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Abstract

For the past several years research on robot problem-solving methods has
centered on what may one day be called 'simple' plans: linear sequences of
actions to be performed by single robots to achieve single goals in static
environments. Recent speculation and preliminary work at several research
centers has suggested a variety of ways in which these traditional constraints
could be relaxed. In this paper we describe some of these possible extensions,
illustrating the discussion where possible with examples taken from the
current Stanford Research Institute robot system.

1. INTRODUCTION
Background

A major theme in current artificial intelligence research is the design and
construction of programs that perform robot problem solving. The usual
formulation begins with the assumption of a physical device like a mechanical
arm or a vehicle that can use any of a preprogrammed set of actions to
manipulate objects in its environment. The generic task of the robot problem
solver is to compose a sequence of these actions (or operators) that trans-
forms the initial state of the environment (or problem domain) into a final
state in which some specified goal condition is true. Such a sequence is called
a plan for achieving the specified goal.
Most previous work in robot problem solving — for example, the work of

Green (1969), Fikes and Nilsson (1971), and Winograd (1971) — has been
limited at the outset by the assumption of a certain set of simplifying ground
rules. Typically, the problem environment is a dull sort of place in which a
single robot is the only agent of change — even time stands still until the
robot moves. The robot itself is easily confused; it cannot be given a second
problem until it finishes solving the first, even though the two problems may

405



PROBLEM-SOLVING AUTOMATA

be related in some intimate way. Finally, most robot systems cannot yet
generate plans containing explicit conditional statements or loops.
In this paper we wish to consider some possibilities for relaxing these

ground rules. Our suggestions are of course tentative, and perhaps not even
entirely original. We hope, nevertheless, that they will illuminate some of the
issues by serving as thought-provoking examples of what might be done next
in this interesting research area. We specifically exclude from our discussion
comments about present and future trends in robot perception (vision,
range-finding, and the like), except to make the obvious remark that advances
in perceptual abilities will ease the problem-solving burden and vice versa.
As an aside to the reader, we admit to having difficulty in discussing our

ideas in an abstract setting; we find we understand the ideas ourselves only
when we see examples. Accordingly, we elected to couch our suggestions
in the language and framework of a particular robot problem solver,
STRIPS (Fikes and Nilsson 1971, Fikes, Hart and Nilsson, in press), that has
been under development at Stanford Research Institute. Our discussion,
therefore, takes on the tinge of being a critique of this particular system, but
we hope that some of the ideas have a more general interpretation. To
provide the necessary background for the reader unfamiliar with the STRIPS
system, we will try to give in the next few paragraphs as brief and painless a
summary as possible.

A summary of STRIPS

A problem environment is defined to STRIPS (s Tanford Research Institute
Problem solver) by giving two different kinds of information: a model
consisting of a set of statements describing the initial environment, and a
set of operators for manipulating this environment. An operator is charac-
terized by a precondition statement describing the conditions under which it
may be applied, and lists of statements describing its effects. Specifically, the
effect of an operator is to remove from the model all statements matching
forms on the operator's 'delete list', and to add to the model all statements
on the operator's 'add list'. All statements are given to STRIPS in the
predicate-calculus language.
Once STRIPS has been given an initial model and a set of operators, it may

be given a problem in the form of a goal statement. The task for STRIPS is to
find a sequence of operators transforming the initial model, or state, into a
final state in which the goal is provable. STRIPS begins operation by attempt-
ing to prove the goal from the initial model. If the proof cannot be completed,
STRIPS extracts a 'difference' between the initial model and the goal indicat-
ing a set of statements that would help to complete the proof. It then looks
for a 'relevant operator' that will add to the model some of the statements in
the difference. (For example, a difference may include a desired robot
location; this difference would be reduced by a GOTO operator.) Once a
relevant operator has been selected, its preconditions constitute a subgoal
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to be achieved, and the same problem-solving process can be applied to it.
When a precondition subgoal is provable in the state under consideration,
then the subgoal has been achieved and the operator's effects description is
used to produce a new state. This process of forming new subgoals and new
states continues until a state is produced in which the original goal is provable;
the sequence of operators producing that state is the desired solution.

