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Achieving Several Goals Simultaneously*

Richard Waldinger

Artificial Intelligence Center
Stanford Research Institute

In the synthesis of a plan or computer program, the problem of achieving
several goals simultaneously presents special difficulties, since a plan to achieve
one goal may interfere with attaining the others. This paper develops the
following strategy: to achieve two goals simultaneously, develop a plan to

. achieve one of them and then modify that plan to achieve the second as well.
A systematic program modification technique is presented to support this
strategy. The technique requires the introduction of a special "skeleton
model" to represent a changing world that can accommodate modifications in
the plan. This skeleton model also provides a novel approach to the "frame
problem."

The strategy is illustrated by its application to three examples. Two
examples involve synthesizing the following programs: interchanging the
values of two variables and sorting three variables. The third entails formu-
lating tricky blocks-world plans. The strategy has been implemented in a
simple QLISP program.

It is argued that skeleton modelling is valuable as a planning technique
apart from its use in plan modification, particularly because it facilitates the
representation of "influential actions" whose effects may be far reaching.

The second part of the paper is a critical survey of contemporary planning
literature, which compares our approach with other techniques for facing the
same problems. The following is the outline of contents.
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INTRODUCTION_

My feet want to dance in the sun
My head wants to rest in the shade
The Lord says "Go out and have fun!"
But the landlord says "Your rent ain't paid!"

E.Y. Harburg, Rnian's Rainbow

It is often easier to achieve either of two goals than to achieve both at the
same time. In the course of achieving the second goal we may undo the effects
of achieving the first. Terry Winograd points out in a Psychology Today article
(Winograd, 1974) that his blocks program

cannot carry out the command, "Build a stack without touching any
pyramids," because it has no way to work on one goal (building a
stack) while keeping track of another one (avoiding contact with
pyramids).

The reasoning subprograms of his natural language processor "have a sort of
one-track mind unsuited to complicated tasks."

In program synthesis, such "simultaneous goal" problems are rampant. A
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typical example: the goal of a sort program is to rearrange an array in ascending
order while ensuring at the same time that the resulting array is a permutation of
the original. Simultaneous goal problems occur in mathematical equation
solving, in robot tasks, and in real life as well.

An earlier paper (Manna and Waldinger, 1974) proposes a method for dealing
with simultaneous goal problems in program synthesis. The present paper elab-
orates on the description of the method, reports on its implementation, discusses
its application to general planning and robot problem solving, and points out
some of its shortcomings and some projected improvements.

The general strategy proposed in (Manna and Waldinger, 1974) is: in order to
construct a plan to achieve P and Q, construct a plan to achieve P, and then
modify that plan to achieve Q as well. In the course of the modification, the
relation P is "protected": no modifications that might make P false are per-
mitted. If no satisfactory modification is found, the same strategy is attempted
with the roles of P and Q reversed.

The earlier paper considers the construction of programs with branches and
recursive loops; here, the discussion is strictly limited to the construction of
straight-line programs. The simultaneous goal strategy can be integrated with the
branch and loop formation techniques discussed in our earlier paper; however,
this integration has not yet been implemented. Furthermore, the straight-line
case is rich enough to be interesting in its own right.

The paper is divided into two main parts. Part 1 describes the simultaneous
goal strategy in full detail, the program modification technique, and the
modelling structure that the strategy requires. The strategy is illustrated by
several examples, including the development of programs to interchange the
values of two variables and to sort three variables, and the solution of the
"anomaly" blocks-world problem from Sussman's (Sussman, 1973) thesis. These
examples are not chosen to be impressive; they have been refined to present no
difficulties other than the simultaneous goal problem itself.

Part 2 tries to relate this work to some other problem-solving efforts, and
provides a critical survey of the way these systems represent a changing world in
terms of the framework developed in Part 1. A summary of Part 2 appears in
Section 2.9.

PART 1

SIMULTANEOUS GOALS, PROGRAM MODIFICATION, AND THE
REPRESENTATION OF ACTIONS

1.1 A description of our approach

1.1.1 Achieving primitive goals

Below, the boarhound and the boar
Pursue their pattern as before
But reconciled among the stars.

T.S. Eliot, Four Quartets
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Before we are ready to face multiple simultaneous goals, it may be helpful to
say a few words about our approach to simple goals. Our system has a number of
built-in techniques and knowledge of the kinds of goal to which each technique
applies. When faced with a new goal, the system tries to determine if that goal is
already true in its model of the world—if the goal is true it is already achieved.
Otherwise, the system retrieves those techniques that seem applicable. Each of
these techniques is attempted in turn until one of them is successful.

An important clue to the choice of technique is the form of the given goal.
For instance, suppose we are working on blocks-world problems, and we are
faced with the goal that block A be directly on top of block B. Assume that we
have an arm that can move only one block at a time. Then we may build in the
following strategy applicable to all goals of form, "Achieve: x is on y": clear the
top of x and the top of y, and then put x on y. That x be clear is a new goal,
which may already be true in the model, or which may need to be achieved itself
(by moving some other block from the top of x to the table, say). "Put x‘on y"
is a step in the plan we are developing. If we can successfully apply this tech-
nique, we have developed a plan to put A directly on top of B. However, for a
variety of reasons this technique may fail, and then we will have to try another
technique.

An example from the program synthesis domain: suppose our goal is to
achieve that a variable X have some value b. One approach to goals of this form
is to achieve that some other variable v has value b, and then execute the
assignment statement X <— v.* Here again, the relation "v has value b" is a
subgoal, which may already be true or which may need to be achieved by
inserting some other instructions into the plan. The assignment statement X <— v
is an operation that this technique itself inserts into the plan. (Note that if we
are not careful, this technique will be applicable to its own subgoal, perhaps
resulting in an infinite computation.) Of course, there may be other techniques
to achieve goals of form "X has value b"; if the original technique fails, the
others are applied.

The practice of retrieving techniques according to the form of the goal and
then trying them each in turn until one is successful is called "pattern-directed
function invocation," after Hewitt (Hewitt, 1972). A problem solver organized
around these principles can be aware of only one goal at a time: hence the
single-mindedness that Winograd complains of. When given multiple simul-
taneous goals, we would like to be able to apply the techniques applicable to
each goal and somehow combine the results into a single coherent plan that
achieves all of them at once.

1.1.2 Goal regression

Change lays not her hand upon truth.

A.C. Swinburne, Poems: Dedication

*We use a lower case "v" but an upper case "X" because here, X is the name of a specific
variable while v is a symbol that can be instantiated to represent any variable.
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Our approach to simultaneous goals depends heavily on having an effective
program modification technique. Our program modification technique in turn
depends on knowing how our program instructions interact with the relations we
use to specify the program's goals.

Suppose P is a relation and F is an action of program instruction; if P is true,
and we execute F, then of course we have no guarantee that P will still be true.
However, given P, it is always possible to find a relation P' such that achieving P'
and then executing F guarantees that P will be true afterwards. For example, in a
simple blocks world if P is "block C is clear" (meaning C has no blocks on top of
it) and F is "Put block A on block B," then P' is the relation "C is clear or A is
on C": for if C is clear before putting A on B, then C will still be clear after-
wards, while if A is on C before being put on B, then the action itself will clear
the top of C.*

A A

FIGURE 1

We will demand that P' be the weakest relation that ensures the subsequent
truth of P; in other words, if P' is not true before executing F, P may not be true
afterwards. Otherwise, we could always take P' to be the relation that is always
false. We will call P' the result of passing P back over F, and we will call the
operation of passing P back "regression."

Another example: suppose F is an assignment statement "X <— t" where Xis a
variable and t an expression, and let P be any relation between the values of the
variables of our program, written P(X). Then P' is P(t), the relation obtained by
replacing X by t in P(X). For if P(t) is true before executing X +- t, then P(X)
will certainly be true afterwards. For instance, if P(X) is "X=A*B," and F is
"X <— U*V," then P'=P(U*V) is "U*V=A*B," for if U*V=A*B before executing
X 4- U*V, then X=A*B afterwards. Furthermore, if U*V=A*B is false before the
assignment, then X=A*B will be false afterwards.

Note that if X does not occur in P(X), then P(t) is the same as P(X); the
instruction has no effect on the truth of the relation.

Regression will play an important part in our program modification technique

and also in the way we construct our models. The use of a static relational
description to describe a dynamic program has been variously attributed to
(Floyd, 1967), (Naur, 1966), (Turing, 1950), and (Goldstine and von Neumann,
1947), but the observation that it is technically simpler to look at the "weakest
preconditions" of a relation (passing it back), as we do, instead of the "strongest

*We assume that the blocks are all the same size, so that only one block can fit imme-
diately on top of another.

98



PROBLEM-SOLVING AND DEDUCTION

postconditions" (passing it forward), appears to be due to (Manna, 1968),
(Hoare, 1969), and (King, 1969). The term "weakest precondition" is Dijkstra's
(1975); we will not use it because the word "precondition" has a different
meaning in the artificial intelligence literature. All these authors apply the idea
to proving the correctness of programs; (Manna, 1974) contains a survey of this
application. We now go on to show how the idea applies to program modifica-
tion as well.

1.1.3 Plan modification

It is a bad plan that admits of no modification.

