input template ($NIL \cdot NIL$) but are followed by A and D transitions, respectively, no transition can be added to F_2 which can execute both portions of the trace. If no such contradictions are found, NODE PROCESSOR begins looking for a way to advance the frontier at the active nodes. If no transition leaves the active component, then CREATE NEW TRANSITION is called to create the first such transition. If there are transitions leaving the active component, an attempt is made to merge the trace transitions below the active nodes with the first transition leaving this active component. The merge will be successful if the operations associated with the transitions below the active nodes are identical to the operation associated with the proposed program transition and if the predicates of the active component can be revised to enable the program to correctly execute the traces up to the new frontier. If the merge is successful, NODE PROCESSOR is called recursively to update the frontier again, to choose a new set of active nodes, and to make further additions to the program being created. If the merge fails or if it succeeds but NODE PROCESSOR returns with failure, another transition from the active component is chosen for possible merger.

It may be that NODE PROCESSOR will not be able to merge the trace transitions with any existing transition from the active component. Then attempts are made to create a new transition leaving the active component. The new transition may be either before or after any existing transition, and every possibility must be tried. At first the new transition is proposed to precede the first existing transition. An attempt is made to build predicates for the active component so that this new transition and all others correctly execute the traces to the new frontier. If the attempt is successful, CREATE NEW TRANSITION is called to add this new transition at the appropriate position with the appropriate predicate. If the attempt fails or CREATE NEW TRANSITION returns with failure, a different location for the new transition is tried.

If all of the above attempts to account for the transitions leaving the active nodes fail, then NODE PROCESSOR returns with failure. There is no addition to the given partial program which will enable it to execute the given traces. Backup to a higher level routine will cause the partial program to be modified and the frontier to be raised to an earlier position. The NODE PROCESSOR routine may be summarized as follows.

```
NODE PROCESSOR:
IF NO TRANSITIONS HAVE BEEN CREATED, THE FRONTIER IS THE
SET OF INITIAL NODES OF THE TRACES
ELSE THE FRONTIER IS ADVANCED TO ACCOUNT FOR THE
TRANSITION PROCESSED IN THE CALLING ROUTINE;
IF THERE ARE UNPROCESSED NODES ON THE FRONTIER, CHOOSE
A NEW SET OF ACTIVE NODES
ELSE PRINT THE SOLUTION PROGRAM;
   NO SOLUTIONS FOUND = FALSE;
RETURN;
IF CONTRADICTIONS ARE FOUND AMONG THE ACTIVE NODES,
   IF NO TRANSITION LEAVES THE ACTIVE COMPONENT, CALL
   CREATE NEW TRANSITION; RETURN;
FOR EACH TRANSITION LEAVING THE ACTIVE COMPONENT, IF IT
   IS MERGABLE WITH THE TRANSITIONS LEAVING THE ACTIVE
   NODES, CALL NODE PROCESSOR;
FOR EACH LOCATION BEFORE AND AFTER AN EXISTING TRANSI-
   TION, IF PREDICATES CAN BE BUILT SO THAT A NEW TRANSI-
   TION CAN BE INSERTED AT THIS LOCATION, CALL
   CREATE NEW TRANSITION;
RETURN FROM NODE PROCESSOR.
```

The create new transition routine first checks to see whether the existing number of transitions in the program being generated has reached the maximum MAXTRANS set by MAIN. If the maximum has been reached, CREATE NEW TRANSITION fails immediately. If the operation below the active nodes is N or I, then the appropriate NIL or identity transition is added to the active component, and NODE PROCESSOR is called to advance the frontier and continue the processing. If the active nodes are followed by A or D, the appropriate transition CAR or CDR is added to the active component. That is, part $(p(F_2(c(u \cdot R \ X)))$ is attempted, and every attempt fails or CREATE NEW TRANSITION returns with failure, the parts $(p(F_2(c(u \cdot R \ X))), (p(F_2(c(u \cdot R \ X))), etc., are tried sequentially until every possible destination has been attempted including a new component which was not previously created. If all such attempts fail, CREATE NEW TRANSITION returns with failure. If the active nodes are followed by O, a new transition $(p(\text{CONS}(F, X)(F, X)))$ is attempted, and every
possible pair of destinations F_i and F_j is tried. This routine may be summarized as follows.

