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THE MECHANISM OF' HABITUATION

by

DR. W. ROSS ASHBY

SUMMARY

THE Phenomenon of habituation, in which the response to any regularly

repeated stimulus decreases, has not so far received any general mechanistic

explanation. Its occurrence insystolsof widely differing nature (nervous

system, protozoa, bacterial cultures) and its occurrence against stimuli

that the species has never previously encountered (smells or toxicities of

newly synthesised chemicals) show that it cannot always be due to a special-

ised mechanism, shaped by natural selection.

It is here shown that when any system is subjected to a regularly

repeated stimulus or disturbance, the successive responses, if they change

in size, do not in general tend to become larger or smaller with equal

probability: there is a fundamental bias in favour of the smaller. This bias

holds over a great range of systems and disturbances. A theorem is proved,

setting out the exact conditions for the decrease.

Some applications of the theorem are given. It is shown that habituation

Is specially likely to occur in any system made of parts that are rich in

states of equilibrium. The theorem, without further assumption, provides an

explanation of why any extraneous disturbance typically causes de-

habituation.

To demonstrate the generality of the theorem, an example is given showing

how habituation and de-habituation appear even out of a table of random

numbers when the appropriate operations are applied.

It is suggested that this asymmetry is responsible for much habituation,

including much of that shown by the cerebral cortex.

1. INTRODUCTION

ONE of the commonest phenomena in the living world occurs when an organism,

given an innocuous and unvarying stimulus or disturbance repetitively,

reacts briskly at first, then less actively, and finally perhaps not at
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all. Known in behaviour as "habituation" and in perception as "adaptation",

it has been recognised from time immemorial yet still lacks explanation.

Only recently Sharpless and Jasper (1956, ref. 10) could say "Habituaticn ...
has yet to be explained by any known neurophysiological principles".

A review of the subject need not be given here as it has been well

reviewed by Humphrey (1933, ref.6), Harris (1943, ref. 5), and Thorpe (1956,

ref. 11). On one important matter they are agreed: habituation of typical
form occurs in almost every form of life; in particular it appears as

readily in forms having no neural apparatus as in the forms having a well

developed brain. Amoeba shows it as freely as does the cat. The phenomenon
evidently does not depend on specifically neurophysiological details. Its
origin must lie in some property of much wider occurrence.

The possibility of "fatigue" as an explanation must be rejected. A

number of workers (e.g. Humphrey, 1933, ref. c; Danisch, 1921, ref. 4) have

shown that the more violent the stimulus (with correspondingly larger

response) the less does habituation occur and the later is its onset. This

relation is just the opposite to what would be expected to happen with

fatigue, in which the larger responses would lead to a more rapid decay.

The atm of this paper is not, in any case, to relate habituation to

concepts of physiological or psychological type such as "fatigue" but to

relate it to basic concepts of mechanistic type. I shall examine the

phenomenon in the light of the modern logic of mechanism, so as to make

use of the Dull generality of its methods (Ashby, 1956 ref.2). Its use has

several advantages. It enables the discussion to be as rigorous as we

please. Yet this rigour is coupled with an extreme generality; for while

It makes no assumption (as mathematical analysis so often does) of con-

tinuity, it includes this possibility as a special case. Further, by being

abstract, general concepts need not be artificially restricted to those

covered by the vocabulary of the neurophysiologist, or the electronic

engineer, or the colloidal chemist, or other specialist. As will be shown

below, the basic phenomenon of habituation can be identified over a very

wide range of systems, and only a language that can range equally widely

is appropriate.
Habituation was originally a physiologist's concept. To discuss it

abstractly we must re-define it in abstract terms. It can be defined at

several degrees of strength. The weakest degree (111) requires only that

the response to the later stimulus is smaller than that to the earlier.

(Such is the form shown by the homeostat; ref.1 8.13/8). A stronger degree

(112) demands HI and also that the change from the initial large response

to the terminal small response shall pass through a monotonic sequence of

intermediate sizes. An even stronger degree (113) demands 112 and also that

the fall shall be of approximately exponential form, with a rapid fall at

first, flattening out. Related to Pi, though not identical with it, is
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degree 114: the maximal later responses are consistently less than the

maximal earlier.
At first we shall be concerned with habituation only in the weak degree

of in Section 4 we will consider the stronger 112 and 113. 1/4 is con-

sidered in Section 3.

Before we enter the arguments or Sections 2 to 4 it should be noticed

that most of the arguments and implications are not reversible -- what is

necessary is not usually sufficient, and vice versa. The implications in

the two directions will be given in separate Sections.

SECTION 2

In this Section it .will be shown that there is a fundamental asymmetry

in mechanism, such that over a very broad class, containing most biological

systems, there is a tendency for the response to a repeated stimulus to

get smaller rather than bigger.

To see how this is so, let us start at the beginning and assume that

the experimenter has before him some unknown system, totally unrestricted

in nature; he is going to test whether it shows habituation. We will

specify in detail the assumptions that he usually makes and the operations

that he usually performs. We shall formulate these as abstractly and

precisely as possible, taking special care to state explicitly those

assumptions that he seldom mentions but that are usually taken for granted.

We shall then see that over a wide class of system, general in the sense

that it contains no ad hoc mechanism for habituation, he is certain to

find habituation of degree El.

(I' First to be defined is the operation CI that the experimenter will

apply to the system to test it for habituation.

Postulate 1.; The operation C1 is the following sequence of sub-operations:

(1) The experimenter allows the system to come to rest.

