
Toward Natural Language Computation'

Alan W. Biermann

Bruce W. Ballard2

Department of Computer Science
Duke University

Durham, North Carolina 27706

A computer programming system called the "Natural Language Computer" (NLC) is
described which allows a user to type English commands while watching them executed on
sample data appearing on a display screen. Direct visual feedback enables the user to
detect most misinterpretation errors as they are made so that incorrect or ambiguous
commands can be retyped or clarified immediately. A sequence of correctly executed
commands may be given a name and used as a subroutine, thus extending the set of
available operations and allowing larger English-language programs to be constructed
hierarchically. In addition to discussing the transition network syntax and procedural
semantics of the system, special attention is devoted to the following topics: the nature of
imperative sentences in the matrix domain; the processing of non-trivial noun phrases;
conjunction; pronominals; and programming constructs such as "if", "repeat", and proce-
dure definition.

1. Introduction

Natural language programming has been proposed
by many authors (Balzer[21, Green[13], Heidorn[17],
Petrick[25], Sammet[27], Woods[38]) as the best way
for humans to input their commands to computers.
Humans have developed exquisitely efficient abilities
for communicating with each other through natural
language, and the possibility of similarly interacting
with machines is worthy of investigation. The ability
to program in natural language instead of traditional
programming languages would enable people to use
familiar constructs in expressing their requests, thus
making machines accessible to a wider user group.
Automatic speech recognition and synthesis devices
could eventually smooth the communication even fur-
ther.

On the other hand, many problems could arise
when natural language programming is attempted
(Dijkstra[11], Petrick[25], Simmons[32]), and any
such research must deal with them. For example, it
has been argued that current natural language technol-

1 This material is based upon work supported by the National
Science Foundation under Grant Numbers MCS74-14445-A01 and
MCS-7904120.

2 Current address: Department of Computer and Information
Science, The Ohio State University, Columbus, Ohio 43210.

ogy is too primitive to handle a wide variety of syntac-
tic and semantic constructs so that the user of such a
system has the difficult task of learning what consti-
tutes an acceptable input to the system. Instead of
having to learn the relatively simple syntax of a clearly
defined programming language, the user would be
forced to learn a voluminous and very detailed set of
rules giving what words and phrases can be used and
how they can be combined. Thus the user would be
taxed more heavily with a natural language system
than with a traditional system. A second argument
against natural language programming relates to its
intrinsic vagueness and ambiguity. It is maintained
that if one wishes to manipulate information precisely
and reliably within a machine, a clearly defined and
unambiguous language should be used. The program-
mer should not have to wonder about the meaning of a
particular input to the system; he or she should know
the meaning or be able to look it up easily in a manu-
al. A third argument asserts that no one would use a
natural language programming system, even if one
existed, because it would be too verbose. Why should
one be willing to input long and wordy descriptions of
a desired computation when there exist simple, easy-
to-learn, and concise notations for doing the same
thing?

Copyright 1980 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/80/020071-16$01.00

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 71

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

1.1 A Natural Language Computer

Formidable as these criticisms may seem, this paper

will attempt to show that some of them can be over-

come with a careful system design, while others may

be simply wrong. This paper describes a system,

called the Natural Language Computer (NLC), which
makes it possible to perform a limited amount of natu-

ral language programming. This system enables a
person to sit at a computer display terminal, observe

his or her data structures on the screen, and watch the

computation proceed as the individual commands are

typed. The current implementation is specifically de-

signed for array and matrix computation. In the ex-

ample interaction of Figure 1, the user is creating a

subroutine to add up the rows and columns of an arbi-

trary matrix. Each item that is modified by a com-

mand is marked with an asterisk and other items used

in the calculation are marked with an apostrophe. The

first two commands cause two matrices to appear on

the screen, one to be operated on and the other to

receive the answer. The third command provides some

sample data for the calculation and the fourth com-

mand indicates that the imperative verb "sumcolrow"

is about to be defined. Subsequent inputs tell exactly

what operations must be done to sumcolrow a matrix

into another matrix. For example, if after this dia-

logue the system receives the input

"Sumcolrow matrix Al into matrix Z."

where Al and Z are matrices of appropriate dimen-

sions, the procedure body following the define state-
ment will be executed. Thus the dialogue causes the

system to create a subroutine to be called by using the

newly defined imperative verb "sumcolrow".

This process is explained in greater detail in later
sections of the paper. The important point to be no-

ticed here is that the user is able to watch the system
respond to each command as it is entered. Whenever

the system yields an undesired action, the user can

back up and rephrase his or her command more clear-

ly. This format for natural language programming

enables users to examine system performance as each

command is typed and to detect most errors immedi-

ately.

1.2 Concerning the Objections

Given this brief introduction to the NLC user inter-

face, it is already possible to respond to the first criti-

cism of natural language programming given above.

Although we feel that present day natural language

processors tend to have very limited capabilities, it is

quite possible within the NLC environment to direct

the user to restrict the inputs appropriately. For this

reason, the user is asked to follow two simple rules

which are easily understood from the user's point of

"Display a 3 by 3 matrix. Call it testmat."

Testmat

1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

"Display a 3 by 2 matrix. Call it ans."

Testmat ans

1 2 3 1 2

1 0 0 0 1 0 0

2 0 0 0 2 0 0

3 0 0 0 3 0 0

"Fill testmat with random numbers."

Testmat ans

1 2 3

1 1* 4* -7* 1

2 2* 3* 1* 2

3 4* 2* 2* 3

1 2

O 0

O 0

O 0

"Define a way to sumcolrow testmat into

ans."

"Add each column in testmat to

column 1 in ans."

testmat ans

1' 2' 3' 1* 2

1 1' 4' -7' 1 -2* 0

2 2' 3' 1' 2 6* 0

3 4' 2' 2' 3 8* 0

"Add each row in testmat to

column 2 of ans."

testmat ans

1 2 3 1

1' 1' 4' -7' 1 -2

2' 2' 3' 1' 2 6

3' 4' 2' 2' 3 8

"End the definition."
•

Figure 1. Defining the verb "sumcolrow".

2*

7*

9*

-4*

view and which simultaneously ease the job of the
system designers and implementers considerably.

The first rule concerns the semantics of inputs:

(1) The user may refer only to the data struc-
tures seen on the terminal screen and specify
simple operations upon them.

That is, the user may refer to matrices, rows, columns,
entries, labels, numbers, variables, etc., and specify
simple operations such as add, subtract, move, ex-
change, delete, label, etc. The user may not use do-
main specific vocabulary or concepts such as airplane
flights, seats, passengers, and reservations. This rule is
easily explained to a user and makes it possible to
build a system without getting into the peculiarities of
any specific domain. Although it requires the user to
translate his or her problem into the vocabulary of the

72 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

system, it also makes it possible to experiment with

the system in many different domains.

The second rule concerns the syntax of the inputs:

(2) The user must begin each sentence with an

imperative verb.

This rule is also easy to explain to the user and it also

greatly restricts the variety of sentences to be proc-

essed. If this rule is followed, the system can find out

much about each clause from its first word, including

what words or concepts may occur later in the clause.

In summary, the strategy for achieving person-to-

machine language compatibility taken here is (1) to

find a small number of simple rules which a person can

easily follow to restrict the set of inputs; and then (2)

to stretch the language processing technology to the

point where it can reasonably cover that set. When

this is done, the first criticism of natural language

programming stated earlier is overcome.