After STRIPS produces a solution to the specific problem at hand, the
solution is generalized and stored in a special format called a triangle table.
The generalization process replaces specific constants in the solution by
parameters so that the plan found by STRIPS will be applicable to a whole
family of tasks including the special task of the moment. The generalized
plan can then be used as a component macro-action in future plans. Such a
macro-action is called a MA CROP and is also used to monitor the execution
of a plan. Roughly, our execution monitor, PLANEX, has the useful ability to
find an appropriate new instance of a general MA CROP if it finds that the
instance being executed fails to work for some reason.

Details of our system for learning and executing plans will be published
(Fikes, Hart and Nilsson, in press); we shall give a brief explanation of
the triangle table format here, since part of the discussion to be presented in
Section 5 depends on it. (The reader may want to defer reading the rest of
this section until later.) An example of a triangle table is shown in figure 1 for
the case of a plan with three component steps. The cells immediately below
each operator contain the statements added by that operator; we have used
the notation Ai to represent these add lists. We retain in the cells below the top
cell in a column just those statements that are not deleted by later operators.
For example, A1/2 in cell (3, 2) represents the statements of A1 that remain in
the model after the application of operator oP2; similarly, At/2,3 represents
the statements in A1/2 that survive in the model after the application of 0P3.

1 PC1 OP'

2 PC2 OP2

3 PC3 A112 A2 OP3

4 Ai/2i A213 A3 GOAL

1 2 3

Figure 1. An example of a triangle table.

The left-most column of the triangle table contains certain statements from
that model existing before any of the operators were applied. STRIPS, we
recall, must always prove the preconditions of an operator from any given
model before the operator can be applied to that model. In general, the
model statements used to establish the proof arise from one of two sources:
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either they were in the initial model and survived to the given model, or they

were added by some previous operator. Statements surviving from the initial

model are listed in the left-most column, while statements added by previous

operators are among those listed in the other columns. By way of example,

consider op3. In general, some of the statements used to support the proof of

its preconditions were added by 0i2, and are therefore part of A2; some of the

statements were added by opi and survived the application of oP2, and are

therefore included in A1/2 ; finally, some of the statements existed in the initial

model and survived the application of o pi and 0P2, and these statements

comprise Pc3.
The triangle table format is useful because it shows explicitly the structure

of the plan. Notice that all the statements needed to establish the pre-

conditions of OPi are contained in Row i. We will call such statements
marked statements. By construction, all the statements in the left-most cell

of a row are marked, while only some of the statements in the remainder of

the row may be marked.
Obviously, an operator cannot be executed until all the marked statements

in its row are true in the current state of the world. This alone is not a

sufficient condition for execution of the rest of the operators in the plan,

however. To point up the difficulty, suppose all the marked clauses in Row 2

are true, but suppose further that not all the marked statements in cell (3, 2)

are true. We know that 0P2 can itself be executed, since its preconditions can

be proven from currently true statements. But consider now the application

of oP3. Since the marked statements in cell (3, 2) are not true, it cannot be

executed. Evidently, oPi also should have been executed.
The preceding example motivates an algorithm used by PLANEX. The

algorithm rests on the notion of a kernel of a triangle table, the ith kernel being
by definition the unique rectangular subtable that includes the bottom left-
most cell and row i. In its simplest form, the PLANEX algorithm calls for
executing OPi whenever kernel i is the highest numbered kernel all of whose
marked statements are true. The reader may want to verify for himself that

this algorithm avoids the difficulty raised in the previous paragraph.
With this sketchy introduction to the STRIPS system, we can now proceed

to more speculative matters of perhaps greater interest.

