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1. INTRODUCTION

AL3 (Advice Language 3) is a problem-solving system whose structure facilitates
the implementation of knowledge for a chosen problem-domain in terms of plans
for solving problems, ̀pieces-of-advice', patterns, motifs, etc. AL3 is a successor
of ALI and AL 1.5 (Michie 1976, Bratko & Michie 1980a, I980b, Mozetic
1979). Experiments in which AU was applied to chess endgames established
that it is a powerful tool for representing search heuristics and problem-solving
strategies. The power of ALI lies mainly in the use of a fundamental concept of
AU: piece-of-advice. A piece-of-advice suggests what goal should be achieved
next while preserving some other condition. If this goal can be achieved in a
given problem-situation (e.g. a given chess position) then we say that the piece-of-
advice is 'satisfiable' in that position. In this way ALI makes it possible to break
the whole problem of achieving an ultimate goal into a sequence of subproblems,
each of them consisting of achievement of a subgoal prescribed by some piece-
of-advice. The control structure which chooses what piece-of-advice to apply
next consists of a set of 'advice-tables', each of them being specialized in a
certain problem-subdomain. Each advice-table is a set of rules of the form

if precondition then advice-list

If more than one rule-precondition is satisfied then simply the first rule is chosen.
Advice-list is an ordered list of pieces-of-advice. Advice-list is interpreted so that
the first satisfiable piece-of-advice in the list is executed. The satisfiability is
checked by simple depth-first search.

This comparatively simple control structure has several advantages: simplicity,
neatness of solutions, susceptibility to formal proofs of correctness of strategies.
However, its disadvantage is that it is difficult to implement problem-solving
strategies which make extensive use of higher-order concepts, such as plans, and
which also do 'meta-lever reasoning about plans and pieces-of-advice themselves.
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It is sometimes desirable that the system be able to create a new piece-of-advice,
or in a case of its failure, modify it according to the cause of the failure.

AL 1.5 removed some minor defects of ALL One improvement was to allow
recursive calls of pieces-of-advice within a piece-of-advice. But the basic control
structure of AL1 was preserved.

AU is an attempt at facilitating the use of higher-order concepts by providing
a more flexible control structure over the basic mechanisms of ALI. Experiments
with AL3, described in this paper, were implemented in PROLOG (Pereira, Pereira
& Warren 1978). The problem-domain used in these experiments is a chess
ending: king and pawn vs. king and pawn with passed pawns. Examples of using
AL3 in another chess ending are described in Bratko & Niblett (1979). Although
these experiments demonstrate how AL3 can be used for knowledge-based
problem-solving using higher-order concepts, at this stage they should not be
considered as completed. Many questions need further investigation, such as:
in what ways, in general, can different plans be merged for achieving a desired
combined effect? Examples of related research, also using plans for chess problem-
solving, are Tan (1977), Pitrat (1977), and Wilkins (1979).

2. EXAMPLE: SOLVING A CHESS STUDY

As an illustration of the way AL3 uses problem-solving knowledge, consider the
chess endgame study in Fig. 1. The Black pawn on h5 is threatening to run down
to hl and promote into a queen. White can try to stop this threat with his king,
but the king on h8 is too far to catch the Black pawn. Another idea for White

A 8 A 

A

Al A
Fig. 1 — A study by Reti. White to move: can White draw? The Black pawn is
threatening to run to square hl and promote into a queen as indicated by the arrow.
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is to queen his own pawn. But if the White pawn moves ahead, the Black king
can easily move closer to stop the pawn and capture it if necessary. The position
looks lost for White. However, there is a surprising plan for White which preserves
the draw.

The following is a simplified trace of AL3's behaviour when solving the
problem of Fig. 1. The problem is stated by an initial query 'Can White draw?'
and the following hypothesis, HO, is investigated:

HO: White can draw?

This causes another hypothesis to be generated

Hl: Black can win?

and a logical relation between both hypotheses is provided:

HO s> not(H1)

That is: HO is logically equivalent to no tHl. This logical relation is called a 'fact'
about our problem.

Now the system may consider the hypothesis H1, and one method for
solving problems in the system's knowledge-base suggests a plan for Black: push
Black pawn toward hl while preserving a holding-goal "Black pawn alive and not
White pawn successfully promoted" until a better-goal is achieved: "Black pawn
promoted". Call this plan BPQ (Black pawn queens). This and subsequent plans
are illustrated in Fig. 2. A hypothesis about plan BPQ is now generated

H2: Plan BPQ succeeds?

together with the fact

H2 =I. H1

WPQ = White pawn queens
BPQ = Black pawn queens
S'WP = stop White pawn
SBP = stop Black pawn
SBK = stop Black king

BPQ

Fig. 2 — Illustration of plans for White and Black in the position of Fig. 1.
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A method which 'knows' how to refute plans now proposes: try to refute plan
BPQ by either destroying its holding-goal or its better-goal. Thus two refutation
plans are proposed for White:

1. Plan SBP (Stop Black pawn): move White king toward the Black pawn
path.

2. Plan WPQ (White pawn queens): promote White pawn by pushing it
toward square c8.

Two corresponding hypotheses and a logical relation are:

H3: SBP refutes BPQ?
H4: WPQ refutes BPQ?
H3 V H4 not(H2)

There is a lemma in the knowledge-base which recognizes on the basis of distances
among pieces that H3 is false. But another lemma, about pawn races, establishes
that H4 is true. This gives, using logical relations among hypotheses: H2 is false.
Thus the simple plan for Black, BPQ, (push Black pawn and queen) does not
succeed.