The other major objections to natural language

programming relate to its vagueness, ambiguity, and

alleged verbosity. Perspectives on these issues can be

achieved by examining some examples of natural lan-

guage and the corresponding programs in traditional

programming languages. Consider for example the

command

"Square the sixth positive entry in matrix M."

Vagueness does not appear to be a problem with the

English of this example. In fact, the sentence is prob-

ably shorter than most equivalent formulations written

in traditional programming languages. The corre-

sponding code in almost any programming language

will require some declarations and a nesting of looping

and branching constructs. As an additional example,

the reader should examine the English language pro-

gram and its corresponding PL/I counterpart which is

included in the Appendix. Our experience so far with

English language programming seems to indicate that

the language is as precise as its user wants it to be.

Concerning the length of English language programs,

they seem to be comparable to the length of ordinary

programs in the domains we have examined. Of

course, one could write down a complicated arithmetic

expression from some standard programming language

and note that its English equivalent is relatively long,

unreadable, and unwieldy. The solution to this prob-

lem is to include in the natural language processor the

ability to handle such arithmetic expressions. Consid-

ering the complexity of any reasonable natural lan-

guage processor, the cost of adding something like an

arithmetic expression handler is modest. Other con-

structs from programming languages which are shown

to be convenient could also be considered for inclu-

sion.

1.3 Background

The NLC system has grown out of an earlier series

of studies on the "autoprogrammer" (Biermann[6])

and bears much resemblance to it. Program synthesis

in both the current and the previous systems is based

upon example calculations done by the user on dis-

played data structures. In the current system, the

example is done in restricted English with all its pow-

er, which is a dramatic departure from the earlier ap-

proach, which simply involved pointing with a light

pen. However, it is expected that many of the fea-

tures from the autoprogrammer, such as "continue"

and "automatic indexing", will transfer quite naturally

into NLC. This paper emphasizes the natural lan-

guage aspects of the system, while other reports deal

with some of the additional automatic programming

features. The relationship of NLC to other research in

natural language processing is discussed in a later sec-

tion.

The next section presents an overview of NLC,

after which subsequent sections discuss scanning, syn-

tactic and semantic processing, and interpretation of

commands in the "matrix computer". The next two

sections discuss the processing of flow-of-control com-

mands and the level of behavior achieved by the sys-

tem. The final sections include a discussion of related

research and conclusions.

2. System Overview

The NLC system is organized as shown in Figure 2,

with the user input passing through the conventional

sequence of stages: lexical, syntactic, and semantic

processing. The scanner finds the tokens in the input

sentence and looks them up in the dictionary. It per-

forms some morphological processing and spelling

correction for items not appearing in the dictionary.

Additionally, abbreviations (such as "col" for

"column") and spelled-out numbers and ordinals

("twenty-two", "seventh", etc.) are recognized. The

identified words with their meanings are passed on to

the parser, which is programmed with nondeterministic

transition nets similar to the augmented transition

networks of Woods[40]. The parser has the ability to

screen out many syntactically correct but semantically

meaningless structures so that the first parse it finds is
usually correct. The parser output goes to the flow-

of-control semantics routines which make decisions
about the nature of the input command and then prop-

erly guide it through subsequent processing.

The input sentence may be a simple request for a

system defined computation or it may be a flow-of-
control command such as a user-defined subroutine

call. An example of the first case is "Add row 1 to

row 2." Here flow-of-control processing sends the

sentence directly to the sentence semantics routines

which resolve the noun groups and invoke the matrix

American Journal of Computational Linguistics, Volume 8, Number 2, April-June 1980 73

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

Dictionary

Grammar

Procedures

Input

SCANNER

PARSER

FLOW-OF-CONTROL

SEMANTICS

MATRIX

COMPUTER

User-Defined Names

Parse Trees

Context

<----> SENTENCE

SEMANTICS

Output to Display

Data World

Figure 2. The NLC system modules (upper case) and their associated data structures (lower case).

computer to perform the indicated operation. An

example of the second case is a command beginning

with a user-defined verb such as "sumcolrow". Here

flow-of-control processing brings in from a file the set

of commands for the subroutine which defines the

word "sumcolrow". Then those commands, with par-

ameters properly instantiated, are sequentially trans-

ferred to sentence semantics for execution.

The major task of the sentence semantics routines

is the processing of noun groups. They begin with the

head noun in any particular noun group and build a

representation for the meaning of the noun group by

sequentially processing whatever modifying words and

phrases there may be. These routines are concerned

with qualifying relative clauses, prepositional phrases,

adjectives, ordinals, pronouns, and numerous other

constructions appearing in noun groups. The result of

noun group processing is usually a designation of an

item or set of items in the displayed data structures to

be manipulated by the matrix computer.

Most imperative verbs such as "double" or "add"

pass through the system without change until they

reach the matrix computer. This routine then per-

forms the indicated operation on the data specified by
the processed noun groups. All changes in the data
structures are immediately updated on the display
screen, along with markers to show the user where the

changes have been made. A few imperative verbs are
not processed by the matrix computer. Some examples
are "find" or "choose", which are processed by the
sentence semantics module, and "repeat" or user-
defined imperatives, which are processed by flow-of-
control semantics.

Every effort has been made to modularize the sys-
tem for understandability and easy modification. In
addition, the design attempts to use limited computer
resources economically. It is written in the C language
and runs on a PDP-11/70 under the UNIX operating
system.

3. The Scanner

The scanner collects the string of tokens from the
input and identifies them as well as possible. These
tokens may be numbers or ordinals in various forms,
names known to the system, punctuation, or dictionary
words which may be abbreviated or misspelled in a
minor way. The scanner outputs a set of alternative
definitions for each incoming token, and the syntax
stage attempts to select the intended meaning for each
one.

Each dictionary entry consists of a set of pairs of
features. Two examples appear in Figure 3, the defi-
nitions of the word "zero" as an imperative verb and

as an adjective. "Zero" as a verb takes one argument

74 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

and no particle (type OPS1). The meaning of an im-

perative verb is built into the execution code of the

matrix computer as explained in Section 6. As an

adjective, the meaning of "zero" is embedded in the

semantics code described in Section 5. That code will

execute a routine associated with the name in the

AMEANS field, zero.

1. (QUOTE

(PART

(IMPERTYPE

2. (QUOTE

(PART

(AMEANS

zero)

IMPERATIVE)

OPS 1)

zero)

ADJ)

zero)

Figure 3. Two sample dictionary entries.

Figure 4 shows the output from the scanner for an

example input sentence. Associated with each token is

the set of alternate definitions proposed by the system

and the syntax stage will attempt to make appropriate

choices such that the sentence is meaningful. Most

tokens are found in the dictionary, but the string
"thee" is not. So dictionary entries are selected by

the spelling corrector which are similar to the un-
known. The token "y" is also not found in the dic-
tionary but is recognized as the name of an existing
matrix entity. The words "zero" and "to" appear in
the dictionary with multiple meanings.

WORD

Add

to

thee

zero

entries

INTERPRETATION (S)

add - verb

- propname

to - verbicle

to - prep

thee - propname

the - art

them - pron

then - etc

there - etc

these - pron

these - art

three - num

zero - verb

zero - adj

zero - num

entries - noun

- punctuation

"Add y to thee zero entries."

Figure 4. Scanner output for a sample sentence giving alternate
interpretations for each word.