2. MULTIPLE GOALS
Multiple goals and urgencies

Useful applications of robots may require that the robot system work
toward the achievement of several goals simultaneously. For example, a
Martian robot may be performing some life detecting experiment as its main
task and all the while be on the lookout for rock samples of a certain
character. We should also include the possibility of 'negative goals': our
Martian robot might be given a list of conditions that it must avoid, such as
excessive battery drain and being too close to cliffs.
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There are several ways in which to formulate task environments of this
sort. In our work with STRIPS, a goal is given to the system in terms of a
single predicate calculus wff (well-formed formula) to be made true. We
might define multiple goals by a set of goal wffs, each possessing an 'urgency
value' measuring its relative importance. Wffs having negative urgency
values would describe states that should be avoided. Now we would also have
to define precisely the overall objective of the system. In the case of a single
goal wff, the objective is quite simple: achieve the goal (possibly while mini-
mizing some combination of planning and execution cost). For an environ-
ment with multiple goals, defining the overall objective is not quite so straight-
forward, but quite probably would include maximizing some sort of benefit/
cost ratio. In calculating the final 'benefit' of some particular plan one would
have to decide how to score the urgencies of any goal wffs satisfied by the
intermediate and final states traversed by the plan. In any case the essence of
calculating and executing plans in this sort of task environment would entail
some type of complex accounting scheme that could evaluate and compare
the relative benefits and liabilities of various goals and the costs of achieving
them.

Planning with constraints

There is a special case of the multiple goal problem that does not require
complex accounting, yet exposes many key problems in a simplified setting.
This special case involves two goals, one positive and one negative. The
objective of the system is to achieve the single positive goal (perhaps while
minimizing search and execution costs) while avoiding absolutely any state
satisfying the negative goal. Thus, we are asked to solve a problem subject to
certain constraints — some states are illegal.
Many famous puzzles such as the 'Tower of Hanoi Puzzle' and the

'Missionaries and Cannibals Problem' can be stated as constraint problems
of this sort. Actually, the legal moves (operators) of these puzzles are usually
restricted so that illegal states can never even be generated. But such restric-
tions on the preconditions of the operators are often difficult and awkward
to state. Furthermore, if new constraints are added from time to time (or old
ones dropped), the definitions of the operators must be correspondingly
changed. We would rather have simple operator preconditions that allow
operators to be applied even though they might produce illegal states. With
this point of view we must add a mechanism that can recognize illegal states
and that can analyse why they are illegal so that search can be guided around
them.

Let us consider a simple example task using the environment of figure 2.
Three rooms are connected by doorways as shown and the robot is initially
in room R3. The robot can move around and push the boxes from one place
to another. Let us suppose that the positive goal is to get one of the boxes
into room RI. The negative goal is a box and the wedge, wt, in the same
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room; thus any state with this property is illegal. For this example we can

consider two operators: PUSHRM(BX, RX, DX, RY) pushes object BX from
RX into adjacent room RY through connecting doorway DX. A precondition

Of PUSHRM is that the robot and object BX be in MOM RX. GOTORM(RX,
DX, RY) takes the robot from room RX into adjacent room RY through con-

necting doorway DX. We do not complicate the precondition of PUSHRM
with such a requirement as 'If BX is a box, RY cannot already contain a

wedge,' or the like.
We must now consider what modifications to make to STRIPS so that it

does not generate a plan that traverses an illegal state. One obvious necessity

is to test each new state produced to see if it is illegal, that is, to see if the

negative goal wff can be proved in that state. If the state is illegal, the search

for a plan must be discontinued along that branch of the search tree and taken

up somewhere else.
In problem-solving systems such as STRIPS that use the GPS means-ends

strategy, it will not do merely to discontinue search at points where illegal

states are reached. We must also extract information about why the state

is illegal so that other operators can be inserted earlier in the plan to eliminate
undesirable features of the state.
In our example of figure 2, STRIPS might first decide to apply the operator

PUSHRM(BOXI, R3, D3, RI). This application results in an illegal state. If

we merely discontinue search at this point, STRIPS might next decide to

apply PUSHRM(BOX2, R2, DI, RI) whose precondition requires first the

application of GOTORM(R3, D2, R2)., But PUSHRM again results in an illegal

state. Ultimately there will be no place in the search tree left to search and

STRIPS will fail to find a solution.

RI 1R2

WEDGE

A DI

D3 I 

R3

BOX 2

I D2

r...1 BOX

LJ

Figure 2. Robot environment for a constraint problem.

Thus, we need an analysis that is able to pursue a chain of reasoning such
as the following:
(1) We have just applied PUSHRM(BOXI, R3, D3, R1), resulting in an illegal
state.
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(2) The reason the state is illegal is because it contains the two statements

INROOM(RI, WI)

INROOM(RI, BOX!).