One method in the knowledge-base, considering this failure and the cause
for the failure, proposes a refinement of plan BPQ, obtaining plan BPQ1. The
skeleton of BPQ1 is BPQ, but in the meantime Black king has, if necessary, to
stop the White pawn by moving toward the White pawn path. Now either of the
White's counter plans WPQ and SBP refutes the plan BPQ1.

The repertoire of simple ideas for White is now exhausted, but more compli-
cated ideas can still be tried. First, plan WPQ is refined, obtaining plan WPQ1.
The skeleton of WPQ1 .is WPQ refined by the idea of bringing the White king
toward the White pawn path in order to prevent Black's plan SWP (stop
White pawn). It turns out that WPQ1 also does not refute BPQ1. But there is one
more idea for White: a disjunctive combination of plans WPQ1 and SBP. The
plan, based on this idea, WPQ1 or SBP, does refute Black's plan BPQ1. The
solution that saves the White position is finally: White king moves diagonally
from h8 to f6 or e5, all the time pursuing the idea of the 'or' combination of
plans WPQ1 and SBP. The diagonal White king moves serve both plans. Then,
depending on Black's reactions, one of the component plans refutes Black's
BPQ1, ensuring the draw.

3. OVERVIEW OF AL3

The overall structure of the AL3 system is shown in Fig. 3. The main modules
of the system are:

(1) a knowledge-base which contains methods that 'know' how to solve
particular problems, and lemmas (or theorems) about the problem-
domain that, hopefully, can be applied during the problem-solving'
process;
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(2) a current-knowledge-pool (CKP) containing the already known facts
and hypotheses about the problem being solved, and other objects that
are relevant to the problem;

(3) the control module which decides what method, or lemma, to activate
next.

problem

Fig. 3 — The AL3 System.

Knowledge-base
(methods, lemmas)

Control module
(pattern-matching,
method selection,
method execution)

Current-knowledge-pool
(currently known facts
and hypotheses about
the problem)

solution

3.1 Knowledge-base

Methods in the knowledge-base are, in the terminology of Waterman & Hayes-
Roth (1978), pattern-directed executional modules. They can be thought of as
specialized subroutines for solving particular kinds of subproblems, or for
providing a suggestion about how to solve a (sub)problem. For example,
one method for the problem-domain of the king and pawn vs. king and pawn
chess ending says: If one side (say White) is planning to promote his pawn,
then a counter-plan for Black is: stop the advancing White pawn by bringing the
Black king in front of the pawn. Together with this, a hypothesis is generated
that this Black's plan refutes White's plan, and the following fact is provided:
If the hypothesis is true then White's plan fails. The necessary precondition for
this method to be executed is the existence of a hypothesis that White can
promote his pawn.

Each method is defined by (1) its precondition, (2) a procedure for its
execution, and (3) its characteristics. The characteristics include, for example,
an estimate of how difficult is the method to execute; that is: how much compu-
tational resource will be spent on the execution of the method.

Preconditions are predicates on the current-knowledge-pool (CKP). They
are implemented so that they do not only return the truth value. In the case
that the precondition is satisfied, the 'context' which satisfies the precondition
is also returned as a by-product of testing for the precondition. Context is simply
a part of CKP.
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When a method is executed, the context is used as input for the method's
procedure. The results of the execution can be: new hypotheses, new facts,
new plans for solving the problem, or other objects. These results are then used
to update the CKP.

A special class of methods is called lemmas to indicate that by them we
implement theorems about the problem-domain. Formally there is no distinction
between methods and lemmas. The only difference is that methods may generate
new hypotheses whereby lemmas generate only facts.

Facts are propositional calculus formulae made of hypothesis names. Thus
for example, the fact that a hypothesis H is true can be represented by a formula:.

The fact that if hypothesis HI is true then H2 is false can be represented by

Hi not(H2)

3.2 Current-knowledge-pool

CKP contains:

— hypotheses about the problem including the user's definition of the
problem which is to be solved,

— user's query, called a 'target', which is to be proved or disproved, together
with the currently known facts about the problem,

— plans, pieces-of-advice, and other objects that are in any respect relevant
to the problem-solving task and have thus been generated so far during
the problem-solving process.

3.3 Control module and executional cycle of AL3

The control module supervises the problem-solving process which consists of a
sequence of executional cycles. To carry out each executional cycle the control
module does the following: it analyses the current target and checks if enough
facts about the problem are already known to imply an answer. If not, then the
control module matches the preconditions of the methods and lemmas against
the CKP to find a set of methods and lemmas applicable to CKP. This set is
called the conflict set. A method or a lemma in the conflict set is then selected
on the basis of a cost-benefit criterion. The selected method will, hopefully,
produce new facts so as to most economically further the problem-solving
process.

A PROLOG code for the top level of operation of AL3, including the main
executional cycle, is given in Fig. 4. Notational conventions are those of the
Edinburgh implementation of PROLOG (Pereira, Pereira, & Warren 1978). For
solving a problem, the target is initialized by the user's query, and an upper limit
on computational resources that may be spent on solving this problem is specified.
The PROLOG procedure

solve (Target, Resources, Answer, Explanation)
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produces an answer: "yes", "no", or "unknown" if it was not found before the
Resources were exhausted. It also produces an Explanation of the Answer.
Explanation is a list of notes supplied by the methods when activated during
the problem-solving process. The main executional cycle is preformed by the
procedure

applyknbase (Target, Resources, Target 1, Resources 1, Note)

It updates the target with new facts (producing Target 1) and Resources, obtaining
Resourcesl, i.e. resources left for the rest of the task.

problem:-
initialize (Target, Resources),
solve (Target, Resources, Answer, Explanation),
display (Target,Answer, Explanation).

solve (Target,_yes,nil ) :-
proved (Target).

solve (Target_ ,no,nil) :-
disproved (Target).

solve (Target, Resources, un known,nil ) :-
exceeded (Resources,Target).

solve (Target, Resources, Answer, [Note I Expl] ) :-
apply knbase (Target, Resources,Targetl,Resourcesl, Note),
solve (Targetl, Resou rcesl, Answer, Expl).

apply knbase (T,Res,T1,Resl,Note) :-
selectmethod (T,Mname,Context),
execute (Mname,Context,Facts,Note,Spent),
update IT, Facts,T11,
subtract (Res,Spent,Res1).