4. Syntax

Most of the sentences processed by the system can

be thought of as imperative verbs with their associated

operands. For example, the sentence

"Add the first and last positive entries in
row 1 and the second to smallest entry in

the matrix to each entry in the last row."

exhibits the overall form

(add x to y)

where x is the noun group "the first and last ... in the
matrix" and y is "each entry in the last row". The
system separately processes constructions related to

the imperative verbs and those related to noun groups.

The following two sections discuss these types of con-

structions. Then, Section 4.3 describes a method for

rejecting certain kinds of syntactically correct but se-

mantically unacceptable parses, Section 4.4 describes

our approach to handling syntactic ambiguity, and

Section 4.5 gives the form of the output for the parser.

4.1 Imperatives And Their Operands

A transition net for processing the above impera-

tive form for "add" is shown in Figure 5. The word

PARSE means to call routines appropriate for parsing

the indicated construct. IMPERATIVE refers to the

imperative verb, and NG refers to the noun group.

VERBICLE refers to a particular type of preposition

which is often associated with an imperative verb to
distinguish its operands. Thus in the sentences

"Multiply x by y."
"Store x in y."

the words "by" and "in" are verbicles. Of course, any

given imperativs will have only a few acceptable verbi-

cies, so the parser checks that a suitable one is found.

START

PARSE IMPERATIVE

PARSE NG

PARSE VERB ICLE

PARSE NG

PARSE "."

SUCCEED

Figure 5. A top-level parser for sentences of the form
"add X to Y".

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 75

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

4.1.1 Conjunction Handling

Although the routine of Figure 5 might be adequate
for a large fraction of the sentences received by NLC,

we decided to formulate a facility for handling a wide
variety of conjunctions [33]. Toward this goal, a rou-
tine called MIX was designed as shown in Figure 6.

START

PARSE A > PARSE

A

PARSE A

--->PARSE "and" <--PARSE

---- PARSE A

 > SUCCEED

Figure 6. A simplified transition network for MIX A.

Suppose A is a given construct and suppose x 1, x2,
and x3 are instances of that construct. Then MIX A
will process forms such as

x 1
x 1 and x2
xl, x2, and x3
x 1 and x2 and x3

and others. If, for example, A represents the impera-
tive clause construct, then MIX A will process

"Add y 1 to y2, add y3 to y4, and add y5 to y6."

If A is the unconjoined noun group, then MIX A will
process

"row 1, row 2, and row 3."

Figure 7 shows how a series of calls of the MIX rou-

tine can be used to process reasonably complex nest-

ings of conjunctions. For example, these routines will

parse the sentence

"Add y 1 to y2, to y3, and to y4
and y5 to y6
and add y7 to y8."

4.1.2 Other Sentence Forms

Of course, not all verbs take two operands and a
verbicle as in the examples above. Indeed, verbs such
as "call" have two operands without a verbicle:

"Call the matrix x." (Call y 1 y2.)

There are also one-operand verbs which take a parti-
cle, such as "add up". Particles present a special
problem since they can appear in various positions in
the sentence; NLC handles most of the common
placements. Many one-operand verbs appear without
particles as in

"Double row 1." (Double y1.)

and there are verbs that take no operand: either with
a particle, as in

"Back up."

or without a particle, as in

"Quit."

Most of the imperatives handled by NLC fall into
one or more of the six categories listed above: zero,
one, or two operands, with or without a
verbicle/particle. The conjunction handling described
above extends to all of these types of imperatives in a
natural way. Although NLC has facilities for accept-
ing imperatives with more than two operands or with
formats other than those given here, a large proportion
of all imperatives in our domain do fit into the simple
scheme given here.

4.2 Noun Group Syntax

Four types of noun groups appear in the sentences
processed by NLC. The most common type refers to
the entities on the NLC display screen: numbers,
entries, rows, matrices and so forth. These are the
noun groups that appear as operands for the impera-
tive verbs. Many examples appear in previous sec-
tions. The second type of noun group is the noun

START

MIX Si

PARSE " . "

SUCCEED

START

PARSE IMPERATIVE

1

MIX NGVNG

SUCCEED

(a) Top level (b) Clause level

routine S routine Si.

START

PARSE NG

MIX VNG

SUCCEED

START

PARSE VERBICLE

PARSE NG

SUCCEED

(c) Noun-verbicle- (d) Verbicle-noun

noun level

routine NGVNG

level routine VNG

Figure 7. A sentence parser allowing nested conjunctions.

76 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

result group, which refers to the result of a computa-
tion. Some examples are "the sum of rows 1 and 2"

and "the absolute value of x" where in each case the

object being referred to appears not on the screen but

is found by manipulating displayed objects. The third
type of noun group is the noun place group, as illus-

trated by "bottom" in

"Add the second from bottom row to row 3."

"Bottom" in this example is the place from which the

ordinal processor begins counting. Some other words

that can fit into this slot are "right", "left'', ''top",

and "last". The fourth type of noun group is the noun

procedure group, which refers to a procedure, a com-

mand, or a set of commands in the NLC input. This

type is illustrated in

"Repeat the last three commands ten times."

"Double the entries the third command
incremented."

Only the operand noun groups will be discussed in

detail here.

Operand level noun groups follow a format similar
to the one given by Winograd[371. Let OPT be a

routine which optionally calls a set of routines. As an

illustration, OPT DETERMINER calls routines to

parse a determiner. If those routines fail, however,

OPT succeeds anyway, assuming that the noun group
exists without a determiner. The basic format for the
operand level noun group parser, given in Figure 8, is
completely exercised by the noun group

"the first three positive matrix 1 entries
which are odd"

DETERMINER:
ORDINAL:
NUMBER:
ADJECTIVE:
CLASSIFIER:
NOUN:
QUALIFIER:

the
first
three
positive
matrix 1
entries
which are odd

Since OPT is used to look for most of the constituents,

the parser analyzes noun groups with those elements
missing. (Examples: "the positive entries", "seven
numbers greater than 10", "the smallest entry", etc.)

Constructs of the form "row 1", "columns 2 and 3",

or "the constant 4.5" require separate recognition.

The DETERMINER routine parses not only the

simple determiners "the" and "a/an" but also a varie-

ty of quantifiers such as "all", "all of the", "both",

"no more than six of the", "exactly two of the", and

many others. The ORDINAL routine processes the

common ordinals "first", "second", "next", and

"last", which can also appear with superlatives

("second greatest") or with modifiers ("second from

right", "second from last").

START

OPT DETERMINER

V •

OPT ORDINAL

OPT NUMBER

OPT ADJECTIVE

OPT CLASSIFIER

PARSE NOUN

OPT QUALIFIER

SUCCEED

Figure 8. A Winograd-style noun phrase parser.