Publilius Syrus, Sententiae

In order to achieve a goal of form P and Q, we construct a plan F that
achieves P, and then modify F so that it achieves Q while still achieving P. The
simplest way to modify F is to add new instructions to the end so as to achieve
Q. This method is called a "linear theory plan" by Sussman (Sussman, 1973).
However, this linear strategy may be flatly inadequate; for instance, executing
the plan F may destroy objects or information necessary to achieve Q. Further-
more, even if Q can be achieved by some composite plan (F:G) (execute F, then
execute G), how can we be sure that plan G will not cause P to be made false?

However, we may also modify F by adding new instructions to the beginning
or middle, or by changing instructions that are already there. Let us assume that
F is a linear sequence of instructions (F1,...,Fn). As we have seen, in order to
achieve Q after executing F, it suffices to achieve Q' immediately before exe-
cuting Fn, where Q' is the result of passing Q back over Fn. Similarly, it suffices
to achieve Q" immediately before executing Fn.1, where Q" is the result of
passing Q' back over Fn.1.
How can we benefit by passing a goal back over steps in the plan? A goal that

is difficult or impossible to achieve after F has been executed may be easier to
achieve at some earlier point in the plan. Furthermore, if achieving Q after
executing F destroys the truth of P, it is possible that planning to achieve Q' or
Q" earlier will not disturb P at all; a planner should be free to achieve Q in any
of these ways.
How is the planner supposed to know how to pass a relation back over a given

plan step? First of all, the information can be given explicitly, as one of a set of
rules. These "regression rules," which can themselves be expressed as programs,
are regarded as part of the definition of the plan step. Alternatively, if a relation
is defined in terms of other relations, it may be possible to pass back those
defining relations. Furthermore, if the plan step is defined in terms of simpler
component plan steps, then knowing how to pass relations back over the com-
ponents allows one to pass the relation back over the original plan step. Finally,
if no information at all exists as to how to pass a relation back over a plan step,
it is assumed that the plan step has absolutely no effect on the relation. This
assumption makes it unnecessary to state a large number of rules, each saying
that a certain action has no effect at all on a certain relation. Thus we avoid the
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so-called "frame problem" (cf. [McCarthy and Hayes, 1969]).
In modifying a program it is necessary to ensure that it still achieves the

purpose for which it was originally intended. This task is performed by the
protection mechanism we will now describe.

1.1.4 Protection

Protection is not a principle, but an expedient.

Disraeli, Speech

Our strategy for achieving two goals P and Q simultaneously requires that
after developing a plan F that achieves P we modify F so that it achieves Q while
still achieving P. This strategy requires that in the course of modifying F the
system should remember that F was originally intended to achieve P and check
that it still does. It does this by means of a device called the protection point: we
attach P to the end of F as a comment. This comment has imperative force: no
modifications are permitted in F that do not preserve the truth of P at the end
of the modified plan. We will say that we are protecting P at the end of F. Any
action that destroys the truth of P will be said to violate P. Relations may be
protected at any point in a plan; if a relation is protected at a certain point, that
relation must be true when control passes through that point.*

Protection has purposes other than ensuring that simultaneous goals do not
interfere with each other: for instance, if an action requires that a certain condi-
ton be true before it can be applied, we must protect that condition at the point
before the action is taken to see that no modification in the plan can violate it.

In order to ensure that a modification cannot violate any of the protected
relations, we check each of these relations to see that it is still true after the
proposed modification has been made: otherwise, the modification must be
retracted.

In the next section we will examine a very simple example involving two
simultaneous goals in order to demonstrate the techniques we have described.

1.1.5 A very simple example

Suppose we have three blocks, A, B, and C, sitting on a table.

M 

FIGURE 2

TABLE

*(Sussman, 1973) was the first to use protection in program synthesis, and to apply it to
the simultaneous goal problem.
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Our goal is to make a tower of the three blocks, with A on top and C on the
bottom.

A

FIGURE 3

TABLE

We express this goal as a conjunction of two goals. "A is on B" and "B is on C."
(We'll forget about saying that C is on the table.) Of course, if we approach these
goals in the reverse order we have no problem: we simply put B on top of C and
then put A on top of B; no destructive interactions arise. However, if we
approach them in the given order we run into a blind alley.

We first attempt to achieve that A is on top of B. In order to do this, we see if
A and B are clear (they are), and then we plan to put A on top of B. We have
thus planned to achieve our first goal. Because we will now work on another goal
to be achieved simultaneously we protect the relation that A is on top of B. We
will adopt a notation for representing plans under development in which the
left-most column will represent the steps of the plan, the second column will
represent the anticipated model or state of the world between the respective
plan steps, and the third column will represent any goals that we have yet to
achieve, and relations that have already been achieved but must be protected at
that point. In this notation our plan so far is as follows:

Plan

Put A on B

Model Comments

FIGURE 4

Protect: A is clear
Protect: B is clear

Achieve: B is on C
Protect: A is on B

In order to put A on top of B we must be sure that A and B are both clear:
therefore we have protected these two relations at the point before the action is
applied. (Of course, the action itself violates one of the conditions afterwards:
we merely want to ensure that the conditions will be true immediately before
the action is applied, regardless of what modifications are made to the plan.) We
put the goal "Achieve: B is on C" after the plan step and not before because we
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are initially attempting to achieve the goal by adding steps to the end of the plan
and not the beginning.

Now, since our arm can lift only one block at a time, we will be forced to put
A back on the table again in order to get B on top of C. This will violate our
protected relation (A is on B) so we cannot hope to achieve our second goal by
adding instructions to the end of the plan. But we can still try to pass the goal
back over the plan. The goal "B is on C" passed back over the plan "Put A on B"
is simply "B is on C" itself, because putting A On B will not alter whether or not
B is on C. The plan state so far is as follows:

Plan

Put Aon B

Model Comments

FIGURE 5

Achieve: B is on C

Protect: A is clear

Protect: B is clear

Protect: A is on B

The goal "Achieve: B is on C" now occurs before the plan step.
Our goal "B in on C" can now be achieved by simply putting B on C; the

appropriate plan step will be added to the beginning of the plan instead of to the
end. The resulting plan state is illustrated in Figure 6.

Plan

Put B on C

Model Comments

A

FIGURE 6

Protect: B is clear
Protect: C is clear

Protect: A is clear
Protect: B is clear

Protect: B is on C
Protect: A is on B

Note that the new plan step did not interfere with any of the protected rela-
tions: otherwise we would have had to retract the step and find some other
solution. As it is, the two-step plan "Put B on C; Put A on B" achieves the
desired goal. The method of passing goals back over plan steps has enabled us to
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avoid backing up and reversing the order in which the goals are approached. This
technique will not always prevent such goal reordering; however, we will that
it will allow us to solve some problems that cannot readily be solved, regardless of
the order in which the goals are attempted.

The reader may note that the model following the plan step "Put A on B"
changes between Figure 5 and Figure 6, because of the insertion of the earlier
plan step "Put B on C." It we maintained a model corresponding to each plan
step, we would be faced with the task of updating the entire sequence of models
following every insertion to reflect the action of the new plan step. This can be
an arduous chore if the model is at all large. Instead we maintain only a scanty
"skeleton" model that is not affected by an alteration, and generate or "flesh
out" other portions of the model as needed, using the same regression method
that we introduced earlier as a program modification technique.

1.1.6 Skeleton models

Following each step in the developing plan we have a model, which for our
purposes may be regarded as a list of relations that are certain to be true
following the execution of that plan step. For instance, following the step "Put
A on B" we include in the model the relation "A is on B" and perhaps the
relation "A is clear," meaning that no block is on top of A. However, we do not
usually include any information about the location of B, for example, because,
unless protected, the location of B can be changed by inserting new steps earlier
in the plan.

Similarly, after an assignment statement X 4- t we do no generally include the
fact that X has value 2 even if we believe that t has value 2 before the statement
is executed, because subsequent modifications to the beginning of the program
could change the value of t, unless that value is protected. In fact, the model
following an assignment statement may be absolutely empty.

In addition to the models that follow each statement in the plan, we have an
initial model that describes that situation at the beginning (as given by the
problem statement), and we have a global model of the "eternal verities," rela-
tions such as x=x, that are unchanged by any action or the passage of time.
Information in the global model is implicitly present in all the other models..

The models that follow each action in the plan are incomplete: much
knowledge about the situation is not included explicitly. How are we to com-
pensate for this deficiency?

Suppose that we are given a plan F1,...,Fn, and we need to know whether
some relation Q is true after execution of step Fi . We first see if Q is explicitly
in the model following Fi; in other words, we see if Q is an immediate conse-
quence of the execution of F1. If not, we simply pass Q back over the plan step
Fi, yielding a perhaps altered relation Q'. We then check if Q' is in the preceding
model. The justification for this measure is clear: Q' has been defined as the
relation that must be true before the execution of F1 in order that Q will be true
afterwards.

If we fail to determine if Q' is true, we pass Q' back over F1.1 and repeat the
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process until we have passed Q all the way back to the intitial model. If we are
still unable to determine whether Q is true we must give up. Even if we deter-
mine that Q is true, we must generally resist the temptation to add it to the
model that follows Fi: unless Q is protected, later plan alterations could make Q
false, and then the model would be inaccurate.