(2) He applies the given stimulus or disturbance.

(3) He allows the system, without further disturbance, to display its

response, which he records.

(4) He repeats the cycle (1)-(2)-(3)-(1)- etc. until the responses

become invariant (or approximately so) at the "terminal" response.

(5) He defines a numerical scale on which to measure "size of response".

(6) He compares the size of the terminal response with that of the

Each of these sub-operations, as we shall see below, is significant.
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(II) Next we must take account of the fact that the experimenter does
not typically apply the test for habituation to a system that is unpre-
dictable or chaotic in its behaviour. He restricts his tests to systems
that are known to be law-abiding, or that may reasonably be assumed to be
so. Formally:

Postulate II: The system under test is a machine with input (ref.2 S.4/1),
i.e. such that its present state and its present surroundings (or values

at its input) determine uniquely the state it will go to next. Abstractly,

there is a set E of its states and a set A of its conditions or input-
values, and its behaviour corresponds to a single-valued mapping, 7; of
the product set A )iE into E. T specifies what the machine does, how it
behaves.

If the system is law-abiding in the probabilities of its transitions
rather than in the transitions individually (i.e. if it is a Markovian
machine; ref.2 S.12/8) the deductions below would have to be re-stated in
probabilistic form. Only modifications in detail would be needed; as they
are almost obvious I need not give them here as they would only obscure
the theme.

The sub-operations of n can now be converted to algebraic form (a
necessity for rigorous discussion) as follows (with the numbering of

Postulate I):-

(i) ',Let the system come to rest" means allowing 0 to operate, where
Li = Lim In, and where T2(x) T(T60), etc. If T has no cycles, only

n
states of equilibrium, Li maps E into Q, where Q is the set of Ps
states of equilibrium, i.e. such states x as satisfy T(x) = x.
(2) A stimulus or disturbance D, acting impulsively, displaces x to a
well-defined state D(x). Thus //maps Q into E, if D operates only when
the system has come to rest under T.
(3) The return to rest after D implies the operation of U.
(4) The triple (2)-(3)-(1) is the operation U oD a composite operator

(Bourbaki, 1951, ref.3), such that (0) 0 (x) OD(x)); call it 2.
17 maps Q into Q, if applied only when the system has come to rest under
T. For the responses to become invariant (if has no cycles) the
system must have reached a state q such that 2(q) = q, i.e. a state of
equilibrium under 2.

(III) Next, the experimenter does not usually test for habituation a

system that is undergoing some obtrusive cycle of activity. Formally:
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Postulate III: The transformation T is assumed to have no cycles, only
states of equilibrium (ref.2 S.5/4).

Another reason for stating this postulate explicitly is because Rubin

and Sitgreaves (1954, ref. 9) have shown that if the set of machines
obtained by taking all possible mappings of E into E is taken as a sample
space (so that its elements are those of the set EE Bourbaki, 1951,

ref.3) then as the number of states in E increases, so does the probability
of any trajectory ending in a state of equilibrium tend to zero. (It
becomes almost certain that the trajectory will end in a cycle). If there-

fore we want to talk of machines with some generality yet wish the class

discussed to have equilibrial states rather than cycles, we must make clear

that we are speaking of some subset of the class of all machines. The

assumption is made here simply because the experimenter usually restricts

himself to tests on such a subset.

(This Postulate, and those that follow, are not intended to dogmatise

about what will be found empirically in the world of real systems, but

simply to state precisely what is being discussed in this paper).

(IV) Next, the experimenter would reject as peculiar any system that

produced, under the cycle of suboperations (1)-(2)-(3)- of n, an invariant

cycle of responses R1-R2-R3-R1- etc., rather than a single response
repetitively. So, formally:

Postulate IV: is assumed to have no cycles, only states of equilibrium.

Now 2 is a composite operator, for I = U0D, where U is Lim In. For a
n -scc

state q to be one of equilibrium under a composite operator, a relation
must exist between how D and U affect it. This relation is the point of
the paper. What it is will first be sketched picturesquely, and then

formally. (The picturesque statement will show its obvious relation to

habituation Hi, but leaves obscure exactly what is being assumed; this

fault will be corrected in the formal statement).

Let the system's states E be represented by the points within the area

of fig. 1. For clarity, group together all those states that come to the
same state of equilibrium (under 7); such a set is a "confluent". The whole
set E is thus partitioned into confluents, each containing one state of
equilibrium, (shown in the figure as a heavy dot). The illustration shows
nine states of equilibrium each surrounded by its confluent. From each

state of equilibrium draw an arrow to show how. the representative point

will be displaced when the stimulus or disturbance D acts. (An arbitrary
set has been drawn in the figure).

Now by merely tracing the sequence of events, it is easily verified

that the system, if started from any point in the left-hand two-thirds,

must end in either the top left or bottom left confluent. Thus, if started
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FIg.1.

at P; suboperation (1) of n (i.e. v: "let the system come to rest“) will
take it to G; the stimulus D then takes it to then "come to rest" takes

it to I; and so it goes on, changing from confluent to confluent. When it
gets to A', however, it is trapped. N does not take it outside Nos con—
fluent, so it comes back to M. Thus the point is trapped in the first

confluent such that D cannot move it out. Clearly, confluents with short
arrows, such as that from R to N„ are more likely to be terminal than
those with long ones, such as that from K to L. So the sequence of arrows,
caused by L4 has a tendency to finish an an arrow of less than average
length.