Fig. 4 — PROLOG code for the top level operation of AL3.

4. REPRESENTATION OF TARGET AND FACTS

Target and facts are propositional calculus formulas. A target, T, can be thought
of as a formula that the system is trying to prove or disprove. If Tis a theorem
then T has been proved; if not(T) is a theorem then T has been disproved; if T
is neither of these then new facts, F, when found, are used as new axioms. The
target Tis updated by F giving a new target, Ti:

T1 (F .

Now the goal becomes to prove or disprove Ti.
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In the system, target, and facts are, to enable efficient manipulation, repre-
sented as sets of clauses (also called 'lines') of the form

meaning

al A a2 A A am bi V b2 V ...V b„ .

All ai and b1 are hypothesis names. The logical connective between clauses is
conjunction. Any propositional formula can be converted into this form by
Wang's algorithm (e.g. Raphael 1976). This form will be referred to as the
`c-form'.

Sometimes we will use the set notation in the following way. Capital letters
A, B, ... will denote sets of hypothesis names. If A = , and and B =

then

AB

represents the line

,a bi,...,b, .

In this notation, a target in the c-form will be written as

A1 B

A2 B2

If Ai = 0 then it represents the truth value "true". If B1 = 0 then it represents
the truth value "false".

A line B is a tautology if

(1) A is false, or
(2) B is true, or
(3) A n B* 0.

A target is proved if all its lines are tautologies (i.e. the target is a theorem).

A target can be decomposed into a product of its ̀ subtargets', where the
subtargets themselves have the form of a target, e.g.:

T = T1 X T2

The multiplication rule is:

Ti =
A1

Am Bm

80



T2 =

T= Ti X T2 =

A1UC1 B1 UD1
U C2 /31 UD2

UC, B1 UDn

A2 U C1 B2 UD1

Am UC,Bm UC„

BRATKO

A target

T=TIX72X...XTN

is a theorem if at least one of its subtargets Ti is a theorem. The multiplication

operation is associative and commutative. These properties provide a basis for

different strategies of problem decomposition.

An easy way of updating the target by new facts is through the use of

multiplication. The principle is: to update a target T with facts F, we have T and

F represented in the c-form by

[true T]

[F false] .

The updated target is then

[F false] X [true T] = [F T] .

It may be advantageous to keep the target in the product form delaying the
multiplication, or to carry out the multiplication only on part of the target. For
example, complete multiplication on a target

and

Fl X F2 X T

may result in a bulky and difficult to manipulate new target with many lines.
Instead, a partial multiplication of Fl X F2 = F may reduce the number of lines,
giving a handy new target represented by the product F X T.

Another reason for keeping the target in the product form is that if the
subtargets consist of basically disjoint sets of hypotheses then the product of
the subtargets corresponds to a natural decomposition of the problem. Each
subtarget then corresponds to a comparatively independent subproblem. This
enables the system to focus its attention on subproblems themselves.

Facts of the form "Hypothesis a is true" or "a is false" can be added by
simply substituting the value of a into the lines of the target and applying
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simplification rules for logical expressions. Facts of more complex forms are
transformed into the c-form and then added as a new multiplication factor. Thus
for example a fact

a b

is properly transformed into the c-form by the following operations. Factor to
be added is

(a b) false .

Its c-form is obtained by the following transformations (using Wang's algorithm):

(not(a) V b) false .

This is equivalent to

not(a) false and
b false

giving finally

rrue a
b false]

Table 1 presents some useful transformations of typical forms of facts into a
corresponding c-form representation.

The goal of the problem-solving process is to either prove the target or
disprove it, that is, to demonstrate that the target is a theorem or that its negation
is a theorem. Both alterations can be dealt with by keeping, during the problem-
solving process, two targets: positive and negative target. If the positive target
becomes a theorem then the initial target has been proved; if the negative target
becomes a theorem then the initial target has been disproved. For example,
assume that the initial goal was to answer the question: Is hypothesis h true or
false? Then the corresponding positive and negative targets in the c-form are
[true h] and [h false] respectively. New facts are, when generated, added
multiplicatively to both positive and negative targets.

After inserting a truth value for a hypothesis name or after carrying out a
multiplication operation, targets may become messy and redundant. They can
be tidied up by applying the following simplification rules:

(1) Delete tautological lines.
A line A BisatautologyifAflBØ.
A line false B is a tautology.
A line A true is a tautology.

(2) Delete lines that are implied by other lines.
A line A B implies another line Al Bl within the same subtarget
ifA cAl and B
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Table 1 — Some useful transformations of facts into the c-form.
For a given fact F, the right-hand side constructs in the table
are logically equivalent to F false.

Fact Fact in the c-form

aVbVcV ... a false
b false
c false

aAbAcA... [a,b,c,... false]

aV b V c V ...h [h false
true a, b, c,

a Ab Ac A ...h h false
true a
true b
true c

aVbVcV....#.12 true h,a,b,c,...
a,h false
b,h false
c,h false

a Ab Ac A ...s>h h,a,b,c,... false
true a, h
true b,h
true c, Ii

— —

(3) Insert truth values for hypothesis names whose truth value is implied by
the targets.
The truth value of a hypothesis h is implied if h appears in the same side
of all the lines of a positive (sub)target and in this same side of all the
lines of a negative (sub) target. The value is:

(a) if h appears on the left then h is true;
(b) if h appears on the right then h is false.