CREATE NEW TRANSITION:
IF THE CURRENT NUMBER OF TRANSITIONS IN THE PROGRAM IS MAXTRANS, RETURN;
IF A NIL OR IDENTITY TRANSITION IS TO BE CREATED,
CREATE THE TRANSITION;
CALL NODE PROCESSOR;
RETURN;
IF A CAR OR CDR TRANSITION IS TO BE CREATED,
FOR EACH POSSIBLE DESTINATION OF THE TRANSITION,
CREATE THE CORRECT TRANSITION TO THAT DESTINATION;
CALL NODE PROCESSOR;
RETURN;
IF A CONS TRANSITION IS TO BE CREATED,
FOR EACH POSSIBLE PAIR OF DESTINATIONS,
CREATE A TRANSITION TO THAT PAIR;
CALL NODE PROCESSOR;
RETURN;
END.

The reader interested in seeing this type of algorithm stated in much more precise form and accompanied by proofs of correctness should consult [5] or [2]. Even though these references are not concerned with LISP synthesis, they give two different methods by which the current algorithm could be formalized and proven correct.

In the following, 4.2 will be illustrated by working through a synthesis from the trace of Fig. 5. Many steps will be omitted where unsuccessful searches are performed.

ENTER MAIN
MAXTRANS = 1 (FAILURE)
MAXTRANS = 2 (FAILURE)
MAXTRANS = 3 (FAILURE)
MAXTRANS = 4
INITIALIZE SYNTHESIZED PROGRAM AS ONE COMPONENT (Fig. 6(a))

ENTER NODE PROCESSOR
NO TRANSITIONS HAVE BEEN CREATED: FRONTIER = {1}
THERE ARE UNPROCESSED NODES: ACTIVE = {1}
NO CONTRADICTIONS FOUND
NO TRANSITION LEAVES THE ACTIVE COMPONENT F_1

ENTER CREATE NEW TRANSITION
A CONS TRANSITION IS TO BE CREATED
TRY DESTINATIONS F_1, F_2 (FAILURE, VIOLATES REGULARITY)
TRY DESTINATIONS F_1, F_2 (FAILURE, VIOLATES REGULARITY)
TRY DESTINATIONS F_2, F_3 (FAILURE, VIOLATES REGULARITY)
TRY DESTINATIONS F_2, F_3 (FAILURE REPORTED FROM NODE PROCESSOR)
TRY DESTINATIONS F_2, F_3 (Fig. 6(b))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {2, 3}
THERE ARE UNPROCESSED NODES: ACTIVE = {3}

NO CONTRADICTIONS FOUND
NO TRANSITION LEAVES THE ACTIVE COMPONENT F_3

ENTER CREATE NEW TRANSITION
A CAR TRANSITION IS TO BE CREATED
TRY DESTINATION F_1 (Fig. 6(c))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {2, 5}
THERE ARE UNPROCESSED NODES: ACTIVE = {5}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F_1
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND ACTIVE COMPONENT (SUCCESS)

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {2, 6, 7}
THERE ARE UNPROCESSED NODES: ACTIVE = {6}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F_2

ENTER CREATE NEW TRANSITION
A CDR TRANSITION IS TO BE CREATED
TRY DESTINATION F_1 (Fig. 6(d))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {4, 6, 7}
THERE ARE UNPROCESSED NODES: ACTIVE = {6}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F_2
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND ACTIVE COMPONENT (SUCCESS)

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {4, 8, 7}
THERE ARE UNPROCESSED NODES: ACTIVE = {7}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F_3
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND ACTIVE COMPONENT (SUCCESS)

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = {4, 8, 9}
THERE ARE UNPROCESSED NODES: ACTIVE = {4, 8, 9}
NO CONTRADICTIONS FOUND
A TRANSITION LEAVES THE ACTIVE COMPONENT F_4
TRY MERGE OF TRANSITIONS FROM ACTIVE NODE AND ACTIVE COMPONENT (FAILURE)
TRY CREATING A PREDICATE SO THAT A NEW TRANSITION CAN BE INSERTED BEFORE THE EXISTING TRANSITION (SUCCESS: \(p = (\text{ATOM } X) \))

ENTER CREATE NEW TRANSITION
AN IDENTITY TRANSITION IS TO BE CREATED (Fig. 6(c))

ENTER NODE PROCESSOR
TRANSITIONS HAVE BEEN CREATED: FRONTIER = \{} \{
THERE ARE NO UNUNPROCESSED NODES
PRINT THE SOLUTION PROGRAM
NO SOLUTIONS FOUND = FALSE
POP TO THE TOP LEVEL OF THE NESTED RECURSIVE CALLS AND HALT.