Thus the very process of testing for habituation, of applying 0, so

acts on the system that by the time the invariant response has been

elicited the system's state is no longer an average one but is one such

that D displaces it less than averagely. Thus, to say "I tested this
system for habituation, and I eventually found it to show a diminished

response" Is to verge on the tautologous.
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(Either the representative point ends at such a confluent as N's, or

It must enter a cycle made by the disturbance, as on the right of fig. 1.

The latter possibility has been excluded by Postulate IV).

The necessary theorem will now be stated and proved formally. It will

be stated in terms of arbitrary and discrete states, for in this form it

has simplicity and the greatest possible generality. It must not be

thought, however, that the theorem is true only for systems, such as

digital computers, that change by finite jumps; on the contrary, the

states may be as close as is wished, and may thus, in the limit, represent

the values of continuous variables. (It should also be noticed that the

states are not here analysed into components, i.e. the whole system is not

regarded as being made of parts; the complication is avoided in this

Section as it is not necessary).

Winitions and postulates

(1) A set E of states x is mapped into itself by a single-valued trans-
formation T (Postulate II).
(2) Q is the set of states in E that satisfy T(q) = q.
(3) T has no cycles (Postulate III).
(4) D is a single-valued transformation mapping Q into E. (The transition
from x to D(x) will be called the "displacement").
(5) U is the transformation Lim in, mapping E into Q.

n -.co

(6) 2 is the transformation U ° D, so that 2(x) = U(D(x)); it maps.Q into Q.
(7) 2 has no cycles (Postulate IV).
(8) Given a state q in Q, the "T-confluent containing q" is the set of all

states in E obtainable from q by repeated application of 7. (It consists

of all those states in E that come, under T, finally to q).

Theorem: For a state x to be equilibrial under it is necessary and
sufficient that x and D(x) lie in the same T=confluent.

Proof: (1) Assume x is equilibrial under 2'. Then E(x) = 17, and 0(D(x)) = x,
by definition. Now if U(a) = b, a must lie in the same T-confluent as b; so

D(x) and x must lie in the same T-confluent.
(2) Assume x and D(x) lie in the same T-confluent C. D operates only

on states in Q, so x must be a state of equilibrium under T, and it lies

In C. U(D(x)) is in the same confluent as D(x), so 2(x) lies, with D(r),
in C. 2: :maps into Q, so 2(x) is also a state of equilibrium under T. But
any confluent can contain only one state of equilibrium; so 2(x) = x, and
x is equilibria]: under (Q. E. D. )

(V) So far, no topology or metric has been assumed over the states, for

such an assumption is not necessary within the theorem. In order, however,

to introduce the concept of "size", required by (5) of Postulate I, we must
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now suppose that some metric, some measure of "distance", holds over the

states, so that states have the relation of being "near to" or "far from"

each other. (In most practical cases, of course, some metric presents

itself as being the obvious one; often it is that in which the system is

describable, in three dimensions of space, in units of mass, length, and

time).
Given the metric, we must next say, explicitly, how the sizes of the

displacements (from x to D(x)) are related to the sizes of the responses.
We naturally assume that if the displacement is zero the response will be

zero (for the system has not undergone any real change), and that an

increase in the displacement will show as an increase in the size of the

response. Formally:

Postulate V: The size of the response is a positive monotonic function
of the size of the displacement, the zeros corresponding.

The point of the theorem (so far as we are concerned) is that whereas

the initial response is based on any displacement (e.g. on any of the
arrows in fig./), the terminal response can be based only on some dis—

placement that leaves the point inside the confluent. If "in the same con—

fluent as "x" has any implication of "near to x", then the terminal

response will tend to be less than the initial, and some habituation (of

degree will tend to occur. .

For rigour, the word "tend" requires definition. There are obviously

various ways of stating the relation, of various utilities in various

applications, and the reader may prefer to formulate his own way. Whichever

way is used must be compatible with the fact that the Postulates given so

far do not allow the deduction that the terminal response must be smaller

than the initial (for arbitrary T and D); for nothing prevents the initial
displacement from being small yet taking the representative point to

another confluent, and then a later large displacement leaving the point

in the same (later) confluent. Clearly, our interest is in the fact that

the terminal displacements are a subset of the total displacements,

biassed in favour of shortness. One way of expressing the relation

rigorously is as follows.

To compare the distributions of the initial and terminal displacements,

let a "typifying" function f be defined (averaging, taking the mode, taking
the maximum, etc.) which maps the set of distributions ,Into the scale of

sizes of response, so that each distribution indicates its "typical" size

of response. Now if the diameter (topologically) of the largest confluent

is 1, every displacement In the terminal distribution must be less than I
in length. If now, over a sequence of systems (over a sequence of Ds) I
tends to zero, the terminal displacements must all tend to zero also, and

so therefore must the size of the typical response. So whatever the size
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of the typical response initially (provided It is non-zero), the typical

terminal response will become less than it, and habituation of degree RI
will be shown.

(This demonstration that there is a fundamental asymmetry involved when

a composite operation leads to equilibrium is the point of the paper. The

theorem, however, leads on to several interesting and easy applications;

the remainder of the paper will be concerned with them).

SECTION 3

In the previous Section, we assumed that the experimenter applied the

operator n to test for habituation, and we saw that a very general class
of systems, not characterised by possession of any specialised mechanism,

would show it. The class was characterised chiefly by having "In the same

confluent as x" correlated with "near x". The relation of this property

to habituation Is further Illustrated by consideration of it in the

inverse direction. (To make sure that the argument is not circular, and

to make sure that we are keeping what is necessary distinct from what Is

sufficient, we make here a new start).