They were used in the proof that the state was illegal.

(3) The operator PUSHRM is responsible for the occurrence in this state of

the statement

INROOM(RI, BOX°.

Presumably the means-ends analysis technique had a reason for applying this

operator and probably it was to add this statement.

(4) The other statement INROOM(RI, \Art ) was in the previous state since

it was not added by PUSHRM.

(5) Therefore, let us add —just to this particular application of the operator

PUSHRM — the additional precondition ̂ ,INROOM(RI, WI).

Thus, we would reconsider the subgoal of proving PUSHRM'S preconditions

in the node just above the one containing the illegal state. If there are several

candidate statements whose negations could be added to the preconditions,

we could create alternative nodes for each. Also, we could reconsider the

whole chain of ancestor nodes containing PUSHRM'S preconditions in their

goal lists so that remedial action could be taken earlier in the plan.

In our example, we merely create a subgoal of getting wi out of room RI

and, say, into room R2. This subgoal is easily achieved by pushing w

into room R2 creating another illegal state. But this PUSHRM will also have

its preconditions automatically elaborated to require that BOX2 be out of

Mom R2. Ultimately, the plan GOTORM(R3, D2, R2), PUSHRM(BOX2, R2, D2,

R3), GOTORM(R3, D3, RI), PUSHRM(WI, RI, DI, R2), GOTORM(R2, D2, R3),

PUSHRM(BOXI, R3, D3, RI) would be constructed.

It should not be too difficult to modify STRIPS so that it could deal with

negative goals in this manner. Further modifications might also be desirable.

For example, at the time a relevant operator is selected, we might want to

perform checks on it to see if it can be applied at all in light of the constraints.

First we would ask whether its precondition formula alone implied the nega-

tive goal wff. There would be no point in working towards a state satisfying

a subgoal precondition wff if that very wff implied a negative goal. Then we

would ask whether the operator's add list alone implied a negative goal.

These tests would indicate whether a relevant operator ought to be pro-

hibited before STRIPS wastes time in planning to apply it.

Certain additional complications surround the use of previously learned

plans or MACROPS by STRIPS during the planning process. STRIPS would

have to check the legality of each intermediate world state produced by the

components of a MACROP. If an illegal state is traversed, STRIPS would have

the choice of either working around this illegal state to achieve the desired

results of the entire MA CROP or of planning to eliminate undesirable features

before applying any of the MA CROP. Decisions about the proper strategy will

depend on our experience with systems of this sort.
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Execution strategies

So far we have dealt only with questions concerning planning under con-
straints. After a plan is generated, our robot system must execute it, and during
the execution we must avoid falling into illegal states.
Our first concern is with the process of plan generalization. STRIPS may

have produced a perfectly fine specific plan that traverses no illegal states, but
it could happen that its generalization has instances that do traverse illegal
states. This difficulty may not be troublesome as concerns use of the MA CROP
in later planning, since STRIPS presumably will insure that none of these
bad instances are used. During execution of the MACROP, however, we will
have to make sure that our instantiation process does not select one of the
bad instances.
Even if the same instance of the plan is executed as was planned, there is

the added difficulty caused by new information discovered about the world
during execution. While this new information might not affect at all the
possibility of carrying out the original plan, it might inform us that certain
of the states to be traversed are illegal. Suppose, for example, that STRIPS
did not know of the existence of wedge vit in the task of figure 2 and planned
merely to push BOXI into room RI. During execution of this plan (but, say,
before BOX1 enters room RI), let us suppose that the robot discovers the
wedge. What is to be done? Obviously STRIPS must generate a new plan; to
do this, the executive system must have a mechanism for recognizing illegal
states and for recalling STRIPS.
In certain task environments there might be negative goals that represent

constant constraints for all of the tasks ever to be performed. Instead of
having to plan to avoid these illegal states every time a new task is confronted,
it may be more efficient to build up a list of operator instances whose applica-
tion is prohibited whenever certain conditions obtain. (For example, don't
walk on the train tracks when a train is coming.) STRIPS would then check
each operator application to check its legality, and the executive would do
likewise. In the executive system, we could regard this activity as a sort of
inhibition of illegal operators. If a planned operator is inhibited, presumably
STRIPS would be called to generate a new plan.