An example: suppose we are given a model in which block A is on C, but
blocks A and B both have a clear top.

A

rn
FIGURE 7

We somehow develop the plan step "Put A on B," and we are led to inquire if C
is clear. We cannot determine this from the model that follows "Put A on B,"
because that model only contains the relations "A is on B" and "A is clear."
However, we can pass that relation back over the plan step using a regression rule
(as described in Section 1.1.2), leading us to ask if "C is clear or A is on C."
Since we know "A is on C" initially, we can conclude "C is clear" in the model
following the plan step.

The skeleton model is a technique in which the partial plan that has been
constructed is regarded as a central part of the model. Important relationships
and the plan itself are in the model explicitly; other relationships may be
inferred using the regression rules.

It is , traditional in problem solving to distinguish between rules that work
backwards from the goal and rules that work forwards from the present state of
the world. In Hewitt's (Hewitt, 1972) terminology, these rules are called
"consequent theorems" and "antecedent theorems" respectively. Regression rules
are a special kind of consequent theorem that can refer explicitly to steps in the
plan as well as relations in the model. (Kowalski, 1974) and (Warren, 1974) also
discuss the application of regression rules as a modelling technique.

The use of skeleton models means that if a relation P is protected at the end
of a plan, no modification can be made at any point in the plan that will not
leave P true at the end, because, in checking the truth of P after the modification
has been made, we will percolate P back up through the plan, and the unfor-
tunate interaction between P and the new plan step will be discovered.

For instance, suppose a plan step X +- Y achieves a protected relation P(X),
and a new instruction Y4-- Z is inserted at the beginning of the plan, where P(Z)
is false. We will try to check that the protected relation P(X) is still true at the
end of the modified program. Using regression, we will therefore check if P(Y) is
true in the middle of the program, and thus that P(Z) is true at the beginning.
Since P(Z) is false, we will detect a protection violation and reject the proposed
modification.
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This mechanism means that it is necessary to protect a relation only at the
point at which we need it to be true. In the previous example, we must protect
P(X) after the assignment statement X +- Y, but we need not protect P(Y) before
the statement; the latter protection is implicit in the former.
A description of how skeleton models can be implemented using the

"context" mechanism of the new artificial intelligence programming languages
occurs in Section 2.7.

We have concluded the general description of our approach to simultaneous
goals. The balance of Part 1 concerns how this technique has been applied to
specific subject domains in order to solve the sample problems.

1.2 Interchanging the values of two variables

1.2.1 Relations that refer to variables

So first, your memory I'll jog,
And say: A CAT IS NOTA DOG.

T.S. Eliot, Old Possum's Book
of Practical Cats

In the next section we will show the synthesis of a more complex program
whose specification is represented as a set of simultaneous goals. The subject
domain of this program will be variables and their values. However, we must first
examine a certain kind of relation more closely: the relation that refers directly
to the variable itself, as opposed to its value. For instance, the relation "variable
X has value a," written "X:a," refers both to the variable X and its value a. The
relations "variable X is identical to variable Y," written "X--,Y," and its negation
"variable X is distinct from variable Y," written "X4Y" refer to variables X and
Y, but do not refer at all to their values. X4Y means "X and Y are not identi-
cal," and is true regardless of whether X and Y have the same value. Relations
such as ,‘-1, which do not refer to values at all, are not affected by assignment
statements or any program instructions we are going to consider. Relations such
as ":" are more complicated. For instance, the relation X:a passed back over the
assignment statement X +. Y yields Y:a, where X and Y are both variables. (A
more general rule covers the case in which an arbitrary term plays the role of the
variable Y, but we will have no need to consider this case in the following
examples.) A more complex situation arises if the variable in the relation is
existentially quantified. Such a situation arises if the relation is a goal to find a
variable with a certain value. For instance, how do we pass back a goal such as
"Find a variable v such that v:a" over the instruction X +- Y? If there is a
variable v such that v: a before the assignment statement is executed, and if that
variable is distinct from X, then certainly v:a after the execution of X +- Y.
Furthermore, if Y:a before the execution, then v can be identical to X as well.
Therefore, passing the goal "Find a variable v such that v:a" back over the
assignment statement X <— Y yields
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"Find a variable v such that

v4X and v:a

or vr-tIX and Y:a."

We will assume the system knows verities such as x,ex, X4Y, or XZ. In the
example of the next section we will use one additional fact about the relation 4:
the fact that we can always invent a new variable. In particular, we will assume
we can find a variable v such that v4X by taking v to be the value of a program
GENSYM that invents a new symbol every time it is called.

There is, of course, much more to be said about these peculiar relations that
refer to variables themselves. They do not follow the usual Floyd-Naur-Manna-
King-Hoare rule for the assignment statement. However, the discussion in this
section will be enough to carry us through our next example.

1.22 The solution to the two variable problem*

But above and beyond there's still one name left over,
And that is the name that you never will guess
The name that no human research can discover—
But THE CAT HIMSELF KNOWS, and will never confess.

T.S. Eliot, Old Possum's Book of Practical Cats

The problem of exchanging the values of two variables is a common be-
ginner's programming example. It is difficult because it requires the use of a
"temporary" variable for storage. Part of the interest of this synthesis involves
the system itself originating the idea of using a generated variable for temporary
storage.

We are given two variables X and Y, whose initial values are a and b; in other
words, X:a and Y: b. Our goal is to produce a program that achieves X:b and Y:a
simultaneously.

Recall that our strategy when faced with a goal P and Q is to try to form a
plan to achieve P, and then to modify that plan to achieve Q as well. Thus our
first step is to form a plan to achieve X:b.

For a goal of form X:b we have a technique (Section 1.1.1) that tells us to
find a variable v such that v:b and then execute the assignment statement X 4-v.
We have such a v, namely Y. Therefore, we develop a plan, X 4- Y, that achieves
X:b. We must now modify this plan to achieve Y:a while protecting the relation
X:b that the plan was developed to achieve. In our tabular notation:

*Another way of approaching this problem is discussed in (Green etal., 1974). Green's
system has the concept of temporary variable built in. He uses a convention of inserting a
comment whenever information is destroyed, so that a patch can be inserted later in case the
destroyed information turns out to be important.
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Plan Model Comments

X:a Y:b
X Y

Achieve: Y:a
X:b Y:b Protect: X:b

FIGURE 8

(In our table we record the full model at each stage even though the implemen-
tation does not store this model explicitly.

In trying to achieve Y:a we attempt to find a variable v such that v:a. Once
we have executed X4- Y, no such variable exists. However, we pass the goal
"Find v such that v:a" back over the plan step X Y, yielding

Find v such that
v4X and v:a,

or vr-tIX and Y:a,

as explained in the preceding section. We now attempt to achieve this goal at the
beginning of the plan. In tabular form

Plan

X ÷- Y

Model Comments

X:a Y:b

X:b Y:b

FIGURE 9

Achieve: Find v such that
v4X and v:a

or vA:IX and Y:a

Protect: X:b

Once the outstanding goal is achieved, we will add an assignment statement
Y*-.‘, to the end of the program, where v is the variable that achieves the goal.

If we work on the goals in the given order, we try to find a v such that v4X.
Here we know that GENSYM will give us a new variable name, say G1, guar-
anteed to be distinct from X. Our problem is now to achieve the first conjunct,
namely G1:a. But this can easily be achieved by inserting the assignment state-
ment G1 4- X at the beginning of the plan, since X:a initially. Inserting this
instruction does not disturb our protected relation.

We have been trying to find a v satisfying the disjunction

v4X and v:a
or vr,--X and Y: a

We have satisfied the first disjunct, and therefore we can ignore the second. (We
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will consider later what happens if we reverse the order in which we approach
some of the subgoals.)

We have thus managed to find a v such that v:a at the end of the program,
namely v,==-1G1. Since our ultimate purpose in finding such a v was to achieve Y:a,
we append to our program the assignment statement Y4-- G1. This addition
violates no protected relations, and achieves the last of the extant goals. The
final program is thus

Plan

G1 <- X

X 4- Y

Y4-Gi

Model Comments

X:a Y:b

X:a Y:b

X:b Y:b Gi:a

X:b Y:a G1 :a

FIGURE 10

Protect: Y:a
Protect: X:b

The program has "invented" the concept of "temporary variable" by com-
bining two pieces of already existing knowledge: the fact that GENSYM
produces a variable distinct from any given variable, and the rule for passing a
goal "Find a v such that v:a" back over an assignment statement. Of course, we
could have built in the temporary variable concept itself, and then the solution

\ would have been found more easily. But in this case the invention process is of
more interest than the task itself.

Notice that at no point in the construction did we violate a protected rela-
tion. This is because of the fortunate order in which we have approached our
subgoals. For example, if we had chosen to work on the disjunct

instead of

vr-t-,X and Y:a

v4X and v:a,

we would have inserted the assignment statement Y <- X at the beginning of the
program in order to achieve Y:a, and we would have proposed the program

Y4- X
X 4- Y
Y+ X

which violates the protected relation X:b. Other alternative choices in this
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synthesis are either successful or terminated with equal dispatch.