Starting, then, ab initio, let us consider what we can deduce about a
system when all we know of it is that it has been tested for habituation
and has been found to show it.

This statement must imply that the operator n, defined as before in
Postulate I, has been applied to it as test. That the test wac made implies
that the system must have been behaving with some regularity; so
Postulate II -- that the system is a machine with input -- is evidently
applicable. It implies that the system showed no important cycles when at
equilibrium (Postulate III); and it implies that the response to E gave a
single response rather than a cycle (Postulate IV). (By the preceding
Section we could now deduce that if Thad 1 less than some value, etc.;
but this Is not our direction. It is now given that the system shows
habituation, and we want to know what we can deduce about the particular

system given).

Nothing has been said so far about whether the habituation shown by the
system is against a particular disturbance D, or against all possible dis-
turbances D1' D2' D3 .. etc. from some class. The two cases will be
considered separately.

The first case can be dismissed briefly. It is similar, in the
postulates that apply to It, to that discussed in Section 2; and as these
Postulates Imply that it is likely to show habituation, the information
that it does tells us little. So little can be said in this case about T.

The second case, when the system habituates against any of a set of Ps,
is more interesting. This is what is implied when it is said that the

(94009) 103



Protozoa show habituation freely, with no specification of the disturbance
to be used; for the statement implies that habituation will be shown
against any of a wide class of disturbances. An interesting deduction can
be made when the habituation is of degree 114: when all the terminal
responses have size less than X, where X is much less than the maximal
size of the initial responses. (1/1 and /14 are hardly independent, but will
be so treated here, for the sake of rigour). Our assumption is now, formally:

Postulate VI: The system shows habituation (14) against each of a set of
disturbances that cause, between them, all possible displacements from
each state of equilibrium.

We use the fact that if a system is such that all its terminal responses
are smaller in size than X, and if the typifying function f is such that
the limitation to X implies that every displacement is through some
distance less than / 1, then Postulate IV (with the others of this Section)
implies that no confluent in T. can have a diameter exceeding 11. (For
suppose one confluent had a greater diameter; then among the set of dis-

placements would be one (by Postulate VI) longer than / 1 and lying within
the confluent; it would give rise to a response that was both terminal and

larger than X, contrary to hypothesis). So if a system shows habituation

4 against a wide class of disturbances, then, by the theorem, this is
evidence that the system's T-confluents are all small. Since, if the number

of states does not vary, smallness of confluents implies largeness in their

number, the confluents must evidently be numerous. And as each confluent

must have a state of equilibrium, it follows that the system's states of

equilibrium must be numerous too.

From this fact we can draw an inference about the parts that compose

the whole. So far no reference has been made to any parts of which the

whole might be made. The "states" referred to so far have been those of

the whole system, assumed to be identifiable as such without having to be

built up from components. Statements about equilibria in the whole, how-

ever, have implications about those in the parts, and vice versa. The basic
relationship has been described in re.f.2 S.5/12: the whole is at a state
of equilibrium if and only if each part is at a state of equilibrium in the

conditions provided by the other parts. (The next Section takes up the

subject in more detail). Thus if the whole is in equilibrium at a certain

state, any particular part must also be in equilibrium at its component-

state. So if, over a given sample-space of states, the whole has probability

p of being at equilibrium, then the probability 77 that any given part is at
equilibrium cannot be less than p. As we saw above, p is high; so the wis
must be higher.

This Section thus shows that if a system has been tested for habituation

against the set of all possible disturbances and has been found to

habituate (114) to all, then. with the stated minor qualifications, the
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theorem implies that, if made of parts, the individual parts must have a
high proportion of their states equilibrial.

SECTION 4

As a second application, we can now consider the converse: if a whole

is built of parts having a high proportion of their states equilibrial

(but not otherwise restricted), will it show habituation when tested by

the operation fl? (As was said earlier, this converse can by no means be

taken for granted).

Let us first make precise what is meant by a part being "rich in states

of equilibrium". As we are discussing law-abiding, and not chaotic, parts,

each part i will itself be a machine with input (ref.2, 8.4/1) and will
therefore itself behave in accordance with some mapping Vi of the product

set Gi x Bi into Bi, where Bi is its set of possible states and Gi its set
of possible input states. When Gi is at a particular state, at g say,

there is cleaned the partial mapping Vig of Bi into Si generated by Vi and

corresponding to g (Bourbaki, 1951, ref:3). Then if b is an element in
b is "a state of equilibrium for the input state go' if and only if
Viff(b) = b. (This definition implies that, if the system is composed of
continuous parts or variables yl, y2, ..., yn, behaving in accordance with

equations of form

dyi/dt = , yh)

dyn/dt = otn (yi, yn)

then part i Is in equilibrium at the state (y1, ..., yi, yn) if and

only if (Y1. Yi. yn) '--, 0).

For a part i to be "rich" in states of equilibrium, It is implied that

the elements in Gi X Bi satisfying. Vio(b) = b are numerous. (Nothing is
implied about how they shall be distributed over G X M. So if the set

Gi Bi, or the domain of the is taken as the sample space, a pro-

bability can be defined -- that part i should be in equilibrium.