Six types of qualifiers are handled by NLC:

1. Preposition groups:

"the rows IN MATRIX 2"

2. Adjective groups:

"the numbers LARGER THAN 6"

3. Relative clauses:

"the rows WHICH CONTAIN
NEGATIVE NUMBERS"

4. ED groups:

"the entries ADDED"
"the entries ADDED TO"

"the entries ADDED TO ROW 4"

"the entries ADDED BY THE LAST
COMMAND"

5. ING groups:
"the columns CONTAINING 5.5"

6. Rank-shifted clauses:
"the entries COLUMN 2 CONTAINS"

Many types of conjoined phrases are processed
using the MIX routine as in "the first and last en-
tries", "the first two and last three entries", "the first
two and the last three entries", and others. Noun

groups may be nested within other noun groups as
illustrated in

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 77

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

"the largest entry
in the first row
of the matrix
containing the column
that was doubled by the second to last

command"

4.3 Semantic Checking During Syntactic Processing

If the parser is provided with some information
about the types of nouns and the relationships they
may have with each other, it can reject inappropriate
parses. As an illustration, in the following phrase a
possible parse of the qualifiers is as indicated by the
parentheses.

the entry (in row 2 (in column 3))

That is, row 2 is "in" column 3 and the entry being
referred to is in that row 2. However, in an ordinary
matrix it is not possible for a row to be contained in a
column and so it is desirable that this parse be reject-
ed. The correct parse will be found if it is known that
row-in-column is a disallowed pattern, forcing "row 2"
to stand alone as a noun group:

the entry (in row 2) (in column 3)

Thus both the qualifiers "in row 2" and "in column 3"
modify the noun "entry". Since entry-in-row and
entry-in-column are semantically acceptable patterns,
this parse can be passed to the semantics processor.

Observations of this type lead to the concept of
semantically acceptable patterns and a mechanism for
checking for them. A hash-coded table was added to
NLC which contains the set of all semantically accept-
able patterns for certain constructions. At various
times during the processing, checks are made to see
that a sensible parse is being assembled. Besides
checking for compatibility in prepositional modifiers as
indicated above, the system tests relationships given
by relative clauses and adjective groups. It also
checks that the operands of imperative verbs are legiti-
mate.

4.4 Syntactic Ambiguity

The strategy for dealing with syntactic ambiguity is
to attempt to anticipate the situations in which it is
most likely to arise and to decide, whenever possible,
which alternative is most reasonable. Having made
such decisions, it is usually possible to order the gram-
mar rules in such a way that the preferred parse is the
one arrived at first, thus combining the efficiency of a
blind search with the accuracy of a more extensive
one. Perhaps surprisingly, the method has proven
quite successful in meeting the stated objectives. (See
[5].) This is due in part to the formulation of several
general principles stemming from our observations of
how natural language is employed in the NLC domain.
The most important of these are:

1. Deep parses are generally preferred. Thus,

more often attaches the qualifier "in z" with y
than with x when both readings are meaningful.

2. When ambiguity arises because of a conjunction,
the intended conjuncts are likely to have similar
type. This contrasts sharply with conventional
programming languages, where operators rather
than operands determine the "binding" in arith-
metic expressions such as "a + b * c". The
preference for conjoining similar units is auto-
matically supplied by using the MIX routine
described earlier.

3. Compatibility checks based on semantic relation-
ships should be checked during the parse as de-
scribed in Section 4.3. This offers the benefit
of suspending parsing to obtain semantic infor-
mation without incurring the inefficiency of such
action.

4. Special cases exist and should be introduced as
such, rather than erroneously generalized to the
point of introducing the possibility for parses
which users would find ungrammatical.

4.5 Syntactic Processor Output

The output of the syntax processor is a template
for each clause giving the imperative verb and pointers
to structures which represent the operands. Figure 9
gives an example of such an output.

Imperative Verb Template

OPERATOR

OPERAND

add

1

ARTICLE

ARTSP

NOUN

NOUNSP

DETERMINED

SING—PLUR

entry

PLUR

Modifier 1

PREP

NOUN

NOUNSP

WHICH

Modifier 2

COMP

NOUN

WHICH

VEFtBICLE to

OPERAND 2

NOUN PROPNAME

QUOTE X

IN

row

SING

1

GREATER

CONSTANT

6 . 0

Figure 9. Output of the syntax processor for the sentence "add the
entries in row 1 greater than 6.0 to X.".

78 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

5. Sentence Semantics

The primary responsibility of the semantics module
of NLC is the processing of noun groups to determine
their referents. Input to semantics consists of the
parse trees constructed by the syntactic processor.
The imperative, along with its verbicle/particle, is
saved for later context references, but not operated
upon at this time. The principal role of semantics is to
produce a precise internal representation that can be
used by the matrix computer in carrying out the re-

quested command.

A secondary role of semantics is to update context
as a consequence of resolving noun phrases. In this
way, one may refer to previous actions of the system.
Thus:

"Clear the column that was added to column 2."
"Increment by 5 the row which the last

command squared."

Context is also utilized in the location of referents for

pronouns and other words requiring pronominal proc-

essing. Some examples are:

"Multiply the smallest entry by IT."
"Replace THAT ENTRY by ITS reciprocal."
"Subtract the NEXT 2 entries from each

member of row 2."

"Sum up the OTHER entries in those rows."

The following sections describe briefly the repre-
sentations used in the system, noun group resolution,
and the processing of pronominal structures.

5.1 Internal Data Structures

For the matrix computer to carry out users' com-
mands, physical addresses of the operands must be
available. The resolved nouns must also be stored at a
conceptual level so that later sentences may refer to
the objects operated upon. For these reasons, the
basic internal representation of the domain entities
consists of a collection of intermediate structures from
which hardware addresses are computed. Since the
syntax parse trees are available, this intermediate no-
tation does not refer to the natural language input.

Most of the internal structures, denoted
"datareps", refer to a singular domain entity and have

a fixed number of parameters. These "primitives" are:
entry, row, column, matrix, domain, float constant, int
constant, name, noun result, result, and command. As
an example, the datarep for the noun group "row 2" is

(ROW 1 2) which fills 5 bytes in memory and gives

the name of the entity, the matrix number, and the

item designation.

Plurals may arise in a variety of ways, some of

which are presented here. In the simplest case, a plu-

ral datarep is the direct result of the resolution of a

plural noun, as in

"rows 3, 4 and 5"
"the entries in rows 1 and 2"

Word-meaning routines such as adjective, ordinal, and
superlative may produce a plural output, as in

"the positive entries in row 2"
"the last 3 entries that were doubled"
"the smallest 3 numbers in the last column"

In addition, plurals may result from the conjoining of
singular datareps

"row 4 and column 5"
"row 2 and the last row"

or from conjunctions in which one or more of the
conjuncts is itself plural

"row 3 and the rows containing positive entries"
the first 3 and the last 2 rows in matrix 1"

An important feature common to all the types of con-
junctions mentioned above is that the members of the
"set" which represents the resulting plural datarep are
themselves singular. Thus, for the noun phrase

"row 6 and the first 2 rows"

the resolution will be

SET of size 3:
ROW 6
ROW 1
ROW 2

Because of the manner of manipulating the internal
structures and passing them between modules of the
NLC system, an array-like data structure was chosen
for sets instead of a LISP-like representation. A de-
tailed description of the precise mechanism for repre-
senting sets, beyond the scope of the present paper,
may be found in Ballard[1].

5.2 Noun Group Resolution

The discovery of the meaning of a particular noun
group begins with the head noun and any "in" qualifi-
er which may be found. Thus in the phrase

"the smallest entry in row 2 greater than 10,"

the meaning of the words "entry in row 2" is initially
represented as the set {(ENTRY 2 1), (ENTRY 2 2),
. . . , (ENTRY 2 N)). Then processing of other
qualifiers and lastly prenominal modifiers has the ef-
fect of removing entries from the initial set. In this
case, processing of "greater than 10" causes the sys-
tem to reference the values of the listed entries and
remove from the set those entries not meeting the
specified criterion, "greater than 10". Processing of
"smallest" results in all but the appropriate smallest
entry being removed, and processing of "the" involves
checking that the resulting set has only one member
since the head noun is singular. The final meaning of
the noun group is thus the set ((ENTRY 2 i)} for

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 79

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

some i and this representation is passed to the matrix
computer as an operand for some computation.