1.3 Sorting three variables*

1.3.1 Sorting two variables

In our next example we will see how to construct a program to sort the values
of three variables. This program will use as a primitive the instruction sort2,
which sorts the values of two variables. Before we can proceed with the example,
therefore, we must consider how to pass a relation back over the instruction
sort2.

Executing sort2(X Y) will leave X and Y unchanged if X is less than or equal
to Y (X <Y'), but will interchange the values of X and Y otherwise. Let P(X Y)
be any relation between the values of X and Y. We must construct a relation
P'(X Y) such that if P'(X Y) is true before sorting X and Y, P(X Y) will be true
afterwards. Clearly, if X < Y, it suffices to know that P(X Y) itself is true before
sorting, because the sorting operation will not change the values. On the other
hand, if Y<X it suffices to know P(Y X), the expression derived from P(X Y) by
exchanging X and Y, because the values of X and Y will be interchanged by the
sorting. Therefore, the relation P'(X Y) is the conjunction

if X<Y then P(X Y)
and if Y<X then P(Y X)

A similar argument shows that the above P' is as weak as possible. The same
line of reasoning applies even if X or Y does not actually occur in P. For
instance, if X does not occur, P(Y X) is simply P(X Y) with Y replaced by X.

Given the appropriate definition of sort2, it if straightforward to derive the
above relation mechanically (e.g., see [Manna, 1974] ). However, that would
require the system to know about conditional expressions, and we do not wish to
discuss those statements here. For our purposes, it suffices to assume that the
system knows explicitly how to pass a relation back over a sort2 instruction.

1.32 Achieving an implication

We have excluded the use of conditionals in the programs we construct.
However, we cannot afford to exclude the goals of form "if P then Q" from the
specifications for the program being constructed. For instance, such specifica-
tions can be introduced by passing any relation back over a sort2 instruction.

*This problem is also discussed in (Green, etal., 1974). Green allows the use of program
branches and the program he derives has the form of a nested conditional statement. Green's
use of the case analysis avoids any protection violations in his solution: the interaction be-
tween the subgoals plays a much lesser role in Green's formulation of the problem. Some
other work in the synthesis of sort programs (see [Green and Barstow, 1975] , [Darlington,
1975] ) does not consider "in-place" sorts at all; goal interactions are still important, but
protection issues of the type we are considering do not arise. However, Darlington's concept
of "pushing in" a function is the analogue of regression for programs in which nested
functional terms play the role of sequential program instructions.
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The form of these specifications suggests that the forbidden conditional
expression be used in achieving them. Therefore, for purposes of this example
we will introduce a particularly simple-minded strategy: to achieve a goal of
form "if P then Q," first test if P is known to be false: if so, the goal is already
achieved. Otherwise, assume P is true and attempt to achieve Q.

The strategy is simple-minded because it does not allow the program being
constructed to itself test whether P is true; a more sophisticated strategy would
produce a conditional expression, and the resulting program would be more
efficient. However, the simple strategy will carry us through our next example.

1.3.3 The solution to the three-sort problem

Given three variables, X, Y, and Z, we want to rearrange their values so that
X<Y and Y-<..Z. Either of these goals can be achieved independently, by
executing sort2(X Y) or sort2(Y Z) respectively. However, the simple linear
strategy of concatenating these two instructions does not work; the program

sort2(X Y)
sort2(Y Z)

will not sort X, Y, and Z if Z is initially the smallest of the three. On the other
hand, the simultaneous goal strategy we have introduced does work in a straight-
forward way.

In order to apply our strategy, we first achieve one of our goals, say XSY,
using the primitive instruction sort2(X Y). We then try to modify our program
to achieve Y<Z as well. In modifying the program we protect the relation X<Y.
In tabular form, the situation is as follows:

Plan

sort2( X Y)

Model Comments

Achieve: VZ
XY Protect: X<Y

FIGURE 11

As we have pointed out, simply appending a plan step sort2(Y Z) will violate the
protected relation X-<..Y. Therefore we pass the goal back to see if we can achieve
it at an earlier stage. The regressed relation, as explained in the previous section,
is

if XSY then Y‘l
and if Y<X then X‹..Z.

(This relation effectively states that Z is the largest of the three numbers.) Our
situation therefore is as follows:
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Plan

sort2(X Y)

Model Comments

Achieve. if X‘..Y then Y‹.2
and if Y<X then XZ

X‹..Y Protect: X<Y

FIGURE 12

We must now try to achieve the remaining goal. This goal is itself a con-
junction and is handled by the simultaneous goal strategy. The first conjunct, "if
XY then Y<Z," is an implication. Therefore we first test to see if XtcY might
be known to be false, in which case the implication would be true. However,
nothing is known about whether X<Y, so we assume it to be true and resign
ourselves to achieving the consequent Y-<-1: this can easily be done using the
primitive instruction sort2(Y Z). Inserting this instruction at the beginning of
the plan does not interfere with the protected relation X-<..Y: the protection
point is immediately preceded by the instruction sort2(X Y). Our situation is
therefore as follows:

Plan Model Comments

sort2(Y Z)

sort2(X Y)

Achieve: if Y<X then X.-‹Z
YZ Protect: if X-<..Y then Y--<..Z

XY Protect: XSY

FIGURE 13
(Notice that we do not reproduce the complete model for this example, but only
include the skeleton model.)

We have achieved the goal "if X.‘..Y then Ya," which is one of two simul-
taneous goals. We therefore protect the relation we have just achieved and
attempt to modify the program to achieve the remaining goal, "if Y<X then
XZ." Again, we cannot disprove Y<X and therefore we attempt to achieve the
consequent, X.-<2. This goal can be achieved immediately by executing
sort2(X Z), but we must check that none of the protected relations is disturbed.
Our situation is

Plan

sort2(Y Z)

sort2(X Z)

sort2(X Y)

Model Comments

Y.4.Z

X-<-2 Protect: if XSY then Y.‹.Z

xY

FIGURE 14
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The second protected relation X<Y is still preserved: the first presents us with a
bit more difficulty, but is in fact true: a human might notice that Z is the largest
of the three numbers at this point. Perhaps it is worth explaining how the system
verifies this protected relation, thereby illustrating the use of the skeleton
model.

After executing the second instruction sort2(X Z), the only information in
skeleton model is that XZ. This is not enough to establish that the protected
relation is undisturbed. The system therefore passes the relation back to an
earlier model and tries to prove it there. The regressed relation is

if X.<1 then (if X<Y then Y<Z)
and if Z.:X then (if Z<Y then YQC).

The earlier model tells us that Y-.<2 [because we have just executed
sort2(Y Z)] . The first conjunct is thus easy to prove: the conclusion Y-.<2 is
known explicitly by the model. The second conjunct follows from transitivity:
since we know Y.<2 from the model and Z•ta from the hypothesis we can
conclude that YQC. (This sort of reasoning is performed by a mechansim
described in [Waldinger and Levitt, 1974]). The program in Figure 14 is there-
fore correct as it stands (although additional relationships should be protected if
the plan is to undergo further modification).

It is pleasing that this last bit of deduction was not noticed by Manna and
Waldinger in preparing the 1974 paper, but was an original discovery of the
program, which was implemented afterwards. Manna and Waldinger assumed the
protected relation would be violated and went through a somewhat longer
process to arrive at an equivalent program. This is one of those not-so-rare cases
in which a program debugs its programmer.

In order to show how these ideas apply to robot-type problems we discuss.
one further example, Sussman's "anomaly," in the next section.

1.4 The Sussman "anomaly"

We include this problem because it has received a good deal of attention in
the robot planning literature (e.g., [Sussman, 1973; Warren, 1974; Tate, 1974;
Hewitt, 1975; Sacerdoti, 1975] ). However, for reasons that we will explore in
Part 2, the solution does not exercise the capabilities of the system as fully as
the previous two examples. We are given three blocks in the following configura-
tion:

A

FIGURE 15
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We are asked to rearrange them into this configuration:*

A

FIGURE 16

The goal is thus a simple conjunction "A is on B and B is on C." (We will forget
about the table.)

The anomaly is one of the simplest blocks-world problems for which the
linear strategy does not work regardless of the order in which we approach the
subgoals: if we clear A and put A on B we cannot put B on C without removing
A:

A

FIGURE 17

(Remember the arm can lift only one block at a time.)

On the other hand, if we put B on C first, we have buried A and cannot put it on
top of B without disturbing the other blocks:

A

FIGURE 18

Our technique can solve this problem regardless of the order in which it attacks
the goals. We will consider just one of these orderings: Assume we attempt to
achieve "A is on B." The system will generate subgoals to clear A and B. B is
already clear, and A will be cleared by putting C on the table. Then A will be put
on B. This much can be done by the elementary strategy for achieving the "on"
relationship (Section 1.1.1). Our situation is as follows:

*This problem was proposed by Allan Brown. Perhaps many children thought of it earlier
but did not recognize that it was hard.
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Plan Model Comments

Put Con TABLE

Put A on B

A TI-31 

[-61 TA] Tr13 

A

FIGURE 19

Protect: C is clear

Protect: A is clear
Protect: B is clear

Achieve: B is on C
Protect: A is on B

We protect "A is on B" because we want to modify the plan to achieve "B is

on C" while still achieving "A is on B." We protect "A is clear" and "B is clear"

earlier in order to make sure that the operation "Put A on B" will still be legal

after the modifications are made.