As was said earlier, equilibria in whole and part are related. Thus

arises the possibility of relating the richness in equilibria of the parts

with that of the whole. Unfortunately, a full treatment of the relation

requires attention to how the states are distributed in each part over

G1 X . 0 for each i. These combinatorial complexities make the subject
hardly worth full treatment here, though the following fact will be

required. Suppose each part has a fraction 'n of its states equilibrial, and

that n such parts are coupled (ref.2, S.4/6). It can be shown that the
whole's fraction p (of states that are equilibrial) can vary from
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1-n (1-7r) (from zero if this function is negative) up to 74 according to

how the equilibrial states are disposed in the product sets (in the

canonical representations) of the parts. A value of p outside this range
is combinatorially impossible. If 7/ is near 1, and n is large, this is a
broad range, and implies little about the value of p. On the other hand,
however large the value of n, a value of 77 near enough to 1 can force p to
be arbitrarily near to 1.

After this preparation, let us start ab initio again and assume

Postulate VII: The whole is made of parts each with Tr so high that the
whole has p near to 1, but not otherwise restricted. It is tested for
habituation (thus implying the application of Postulates I to V) -- what

will be found?
As 7r tends to 1, so does p. The number of confluents rises, and the

average number of states per confluent falls towards one. So the restric-

tion of the terminal displacement to within a confluent (by the theorem)
makes its size tend to zero. Whatever the average (or other typical) size

of the initial displacement, that of the terminal displacement will become

less than it: so the appearance of habituation (li/ and 1/4) certain on the

average. Thus, a whole made of parts rich in equilibria tends to show
habituation. (This result is true even for an arbitrary T-D pair, provided
that responses sufficiently small to be terminal exist in Dos set of dis-

placements -- 1.e. providing D is not everywhere too "strong" in its
effects).

Systems made of parts that are rich in equilibria have further interest-

ing relations to habituation. A case of special interest occurs when the

parts are not related to one another in some specially arranged way --

when they have been selected, say, as random samples from a distribution

of parts, coupled in a way also sampled from a distribution of ways of

coupling. Let us then consider the case:

Postulate VIII: In each part the states of equilibrium are distributed
independently of one another and of how the equilibria are distributed in
the other parts.

As the richness increases (as 'Tr tends to 1) the whole tends to be cut

into functionally independent subsystems (ref.!, S.14/15: ref.2, 8.4/10);
for as the parts on any trajectory, spend more and more time not changing,

so do they become unable to transmit variety from part to part within the

system.

Suppose now, as is not uncommonly the case, that the disturbance D is
actually a vector with components D = (81, 82, 8n), so related to the

n parts of the system that each component of D acts on some part of the

system, so that, e.g.
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This Postulate IX is in one sense a simplifying assumption, though it
seems more complex algebraically. We are now assuming that how D affects
part yl, say, depends only on the state of yl, and not also on the states

of all the other parts. This means that D affects the whole only so far
as each part is affected individually by D. (Often many of the 8's are
identity operators, so that D has a non—zero effect only on certain parts;
i.e. so that D affects directly only a portion of the whole system).

It is now possible (and the phenomenon will become more evident as TT

tends to 1) for local regions of the whole to reach equilibrium under

while other regions are being changed by it; and they may, for some time,

be able to retain their state of equilibrium. Then a final state of

equilibrium under E (and the invariant terminal response) can be arrived

at by degrees, by accumulation of local equilibria (ref.!, S.12/5; ref.2,
S.4/21). If now the system allows

Postulate X: The size of the response is a positive monotonic function of
the number of parts changing after each application of then in the limit

(as 77 tends to 1) the number of parts not in equilibrium can only fall, and

the system will thus show the stronger (112) degree of habituation.

Finally, if the subsystems go to equilibrium independently, so that the
number that go is some fraction (approximately constant) of the number of

parts still not at equilibrium, then the number not there, and the size of

the response, will fall in approximately exponential fashion, thus showing

habituation in the full degree of 113.

SECTION 5

The propositions of the previous three Sections have shown that habitua—

tion not only can appear but must appear in classes of systems much wider

than those with specifically neurophysiological properties. They do not

even need to be living, for any system that satisfies the Postulates will

show it. In fact, the systems that show it are so general that the process

is readily demonstrable on systems formed from random numbers, — a "Monte

Carlo" method — all that is necessary being that one must try to adjust

the process so that it is neither so simple as to be trivial nor so complex

as to be excessively laborious in computation. Here is one that shows the

phenomenon readily.

A "part" or "variable" of ten states is given its value by taking a

number from a defined place in a table of random numbers. The digit in that

place gives the value, and its successive transforms are found by the

digits that occur successively below it in the table. Four such variables

form a "whole" with 10,000 states. Thus if the table shows 3119 we

8292
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interpret it as defining a T-transformation in which state 3119 is changed

to state 8292; also that part yl, at state 3 in conditions (y2,Y3,y4) =

(1,1,9), changes to 8. (Should 3119 occur again, it must, of course, trans-
form to 8292, not to the number that follows it on the second occasion;
but this complication occurs rarely in the process defined below and can be
ignored without appreciable error). Thus a T-transformation can readily be
defined, devoid of any special structure.