Our implementation of A2 completes this computation in about half a second. It is interesting to note that even though for illustrative purposes this program was generated from the input-output pair \((((A \cdot B) \cdot C), (C \cdot (B \cdot A))) \), the same program could have been generated from \(((A \cdot B), (B \cdot A)) \) or any other example with a nonatomic input.

Before concluding this section, it may be helpful to briefly discuss the predicate generation process which is largely ignored above. The partial program must be able at each step of the synthesis process to execute all of the given traces down to their respective frontiers. Let \(p_j \) be the \(j \)th predicate in component \(F_i \). Let \(T_{ij} \) be the set of \(S \)-expressions taken from the traces which are inputs to \(F_i \) when the transition with predicate \(p_j \) is taken. Then for each component \(F_i \) a chain of predicates \(p_{1j}, p_{2j}, \ldots, p_{nj} \) must be found such that for all \(X \in T_{ij} \), for \(j = 1, 2, \ldots, n_i - 1 \), \(p_j(X) = \tau \) and such that for all \(X \in T_{nj} \), for all \(j = 1, 2, \ldots, n_i - 1 \), \(p_j(X) = \text{NIL} \). Each time that a program transition is created or a merge is made, the predicate generation routine must discover for some \(F_i \) whether such a chain of predicates can be found and must produce that chain if it exists. That such a predicate generation routine can be built can be verified easily by any programmer, and no details of its design need be included here.

VII. SOME SYNTHESIZED PROGRAMS

Algorithm A2 was implemented on a PDP-11/45, and some of the generated programs are included here. Because A2 is enumerative, the time required to complete a synthesis rises exponentially with the size of the target program. With the current system, programs with three transitions or less usually could be created in a second or less. Four transitions often required several seconds, five transitions took most of a minute, and six or more transitions could require much more than a minute of time. No special search pruning techniques were employed to speed up A2 although many are known. For example, [4] explains a failure memory technique which was successful in speeding up a similar algorithm by two or more orders of magnitude for problems similar to the ones discussed here.

The construction of the trace \(t(X, Y) \) was not automated; so the examples given below were generated by constructing the traces by hand and submitting them to A2. List notation is used in this section as is common in the LISP literature: \((x_1 x_2 x_3 \cdots x_n) \) is used to represent the \(S \)-expression \((x_1 \cdot (x_2 \cdot (x_3 \cdot (\cdots (x_n \cdot \text{NIL}) \cdots)) \cdots)) \).

Example 1: Find the last element of a list: \((A B C)\) yields an output \(C \). \((A B C)\) is defined as \((A \cdot (B \cdot (C \cdot \text{NIL})))\), which is changed to \((A \cdot (B \cdot (C \cdot D)))\) to accommodate the input specification of the program synthesizer. (All input atoms must be distinct and non-NIL.)

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A \cdot (B \cdot (C \cdot D))))</td>
<td>(C)</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{COND}((\text{ATOM } X) X) \nonumber \\
((\text{ATOM}(\text{CDR } X))(F_1(\text{CAR } X))) \nonumber \\
(t(F_1(\text{CDR } X)))) \nonumber
\]

Time: \(\frac{1}{2}\) s.

The same program would have been generated if any other input list of length two or more had been used. Similar behavioral robustness would be exhibited on any other example in this section.

Example 2: Find the third from last element of a list: \((A B C D E)\) yields an output \(C \). The input list is converted for submission to the algorithm as in Example 1.

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
</table>
| \((A \cdot (B \cdot (C \cdot (D \cdot (E \cdot F))))\) | \((\text{ATOM}(\text{CDR } X))(F_1(\text{CAR } X))) \nonumber \\
(t(F_1(\text{CDR } X)))) \nonumber
\]

Time: \(\frac{1}{2}\) s.

Example 3: Suppose the user has submitted the behavior example of Example 2 with the goal in mind of producing a program to output the third element of a list. Then he tests the program on the input \((A B C D)\) and obtains \(B \) as an output. Clearly something is wrong; so he resynthesizes the program with two examples, \((A B C D E)\) yields \(C \) and \((A B C D)\) also yields \(C \). This time he obtains the program he wanted. (List notation is converted as in Example 1.)