Now, we have seen that we cannot achieve "B is on C" by adding new steps

to the end of the plan without disturbing the protected relation "A is on B."

Therefore we again pass the goal back to an earlier stage in the plan, hoping to

achieve it before the protected relationship is established.

Passing "B is on C" back over the plan step "Put A on B" yields "B is on C"
itself: whether B is on C or not is unaffected by putting A on B. The situation is

thus:

Plan

Put Con TABLE

Put A on B

Model

A

rAl [-En
A

F-6-1 
FIGURE 20

Comments

Protect: C is clear

Achieve: B is on C
Protect: A is clear
Protect: B is clear

Protect: A is on B

The goal "B is on C" can be easily achieved at the earlier stage: B and C are

both clear, so we can simply put B on C. Furthermore this operation does not
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violate any of the protected relations. Since all goals have been achieved, our
final plan is as follows:

Plan

Put Con TABLE

Put B on C

Put A on B

Model

A FETI

TEI 171 Fl

A

FAI

FIGURE 21

Comments

Protect: C is clear

Protect: B is clear

Protect: C is clear

Protect: A is clear

Protect: B is clear

Protect: A is on B
Protect: B is on C

The solution is similar if the order in which the goals are attempted is reversed.
This completes the last of our examples. In the next section we discuss some

of the limitations of this approach, and consider how they might be transcended.

1.5 Limitations and next steps

Odin.. .f all powers mightiest far art thou
Lord over men of Earth, and Gods in heaven,
Yet even from thee thyself hath been withheld.
One thing: to undo what thou thyself hast ruled.

Matthew Arnold, Balder Dead

The policy maintained by our implementation is to allow no protection
violations at all: if a proposed modification causes a violation, that modification
is rejected. This policy is a bit rigid and can sometimes inhibit the search for a
solution.

For instance, consider the blocks problem in which initially the blocks are as
follows:

A

FIGURE 22
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and in which the goal is to construct the following stack:

A

FIGURE 23

The goal may be considered to be the conjunction of two goals, "A is on B" and
"B is on C." If these goals are approached in the reverse order, the system has no
problem: it clears B by putting A on the table, puts B on C and then puts A on
B. However, if the system approaches the goals in the given order, it will attempt
to achieve "A is on B" first. This relation is already true, so the system protects

it while trying to achieve the goal "B is on C." Here the system is baffled: it
cannot put B on C without clearing B, thereby violating the protected relation.
Passing the goal backwards into the plan is of no use: there are no plan steps to
back it over. Clearly we would like to relax the restriction against protection
violation until B is safely on C, and then reachieve the relation "A is on B," but
our policy does not permit such a maneuver. The system is forced to reorder the
goals in order to find a solution.

The restriction against violating protected relations also lengthens the search
in generating the program to sort three variables. If these violations were per-

mitted, a correct program sort2(X
sort2(Y Z)
sort2(X Y)

could be constructed without the use of regression at all. Why not permit viola-
tions, under the condition that a "contract" is maintained to reachieve protected
relations that have been violated?

Indeed, such a strategy is quite natural, but we have two objections to it.
First, suppose in the course of reachieving one protected relation we violate
another. Are we to reachieve that relation later as well, and so on, perhaps ad
infinitum? For example, in searching for a plan to reverse the contents of two
variables it is possible to generate the infinite sequence of plans

X 4- Y,

Y4-- X
x.-Y,

X 4-- Y

X 4-- Y,

Y X
X Y
Y
X Y, .
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Each plan corrects a protection violation perpetrated by the previous plan—but
commits an equally heinous violation itself. (This objection is a bit naive: one
could invent safeguards against such aberrations, as has been done by Sussman
(Sussman, 1973) and Green et al. (Green et al., 1974).

The second objection: allowing temporary protection violations can result in
inefficient plans. For example, we could generate the following plan for solving
the Sussman anomaly:

Plan

Put Con TABLE

Put A on B

Put A on TABLE

Put B on C

Put A on B

Model Comments
1■••■•■

A

A

TE-1 --

ririri

F1
A

FIGURE 24

Protect: C is clear

Protect: A is clear
Protect: B is clear

This plan is correct but inefficient: We have put A on B only to put A back on
the table again because a protection violation was temporarily admitted. In a
similar way, Sussman's HACKER produces an equally inefficient plan, approach-
ing the goals in the opposite order. Of course, the plans could later be optimized,
but allowing protection violations seems to encourage inefficiency in the plan
produced.
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Nevertheless, we feel that permitting temporary protection violations in a
controlled way is a natural strategy that may be admitted in future versions of
the program.
A more serious limitation of our implementation is that the only way it can

modify plans is by adding new instructions, never by changing instructions that
are already there. For example, suppose we have the initial configuration

A

FIGURE 25

and our goal is to construct the stack

A

FIGURE 26

Assuming we approach the goal "A is on B" first, we are quite likely to put B on
the table and then put A on B. In modifying the plan to achieve "B is on C," it
would be clever to plan to put B on C instead of the table, but this sort of
modification is beyong the system's capabilities. The "formal object" approach
of Sussman (Sussman, 1973) would handle this properly: there, the decision
about where to put B (in clearing A) would be deferred until we attempted the
second goal "B is on C." However, other sorts of modifications require achieving
the same goals in entirely different ways in order to accomodate the demands of
the additional specification. Certain protected relations might never be achieved
at all in the modified program if the higher level goal that constituted the
"purpose" of the protected subgoal could be achieved in some other way. To
effect such modifications will require that in the course of modifying a program
we retain some of the goal-subgoal hierarchy that caused the original program to
be constructed. Such modifications are in the spirit of our approach, but beyond
the capabilities of our simple implementation.

The plans we have constructed in our paper are "straight-line" programs; they
involve no loops or branches. The system as it exists contains a subsystem for
constructing programs with branches and recursive loops (cf. [Manna and
Waldinger, 19741); however, these programs are free of side effects. Since the
mechanisms for loop branch construction have not been integrated with the
system that constructs structure-altering programs of the sort we have discussed
in this paper. Nevertheless, these mechanisms are entirely consistent, and we
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intend to unite them. Our hand simulations indicate that the system will then be
able to construct a variety of array-sorting routines.

The use of goal regression for these more complex programs has been studied
by many as a way of proving programs correct. Passing relations back into
branches is straightforward (Floyd, 1967, Hoare 1969); passing a relation back
into a loop, on the other hand, may require ingenuity to generalize the relation.
This problem is discussed by (Katz and Manna, 1973; Wegbreit, 1974; Boyer and
Moore, 1973; Moore, 1975) and others, but it is by no means "solved."

All the loops constructed by our synthesizer will initially be recursive: we
intend to introduce iteration only during a subsequent optimization phase, fol-
lowing (Darlington and Burstall, 1973).

The way we have implemented skeleton modelling may be remarkably
inefficient, particularly if the plan being constructed is to have many steps. It
may take a long time to pass a relation back so far, and the transformed relation
may grow alarmingly. There are many ways one might consider to make skeleton
modelling more efficient. We prefer not to speculate on which of these ways will
actually help until we have tried to implement some of them.
We regard program modification as a valuable synthesis technique apart from

its role in achieving goals simultaneously. Often we can construct a program by
modifying another program that achieves a goal that is somehow similar or
analogous. For instance, in (Manna and Waldinger, 1974) we show how a unifica-
tion algorithm could be constructed by modifying a pattern matcher. Another
sort of program modification is optimization: here we try to modify the pro-
gram to achieve the same goal more efficiently. It is our hope that systems with
the ability to modify their own programs will be able to adapt to new situations
without needing to be "general." Before that can happen, however, program
modification techniques must be developed beyond what has been done here.

This concludes our discussion of the simultaneous goal strategy. In the next
part of this paper we discuss how some other problem solvers have approached
some of the same problems.

PART 2

THE REPRESENTATION OF ACTIONS AND SITUATIONS
IN CONTEMPORARY PROBLEM SOLVING

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.
If all time is eternally present
All time is unredeemable.

T.S. Eliot, Four Quartets

In the rest of this paper we will examine a number of problem-solving
systems, asking the same question of each system: how are actions and their
effects on the world represented? Thus we will not emphasize simultaneous goals
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in this section, and in discussing a system we will often ignore the very facets

that make it unusual. Many of these systems approach problems of far greater
complexity than those we have addressed in Part 2, problems involved in
manipulating many more objects, and more complex structures. When we com-
pare our approach to theirs, please bear in mind that our implementation has not

been extended to handle the problems that our hand simulation dispatches with

such ease.

2.1 The classical problem solvers

In the General Problem Solver (GPS) (see [Newell, Shaw, and Simon, 1960]),
the various states of the world were completely independent. For each state,

GPS had to construct a new model: no information from one state was assumed
to carry through to the next automatically, and it was the responsibility of each
"operator" (the description of an action) to tell how to construct a new model.

The form of the states themselves was not dictated by GPS and varied from one
domain to another.