Such a T, however, has on the average only one state of equilibrium,
while the T we require must have a fairly high value of p. So the defini-
tion is modified. p is made 0.2401 by assuming that all states are stable
if they contain no 0,1 or 2. Then the whole progresses to an equilibrium

simply by going from state to state (of four digits) until a state occurs

having no 0,1 or 2. Thus the Start of Kendall and Babington Smith's (1951,

ref. 7) Table gives
2315

0554
1487

3897

The last state is equilibrial. Thus is defined a T-transformation specia-

lised only in that p = (0.7)4 = 0.2401.
A suitable definition for D was found to be to restrict it to 84, and

to act on (y1,y2,y3,y4) so that y4 was changed by the transformation:

D=8A: 13 4 5 6 7 8 9
'J'O 4 0 6 0 8 0

(When at T-equilibrium, values 0,1,2, do not occur). So A acting on 3897
gives 3890, which is not in equilibrium, and so starts a new trajectory

under T;
3890

9731

1174

4336

The last state is an equilibrium for T and for D; it is thus also an
equilibrium for Z.

The response to each application of D is measured by the number of steps
taken before equilibrium was restored (corresponding, in fig./, to the

distance from the head of the arrow to the next ensuing equilibrium). Thus

the example gave, for its successive responses: 3,3, 0, 0, ...

The process so far illustrates those of the theorem in Section 2. To

show habituation of degree il3, the processes of Section 4 were followed.

A hundred initial states were taken (corresponding to a large system, with

many more than 400 parts, being disturbed by D in a hundred places), and to
each was applied the operation O. The grand ',Initial Response,' was taken
as the average of the hundred individual initial responses; the grand
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”Second Response,' was taken as the average of the hundred individual

second responses; and so on. These average (grand) Responses correspond

to what would be observed if a system, much divided into independent local

subsystems by a high value of Tr, were subjected to a D that affected a
hundred of them locally, producing a Response that was some function (such

as the sum, or average) of the hundred individual responses.

The result is shown on the left half of fig. 2. Each column shows the
size of the average Response to D, as 2 is applied again and again.

APPLICATIONS OF D

A

5 10

Fig.2.

It shows typical habituation of degree /13: the average Response to the
first application of D is 4.3; to the second 3.5; and the Responses
diminish eventually to zero.

SECTION 6

As ubiquitous as habituation is de-habituation: the fact that a system,

habituated to a monotonous stimulus, if given any new stimulus or dis-
turbance, will so change that when the monotonous stimulus is given again
it evokes a response greater than those it had shown at the end of the

habituation.
This phenomenon occurs widely over the biological world, and is also

remarkable in that the interrupting stimulus or disturbance may be of
almost any nature. Clearly, in most cases some very general type of process

or mechanism is involved. So far, no process or mechanism has been
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recognised as being responsible for it. A few explanations have been pro-

posed for particular systems (e.g. an inhibition of an inhibition in the

neurophysiological) but these are hardly satisfactory when the same

phenomenon appears in systems of quite different type.

If habituation should often be due to the process of Section 2, a

reason is readily seen why de-habituation should occur as often. To trans-

late to abstract form, the new stimulus will be a new operator,A, napping

the equilibria of 2 into E. That it is "strange" means that A (as a set of .

arrows in fig./) will be arbitrarily different from D; that it is "strong"
means that the arrows will not be so short as to make its effect negligible.

Suppose then that the system has become habituated under the repeated

action of D Chas reached the top left confluent in fig. 1, say). An arbi-
trarily new disturbance A is applied -- what will happen?

&will displace the system (the representative point) from /7 to some-

where in the set E of possible states. Should the point fall within Nos
confluent, the subsequent application of D will evoke only the habituated,
small, response; but should the point fall outside the confluent, then the

operator A has undone the going to equilibrium of and the new response

to D will be, in general, one from the initial, unrestricted, distribution
of responses. Thus any new operator A does not act symmetrically on the

terminal responses: it tends to free the response rather than to intensify
the constraint.

In biological systems, the processes may often be like those of

Sections 3 and 4, the whole having a natural metric and being made of parts

rich in equilibria. When this is so, some quantitative relations are likely

to appear.

First, .A can vary on some scale from weak to strong, the weak causing
small displacements and the strong large. Obviously, the longer the dis-

placement, the greater is A's chance of getting the representative point

away to a new confluent and thus of restoring the next response (to D) to
its initial value. Thus, the stronger is LS, the more will the next response
return to the initial size.

Secondly, suppose D and A have components and a metric of their own, so
that the resemblance between them can be measured by the "distance" between

them. If A is very similar to D it will have similar effects, and will be
represented in the phase space by a set of arrows similar to those of D;
such an operator will have little tendency to shift the representative

point out of a confluent if D cannot. But if A is much different from D,
A's arrow may well take the representative point out of the confluent and
destroy the habituation. Thus, the more A differs from D, the more effec-
tive will it be as a de-habituator.

The theory thus leads, without further modification, to a simple

explanation of the phenomenon of de-habituation.
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A related property that finds a ready explanation is that the habituated
biological system, if left alone, usually recovers its responsiveness
"spontaneously". This recovery would occur in systems for two reasons,
which are related. First, if being "left alone" means that the system is,
In fact, left subject to many little disturbances A, A2, ... etc., too
small to be noticed by the experimenter, then the recovery may be due to
the representative point going on a "random walk", under the action of the
little disturbances. If it arrives at a new confluent, the response to D
will be freed from its terminal constraint and will be restored to its
initial size. Thus, bombardment by small disturbances will tend to restore
responsiveness.

It may also happen that some factors, internal to the system but not
noticed by the experimenter, are acting as parameters to the system, are
changing slowly in value, and are thus changing its field (ref.i, 8.6/3),
its T-transformation, and the distribution of its confluents. Such, for
instance, may happen as an experimental dog grows hungry. When the con-
fluents are changed, a representative point that was previously trapped
may be no longer trapped in the new confluent. Thus, secular change in an
unobserved parameter may lead to a "spontaneous" recovery of responsiveness.