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A \cdot (B \cdot (C \cdot (D \cdot (E \cdot F)))))</td>
<td>(C)</td>
</tr>
<tr>
<td>((A \cdot (B \cdot (C \cdot (D \cdot E)))))</td>
<td>(C)</td>
</tr>
</tbody>
</table>

Program:

\[
(F_2 X) = (\text{COND}((\text{ATOM } X) X) \nonumber \\
(t(F_2(\text{CDR } X)))) \nonumber \\
(F_3 X) = (F_3(\text{CDR } X)) \nonumber \\
(F_3 X) = (F_3(\text{CAR } X)) \nonumber
\]

Time: 3 s.

In order to illustrate behavioral robustness, it should be mentioned that the same program would be generated if any two or more of the following input–output pairs had been used.
Example 4: If an S-expression is linear with an atom on at least one side of every consed pair, go to the bottom of the chain and give the atom furthest to the right.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R S T A)</td>
<td>T</td>
</tr>
<tr>
<td>(X Y Z)</td>
<td>Z</td>
</tr>
<tr>
<td>(A B C D E)</td>
<td>C</td>
</tr>
<tr>
<td>(R O B U S T)</td>
<td>B</td>
</tr>
<tr>
<td>(R E G U L A R)</td>
<td>G</td>
</tr>
<tr>
<td>(A B C D E F G H)</td>
<td>C</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = \text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_2 X) = (F_1(\text{car} X))
\]

\[
(F_3 X) = (\text{cons}(F_2 X)(F_4 X))
\]

\[
(F_4 X) = (F_1(\text{cdr} X))
\]

Time: 1 1/2 s.

Example 5: Sequentially take cdr, cdr, car, cdr, car, cdr, and so forth until an atom is found. Return that atom as the result.

<table>
<thead>
<tr>
<th>Example Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>(A • B)</td>
<td>B</td>
</tr>
<tr>
<td>(A • (B • C))</td>
<td>C</td>
</tr>
<tr>
<td>(A • (B • (C • D)))</td>
<td>C</td>
</tr>
<tr>
<td>(A • ((B • (C • D))) • F))</td>
<td>D</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_2 X) = (F_1(\text{car} X))
\]

\[
(F_3 X) = (\text{cons}(F_2 X)(F_4 X))
\]

\[
(F_4 X) = (F_1(\text{cdr} X))
\]

Time: 152 s.

Example 6: Find the atoms at the extreme left and right in an S-expression.

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A • B • (C • D))</td>
<td>(A • D)</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_2 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_3 X) = (\text{cond}((\text{atom} X) X)
\]

Time: 24 s.

Example 7: Double all of the elements of a list: (A B C) yields (A A B B C C). First these lists are converted to S-expressions as described in Example 1.

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A • (B • (C • D)))</td>
<td>(A • (A • (B • (B • (C • (C • D)))))</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_2 X) = (F_1(\text{car} X))
\]

\[
(F_3 X) = (\text{cons}(F_2 X)(F_4 X))
\]

\[
(F_4 X) = (F_1(\text{cdr} X))
\]

Time: 10 s.

Example 8: In a list of lists, obtain the first element of each list: ((A) (B)) yields (A B). First these lists are converted to S-expressions as described in Example 1.

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A • D) • ((B • E) • C))</td>
<td>(A • (B • C))</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_2 X) = (F_1(\text{car} X))
\]

\[
(F_3 X) = (F_1(\text{cdr} X))
\]

Time: 18 s.

Example 9: In a list of atoms and lists, collect the first atoms of the lists: (A (B) C (D) (E) F) yields (B D E).

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 • ((B • H) • (C • ((D • I) • ((E • J) • (F • G)))))</td>
<td>(B • (D • (E • G)))</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_2 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_3 X) = (F_1(\text{car} X))
\]

Time: About 1/2 h.

Example 10: Collect the atoms in a list of atoms and lists: (A (B) C (D) (E) F) yields (A C F).