This decision is based on the fact that positive and negative targets cannot
both be theorems.
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5. EXAMPLE: SEARCHING AND/OR GRAPHS IN AL3

This section presents a detailed example to illustrate the whole basic AL3
machinery at work. In the example we use a miniature knowledge-base for
searching AND/OR graphs. The knowledge-base does not contain any heuristics
to guide the search. It consists of one lemma, GOALTEST, and one method,
EXPAND, whose detailed PROLOG definition is in Fig. 5. The preconditions for
both is the existence of a hypothesis H:

goal(X) ?

where X is a node in the AND/OR graph being searched, and goal(X) means that
there exists a solution subgraph for X. If X is a terminal node which 'trivially'
satisfies the goal-condition then the lemma returns the fact H is true.

PH** Lemma GOA LTEST

precond (goaltest, [H,X]):-
hyp (H,goal (X)).

exec (goaltest,[H,X),[ [H] => false]) goalnode (X), I.

exec (goaltest,_, [true => false] ).

/*** Method EXPAND ***/

precond (expand, [1-1,X1) :-
hyp (H, goal (X)).

exec (expand, [H,X],Fact) :-
findall (Y,succ (X,Y),Ylist),
(Ylist=[],1,Fact = [true => [1-11];
findall (I-Iname,newhyp (Hname,Ylist),Hlist).
getfact (H,Hlist,X, Fact)).

newhyp (Hname,Ylist) :-
member (Y,Ylist),
genhyp(Hname,goal (Y)).

getfactH,Hlist,X, (([H) Hlist] => false) I Lines]) :-
andnode
findall (true => [H, H1] , member (H1, Hlist), Lines).

getfact (H,Hlist,X, [(true => [HI Hlist]) I Lines]) :-
ornode (X),1,
findall ( [H, H1] => false, member (H1,Hlist), Lines).

Fig. 5 — PROLOG code of a knowledge-base for searching AND/OR graphs. The base
assumes that the control module prefers lemmas to methods.

Let 11, , Y be the successor nodes of a node X. The method EXPAND,
when executed on the context [H,X], generates hypotheses HI, H2, , fin of
the form

goal( Y1)?
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Current Knowledge Pool Next execution cycle

Positive Target Conflict set (method names : contexts)

true => :01 1 expand: [h:0, al

Negative Target Which? 1.

[h:0]=>false Executed expand on context [h:0,a]

Hypotheses New facts

1 hyp (h:0,goal (a)) (h:Ooh :1,h:21 =>false
true=> (h:0,h:11
true=> fh:0,h:21

Current Knowledge Pool Next execution cycle

Positive Target Conflict set (method names : contexts)

true=> (h:0,h:1) 1 goaltest: [h:1,13]
true=> [h:0,h:2) 2 goaltest:[h:2,d1

3 expand :[h:1,13]
Negative Target 4 expand : [h:2,d]

[11:0,h:1,h:2] =>false Which? 1.

Hypotheses Executed goaltest on context (11:1,b)

1 hyp (h:0,goal (a)) New facts
2 hyp (h:1,goal (b))
3 hyp (h:2,goal (d)) true => false

Fig. 6 — Part of trace, produced by AL3, when searching the AND/OR graph in top of
the figure.
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In addition, new facts are generated, namely: If X has AND successors then the
facts are:

1-1.*H1 A ... AH„

If X has OR successors then the facts are

H <4. Hi V ...V H„

The PROLOG code in Fig. 5 generates these facts already transformed into a

proper form according to the transformation rules in Table 1. Fig. 6 is part of
the trace, produced by AU, when solving the problem

goal(a) ?

for the AND/OR graph in top part of Fig. 6.

6. CONCEPTS MANIPULATED BY AL3

In principle, the AL3 system as described in the previous sections is not limited
to any special formalism for representing methods for problem-solving, or to
any special class of concepts to be used for solving problems. In this section we
present a formalism and a number of concepts that are useful for solving com-
binatorial problems in general and chess problems in particular. These concepts
were used in the experiments with AU on chess endgames.

6.1 Piece-of-advice

A fundamental concept of AL1, piece-of-advice, proved to be extremely valuable,
not only for representing knowledge, but also because it provides a good formal
basis for precise definition of other concepts. A piece-of-advice, A, is a five-tuple

(X, BG, HG, MCX,MCY)

where Xis the side (White or Black) to which A belongs,BG and HG are predicates
on positions called better-goal and holding-goal respectively, MCX and MCY are
predicates on moves, called move-constraints for side X and side Y respectively.
Throughout the paper we use X and Y to represent both sides. Thus X can be
either White or Black, and Y is always the opponent of X. Besides a mere
selection of a subset of legal moves, move-constraints can impose an ordering on
the moves that are selected. This becomes important for practical reasons when
searching a game-tree.

A tree T is called a forcing-tree for a piece-of-advice

A = (X, BG, HG, MCX, MCY)

in a position Pos, iff T is a subtree of the game-tree rooted in Pos, such that:

(1) for every node p in T: HG(p);
(2) for every nonterminal node p in T: not BG(p);
(3) for every terminal node p in T: BG(p) or p is a Y-to-move position from

which there is no legal move that satisfies MCY;
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(4) there is exactly one move in T from every X-to-move nonterminal node
in T; that move must satisfy MCX;

(5) all legal moves from any nonterminal Y-to-move position in T that
satisfy MCY are in T.

A piece-of-advice A is satisfiable in a position Pos iff there exists a forcing-
tree for A in Pos. We write:

sat (A , Pos)

In fact, a piece-of-advice defines a subgame with two possible outcomes:
win or loss. Legal moves of this subgame are defined by the move-constraints,
and terminal positions of the subgame are defined by predicates better-goal
and holding-goal. A position Pos is won for side X with respect to the subgame
corresponding to a piece-of-advice A if sat(A,Pos); otherwise it is lost for X with
respect to A.