5.3 Pronominalization

The basic syntactic types of the pronouns within
the matrix domain are the following:

I. pure pronoun
it / "them"

"itself" / "themselves"

2. pronominal determiner
"THAT entry" / "THOSE columns"

3. possessive determiner
"ITS rows" / "THEIR columns"

4. pronominal ordinal
"NEXT row"
"OTHER entries"

The fourth category is included among the listing of
pronouns because the semantics involve most of the
same principles. For instance, "the other entries"
demands the semantics that would occur for "the en-
tries other than ?'', where "?" represents the most
general possible pronoun, having no type or number
constraints.

Pronoun reference is done by considering previous
datareps rather than by traversing trees as described
by Hobbs [221. Specific guidelines for posing the
eligible referents to pronouns in a reasonable order
include, in order of importance:

I. In all cases, require type, number, and semantic
constraints of the pronoun to agree with the
datarep being examined.

2. Prefer more recently created datareps.

3. For case-level (operand) pronouns, try to match
source with an old datarep source, destination
with an old destination.

4. "Fuse", or conjoin, singular datareps to produce

a plural referent if necessary. Thus

"Add row 1 to row 2."
"Double those rows."

entails creating the set consisting of rows 1 and

2 at the time pronoun referent location occurs.

5. Consult more distant sentences only after trying

all possibilities on an intervening sentence.

Thus,

"Clear rows 1 and 2."
"Triple column 4."
"Add row 3 to row 4."
"Double those rows."

will prefer the complicated but recent fusion in
the immediately preceding command over the
exact but less immediate plural three sentences
earlier.

6. The Matrix Computer

The "matrix computer" of NLC is assigned two
major tasks: (1) carrying out the computations which
the user has requested and (2) displaying on the termi-
nal the resulting data world. Since the latter function
is conceptually simple (although tedious to code effec-
tively) and since sample system outputs are provided
in Figure 1, this section will concentrate only upon the
techniques which the matrix computer uses to perform
the desired computations.

As discussed in the previous section, essentially all
processing of noun phrases is completed by the seman-
tics module. What is made available then to the ma-
trix computer is a collection of templates, similar to
the ones generated as the parser output, as shown
earlier in Figure 9, but with the noun arguments fully
"resolved" into datareps as already described. As an
example of the templates received by the matrix com-
puter, consider the English input

"Add up the first row, double row 2, and
subtract row 4 from row 5."

The semantics output for this input is

Template 1:

Template 2:

Template 3:

Verb:
Verbicle/Particle:
Operand:

Verb:
Verbicle/Particle:
Operand:

Verb:
Verbicle/Particle:
Operand 1:
Operand 2:

"add"

(ROW 1)

"double"

(ROW 2)

"subtract"
"from"
(ROW 4)
(ROW 5)

The task of the matrix computer is to decide upon the
appropriate operations and to apply them to the ope-
rands.

It was mentioned earlier that the imperatives, parti-
cles, and verbicles recognized at parse time pass
through semantics without alteration. When the out-
put from semantics becomes available to the matrix
computer, the imperative verb and the associated
verbicle/particle (if there is one) are looked up in a
table to determine the appropriate action. In most
cases, it has not been necessary to write a separate
procedure for each imperative. Specifically, "double"
is treated as a special case of "multiply". Thus the
user input

"Double the first 2 entries in column 1."

entails the matrix computer operations

Arith-op(*, 2.0, (ENTRY 1 1))
Arith-op(*, 2.0, (ENTRY 2 1))

80 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

where "Arith.-op" is the general coding capable of

performing the basic arithmetic operations. In this

way, the matrix computer has accommodated a large

number of arithmetic commands by the mere addition

of one table entry (8 bytes). Further instances of

arithmetic verbs which make use of the arithmetic-op

code are clear, copy, decrease, decrement, divide,

halve, and many others.

In general, operating with a scalar (element, varia-

ble, or constant) upon an aggregate (row, column or

matrix) means to operate independently on each mem-

ber. The knowledge of how to perform the intended

operations for all meaningful source-destination pairs

must be coded into the system. This means specifying

for each X-Y pair exactly what is required by

Arith-op(op, X, Y)
for datareps 'X' and 'Y'
and 'op' a member of { +, *,

The remaining type of matrix computer operation

deals with the noun result such as in

"Add the PRODUCT of the positive entries

to row 1."

"Add the SUM of rows 3, 4 and 5 to row 6."

Notice that a noun result may yield a scalar as in the

first example or a vector as in the second. The noun

result is evaluated similarly to imperative verb opera-

tions, and the result of the calculation is inserted into

the appropriate higher level structure for further proc-

essing.

7. Flow-of-Control Semantics

Thus far, this paper has discussed sentence by sen-

tence processing, where system actions occur one at a

time, determined directly from keyboard inputs. Most

means of enhancing the usefulness of the system fall

into one of two categories: (1) the introduction of

programming-language type control structures and (2)

the ability to define and execute self-contained por-

tions of natural language "coding". These topics are

addressed separately here.

7.1 Conditional Execution

To specify conditional execution of a command or

a group of commands in English, one uses such words

as "if", "when", "unless", "otherwise", etc. Follow-

ing are some sentences typical of inputs that NLC-like

systems will likely be called upon to process.

"IF row 3 contains a positive entry ..."

"IF the largest entry occurs in the last row ..."

Implementation of this facility is not complete on

the NLC system. When it becomes totally operative,

users will be told that they may begin sentences with

the word "if" as well as with imperative verbs. The

characteristic language feature appearing in each of
the above sentences is the independent clause: decla-
rative (rather than imperative) in nature, and requiring
the evaluation of a Boolean (i.e., a condition whose
truth or falsity is to be determined). Fortunately, the
conjugated verbs are typically either "be" or one of
the verbs which have already occurred in relative
clauses, and so an appreciable degree of different syn-
tactic processing is not required. Thus,

"if row 3 contains a positive entry ..."

relates directly to

"the rows which contain a positive entry"

The semantic routines originally written for qualifier
verbs can, therefore, with a slight modification be used
in handling these constructs.

7.2 Looping

NLC provides several ways of creating loops using

the verb "repeat." In the typical situation, the user

supplies and observes the execution of a sequence of
commands on particular members of the data world.

The system is then capable of abstracting, from the
specific instructions, general code to operate on other
entities. Frequently, an algorithm requires the applica-
tion of a sequence of commands to several members of
the domain. One way of accomplishing this is to make
use of the following pattern.

"Choose an entry which ... and call it x."
"... to x."

"Repeat for the other entries."

When such a sequence is recognized, the "repeat"
processor finds the set given to the most recent un-
matched "choose" (or "pick", etc.) and thereby knows
what "other" members are to have the intervening
commands applied to them. In instances where there
is no non-deterministic "choose"-type operation to
delineate the statements to be repeated or to make
explicit the set to which previous commands are to be
applied, alternate versions of "repeat" are provided.
Examples include

"Repeat the last 3 commands."
"Repeat the last command 5 times."
"Repeat the last 3 commands for all

other odd entries."
"Repeat those commands twice on row 3."

7.3 Procedures

Another way of extending sentence by sentence
processing is the facility for defining procedures, ena-
bling the user to describe operations in terms of exist-
ing commands. Subsequent inputs may access the
newly-created imperatives as though they had been
previously defined, including their use in further pro-

American Journal of Computational Linguistics, Volume 6, Number 2, April-Juno 1980 91

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

cedure definitions. Programmers will recognize the

following illustration as an instance of the "called-

procedure" type of subroutine. There is no reason,

however, for not providing the "function" procedure

as well. Interestingly, the "noun result" discussed

earlier corresponds to this value-returning subroutine.