These facts can be readily illustrated by the "Monte Carlo" method.
• After the system of fig.2 (actually a hundred subsystems) had reached

equilibrium under 2, the operator A was applied once:

A . A. = 3 4 5 6 7 8 9

4' 
Y4 
=00009 7 8

(It came after operator II, so the state operated on by A would be four
digits lacking 0, 1 or 2).

As a result of A's action, about 4/7 of the habituated subsystems were
thrown out of equilibrium under 2 and were forced to follow a trajectory
under E until stable again. The result is shown on the right of fig. 2.

The column marked A shows the response (under T) after it had been dis-
turbed by A. The next column to the right shows the response to an appli-
cation of D: previously fallen to zero, it is now restored to the extent
of 1.8, and thus demonstrates de-habituation. (Then as I is applied again
and again, the response falls off to zero).

This A displaced only about 4/7 of the hundred subsystems, equilibria.
Had it been stronger, e.g. had It been

y4 =3 4 5 6 7 8 9

= 0 0 0 0 0 0 0

it would have disrupted all the hundred equilibria, and would have restored
the response to its initial value.
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DISCUSSION

It is not, of course, proposed here that the basic process of the

theorem is responsible every time the phenomenon of habituation appears.

Showing that Postulates I to V lead to habituation does not exclude the

possibility that other processes may also lead to the same phenomenon.

Sometimes, especially in sensory adaptation, the phenomenon may be related

to survival, either positively or negatively; then natural selection will

Interfere to give the system what properties are best, departing from

those of Postulates I to V. So may develop such specialised, and doubtless

more efficient, systems as that of Pringle (1951, ref.8).
On the other hand, when the Postulates hold, habituation follows

necessarily. Since the conditions in the cerebral cortex and in protoplasm

approximate, from some points of view, to the conditions of the Postulates,

it seems likely that much of the unspecialised habituation shown by them

is primarily due to this process. With this explanation available, the

onus of proof now passes to those who wish to propose that some particular

act of habituation is not due to this very generally available process.

The theorem suggests that our attitude to habituation has been basically

mistaken. We treated the organism in a particular way, obtained habituation

as an outcome, and then asked: what peculiar property in the organism is

responsible for this outcome? The theorem suggests that the question itself

is wrong, for it assumes that the peculiarity is to be sought in the

organism. In fact, the peculiarity, and the reason for habituation, lie at

least as much in the particular sequence of operations used by the experi—

menter. These have sufficient character or pattern to impose some pattern

on the response of the system; this pattern shows as habituation, all that

is required of the system being that it should be in the class that does

not totally destroy such patterns.
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DISCUSSION ON THE PAPER BY DR. W. ROSS ASHBY

DR. GREY WALTER: As Dr. Ross Ashby said in his paper, the process rather
Ineptly called 'habituation' is basic to any consideration of learning.
Learning must involve selection, selection implies rejection of more
information than is accepted, and this rejection can be called habituation,

though this is the reverse of habit-formation. There is a great interest

in this field at the present time; at a Colloquium in Moscow some weeks

ago this formed the main topic of conversation, though the term used there

is "Extinction of the Orienting Reflex".
As you know, there is now ineluctable evidence that habituation is a

very active process. This is the question I would like to put to Dr. Ashby.
When an animal is subjected to monotonous stimuli there is usually a pro-

gressive reduction in the response in the central nervous system. This

reduction is due largely to changes at a peripheral level, even in the

receptors themselves, yet it seems to depend upon the integrity of rather

complex structures in the brain. This should not be confused with

Adaptation which is another inherent property of receptors; it is rather

a dynamic process of control, of selective blocking from the nervous system

outwards. It is susceptible, as Dr. Ashby mentioned, to dishabituation in

the presence of another distracting stimulus, and Habituation of this type

depends upon integrity of the central nervous system; for example, light

anaesthesia may paradoxically augment the brain response to a stimulus

which had previously lost its effect by habituation. An anaesthetised

animal literally does not perceive the stimulus, yet the electrical

response is larger.

This suggests that the structures involved are particularly vulnerable

and are therefore probably complex In structure. Does this not imply that

habituation in a living organism depends upon a rather elaborate high-level

mechanism of selection and control?
Another point is that the degree to which habituation occurs depends on

the intensity of the stimulus. If you exhibit a series of auditory stimuli

to a human subject, some of which are of moderate intensity and start by

being neutral and others are strong enough to evoke an unconditional reflex

response, then there may at first be habituation to the moderate neutral
stimuli. But if these are associated with the unconditional stimulus so as

to become conditioned, the habituation disappears and the response may get

larger and larger. The response to the intense unconditional stimulus shows
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no habituation however, and in some people may even increase at each
repetition.

One can visualise a family of curves plotted on a co—ordinate system in
which the ordinate is size or speed of response and the abscissa the number
of presentations of a stimulus, the parameter being the intensity of the

stimulus. The curves for low intensity stimuli would show a decline with

repetition such as Dr. Ashby describes, but those for high intensity

stimuli would start off level and then climb away to a limiting value. This
sort of relation is seen in the study of nerve fibre excitation where the

local potential evoked by subthreshold stimuli declines with time, whereas

it rises explosively into an all—or—none propagated impulse in response.In

supra—liminal stimuli.