Note an important detail in the above definition of forcing-tree: if (1)
HG(Pos) and not(BG(Pos)), and (2) Y-to-move in Pos, and (3) no Y-move in Pos
satisfies MCY then Pos is terminal node of a forcing tree. This interpretation of
the ̀ no-move' condition ensures the following relation for any piece-of-advice
and any position:

sat((X,BGX,HGX,MCX,MCY), Pos)
not sat ((Y, not (HGX), not (BG X and HGX),MCY,MCX), Pos)

This relationship will be referred to as 'inverse-advice relationship'. However, this
definition sometimes necessitates that the test for stalemate in chess is explicitly
stated in the goals of a piece-of-advice to avoid anomalous behaviour.

Some other useful relations concering the satisfiability of related pieces-of-
advice are given in Bratko & Niblett (1979).

6.2 Plans

A plan, P, is a quadruple

(X, BG, HG, MCX)

where X is the side to which P belongs, BG and HG are predicates on positions
called better-goal and holding-goal, and MCX (move-constraints for side X) is
any schema for selecting and/or ordering X moves. An example of such move-
constraints is a White king `macromove' between two specified squares not
exceeding a specified length, e.g.:

macromove(white-king, c2, el, length < 3) .

This macromove denotes the set of all possible king-paths between squares c2
and el of the length of at most 3 moves (see Fig. 7). A plan with such move-
constraints allows any legal White king move along this macromove.
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Pr
7

A

A,

A 
44

473
* • '"•

Fig. 7 — White king macromove from c2 to el in at most 3 moves.

Move-constraints can also prescribe an ordering of moves. For example the
above king macromove can be ordered with respect to increasing length of the
king-paths.

We say that a plan P = (X, BG, HG,MCX) succeeds in a position Pos iff

sat (A, Pos)

where A is a piece-of-advice

A = (A ,BG,HG,MCX , anymove)

We write

suc(P, Po s) 41. sat (A , Po s) .

Let Px and Py be two plans

Px = (X, BGX, HGX, MCX)
Py = (Y, BGY, HGY, MCY) .

Then plan Py refutes plan PX in a position Pos iff

not sat(A,Pos)

Where A is a piece-of-advice

A = (X, BGX or not (HGY), HGX,MCX,MCY)

We write

ref (Py , Px , Pos) 44. not sat(A,Pos) .
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An equivalent definition is

ref (Py ,Px,Pos) sat(Al , Pos)

where Al = (Y, not(HGX), not(HGX) or not(BGX) and HGY, MCY, MCX).
The equivalence of these two definitions can be proved by using the inverse-
advice relationship.

Note that it is possible that a plan Py does not succeed (i.e. its better-goal
is not attainable), but Py may still refute a plan Pr.

6.3 "Or" combination of plans

Let P1 and P2 be plans

P1 = (X, BG1, HG1,MCX1)
P2 = (X, BG2, HG2, MCX2) .

A plan
P = P1 orP2

is called an 'or-combination' of P1 and P2. The better-goal of P is BGI or BG2.
Precise combinations of the goals and move-constraints of Fl and P2 can be
defined by the following AL3 method for investigating the success of or-plans.

Method 0 REXPAND

Precondition

hypothesis(H, suc(P1 or P2, Pos)),
P1 = (X, BG1, HG1,MCX1)
P2 = (X, BG 2, HG 2, MCX2)

Action

1. Generate hypotheses: hypothesis (Ha, suc(P1, Fos)),
hypothesis (Hb, suc(P2 ,Pos))

2. If Y-to-move in Pos then generate all legal successor positions Posh ,
Posh of Pos, else generate legal successor positions Posi, , Posh such
that the moves For -+ Posi satisfy either MCX1 or MCX2 or both. The
ordering of Pori, , Posh is: rough ordering by the criterion "first
satisfy both move-contraints", and fine ordering as prescribed by MCX1
and MCX2.

3. Generate:
hypothesis(H1, suc(P1 or P2, Posi))

hypothesis(Hn, suc(P1 or P2, Posn))
4. Return facts

(a) if X-to-move in Pos then
Ha V Hb H1 V H2 V ... V Hn
Ha V Hb V H1 V ... V Hn H

(b) if Y-to-move in Pos then
Ha VHb HlAH2A...AHn
Ha V Hb V (H1 A A Hn) H .

89



MECHANISED REASONING

6.4 Modification of plan by plan

Let PI and P2 be two plans for side X. The modification of P1 by P2 is a plan

P = PI mod P2, such that the goal of P is the same as the goal of Fl, but the

sequence of steps of PI may be interrupted by inserting steps of P2. An AL3

method for investigating the success of a modified plan is:

Method MODEXPAND
Precondition

hypothesis (H, suc(P1 mod P2, Pos)),
P1= (X, BG1, HG1,MCX1),
P2 = (X, BG2, HG2, MCX2)

Action

1. Generate: Hypothesis (Ha, suc(P1,Pos)).
2. If Y-to-move in Pos then generate all legal successors Posi, , Pos,

of Pos else generate legal successors Posh , Pos, satisfying MCX1 or

MCX2 or both. The ordering of Posh , Pos n is: rough ordering by
"first satisfy both move-constraints", then "satisfy MCX1" then "satisfy

MCX2"; fine ordering as prescribed by MCX1 and MCX2.