In addition, the NLC design includes the creation of

new adjectives. The correspondences between natural

language words and conventional programming lan-

guage procedures are roughly as follows.

Natural Language Programming Language

imperative verb "called" subroutine

noun result * "function" subroutine

adjective "predicate"

(* - not yet operative on NLC)

Both the noun result and the adjective routines require

an explicit "return" command. Methods of incorpo-

rating them into the present system, as well as ways of

relaxing the restrictions for the imperative verb proce-

dures discussed below, are being developed.

In order to assure correct re-execution of the com-

mands within a procedure, it is necessary to detect

occurrences of the parameters among the nouns of the

procedure body. To accomplish this, the system re-

quires that the arguments at the time of procedure

definition be names. When a user input indicates that

a procedure is about to be defined, names are saved so

that their re-occurrence can be recognized as denoting

a parameter rather than simply the current argument.

While the procedure definition is in progress, appropri-

ate changes are made in the syntax trees, which are

then saved on disc. As an example, suppose the user

types

"Define a procedure to zap z into w."

"Double w."

"Add z to w."

"Negate z."
"End."

At this point, there will be four new files contain-

ing parse trees which can be informally represented as

follows.

filename contents

Zap.0001 double param-2

Zap.0002 add param-1 to param-2

Zap.0003 negate param-1

Zap.0004 end

This enables flow-of-control semantics processing,

when an invocation of the new "zap...into" imperative

is detected, to evaluate the arguments and substitute

them appropriately into the procedure's syntax trees

wherever param-i is present.

Syntax for user-created imperatives parallels that

for the system-provided routines of corresponding

type. For instance, the same type of verbicle/particle

compatibility checking (where applicable) takes place.

Thus some acceptable inputs are

"Zap row 3 into row 6."
"Zap into column 4 the second column."

and some intentionally rejected inputs are

"Zap row 5." [missing operand]

"Zap row 5 from row 6." [wrong verbicle]

8. System Behavior

The sentence processing capabilities of the system

will be indicated in this section by demonstrating its

ability to handle paraphrases and by describing an

experiment in which it was used by paid subjects to

solve problems.

8.1 Syntactic Breadth

To demonstrate the variety of the syntax handled

by the system, fifty-five paraphrases are given below

for the sentence

"Double the first row in matrix 1."

These paraphrases are not all exact in that some of

them omit reference to matrix 1, assuming context

makes it clear, others entail side effects, such as the

creation of a label, etc. This set gives only a small

fraction of all the possible paraphrases that can be

processed, but it is representative. The typical time

required for complete processing of each sentence is

two seconds on the PDP-11/70.

The first set of paraphrases demonstrates some

variations on the qualifier.

I. "Double the first row of matrix 1."

2. "Double the first row which is in matrix 1."

3. "Double the first row that appears in matrix 1."

4. "Double the first 1-ow that matrix 1 contains."

5. "Double the first row matrix 1 contains."

The matrix reference can also appear as a classifier

6. "Double the first matrix 1 row."

or if context indicates the matrix reference, it can be

omitted.

7. "Double the first row."

8. "Double row 1."

A row may be referred to by the values it contains.

9. "Double the first row that contains a positive or

a nonpositive number."
10. "Double the row that contains the first entry of

matrix 1."
11. "Double the row in which

the first entry of matrix 1 appears."

12. "Double the first row in which there is

a positive or a nonpositive number."

82 American Journal of Computational Linguistics. Volume 8. Number 2. April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

13. "Double the row containing the first entry

of column 1."
14. "Consider column 2.

Consider the first entry in it.

Double the row which contains that entry."

Rows may be thought of as sets of entries.

15. "Double the entries of row 1."

16. "Double the elements in row 1."

17. "Double the row 1 entries."

18. "Double the row 1 numbers."

The next several sentences illustrate some quantifiers.

19. "Double all the entries of row 1."

20. "Double each entry in row 1."

21. "Double every entry in row 1."

22. "Double each one of the entries in row 1."

Assume the row has 5 members.

23. "Double the first five entries of matrix 1."

Some rows may be located positionally.

24. "Double the top row."

Suppose there are four rows in the matrix. The first

row can be found by counting up from the bottom.

25. "Double the fourth row from the bottom."

26. "Double the fourth from the bottom row."

27. "Double the fourth from bottom row."

28. "Double the fourth from the last row."

Generality of ordinal processing allows for some rather

strange sentences.

29. "Double the first one row."

30. "Double the first row from the top."

Row 1 can be located with respect to other rows.

31. "Double the row in matrix 1 corresponding to

row 1 in matrix 2."

32. "Double the row in matrix 1 which corresponds

to row 1 of matrix 2."

One can use multiple clauses by labelling or focusing

attention in one clause and then using it in the second

clause.

33. "Consider row 1 and double it."

34. "Consider row 1. Double it."

35. "Consider row 1. Double that row."

36. "Consider and double row 1."

37. "Consider row 1.

Double the row considered by the

last command."

38. "Consider row 1.

Double the row the last command considered."

39. "Consider matrix 1 and double its first row."

40. "Consider rows 2, 3 and 4.

Double the other row."

41. "Consider row 1 of matrix 2.
Double the row in matrix 1 corresponding to it."

Users may access entities by naming them.

42. "Call row 1 x.
43. "Call row 1 x.

44. "Call row 1 x.

45. "Call row 1 x.
46. "Call the first

Double x."
Double row x."

Double it."
Double the x row."

entry x. Double the x row."

The "backup" command will undo the calculation of
previous commands.

47. "Double row 1. Clear it. Backup."

Other imperatives can be used to achieve the result of
"double".

48. "Add row 1 to itself."
49. "Add row 1 to row 1."
50. "Multiply row 1 by 2."
51. "Divide row 1 by 0.5."
52. "Divide 0.5 into the first row."

53. "Add the entries in row 1 to themselves."

Finally, noun result groups may be used.

54. "Put the product of 2 and row 1 into row 1."

55. "Subtract the negative of row 1 from

that row.

There are, of course, many paraphrases which are

not currently recognized by NLC. Some examples

include sentences with superfluous words or phrases:

1. "PLEASE double row 1."
2. "Double the VERY first row of matrix 1."

3. "Double the first BUT NOT THE
SECOND row."

certain unimplemented noun-result formats:

4. "Put twice row 1 into row 1."
5. "Put row 1 times 2 into row 1."

and verbs taking more than 2 operands:

6. "Add row 1 to itself, putting the result
into row 1."

8.2 Some Observations of Performance

In April of 1979, twenty-three students in a first
course in programming at Duke were paid to be sub-
jects in an experiment on the system. Each subject
was left alone in a room with the display terminal and
given a short tutorial to read, a few simple practice
exercises to do, and a problem to solve. No verbal
interactions were allowed between experimenter and
subject except those related to the administration of
the test. Typical times required to complete the tuto-
rial, the exercises, and the problem were 35, 15, and

50 minutes, respectively. In the problem solving ses-
sions, the subjects typed a total of 1581 sentences, 81

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 83

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

percent of which were processed immediately and

correctly. Approximately half of the remaining 19

percent were rejected because of system inadequacies,

and the other half were rejected because of errors in

user inputs. This experiment is described in [5] by
Biermann, Ballard, and Holler, with an analysis of the

types of errors that were made. Also included in the

experiment was a test of the subjects' ability to do the
same problems in the programming language from
their course, PL/C. These results are discussed in [5],
too.