The resolution-based problem solvers (e.g., [Green, 1969; Waldinger and Lee,

1969]) maintained the GPS convention that every action was assumed capable

of destroying any relation: in other words it was necessary to state explicitly
such observations as that turning on a light switch does not alter the location of
any of the objects in a room. To supply a large number of these facts (often
called "frame axioms") was tedious, and they tended to distract the problem
solver as well. Since most actions leave most of the world unchanged, we want
our representation of the world to be biased to expect actions not to affect most
existing relations. For a number of reasons we demand that these "obvious"
facts be submerged in the representation, so that we (and our system) can focus
our attention on the important things, the things that change.

The STRIPS problem solver (Fikes and Nilsson, 1971) was introduced to

overcome these obstacles. In order to eliminate the frame axioms, STRIPS

adopted the assumption that a given relation is left unchanged by an action

unless it is explicitly mentioned in the "addlist" or the "deletelist" of the

action: relations in the addlist are always true after the action is performed,
while relations in the deletelist are not assumed to be true afterwards even if

they were true before. Thus the frame axioms are assumed implictly for every

action and relation unless the relation is included in the addlist or deletelist of

the action. For instance, a (robot) action "go from A to B" might have "the

robot is at B" in its addlist and "the robot is at A" in its deletelist. A relation

such as "box C is in room 1" would be assumed to be unaffected by the action

because it is not mentioned in either the addlist or the deletelist of the operator.

Henceforth, we shall refer to the belief that an action leaves all the relations

in the model unchanged, unless specified otherwise, as the "STRIPS assump-

tion."
A STRIPS model of a world situation, like a STRIPS operator, consists of an

addlist and a deletelist: the addlist contains those relations that are true in the
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corresponding situation but that may not have been true in the initial situation,
and the deletelist contains those relations that may not be true in the corre-
sponding situation even though they were true initially. Thus one can determine
which relations are true, given the current model and the intial list of relations.
Also, given a model and an operator, it is easy to apply the operator to the
model and derive a new model. The STRIPS scheme keeps a complete record of
all the past states of the system, while allowing the various models to share quite
a bit of structure.

STRIPS operators are appealingly simple. In the next section we will examine
how the sorts of techniques we have discussed apply if the actions are all
STRIPS operators.

2.2 Regression and STRIPS.operators

Suppose an action is represented as a STRIPS operator, and that the members
of the addlist and the deletelist are all atomic—that is, they contain no logical
connectives or quantifiers. It is singularly simple to pass a relation back over
such an operator, because the interaction between the operator and the relation
are completely specified by the addlist and the deletelist. In order for a relation
to be true after the application of such an operator, it must (1) belong to the
addlist of the operator, or else (2) be true before application of the operator and
not belong to the deletelist of the operator. Thus the rule for passing any
relation back over such a STRIPS operator is implicit in the operator description
itself.

For instance, an operator such as "move A from B to C" might have addlist
"A is on C" and "B is clear" and deletelist "A is on B" and "C is clear." Thus,
when passed back over this, operator, the relation "A is on C" becomes true, "A
is on B" becomes false, and "C is on D" remains the same. The simplicity of
regression in this case indicates that we should express our actions in this form
whenever possible.

The problem-solver WARPLAN (Warren, 1974) uses precisely the same sort
of skeleton model as we do, and uses an identical strategy for handling simul-
taneous goals, but restricts itself to an atomic add-deletelist representation for
operators, thus achieving a marvelous simplicity. Although we imagine that
WARPLAN would require extension before it could handle the sort problem or
the interchanging of variable values, the principles involved in the WARPLAN
design are a special case of those given here.

Thus the clarity of actions expressed in this form makes reasoning about
them exceedingly easy. However, many have found the add-deletelist format for
representing actions too restrictive. With the advent of the "artificial intelligence
programming languages," it became more fashionable to represent actions
"procedurally" so that the system designer could describe the effects of the
action using the full power of a programming language. We shall examine the
impact of the STRIPS assumption on some of these systems in the next section.
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2.3 The use of contexts to represent a changing world

What is past, even the fool knows.

Homer, Iliad

The new Al languages include PLANNER (Hewitt, 1972), QA4 (Rulifson,
et al., 1972). CONNIVER (McDermott and Sussman, 1972) and QLISP
(Wilber, 1976), a variant of QA4. A comparative survey of these languages
is provided in (Bobrow and Raphael, 1974). Implementers of problem solvers in
these languages are fond of saying their systems represent actions "pro-
cedurally," as computer programs, rather than "declaratively," as axioms or
add-delete lists. Yet in each of these systems the STRIPS assumption is firmly
embedded, and the procedures attempt to maintain an updated model by
deleting some relations and adding others; which relations an action adds or
deletes depends on a computation instead of being explicitly listed beforehand.
The STRIPS assumption is expressed not procedurally or declaratively but
structurally: it is built into the choice of representation. The more primitive
systems (e.g., [Winograd, 1971; Buchanan and Luckham, 1974]), implemented
in an early version of PLANNER, maintained a single model which they
updated by adding and deleting relations.* This scheme made it impossible for
the system to recall any but the most recent world situation without "back-
tracking," passing control back to an earlier state and effectively undoing any
intermediate side effects. The more recent trendt has been to incorporate the
assumption by a particular use of the "context" mechanism of the newer
implementation languages. We must now describe the context mechanism and its
use in building what we will call an "archeological model."

The context mechanism in QA4, CONNIVER, QLISP, AP/1, and HBASE
operates roughly as follows: Each of these systems has a data base; assertions can
be made and subsequently retrieved. Assertions and queries in these systems are
always made with respect to an implicit or explicit context. If T1 is a context,
and we assert that B is on C with respect to T1, the system will store that fact
and answer accordingly to queries made with respect to T1. There is an opera-
tion known as "pushing" a context that produces a new context, an immediate
"descendant" of the original "parent" context. We may push T1 any number of
times, each time getting a new immediate descendant of T1. If T2 is a descend-
ant of T1, any assertion made with respect to T1 will be available to queries
made with respect to T2.

*We do not mean to imply that all these systems were copying STRIPS; Winograd's work
was done at the same time.

t See, for example, (Derksen, et al., 1972; Sussman, 1973; Fahlman, 1974; McDermott,
1974; Fikes, 1975). (Balzer, etal., 1974 and Tate, 1974) use the context mechanism of the
AP/1 programming system and the HBASE data base system (Barrow, 1974), respectively,
in exactly the same way.
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T1 • ASSERT: B IS ON C

T2• ASSERT: A IS ON B

FIGURE 27

Thus if we ask whether B is on C with respect to 12, we will be told "Yes" (in
some fashion). However, assertions made with respect to that descendant are
"invisible" to queries made with respect to its parent or any other context aside
from its own descendants. For instance, if A is asserted to be on B with respect
to T2, that information will not be available to queries made with respect to T1
(see Figure 27).

It is also possible to "delete" a relation with respect to a given context. If I
delete the fact that B is on C with respect to T2, the system will be unable to
determine whether B is on C with respect to 12 (on any of its descendants), but
it will still know that B is on C with respect to Tl:

T1 • ASSERT: B IS ON C

T2 • ASSERT: A IS ON B
DELETE: B IS ON C

FIGURE 28

The convention taken in planning systems implemented in languages with
such a "context-structured data base" has been to equate each situation with a
context. Furthermore, if some action occurs in a given situation Ti, resulting in
a new situation, the usual practice has been to equate the new situation with an
immediate descendant T2 of the given context T1. Any relations that are pro-
duced by the action are asserted with respect to T2; any relations that may be
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disturbed by the action are deleted with respect to T2. Other relations are still

accessible in the new context. Thus if we are in situation T1 and move block A
onto block B from on top of block C, we construct a descendant T2, asserting

that A is on B and deleting that A is on C with respect to T2. If B was known to
be on block D in situation T1, that information will still be available in situation

T2.
If T2 is succeeded by another situation T3, T3 will be represented by a

descendant of T2, and so on. The structure of the sequence of contexts is
represented as T1 •

2

T3

FIGURE 29

Each context is a descendant of the preceding context.
We will call this representation of the world an "archeological" model

because it allows us to dig into successive layers of context in order to uncover
the past.

In the balance of this paper we will propose that the archeological model is
not always ideal. Because any assertion true in a context is automatically true in
its descendants (unless specifically deleted), the use of archaeological models
implicitly incorporates the STRIPS assumption, and accepts the STRIPS solu-
tion to the frame problem. Therefore, most of the planning systems imple-
mented in the new AI languages use representations like that of STRIPS. We
have been paying so much attention to the STRIPS assumption for the following
reason: we are about to argue that in the future we may not want this assump-
tion so firmly implanted in the structure of our problem solvers; indeed, some
researchers have already begun to feel its constriction.

2.4 Influential actions
For want of a nail the shoe was lost,
For want of a shoe the horse was lost,
For want of a horse the rider was lost,
For want of a rider the battle was lost,
For want of a battle the kingdom was lost,
And all for the want of a horseshoe nail. Nursery Rhyme
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The STRIPS assumption, embedded in the archeological model, has been so
universally adopted because it banishes the frame axiom nightmare: it is no
longer necessary to mention when an action leaves a relation unaffected because
every action is assumed to leave every relation unaffected unless explictly stated
otherwise. The assumption reflects our intuition about the world, and the
archeological model represents the assumption in an efficient way. Having found
a mechanism that rids us of the headaches of previous generations of artificial
intelligence researchers, shouldn't we swear to honor and cherish it forever?