3. Generate:
hypothesis (H1, suc(P1 mod P2, Posi))

hypothesis (Hn, suc (P1 mod P2, Posh))
4. Return facts:

(a) if X-to-move in Pos then
Ha H1 V ...V Hn
Ha V H1 V ... V lin H

(b) if Y-to-move in Pos then

Ha V (H1A

7. A KPKP KNOWLEDGE-BASE

Here we outline a small AL3 knowledge-base for the king and pawn vs. king and
pawn chess ending with both pawns passed (pawns not on the same file or on
adjacent files). Correct play in this ending can be very difficult, as indicated by
many chess studies from this domain (e.g. Averbach & Maizelis 1974). An example
is in Fig. 1.

The KPKP knowledge-base contains two lemmas. One, CATCHPAWN, decides
whether a king can stop a running opponent's pawn. The other, PAWNRACE,
decides which pawn wins a pawn-race.

The methods in the base implement basic motifs of the KPKP ending with
passed pawns, and some more general, "meta-level" ideas about plans. The
following is an informal description of the most important methods. Appropriate
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facts generated by the methods are obvious. At present the KPKP knowledge-base
is not complete in the sense of producing correct play in all positions from this

domain.

Method WIN

To win it is necessary to queen the pawn and not allow the opponent's pawn to

queen successfully.

Method DRAW

To investigate the question "Can one side draw?", consider the question" Can

the other side win?".

Method PUSH

One plan for queening is to push the pawn.

Method STOPPAVVN

One way of preventing an opponent's plan to queen the pawn is to stop it by the

king. It is assumed that the capture of that pawn implies that the pawn has been

stopped.

Method RACE

One counter-plan against a queening plan is to queen own pawn.

Method STOPKING

If an opponent's plan consists of a king-macromove, then it may be refuted by
a king's intervention: own king-macromove intersecting the opponent's king-

macromove.

Method MODIFYPLAN

If a plan P1 fails against an opponent's plan R thenP1 may be successfully improved

in the following way: find a plan, P2, which, hopefully, refutes the plan R, and

propose a new plan: P1 modified by P2, i.e. P = P1 mod P2. To find P2, AL3

solves a local subproblem with its own local target of refuting R. To solve the

local subproblem AL3 may use all the knowledge in the knowledge-base.

Method ORPLAN

If two plans, R1 and R 2, are known not to refute an opponent's plan P, then the

or-combination of R 1 and R 2, i.e. R = R1 or R 2, may refute P.

Method SEARCH

This method converts a hypothesis of the form suc (Plan, Pos) or ref(Planl,Plan2,
Pos) into sat(A,Pos) where A is a corresponding piece-of-advice, and checks the

satisfiability of A by searching the game-tree. This method can be very expensive
and is therefore used only occasionally.

Method EXPAND

Expands a hypothesis of the form suc(Plan,Pos) by generating successor positions
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of Pos, subject to move-contraints in Plan, and hypotheses that Plan succeeds in
the successor positions. New facts are generated according to who is to move

in Pos and according to the form of Plan (see expansion rules for P1 mod P2 and

P1 or P2 in the previous section).
To illustrate how this knowledge-base works, consider the position in

Fig. 8. AL3 is asked the question "Can White win in this position?". Fig. 9 shows

the current-knowledge-pool at the moment when AL3 has found a correct plan
for White to win. This is: queen the White pawn by pushing it and in the mean-

time stop the Black pawn with the White king if necessary.

A

FA,

A

41Va.A Al

Fig. 8 — White to move, can White win? Correct is Ke4-f3 stopping the Black pawn.
After that, the White pawn cannot be stopped.

8. DISCUSSION

There are several ways of looking at the AL3 system. One possible view is that
AL3 is a theorem-prover which accepts a problem in the form of a formula to
be proved or disproved. If the formula is neither a theorem nor a contradiction
then AL3 tries to find new facts about the problem. The new facts are then used
as additional axioms for proving or disproving the initial formula. In this sense
each executional cycle aims at producing the most useful new axioms, such that
they bring the formula as close as possible towards a theorem or a contradiction.

Another view of AL3 is that AL3 is a problem-solver which uses a special
formalism for problem representation. This formalism can be thought of as a
generalization of two known schemas for problem-representation: the state-space
representation and the AND/OR graph representation (e.g. Nilsson 1971). With
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Current Knowledge Pool

Postive Target

th :4,h:5] => [h :0,h :1,h :2,h :3,h:8]

Negative Target

[h :0,h :1,h :4,h:5] => [h:2,h :31

Facts

1 h :3 is false
2 h:5 is true
3 h:7 is true

Hypotheses

1 hyp (h:0,canwin (w,pos))
2 hyp (11:1,suc (p:1,pos))
3 hyp (h:2,suc (p:2,pos))
4 hyp (h:3,ref (p:3,p:2,pos))
5 hyp (h:4,ref (p:4,p:2,pos))
6 hyp (h :5,ref (p:5,p:2,pos))
7 hyp (h :6,suc (p:5,pos))
8 hyp (h:7,ref (p:6,p:5,pos))
9 hyp (h:8,suc (p:2 mod p:6,pos))

Plans

1 plan (p:1,w,queenwin (w),alive (w) & (not queendraw (13)),any)
2 plan (p:20N,queenwin (w),alive (w) & (not queendraw (b)),push (w))
3 plan (p:3,b,stopped (w),nil,macro (b, k,path (w,p)))
4 plan (p:4,b,queendraw (b),alive (b),any)
5 plan (p:5,b,queendraw (b),alive (b),push (b))
6 plan (p:6,w,stopped (b),nil,macro (w,k,path (b,P)))

Fig. 9 — AL3's current-knowledge-pool at the moment when a correct plan has been
found for the position in Fig. 8. The symbol "pos" denotes that position. Goals in the
plans mean: queenwin(w): White pawn has queened and position is won for White;
queendraw(b): Black pawn queened and position not lost for Black; alive(w): White
pawn not captured; etc.