Such empirical differences serve in practice to distinguish between

neutral stimuli, which show habituation, unconditional ones which show none

or even facilitation, and conditioned ones which follow first one rule and

then the other. I wonder whether Dr. Ashby has any views about this as a
theoretical criterion for identifying the character of stimuli from the

point of view of an organism? A classification of this sort would be of

great value in experimental studies because it is not at all easy to decide

which features in an animal's behaviour are reflex, instinctive, uncondi—

tioned, and which are learned, conditioned, exploratory or random.

MR. G. PASK: I have a brief comment to make about this entirely complete

paper. It is a request for an extension of the argument to include a more

general kind of adaptive behaviour.

Some years ago Eccles (ref. 1) suggested that any self oscillatory net—
work of neurone like elements able to interact freely will tend to reject

a repeated mode of oscillation in favour of some new mode. If the network

also receives stimuli from the external world, and if these sustain a

particular oscillatory mode, it is equally the case that this mode will be

suppressed, or will be more difficult to sustain, because of the repetition

of the stimuli which engender it. The network is thus selective towards

novel stimuli and so far as repeated stimuli are concerned it will

habituate.

At first sight it seems that all of Dr. Ashby's mathematical arguments

are applicable to a structure of this kind and I should be grateful to have

a pronouncement on this matter. If such an extension is possible it will

provide a calculus for examining not only habituation but the whole process

whereby an organism acquires differentiated sensory mechanisms.
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DR. M. J. BUCKINCIAM: It should be possible to test biological or other

systems to see if they behave in a way consistent with that deduced from

any particular mechanism for adaptation, such as the interesting one

suggested by Dr. Ashby. For example, a system representable by the simple

case illustrated in his figure / should show the following property:

systems habituated to a stimulus S are subjected to a stimulus of the same

type, but with intensity increased just beyond the threshold, until a non-

habituated response is elicited. This response should be greater on the

average than that shown for the same stimulus by systems which had not

been previously habituated. This is a result only for the simple case

illustrated, but I would like to ask Dr. Ashby if he has been able to

deduce positive predictions of this type, for the more general situation.

DR. W. K. TAYLOR: I believe there is some evidence that the effect of a

repeated stimulus can be reduced by an active cancellation process whereby

the nervous system learns to cancel the effects of the stimulus. If, for

example, the visual scene tends to oscillate, eye movements can compensate

for this and the compensation tends to persist after the stimulus is

removed. Since many receptors tend to respond to the rate of change of the

scene the response will decrease as the compensating mechanism learns to

keep the image stationary. This principle also appears to act if we are

repeatedly subjected to a force pattern. If, for example, one repeatedly

uses the same escalator one gradually builds up an automatic compensation

system which reduces the tendency to overbalance on leaving it. Evidence

that this is an active cancellation process is afforded by the observation

that unbalance tends to occur when one leaves a stationary escalator. It

seems to me that there may be a general tendency for living organisms to

learn automatically to actively oppose the effects of repeated stimuli.

DR. ROSS ASHBY (in reply): The points that have been raised by Drs.

Grey Walter and Taylor are of interest, but hardly concern me, as they

refer to mechanisms in which the habituation has been specially developed,

usually by natural selection, and I discussed in my paper only a hitherto

unnoticed and purely general reason for the appearance of habituation.
Naturally I do not for a moment suggest that habituation, whenever it

appears, is aluoys due to this purely general, entropy-like process - I
accept freely that sometimes, for reasons of special urgency, natural

selection has fostered the development of highly specialised mechanisms

that will show habituation with unusual speed and efficacy. The question

of what mechanism is at work in any particular case can be answered only

by a detailed experimental study of it.

A point I would like to emphasize Is that when one uses this type of

reasoning about some real "machine" one should realise how free one is to
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select any meaningful system (as a set of variables) from the infinite
number of possibilities that plausibly suggest themselves. A "state", for

instance, can legitimately be anything that an observer can recognise with

confidence and reliability. It may be one of three typical expressions on

an infant's face, or even something like a Fraunhofer line — at which there

is actually nothing at all) — no matter, if the observer can recognise it

reliably it qualifies as a possible "state". Unless the observer uses

freely this freedom of selecting a suitable point of view, he is likely to

overlook many possibilities of the theorem's application.

A good example is given by the Eccles' network, referred to by Mr. Pask.

We can think of this as changing from state to state so as to show the
oscillation, or we can ignore these states, think only of the modes, and
define these as the "states" of a more abstract system, that changes only

by going from mode to mode. If the network has plenty of modes at which it

can stick, then it will conform to Postulate VII, and will therefore (to

answer Mr. Pask's question) certainly tend to show habituation. Thus,

though still showing the changes that represent oscillation, it will tend

to get to a mode from which the repeated disturbance falls to move it.

Dr. Buckingham's question raises a very interesting extension of my

work. Various extensions are being considered at the present time, but I

have not yet had time to consider Dr. Buckingham's extension in detail.

It is of interest to notice that these entropy—like processes are all

related. Thus, the process of ultrastability that gives coordination and

integration is of the same type as this process that gives habituation.

In each case the system may go either to a confluent that leaves it

immune to disturbance or to one that leaves it still vulnerable. The pro—

cess is then of the type: Heads, I win; Tails, we toss again — and it

tends inevitably to a confluent (or to a set of step—mechanism values)

that gives immunity. In general this means habituation; in the particular

conditions of the ultrastable system it means coordination and integration.
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