Some specific observations that have come out of

the experiment and other usages of the system are as

follows:
1. The vocabulary of over 300 words is nearly ade-

quate for a reasonable class of problems. Only

eight words were typed during the experiment

which were not available in the system. Howev-
er, any casual user who attempts to push the
system capabilities significantly will quickly find
many unimplemented words.

2. Some of the implemented words have inade-
quate definitions. For example, NLC will proc-

ess "the entry corresponding to x" but not "the
corresponding entry". The latter form is more
difficult because the item to be corresponded to

is not explicit.
3. The variety of the syntactic structures which are

processed is approximately as good as indicated
by the experiment: About 70 to 90 percent of a
typical user's inputs will be handled by the par-
ser.

4. The error messages for the system are inade-
quate.

5. The processor for quantification needs to be
redesigned. We notice for example that NLC

processes "Double EACH entry in the first col-

umn" but not "Double the first entry in EACH

column." In the former case, the first column is

found and the matrix computer doubles its en-

tries in one operation. In the later case, the

definitions of "entry", "first", "the", and

"double" must be invoked in that order for ev-

ery column.

9. Comparison With Other Work

A number of projects in automatic programming

propose to have a user converse about a problem in a

completely natural manner, using problem dependent

vocabulary, and largely omitting discussion of data

structures and coding details. Examples of such work

have been described by Balzer[2,3], Biermann[4],

Green[13,14], Heidorn[16,17,18,19], and Martin et

al.[23]. Inputs to these systems typically include a

collection of fragments about the program to be gener-
ated, in which case the system must perform consider-
able induction and synthesis to produce an output.
While the long term goals of the NLC project are sim-
ilar to those of these other projects, the method of
research is somewhat different. Whereas many pro-
jects attempt to tackle problems associated with sever-
al levels of cognition at once, NLC attempts to begin
with a reliable sentence-by-sentence processor and to
add facilities slowly while reducing demands on the
user.

Many of the research efforts in natural language
processing have been associated with information re-
trieval from data base systems (Codd[91, Harris[15],
Hendrix et al.[20,21], Petrick[25], Plath[26], Sim-
mons[31], Thompson & Thompson[34], Waltz[35,36],
and Woods[39]). Most of the inputs for these systems
are questions or simple imperatives such as "list all of
the ..." Top level sentence syntax for these systems
may have more variety than NLC. At the noun group
level, however, NLC appears to have more extensive
capabilities. This is due to the need in the NLC envi-
ronment to conveniently refer to objects or sets of
objects on the basis of their properties, geometrical
location, operations performed upon them, etc.

Concerning world modelling, a system which bears
some resemblance to NLC is SOPHIE by Brown and
Burton[8]. Their system allows natural language inter-
action with a simulator for an electric circuit.

In the artificial intelligence literature, there is much
emphasis on (1) artificial cognitive abilities, (2) induc-
tion mechanisms, (3) problem solving facilities, and
(4) mechanisms for dealing with context and sequence.
Future work on NLC will move in the direction of
adding such facilities, but in its current state the sys-
tem works more •like an interpreter for English in the
style of programming language interpreters than like a
"thinking" machine. Thus the mechanisms described
in Bobrow & Collins[7], Cullingford[10], Minsky[24],

Schank[28,29,30], Winograd[37], and others for vari-
ous kinds of cognition and problem solving are, for the
time being, largely without counterpart in NLC. The
philosophy of this project has been to build from the
bottom, attempting to solve the least difficult, though
still challenging, problems first.

10. Conclusion

Natural language programming has seemed in re-
cent years to be a rather remote possibility because of
the slow progress in representation theory, inference
theory, and computational linguistics. The NLC sys-
tem is designed to compensate partially for the weak-
ness of current technology in these areas by presenting

84 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

• the user with.a good environment and with some well-

designed linguistic facilities. All of the quoted phrases

and sentences in this paper and the Appendix have

been run on the system except for the "if" construc-

tions in Section 7. Current efforts are aimed at the

development of a number of flow-of-control semantics

facilities for handling various types of control struc-

tures and definitions of new vocabulary items.

Appendix: A Natural Language Program and Its

PL/I Equivalent

The following "pivot" routine uses a computational

technique described in Gallie and Ramm[12] and gives

an example of a nontrivial usage of the system.

"Display a 4 by 5 matrix and call it testmat."

"Fill the matrix with random values."

"Choose an entry and call it p."

"Define a method to pivot testmat about p."

"Choose an entry not in the p row and not in

the p column and call it q."

"Compute the product of the entry which cor-

responds to q in the p row and the entry

which corresponds to q in the p column."

"Divide the result by p and subtract this result

from q."

"Repeat for all other entries not in the p row

and not in the p column."

"Divide each entry except p in the p row by p

and negate those entries."

"Divide each entry except p in the p column

by p."

"Put the reciprocal of p into p."

"End the definition."

The PL/1 equivalent program as given in [12] is as

follows:

EXCHANGE:

PROCEDURE (MATRIX, PIVROW PIVCOL) ;

DECLARE (MATRIX(*,*) , PIVOT) FLOAT,

(PIVROW , PIVCOL , ROWS , COLMNS , I J)

FIXED BINARY;

/* DETERMINE NUMBER OF ROWS

AND COLUMNS */

ROWS = HBOUND(MATRIX,1);

COLMNS = HBOUND(MATRIX,2);

/* NAME THE PIVOT ELEMENT */

PIVOT = MATRIX (PIVROW , PIVCOL) ;

/* APPLY THE "RECTANGLE RULE" */

DO I = 1 to PIVROW-1,

PIVROW+1 TO ROWS;

DO J = 1 TO PIVCOL-1,

PIVCOL+1 TO COLMNS;

MATRIX (I ,J) = MATRIX (I ,J)

— MATRIX (I , PIVCOL) *

MATRIX(PIVROW,J) / PIVOT;

END;

END;

/* CHANGE THE OLD PIVOT ROW */

DO J = 1 TO PIVCOL-1,

PIVCOL+1 TO COLMNS;

MATRIX(PIVROW,J) =

— MATRIX(PIVROW,J) / PIVOT;

END;

/* CHANGE THE OLD PIVOT COLUMN */

DO I = 1 TO PIVROW-1,

PIVROW+1 TO ROWS;

MATRIX(I,PIVCOL) =

MATRIX(I,PIVCOL) / PIVOT;

END;

/* CHANGE THE PIVOT */

MATRIX(PIVROW,PIVCOL) = 1 / PIVOT;

END EXCHANGE;

Acknowledgement

Miss Anne Holler has produced several sections of
code in the NLC system, including the spelling correc-
tor, the syntax networks for the "if" and "repeat"
clauses, semantics and matrix computer routines for
noun result groups, and all the terminal display rou-
tines. We are grateful to George Heidorn and the
referees for extensive help in improving and shortening
the original 87 page report.

References

1. Ballard, B.W. Semantic Processing For A Natural Language
Programming System (Ph.D. Dissertation), Report CS-1979-5,
Duke University, Durham, North Carolina, May, 1979.

2. Balzer, R.M. "A Global View Of Automatic Programming",
Proc. 3rd Joint Conference On Artificial Intelligence, August,
1973, pp. 494-499.