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A • ((B • H) • (C • ((D • I) • ((E • J) • (F • G)))))</td>
<td>(A • (C • (F • G)))</td>
</tr>
</tbody>
</table>

Program:

\[
(F_1 X) = (\text{cond}((\text{atom} X) X)
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_1 X) = (\text{cons}(F_2 X)(F_3 X))
\]

\[
(F_1 X) = (F_1(\text{car} X))
\]

\[
(F_1 X) = (F_1(\text{car} X))
\]

Time: About 1/2 h.
Program:

\[(F_1 X) = \text{COND}((\text{ATOM} X) X)\]
\[\text{(ATOM(car X)) CONS}(F_2 X)(F_3 X))\]
\[T \text{(F}_1 \text{cdr X})\].

\[(F_2 X) = (F_1 \text{car X})\]

\[(F_3 X) = (F_1 \text{cdr X}).\]

Time: 39 s.

Example 11: Interchange the atoms of the bottom pairs of a uniform S-expression.

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(A \cdot B) \cdot ((C \cdot D) \cdot (E \cdot F))]</td>
<td>[(B \cdot A) \cdot ((D \cdot C) \cdot (F \cdot E))]</td>
</tr>
</tbody>
</table>

Program:

\[(F_1 X) = \text{COND}((\text{ATOM} X) X)\]
\[T \text{(CONS}(F_2 X)(F_3 X))\]

\[(F_2 X) = \text{COND}((\text{ATOM(car X))}(F_1 \text{cdr X}))\]
\[T \text{(F}_1 \text{car X})\].

\[(F_3 X) = \text{COND}((\text{ATOM(car X))}(F_1 \text{car X}))\]
\[T \text{(F}_1 \text{cdr X})\].

Time: 27 s.

Example 12: One might wonder what happens if random S-expressions are typed into the system. The answer is that the synthesizer will do the best it can.

<table>
<thead>
<tr>
<th>Example Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>(A \cdot B)</td>
<td>(A \cdot NIL)</td>
</tr>
<tr>
<td>((A \cdot B) \cdot C)</td>
<td>A</td>
</tr>
<tr>
<td>(A \cdot (NIL \cdot NIL))</td>
<td>B</td>
</tr>
</tbody>
</table>

Program:

\[(F_1 X) = \text{COND}((\text{ATOM(car X))}(F_1 \text{car X}))\]
\[T \text{(CONS}(F_2 X)(F_3 X))\]

\[(F_2 X) = \text{NIL}\]

\[(F_3 X) = \text{NIL}.\]

Time: \(3/4\) s.

Example 13: Output a constant:

\[(\text{NIL} \cdot ((\text{NIL} \cdot \text{NIL}) \cdot \text{NIL})].\]

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(NIL \cdot ((NIL \cdot NIL) \cdot NIL))</td>
</tr>
</tbody>
</table>

Program:

\[(F_1 X) = \text{CONS}(F_2 X)(F_3 X))\]

\[(F_2 X) = \text{NIL}\]

\[(F_3 X) = (\text{CONS}(F_4 X)(F_2 X))\]

\[(F_4 X) = (\text{CONS}(F_2 X)(F_2 X)).\]

Time: 14 s.

Example 14: Distinguish between two complex S-expressions. This example simply tests the predicate-building mechanism.

<table>
<thead>
<tr>
<th>Example Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A \cdot B) \cdot (((C \cdot D) \cdot E) \cdot (((F \cdot G) \cdot H) \cdot I)) \cdot J)</td>
<td>NIL</td>
</tr>
<tr>
<td>((A \cdot B) \cdot (((C \cdot D) \cdot E) \cdot (((F \cdot (L \cdot M)) \cdot H) \cdot I)) \cdot J)</td>
<td>(NIL \cdot NIL)</td>
</tr>
</tbody>
</table>

Program:

\[(F_1 X) = \text{CONS}(\text{COND}(\text{ATOM(car X)})\cdot NIL)\]
\[T \text{(CONS}(F_2 X)(F_3 X))\]

\[(F_2 X) = \text{NIL}\]

Time: \(3/4\) s.

VIII. DISCUSSION

The class of regular LISP programs probably can compute most of the LISP functions that one might think of which do not require the \textit{EQUAL} predicate or the use of additional variables. One might consider modifications of the definition and examine what kind of synthesis performance might be achieved. Broadening the definition some might add interesting programs to the class, but it would also increase the time required to generate programs. Too great an increase in the class size would also cause the halting problem to become unsolvable, in which case even enumerative methods run into difficulties. The system described here is able to discard quickly huge classes of candidate programs because of the regularity assumption (which implies the solvability of the halting problem). If the halting problem is not solvable, then the astronomical number of programs which are not known to halt on the given examples must be saved as possible solutions to the synthesis problem until one is found which can do the examples.