Indeed, so much can be done within the STRIPS-archeological model frame-
work, and so great are the advantages of staying within its boundaries, that we
only abandon it with the greatest reluctance. If we were only modelling robot
acts we might still be content to update our models by deleting some relations
and adding others. The death blow to this approach is dealt by programming
language instructions such as the assignment statement.

Suppose we attempt to express an assignment statement X <— Y by updating
an archeological model. We must delete any relation of form P(X); furthermore,
for every relation of form P(Y) in the model we must add a relation of form
P(X). In addition, we may need to delete a relation of form "there is a z such
that z has value b" even though it does not mention X explicitly. We may need
to examine each relation in the model in order to determine whether it depends
on X maintaining its old value. The consequences of this instruction on a model
are so drastic and far reaching that we cannot afford to delete all the relations
that the statement has made false.
How are we to represent the effects of an instruction such as sort2(X Y) on a

model? If P(X Y) is the conjunction of everything that is known about X or Y,
we might delete P(X Y) and assert XSY and _(P(X Y) or P(Y X)). This is a
massive and unworkable formula if P(X Y) is at all complex; furthermore, it does
not express our intuition about the sort, that whether P(X Y) or P(Y X) holds
depends on whether or not X was less than or equal to Y before the sort took
place. Knowledge of the previous relation between X and Y has been lost.*

Even in the robot domain, for which the STRIPS formalism was orginated,
the archeological representation becomes awkward when considering actions
with indirect side effects. For example, if a robot is permitted to push more than
once box at a time, an operation such as "move box A to point x" can influence
the locations of boxes B, C, and D.

FIGURE 30

*A reply to some of this criticism appears in (Warren, 1976).
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This situation becomes worse as the number of elements in the world in-

creases: in moving a complex subassembly of a piece of equipment, we must
change the location of every component of the subassembly. If we turn a sub-

assembly upside down, we must replace every relation of form "x is on y" by
the relation "y is on x," if x and y are components of the inverted assembly.

These actions are clumsy to model archeologically because so many relations
need to be added and deleted from the model, and these relations may involve

objects that are not explicitly mentioned by the operator. Furthermore, the
operators are insensitive to whether or not these relations are relevant to the

problem being solved.
Many of the more recent planning and modelling systems have been attempt-

ing to represent these "influential" actions, and we will soon examine how they
have overcome the above obstacles. First let us point out that regression provides

one technique for modelling these actions; for instance, we need not determine

the location of any component indirectly affected by an action until a query

concerning that component arises: thus, though many components may be
moved, the system need only be concerned with a few of them. When a query

about the location does arise, the regression technique will allow the new loca-

tion to be determined from the original location and from the sequence of

actions that has been performed on the subassembly. In particular, if the robot

in the previous example (Figure 30) has moved the stack 10 feet to the right in

moving box A to point x, the new location of box C will also be several feet to

the right of the old location: of course, there is no need to compute the new

location of C unless that information is requested.
We have seen that archeological models embed the STRIPS assumption;

however, many of the more recent planning systems, while retaining the archeo-

logical structure, have been attempting to model actions that must be classified as

influential. We will see in the next section how they have resolved the discrep-

ancy.

2.5 Escaping from the STRIPS assumption

Once the archeological model was adopted, the designers of problem solvers
devised mechanisms to loosen the STRIPS assumption embedded in their choice
of representation.

Fahlman (Fahlman, 1974), using CONNIVER, wanted to simulate a robot
that could lift and transport an entire stack or assembly of blocks in one step by
carefully raising and moving the bottom block. We characterize this action as
"influential" because many blocks will have their location changed when the
bottom block is moved. Aware of the difficulty of maintaining a completely
updated model, Fahlman distinguishes between, "primary" and "secondary"
relations. Primary relationships, such as the locations of the blocks, are fun-
damental to the description of the scene: an updated model is kept of all primary
relationships. Secondary relationships, such .as whether or not two blocks are
touching, are defined in terms of the primary relationships and therefore can be
deduced from the model, and added to it, only as needed. The system has
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thereby avoided deducing large quantities of irrelevant, redundant secondary
relationships.

Notice, however, that keeping an updated model of just the primary relation-
ships may still be a sizable chore: for instance, at any moment the system must
know the location of every block in the model, even though these locations are
often themselves redundant; when a large subassembly is moved, the locations of
each of the blocks in the subassembly can be computed from the location of the
subassembly itself.

Furthermore, in Fahlman's system if a primary relationship is changed, all the
secondary relationships that have been derived from that primary relationship
and added to the model must be deleted at once to avoid potential incon-
sistency.

The modelling system of the SRI Computer Based Consultant (Fikes, 1975),
implemented in QLISP, distinguishes between derived and explicitly asserted
relations for the same reason that Fahlman distinguishes between primary and
secondary data. However, in the SRI system the same relation might be, derived
in one instance and explictly asserted in another. Thus the location of a com-
ponent could very well be derived from the location of a subassembly.

Like the Fahlman system, the SRI system deletes all the information derived
from an assertion when it deletes the assertion itself.

Note that the SRI system does not behave at all well if the user tries to assert
a complex relationship explicitly, say in a problem description. For instance,
suppose the user says that block B is between blocks A and C. If the system then
moves block A, it will still report that B is between A and C, because that
relationship was explicitly asserted and not derived: the system has no way of
knowing that it depends on the location of A. —

The Fahlman system avoids this difficulty only by forbidding the user to
assert any secondary relationships.

Both the Fikes and the Fahlman systems have the following scheme: define
actions in terms of the important relationships that they modify, and then
define the lesser relationships in terms of the important relationships. This
simplifies the description of actions, makes model updating more efficient, and
allows the system designer to introduce new relationships without needing to
modify the actions' descriptions.

However, it may be impossible to define some lesser relationships in terms of
the important ones; we may need to know directly how the lesser relationships
are affected by actions. The moving of subassemblies provides a convenient
example of this phenomenon.

Consider a row of blocks on a table.

Ri 1-61

FIGURE 31
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We want to move A several feet to the right, to point x. We can either slide A or
lift it. If we lift it, blocks B, C, and D will stay where they are, whereas if we
slide it, we will inadvertently carry the others along. It is expensive to expect the
slide operator to update the model to include the new locations of all the blocks
it affects: there may be many of these intermediate blocks and they may not be
important to the problem being solved. On the other hand, we cannot expect an
archeological system to deduce the new location of B from the new model in
case that information turns out to be needed: in order to compute the location
of B, the system needs to know whether A has been lifted or slid, and that
information is not part of a conventional model. Thus, in an archeological
model, locations of intermediate blocks must always be computed at the time
the slide is added to the plan.

If skeleton models are adopted, on the other hand, the actions in the plan
form an integral part of the model. If A is slid to x, only the hew location of A
would be explicitly included in the new model. If subsequently we need to
determine the location of B, a regression rule sees that A has been slid and asks
whether B is in the path of the slide; if not, the location of B after the slide is the
same as before; otherwise, the new location of B is somewhere to the right of A.

In both the archeological and the skeletal representations, knowledge about
the side effects of sliding must be explicitly expressed. In the skeleton model,
the new locations of the intermediate blocks need not be computed until they
are needed.

In archeological modelling, the description of an action must be expressed
completely in a single operator. For an action with many side effects, the
operator is likely to be a rather large and opaque program. Skeleton modelling
does not eliminate the need to describe the effects of an action explicitly;
however, it does allow the description to be spread over many smaller, and
usually clearer programs. Furthermore, one can alter a system to handle new
relations merely by adding new regression rules, without changing any previously
defined operators. In short, skeleton modelling can sometimes make a system
more transparent and modular, as well as more efficient.

Skeleton models do not discard the STRIPS assumption. If this assumption
were abandoned, the frame problem would be back upon us at once: for every
relation and action it would be necessary to state or deduce a regression rule
whether or not the action had any effect at all on the relation. Instead, skeleton
models contain a default rule stating that if no other regression rule applies, a
given relation is assumed to be left unchanged by a given action. This rule states
the STRIPS assumption precisely but does not freeze it into a structure. We have
lost in efficiency if actions really do have few side effects, because the archeo-
logical model does embed the STRIPS assumption in a structural way and
requires no computation if it applies, whereas a skeleton model can only apply
the assumption after all the regression rules have failed. The extent to which this
modelling technique will be economic depends entirely on the "influence" of
actions of the plan—the degree to which they affect the relations in the model.
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If skeleton models are adopted, the context mechanism need not be dropped
altogether as a way of representing distinct world situations; however, descend-
ent contexts cannot be used to represent successive world states. Our imple-
mentation of skeleton models uses contexts in a different way, which we will
outline in the next section.

2.6 The use of contexts to implement skeleton models

Recall that we can "push" a given context any number of times, creating a
new immediate descendant with every push. These new contexts are inde-
pendent from each other—none of them is descended from any of the others,
and an assertion made with respect to one of them will be invisible to the rest.