3. Balzer, R.M. "Imprecise Program Specification", Proc. Con-
siglio Nazi. Ric. 1st. Elaborazione Inf., 1975.

4. Biermann, A. "Approaches To Automatic Programming'', in
Advances in Computers, Volume 15, Academic Press, New
York, 1976, pp. 1-63.

5. Biermann A., Ballard, B., and Holler, A. "An Experimental
Study Of Natural Language Programming," Report CS-1979-
9, Duke University, Durham, North Carolina, July, 1979.

6. Biermann, A. and Krishnaswamy, R. "Constructing Programs
From Example Computations", IEEE Transactions on Software
Engineering, September, 1976, pp. 141-153.

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 85

Alan W. Biermann and Bruce W. Ballard Toward Natural Language Computation

7. Bobrow, D.G. and Collins, A. Ed., Representation and Under-

standing, Academic Press, New York, 1975.

8. Brown, J.S. and Burton, R.R. "Multiple Representations Of

Knowledge For Tutorial Reasoning", in Representation and

Understanding (Bobrow, D.G. and Collins, A., Eds.), Academic

Press, New York, 1975, pp. 311 - 349.

9. Codd, E.F. "Seven Steps to RENDEZVOUS With The Casual

User'', IBM Report J1333 (#20842), January 17, 1974. Pres-

ented at the IFIP-TC2 Conference on Data Base Management,

Cargese, Corsica, April 1-5, 1974.

10. Cullingford, R.E. Script Application: Computer Understanding

of Newspaper Stories (Ph.D. Dissertation). Research Report

#116, Yale University, 1978.

11. Dijkstra, E.W. "On The Foolishness Of 'Natural Language

Programming'. Unpublished report, 1978.

12. Gallie, T. and Ramm, D. Computer Science/I: An Introduction

To Structured Programming. Kendall/Hunt, Dubuque, Iowa,

1976.

13. Green, C. "A Summary Of The PSI Program Synthesis Sys-

tem", Proceedings Of 5th International Conference on Artifi-

cial Intelligence, Volume I, August 1977, pp. 380 - 381.

14. Green, C.C., Waldinger, R.J., Barstow, D.R., Elschlager, R.,

Lenat, D.B., McCune, B.P., Shaw, D.E., and Steinberg, L.I.

"Progress Report On Program-Understanding Systems", Memo

AIM-240, Stanford Artificial Intelligence Laboratory, Stan-

ford, California.

15. Harris, L.R. "Status Report On ROBOT NL Query Proc-

essor", SIGART Newsletter, August, 1978, pp. 3-4

16. Heidorn, George E. "Augmented Phrase Structure Gram-

mars", IBM Thomas J. Watson Research Center, Yorktown

Heights, New York, December, 1975.

17. Heidorn, George E. "Automatic Programming Through Natu-

ral Language Dialogue: A Survey", IBM J. Res. Develop.,

July, 1976, pp. 302-313.

18. Heidorn, George E. Natural Language Inputs To A Simulation

Programming System. Naval Postgraduate School, October,

1972.

19. Heidorn, George E. "Supporting A Computer-Directed Natural

Language Dialogue For Automatic Business Programming",

Research Report 26157, IBM Thomas J. Watson Research

Center, Yorktown Heights, New York, June, 1976.

20. Hendrix, Gary G., Sacerdoti, Earl D., Sagalowicz, Daniel, and

Slocum, Jonathan "Developing A Natural Language Interface

To Complex Data", ACM Trans. on Database Systems, June,

1978, pp. 105-147.

21. Hendrix, Gary G. "Human Engineering For Applied Natural

Language Processing", Proceedings Of 5th International Con-

ference on Artificial Intelligence, Volume I, August, 1977, pp.

183-191.

22. Hobbs, Jerry R. "Pronoun Resolution", Research Report

76-1, Department of Computer Sciences, City College of New

York, August, 1976.

23. Martin, W.A., Ginzberg, M.J., Krumland, R., Mark, B., Mor-

genstern, M., Niamir, B., and Sunguroff, A. Internal Memos,

Automatic Programming Group, MIT, Cambridge, Massachu-

setts, 1974.

24. Minsky, M. "A Framework For Representing Knowledge", in

The Psychology Of Computer Vision, Winston, P.H. ed.,

McGraw-Hill, New York, 1975.

25. Petrick, S.R. "On Natural Language Based Computer Sys-
tems", IBM J. Res. Develop., July, 1976, pp. 314-325. Also
appears in Linguistic Structures Processing, A. Zampolli, ed.,
North-Holland Publishing Company, Amsterdam, Holland,

1977.

26. Plath, W.J. "REQUEST: A Natural Language Question-
Answering System", IBM J. Res. Develop., July, 1976, pp.
326-335.

27. Sammet, J.E. "The Use of English As A Programming Lan-

guage", Comm. ACM, March, 1966, pp. 228-229.

28. Schank, R.C. "Identification of Conceptualizations Underly-

ing Natural Language", in Computer Models Of Thought And

Language, R.C. Schank, R.C. and K.M. Colby, Eds., W.H.
Freeman and Company, San Francisco, 1973, pp. 187-247.

29. Schank, R. and Abelson, R. Scripts, Plans, Goals, And Under-
standing. Lawrence Erlbaum Associates, Hillsdale, New Jer-
sey, 1977.

30. Schank, R.C. and Colby, K.M. Computer Models of Thought

And Language. W.H. Freeman and Company, San Francisco,
1973.

31. Simmons, R.F. "Natural Language Question Answering Sys-

tems: 1969", Comm. ACM, January, 1970, pp. 15-30.

32. Simmons, R.F. Personal Communication at TINLAP-2 Con-
ference, Univ. of Illinois, July, 1978.

33. Stockwell, R. Schachter, P., and Partee, B. The Major Syntac-

tic Structures Of English. Holt, Rinehart and Winston, Inc.,
New York, 1973, pp. 294-418.

34. Thompson, Frederick B. and Thompson, Bozena H. "Practical
Natural Language Processing: The REL System as Proto-
type", in Advances In Computers, Volume 13, M. Rubinoff and
M.C. Yovits, Eds., Academic Press, New York, 1975, pp.
109-168.

35. Waltz, D.L. "An English Language Question Answering

System For A Large Relational Database", Comm. ACM, July,
1978, pp. 526-539.

36. Waltz, D.L., ed. "Natural Language Interfaces", SIGART
Newsletter, February, 1977.

37. Winograd, T. Understanding Natural language, Academic

Press, New York, 1972.

38. Woods, W.A. "A Personal View Of Natural Language Under-
standing", in "Natural Language Interfaces", SIGART Newslet-
ter, February, 1977, pp. 17-20.

39. Woods, W.A., Kaplan, R.M., and Nash-Weber, B. The Lunar
Sciences Natural Language Information System: Final Report.
Report Number 2378, Bolt, Beranek and Newman, Inc., Cam-
bridge, Massachusetts, 1972.

40. Woods, W.A. "Transition Network Grammars For Natural
Language Analysis", Comm. ACM, October, 1970, pp. 591-
606.

Alan W. Biermann is an associate professor in the
Department of Computer Science at Duke University.
He received the Ph.D. degree in electrical engineering
and computer science from the University of California
at Berkeley in 1968.

Bruce W. Ballard is an assistant professor in the
Department of Computer and Information Science at
The Ohio State University. He received the Ph.D. degree
in computer science from Duke University in 1979.

•

86 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