One could also narrow the class and greatly speed up the system. For example, in one experiment the enumeration was limited to linear recursions, and the program of Example 9 was generated in less than 1 min, indicating a speedup of about 30. A narrow enough definition makes it possible to discard enumerative techniques and to generate programs in polynomial time. The author will report on such a system at a later time, or the reader might wish to study some of the other efforts in LISP synthesis [9], [10], [12]–[15].

Continued research in this area will look for a narrowed class of control structures which will make it possible to search more deeply in the set of all possible programs and still be able to generate many programs of interest. It is also important to try to eliminate the limitations listed above,
inability to use the \textsc{equal} predicate or additional variables. If some success can be achieved in these areas and if this method can be used to sequentially generate a hierarchy of programs, truly large and useful programs will be created automatically.

\section*{Appendix}
\textbf{Discovering the set of all possible arguments for each component function}

It is necessary to begin by developing some notation. We will be using predicates \(p \) of the following form:
\[
(\text{atom}(c w \cdot X)) \text{ or } (G(\text{atom}(c w \cdot X)))
\]
where \(w \in (A + D)^* \). The length of such a predicate will be defined to be the length of its associated \(w \). The second form may be understood intuitively to mean "the \(S \)-expression \((c w \cdot X)\) is greater than an atom." Specifically,
\[
(G p) = \begin{cases} T, & \text{if } p \text{ is defined and } p = \text{nil} \\ \text{nil}, & \text{otherwise} \end{cases}
\]

For example, if \(X = (A \cdot B \cdot C) \), then
\[
(G(\text{atom}(\text{cdr } X))) = T \quad \text{(if } p \text{ is defined and } p = \text{nil})
\]
\[
(G(\text{atom}(\text{cdadr } X))) = \text{nil}
\]
If \(R = \{p_1, p_2, \ldots, p_n\} \) is a set of predicates, define
\[
S_R = \{X \mid X \text{ is an } S\text{-expression, } p(x) = T \text{ for all } p \in R\}
\]
By convention, if \(\emptyset \) is the empty set, \(S_\emptyset \) will be defined to be the set of all possible \(S \)-expressions. Suppose \(R = \{\text{atom}(\text{car } X), G(\text{atom}(\text{cdr } X))\} \). Then \(S_R \) is the set of all \(S \)-expressions with an atom in the \text{car} location and a nonatomic \(S \)-expression at the \text{cdr} location; e.g., \((A \cdot B) \cdot (C \cdot D)\) is in \(S_R \).

If \(S \) is a set of \(S \)-expressions, define
\[
\begin{align*}
\text{(car } S) &= \{Y \mid X \in S \text{ and } Y = \text{car } X\} \\
\text{(cdr } S) &= \{Y \mid X \in S \text{ and } Y = \text{cdr } X\}
\end{align*}
\]
One can check that, if \(R \) is a set of predicates, then another set \(R' \) of predicates can be found such that \(S_R' = \text{car } S_R \). \(R' \) is constructed by 1) deleting from \(R \) all predicates with innermost function \(\text{atom} X \) or \(\text{cdr} X \) and 2) replacing \(\text{car} X \) by \(X \) in all remaining predicates. Thus, using the above example \(R \), we can construct \(R' = \{\text{atom}(\text{car } X)\} \). This leads to the definition of a new function \(\text{car} R \) on sets of predicates. \(\text{car}(R) = R' \) if \(S_R = \text{car } S_R \). The function \(\text{cdr} \) is similarly defined.

The general method for finding the set of all possible arguments for each component function is as follows. If \(S_R \) is a set of possible arguments for \(F_i \) and \(F_i \) has, for example, the form
\[
(F_i X) = \text{(cond}(p_1 \text{(cons}(F_i X)(F_i X))) \quad (p_2(F_i X)) \quad (p_3(F_i X))),
\]
some sets of possible arguments for other component functions can be found. Thus \(F_k \) and \(F_k \) have \(S_{R \cdot \text{(cons}(F_i X)(F_i X))) \) as possible arguments. \(F_j \) has \(\text{car} X \) for all \(X \) in \(S_{R \cdot \text{cons}(F_i X)(F_i X))} \) as possible arguments, which is written \(S_{\text{car}(R \cdot \text{cons}(F_i X)(F_i X)))} \). Since \(p_1 = T \), \(F_m \) will have as possible arguments \(\text{car} X \) for all \(X \) in \(S_{R \cdot \text{cons}(F_i X)(F_i X))} \), which is written \(S_{\text{car}(R \cdot \text{cons}(F_i X)(F_i X)))} \).