respect to the logical relationships among the nodes in the problem space, the
state-space representation could be called an 'OR-graph' representation, because
all the sibling nodes in the state-space are disjunctively related. In this sense, the
AND/OR-graph representation is a generalization of the state-space represen-
tation. Further, AL3's representation is a generalization of AND/OR-graph
representation, and could be therefore called a 'general graph' representation,
'general' because it allows any logical relationship between the neighbouring
nodes in the problem-space. This logical relationship is defined by new facts that
can be any propositional calculus formula.
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AL3, viewed as above, solves problems by searching a problem-space that
does not consist of objects, defined by the problem-domain itself (e.g. rules of

the game), but also of higher-order concepts like plans, macromoves, and pieces-
of-advice. There is no formal distinction in the knowledge-base of AL3 between

rules of the game and knowledge about how to solve problems.
Very little has been said about the control module of AL3 which imple-

ments the overall problem-solving strategy. One such strategic decision is whether
to keep the current target in the form of a product or to carry out the multipli-

cation, or to do the multiplication only partially, on some of the subtargets.
In the experiments with AD, described in this paper, the control module used
the following simple strategy:

1. Carry out every multiplication in the target immediately.
2. Find 'interesting' hypotheses by simply counting the number of hypo-

thesis occurrences in the left- and right-hand sides of the lines in the
target. Hypotheses with high frequencies are interesting. Include in the
conflict set only lemmas and methods that are applicable to interesting
hypotheses, and that produce 'complementary' facts (that is: if an
interesting hypothesis tends to occur on the left-hand side in the target
then a complementary fact contains this hypothesis on the right-hand
side).

3. Choose a lemma or a method from the conflict set in the following
order of preference: first lemmas, then easy methods, then difficult
methods (methods in the knowledge-base are characterised by 'easy' or
'difficult).

Design of more sophisticated control strategies seems to be necessary for
solving larger-scale problems. One way of improving the above simple strategy is
to delay (partially) the multiplication operation when updating the target and
thus control the growth of the target. Another improvement, aiming at the
reduction of the possibly very time-consuming matching of method-preconditions
against the complete CKP is to limit this matching to a 'window' in CKP only.
The window consists of the hypotheses dealt with in the previous executional
cycle and their neighbouring hypothesis. Thus the window provides a mechanism
for focusing AL3's attention to a part of CKP.

Another interesting problem for further experiments is concerned with the
inclusion of more 'meta-knowledge' into the knowledge-base to facilitate more
sophisticated reasoning about plans and pieces-of-advice. Such knowledge could
provide rules for deciding whether a given plan, Pi say, is more specific than
another plan, P2; then if yes and if P2 is known to fail then P1 also fails. Even
very simple 'meta-methods' in the KPKP knowledge-base are sufficient for dis-
covering concepts like a joint action of a king and a pawn. For example, if
White's plan is to queen his pawn by pushing the pawn, and a Black king-macro-
move refutes this plan by stopping the White pawn, the White's plan can be
modified by a White king-macromove preventing the Black king-macromove. This
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effectively results in the idea: support the advancement of the White pawn by
the White king.
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APPENDIX: SOME DETAILS OF AL3's PERFORMANCE ON KPKP

The KPKP knowledge base, outlined in section 7, also contains methods which
employ the game-tree search. Using these methods, AL3 can of course, in principle,
solve any KPKP problem. However, a straightforward application of search would
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be rather complex: in difficult KPKP positions, the depth of search required
would be at least 15 ply with the branching factor of about 8 (before pawns.
become queens, and much more afterwards) in the space of at least several
hundred thousands of positions. Owing to the inefficiency of the present PROLOG
implementation of AU, searches of this size are prohibitive. However, it is
interesting to see what AU can do if the search is used only very modestly, in
particular if the numbers of nodes searched are of a similar order of magnitude
to that known for human chess masters. This constraint is interesting not only
for the sake of efficiency, but also because it ensures that the program's behaviour
fits the 'human window' (D. Michie 1980). The application of the search methods
was, in the experiments reported here, constrained so that any search was
limited to at most 100 (or sometimes 200) nodes, i.e. 100 chess positions.

Comparatively simple positions, like the one in Fig. 8, present no problems
to AU under this constraint. The system easily finds the correct main idea and
is also able to work out all the tactical details up to the decisive queening of
pawns. In difficult KPKP positions, like the Reti study in Fig. 1, this search
constraint can make the system behave less confidently. Fig. 10 shows the AL3's
CKP after 15 main executional cycles when solving the Reti study. At this
moment, AU knows that:

(1) The White king alone cannot catch the Black pawn.
(2) Black, however, cannot simply push his pawn because in that case the

White pawn wins the pawn-race. Therefore the advancement of the
Black pawn is necessarily slowed down because the Black king has in
the meantime to stop the White pawn.

(3) The White pawn alone cannot save the draw; but it is not clear whether
a joint action of White pawn and White king to promote the pawn
refutes Black's plan.

So far AU has tried to investigate four hypotheses by search: h4, h10, h12, and
1z13. Three times the search was carried out successfully within the search limit.
Complexities of these searches were: h4: 3 nodes, h10: 6 nodes, and h13: 35
nodes. The remaining search failed to produce a fact as the search budget was
exhausted before a result was obtained. At this point the plans for both sides
have become too complex to be investigated by search limited to 100 nodes.
Therefore the system constructs the `state-of-the-art' hypothesis by combining
all currently known and not yet refuted ideas for both sides. The state-of-the-

art hypothesis here becomes:

ref (p 2 or p 3 mod p6 or p 6, p1 mod p 4, reti) =?