In our implementation of skeleton models we represent each situation by a
context, but successive situations are all immediate descendents of a single global
context T. Thus if situation T2 results from situation T1 by performing some
act, Ti and T2 will both be immediate descendants of T, created by pushing T;
12 will not be a descendant of T1. We can represent the skeleton model context
structure as follows:

FIGURE 32

Asserting a relation with respect to T1 does not automatically make it true with
respect to T2, and so on. The only relations asserted in the global context Tare
the eternal verities.

Since the structure of the skeleton model does not imply any relationship at
all between successive states, we represent such knowledge procedurally, by the
regression rules for passing a relation back from one state to the preceding one.
We suffer a possible loss of efficiency in abandoning the archeological model,
but we gain in flexibility and in our ability to represent influential operators
efficiently. We do not need to struggle against the assumption incorporated into
our representation.
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Of course, it is possible to implement skeleton models without using a
context mechanism. Problem solvers of the sort advocated by Kowalski
(Kowalsld, 1974) or implemented by Warren (Warren, 1974) embed a skeleton
model representation in a predicate logic formalism in which states of the world
are represented by explicit state variables, just as in the early theorem-proving
approach. These systems are especially elegant in that the regression rules are
indistinguishable from the operator descriptions. They both accept the STRIPS
add-deletelist operator representation, but we Can envision their incorporating
the sort of regression we have employed without requiring any fundamental
changes in structure. Hewitt (Hewitt, 1975) has indicated that a version of what
we have called skeleton modelling has also been developed independently in the
actor formalism, and Sacerdoti (Sacerdoti, 1975) uses another version in con-
junction with the procedural net approach.

2.7 Hypothetical worlds

What might have been is an abstraction
Remaining a perpetual possibility
Only in a world of speculation.
What might have been and what has been
Point to one end, which is always present.
Footfalls echo in the memory
Down the passage which we did not take
Towards the door we never opened
Into the rose-garden.

T.S. Mot, Four Quartets

Although so far we have avoided discussing the formation of conditional
plans in this paper, it may now be useful to note that using descendent contexts
to split into alternate hypothetical worlds (cf. [Rulifson, et aL, 1972;
McDermott, 1974; Manna and Waldinger, 1974]) is entirely consistent with
using independent contexts in skeleton models, but presents something of a
problem to archeological models.

In both archeological and skeletal models it is common to represent hypo-
thetical worlds by descendent contexts. For instance, to prepare alternate plans
depending on whether or not it is raining in a situation represented by context
T1, two new contexts Tj and TY are formed, corresponding to the cases in
which it is raining and it is not raining, respectively. Tj and TY are both
descendants of T1, so that any relations known in Ti will automatically be
assumed about T; and T7 also, as one would have hoped. Furthermore, in T; it
is asserted to be raining, while in Ti." it is asserted not to be raining.

The plan for the rainy case would be represented as a sequence of contexts
that follows Tj. In an archeological model these would be successive descend-
ants of Tj (Figure 33), while in a skeleton model these would be independent
contexts linked by regression rules. A similar sequence of contexts beginning
with TY would correspond to the plan for the case in which it is not rainy.
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,

FIGURE 33

Eventually we may reach a situation T1 and VI in each plan, respectively,
after which it becomes irrelevant whether or not it was raining in Ti. In other
words our ultimate goal may now be achieved by a single plan that will work in
either T4 or T. Therefore we would like to join our two plans back together
into a single plan; we want to form a new context T2 such that P is true in T2 if
and only if it is true in both Ti and Ti'. This can be done in a skeleton model
by creating an independent context T2 linked to the previous contexts by the
following regression rule: to establish R in T2, establish R in both T4 and Ti'.

The situation becomes more difficult if one attempts to maintain an updated
archeological model. One could take the following approach: if P and Q are the
conjunction of all that is known in Ti and T'4, respectively, then assert (P or())
with respect to T2. However, (P or Q) is likely to be an unwieldy formula, and
we may have lost the information that P corresponds to the rainy situation and
Q to the nonrainy one.
We regret that our treatment of hypothetical situations is so terse. A

discussion of our own approach, with examples, is given in (Manna and
Waldinger, 1974).

2.8 Complexity

Home is where one starts from. As we grow older
The world becomes stranger, the pattern more complicated
Of dead and living.

T.S. Eliot, Four Quartets
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Perhaps we should say a few words contrasting the work reported here with
recent work of Sussman (Sussman, 1973) and Sacerdoti (Sacerdoti, 1975).
Although both of these works deal in some of their aspects with simultaneous
goals, the principal thrust of their interests is different from ours, and so com-
parisons are likely to be shallow.

Sussman's main interest is the acquisition of knowledge. Thus he wants his
system to learn how to handle simultaneous goals, and is more concerned with
learning than with simultaneous goals themselves. We, on the other hand, want
our system to know how to handle simultaneous goals from the start, and are
not (at present) concerned with learning at all.

The sort of program modification we do is distinct from debugging: the

program we are modifying correctly achieves one goal, and we want it to achieve
another. We also refrain from actually executing our programs, and ultimately
produce programs that are guaranteed correct, whereas Sussman produces
programs that may have undiscovered bugs. It is plausible that in tackling more
complex problems we will want to introduce bugs and later correct them. We
imagine this happening in problems involving serveral levels of detail: a program
may work correctly in a crude way, but still contain many minor errors. The

problems we have been considering are simple enough so that we have not been

forced into using these techniques.
Similarly we view Sacerdoti's procedural nets, like his earlier abstraction

hierarchies (Sacerdoti, 1974) as a way of dealing with complexity by submerging
detail 'until a grossly correct plan has been developed. Then the plan is examined
in greater depth, and difficulties are ironed out as they emerge. The Sacerdoti
formalism can easily represent actions with many subsidiary side effects: these
effects are considered only after the initial (approximate) plan has been formu-
lated.

In approaching several simultaneous goals, Sacerdoti develops plans to achieve
each of the goals separately; as interactions between the plans are observed, the
system will impose orderings on the steps ("Step Fi from plan F must be
executed before step G from plan G") and even alter the plans themselves to
make them impervious to the effects of the other plans. Actions are represented
essentially by addlists and deletelists, and the "critics" (cf. [Sussman, 1973] )
that recognize the interactions between plans rely strongly on this representa-
tion, although the critic principle is more general.

Sacerdoti's approach to simultaneous goals is partially dictated by his applica-
tion: a consultant system advising a human amateur in a repair task. The user
may choose to order the plan steps in any of a number of valid ways; the system
cannot force an order except where that order is necessary to avoid harmful
interactions; therefore it maintains a highly parallel plan whenever possible until
the user himself has selected the order. In a sense, Sacerdoti's system must
anticipate all possible plans to achieve a task.

Sacerdoti's idea, deciding what order in which to approach goals only after
having done some planning for each of them, is intriguing and avoids a certain
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amount of goal reordering. However, we believe we will not make best use of
hierarchical planning until we are ready to wade into deeper waters of com-
plexity.

2.9 Recapitulation

You say I am repeating
Something I have said before. I shall say it again.

T.S. Eliot, Four Quartets

In this section we will briefly repeat the main points of the argument in Part
2.

The earliest problem solvers maintained entirely separate models corre-
sponding to each state of the world. In GPS, each operator had the responsibility
of constructing a completely new model, whereas in the resolution-based
systems the description of the new model created by an action was distributed
between several axioms, some describing how relationships were changed by the
action, and others (the frame axioms) telling which relationships remained the
same.

In an effort to do away with troublesome and obvious frame axioms, later
problem solvers adopted what we have called the "STRIPS assumption," that
any action will not change most relations, and therefore they described an action
by telling which relations it adds and which relations it deletes from the model.
The "addlists" and "deletelists" were either given explicitly or computed. Any
relation not explicitly added or deleted by an action was assumed to be unaf-
fected.

Systems implemented in artificial intelligence programming languages having
a "context" feature tended to incorporate the STRIPS assumption by equating
states of the world with contexts, and representing states that occur after a given
state by successive descendants of the given context; since any relation asserted
with respect to the given context is considered to be true with respect to any of
its descendents unless explicitly deleted, the STRIPS assumption is expressed
structurally in this "archeological" representation.

Meanwhile, the designers of problem-solving systems entered domains in
which the STRIPS assumption began to break down: areas in which the world
was modelled in such detail, or in which objects were so highly interrelated, that
actions might have many consequences, mot of which were irrelevant to the
problem at hand. The STRIPS assumption and the archeological structure that
expresses it become an obstacle here: it would be cumbersome and inefficient
for the description of the action to have to make all these changes in the model.
Recent problem solvers have attempted to escape from the STRIPS assumption
by distinguishing between the important relations, which are always updated in
the model, and the lesser relations, which are defined in terms of the important
relations and which are only updated as necessary. These measures are inade-
quate largely because the designer of the system is prevented from stating
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explicitly how the lesser relationships are affected by the various actions.

The regression technique advocated here and elsewhere provides a method
whereby the actions in the plan become an important part of the model, from

which a relational description of the world can be "fleshed out" as necessary.
The context mechanism can be used to represent this type of "skeleton model,"

but successive states are represented as parallel contexts instead of descendants.
This latter representation has the additional advantage of being consistent with

the use of descendent contexts to represent hypothetical worlds, and with the
program modification technique introduced in Part 1.

In my end is my beginning.

T.S. Eliot, Four Quartets
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