The goal of this computation is to find for each \(F_i \) the set \(Q_i \) of all sets \(S_R \) of possible arguments. The \(Q_i \) will be computed in stages \(Q_i^{(0)}, Q_i^{(1)}, Q_i^{(2)}, \ldots \) such that \(Q_i^{(0)} \subseteq Q_i^{(1)} \subseteq \ldots \), and for some finite \(k \), \(Q_i^{(k)} = Q_i \). Initially, \(Q_i^{(0)} = \{S_0\} \) since \(F_1 \) can have any \(S \)-expression as an argument, and \(Q_i^{(0)} = \emptyset \) for \(i > 1 \). Each \(Q_i^{(j+1)} \) is computed by adding to \(Q_i^{(j)} \) all new possible argument sets \(S_R \) which result from the fact that \(S_R \in Q_i^{(j)} \) for some component \(F_h \) and that \(F_h \) evaluates by calling \(F_i \). The algorithm is as follows.

1. Initialize the \(Q_i^{(1)} \) as described above, and set \(k = 1 \).
2. While \(k = 1 \) or there is a \(j \) such that \(Q_i^{(k-1)} \neq Q_i^{(j)} \), do:

 For each \(i \), compute \(Q_i^{(k+1)} \) from \(Q_i^{(k)} \), \(Q_i^{(1)}, \ldots, Q_i^{(0)} \) as follows, and then increment \(k \):

 Initialize \(Q_i^{(k+1)} \) to be equal to \(Q_i^{(k)} \).

 If there is an \(h \) such that \(S_R \in Q_i^{(k)} \), then

 1) if \((F_h X) = (F_i \text{car}(X)) \), add \(S_{\text{car}(R)} \) to \(Q_i^{(k+1)} \) if \(F_h \) has part \((p_1 \text{(cons}(F_i \text{car}(X))) \), \(m > 1 \), \(p_m = T \), add \(S_{\text{car}(R \cdot \text{cons}(F_i \text{car}(X)))} \) to \(Q_i^{(k+1)} \), if \(F_h \) has part \((p_m \text{(cons}(F_i \text{car}(X))) \), \(m > 1 \), \(p_m = T \), add \(S_{\text{car}(R \cdot \text{cons}(F_i \text{car}(X)))} \) to \(Q_i^{(k+1)} \).

 2) add set \(S_R, \) similar to those in 1) to \(Q_i^{(k+1)} \) if \(F_h \) calls \(F_i \) with argument \(\text{cdr} X \), and

 3) if \((F_h X) = (\text{cons}(F_i \text{car}(X))(F_i \text{car}(X))) \), where either \(r_i = i \) or \(r_i = i \), add \(S_R \) to \(Q_i^{(k+1)} \) if \(F_h \) has part \((p_m \text{cons}(F_i \text{car}(X))(F_i \text{car}(X))) \), \(m > 1 \), \(p_m = T \), add \(S_{R \cdot \text{cons}(F_i \text{car}(X))(F_i \text{car}(X)))} \) to \(Q_i^{(k+1)} \), if \(F_h \) has part \((p_m \text{cons}(F_i \text{car}(X))(F_i \text{car}(X))) \), \(m > 1 \), \(p_m = T \), add \(S_{R \cdot \text{cons}(F_i \text{car}(X))(F_i \text{car}(X)))} \) to \(Q_i^{(k+1)} \).
3. For each \(i \), \(Q_i = Q_i^{(k)} \).

Because the predicates are bounded in length by the longest one found among the components \(F_i \), there are only a finite number of them. So there are only a finite number of sets of such predicates. And because \(Q_i^{(j)} \subseteq Q_i^{(j+1)} \), there must be a \(k \) such that \(Q_i^{(k)} = Q_i^{(k+1)} \) for all \(i \). So the algorithm must halt.

\section*{Acknowledgment}

The author is extremely grateful to Dr. P. Summers, whose writings and discussions have led to many of the insights described here. D. Smith is also involved in the LISP synthesis effort and has contributed to this work. One of the referees provided helpful suggestions which have been incorporated into the final version of the paper.

\section*{References}