This in fact contains the best plans for both sides. The system now tries to

investigate this question by searching to the greatest depth that is still doable
within the 100 node search limit. It turns out that search to the depth of 9 ply

is still doable under this constraint. The search takes 78 nodes and produces a

forcing-tree consisting of 57 moves. This forcing-tree is proposed by the system
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Current Knowledge Pool

Positive Target

[h:1 )=->[h:0,h:2,h:8]
[h:1 => [h:0,h:2,h :12,h:14]

Negative Target

[h:01=>[h:1,h:2,h :8]

Facts

1 h:3 is false
2 h :4 is true
3 h:10 is false
4 h:13 is false

Hypotheses

1 hyp (h :0,candraw (w,reti))
2 hyp (11:1,canwin (b,reti))
3 hyp (h:2,suc (p:1,reti))
4 hyp (h:3,ref (13:2,p:1,reti))
5 hyp (h:4,ref (p:3,p:1,reti))
6 hyp (11:5,suc (p:3,reti))
7 hyp (h:6, ref (p:4,p:3,reti))
8 hyp (h:7,ref (p:5,p:3,reti))
9 hyp (h:8,suc (p:1 mod p:4,reti))
10 hyp (h:9,suc (p:4,reti))
11 hyp (h:10,ref (13:3,p:1 mod p:4,reti))
12 hyp (h:11,ref (p:6,P:4,reti))
13 hyp (h:12,ref (p:3 mod p:6,p:1 mod p:4,reti))
14 hyp (h:13,ref (p:2,p:1 mod p:4,reti))
15 hyp (h:14,ref (p:6,p:1 mod p:4,reti))

Plans

1 plan (p:1,b,queenwin (b) or easywin (b),not pexposed (b) and
not easystop (b) and not qeendraw (w) and not easywin (w),push(b))

2 plan (p:2,w,fail,nil,catchmacro (w,k))
3 plan (p:3,w,queendraw(w),alive (w),push (w))
4 plan (p:4,b,fail,nil,catchmacro (b,k))
5 plan (p:5,b,queenwin (b),alive (b),push (b))
6 plan (p:6,w,fail,nil,macro (w,k,8-8,stopset (macro (b,k,1-6,path (w,p),

I = < 2,shortestfirst)),1=<6,shortestfirst))

Fig. 10 - CKP after 15 executional cycles when solving the Reti study.

as the .`best try' for both sides. It contains the correct move for White, Kg7,
which draws. The tree also foresees the two critical variations starting by two of
Black's replies: h4 and Kb6. The forcing-tree indicates the intention to answer
the move h4 by the correct Kf6, preserving the draw, but Kb6 is intended to be
answered by Kg6 which loses. Thus although the system plays the correct move
Kg7 this result is not perfect as the system does not predict the correct further
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play in all variations. Indeed, in the variation 1 Kg7 Kb6 the system plays the
losing 2 Kg6. However, if the constraint on search is relaxed by shifting the
search limit to 200 nodes, the system plays correctly in all variations starting
from the Reti position in Fig. I. This new search limit allows the system to
generate a forcing-tree with the correct reaction to Kb6 in the variation: 1 Kg7
Kb6, 2 Kf6 h4, 3 Ke5! h3, 4 Kd6 etc. The complexity of this critical search is
184 nodes.

7
A

ZA

•

ArA
A

3A

A

•
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Fig. 11 — A study by Moravec (rust position) and a study by Adamson. Both: White to
move and draw.
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Fig. 11 shows two other difficult examples in which AL3 behaves similarly
as in the Reti study. It correctly finds the plans for both sides, and also finds the
best first two moves for White within the search limit of 100 nodes. Again, the
search-constraint makes it impossible to work out all the details up to obviously
drawn positions. In the study by Moravec the system tries seven times to solve
subproblems by game-tree search. Five times the search produces an answer
(search statistics for these five searches are: 81 nodes, 6 nodes, 5 nodes, 59
nodes, and 86 nodes). Twice the search fails to produce a result before 100
nodes have been generated. This is, however, sufficient for the system to propose
the following pretty manoeuvre of the White king which preserves the draw:
1 Kb5 h5, 2 Kc6! (with the idea 2 ... h4, 3 Kb7 followed by the advancement
of the White pawn), or if 1 Kc7 then 2 Kc4 with a draw.

Similarly in the study by Adamson, the system proposes as the best lines
for both sides a forcing-tree which contains the solution of the study: 1 Kg6 a4
(or Kb6), 2 Kf5. Again, owing to the 100 node limit, the forcing-tree does not
predict all the lines up to obviously drawn positions.

In the examples so far, the system was, although impeded by the search-
limit, able to find correct ideas and correct play. However, an example has been
found (Fig. 12) which shows how the 100 node search-limit can lead to serious
troubles. Difficult positions require the combination of several ideas by com-
bining several plans in appropriate ways to find composed plans which actually
work. As these plans become more complicated, they are harder to verify

• •

VA FA

A
LI

Fig. 12 — A study by Grigoriev: White to move and win. Solution is: 1 Kd4! Kf4,
2 c4 Kf5, 3 Kd5 etc. The idea of 1 Kd4! is to open the path of the White pawn, to
prevent the Black king from getting in front of the White pawn, and to retain an option
for the White king to stop the Black pawn at square al.

99



MECHANISED REASONING

by search. This can prevent the system from discovering some useful fact
during the problem solving process. In a study by Grigoriev in Fig. 12, the
system discovers that White has to advance his pawn and try to prevent the
Black king from stopping this pawn, and that Black has to stop the White pawn
by the king or advance his own pawn. But there are not enough facts known to
motivate the system to consider another vital component of the correct White
plan: White king has also to guard the Black pawn. The move which AL3 finally
proposes is c3 which allows Black to draw.
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