3. DYNAMIC ENVIRONMENTS
Introductory remarks

The STRIPS problem-solving system, as well as the associated execution
routines, were designed to work in a stable, relatively static environment.
Nothing changed in the environment unless the robot system itself initiated
the change. There were no independent, ongoing events; for such environ-
ments we did not need the concept of time. Furthermore, the actions that
the robot could perform (pushing boxes and moving about) had effects that
could quite easily be represented by the simple add and delete lists of the
STRIPS operators.
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To progress from the simple environment in which STRIPS plans are
conceived and executed to a more realistic, dynamic environment requires
some new concepts and mechanisms. Some of these have already received
attention at SRI and elsewhere. We hope here to discuss some of these
requirements and to point out what we think might be profitable approaches.

First, we shall deal with those problems caused by the fact that the ultimate
effect of a robot action might not be easily represented by a STRIPS add-list
formula. It may require, instead, a computation performed by a process
that simulates some aspect of the environment. Next we shall. consider the
special problems caused by independent processes going on in the environ-
ment (perhaps, for example, another independent robot). Last, we shall
give a brief discussion of how we might introduce the concept of time. All
of our comments are highly speculative and hopefully will raise questions
even though they will answer few.

Representation of complex actions

In a world that is relatively 'uncoupled,' the effects of a robot action can be
described simply by the STRIPS add and delete lists. The effect of the robot
going to place A is to add the wff AT(ROBOT, A) and to delete any wffs
saying that the robot is anywhere else. In such a simple world it is unnecessary
to inquire in each case whether an action has special side effects or perhaps
touches off a chain of events that affect other relations. Such side effects that
do occur can simply be taken care of in the add and delete lists. The STRIPS
representation of the effects of an action is an example of what we shall call
an assertional representation. But in more highly coupled worlds, the ultimate
effects of actions might depend in a complex way on the initial conditions.
These effects might in fact best be modeled by a computation to be performed
on the world model representing the initial conditions. We shall say that these
effects are modeled by a procedural representation.

Several Al researchers have already stressed the need for procedural
representations. Winograd, for example, in his BLOCKS program' (1971),
made use of features in the PLANNER (Hewitt 1971) language to represent
actions as procedures. The consequent theorems of PLANNER are much like
STRIPS operators in that they name a list of relations that are established by
an action and also specify the preconditions for the action. Those effects of
the action that are explicitly named are represented assertionally as in STRIPS,
but side effects and preconditions are represented procedurally. There is a
definite order in which preconditions are checked, and there are provisions
for directions about what should be done when failures are met. Antecedent
theorems and erase theorems allow more indirect effects of the action to be
computed in a , procedural fashion.
We note that, even in PLANNER, the named effects of an action are

represented assertionally. Assertional representations have a distinct advan-
tage for use in planning since they permit straightforward mechanisms (such
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as PLANNER'S pattern-directed invocation) for selecting those actions most
relevant for achieving a goal. It would seem difficult to employ the strategies
of means-ends analysis or chaining backwards if the effects of actions were
completely hidden in procedural representations.
The assertional form of the STRIPS operators permitted us to store plans

in a convenient form, triangle tables. These tables reveal the structure of a
plan in a fashion that allows parts of the plan to be extracted later in solving
related problems. It is not obvious whether one could find a similarly con-
venient format if operators were represented procedurally rather than
assertionally. One possibility is to use operators represented assertionally as
rough models for more precisely defined operators represented procedurally.
High level planning could be accomplished as it now is by STRIPS, and then
these plans could be checked using the more accurate procedural representa-
tions.

Independent processes

In this section we shall consider some complications that arise if there are
other independent agents in the world that can perform actions on their own.
For example, there might be other robots (with goals different, if not inimical,
to our robot). In such a case we would need to compute plans that consider
explicitly the possible 'moves' of the other agents. The other agents might not
necessarily be governed by goal-oriented behaviour but might merely be
other entities in nature with power to cause change, for example lightning,
falling rocks, the changing seasons, and so on. In general, our robot system
will not be able to predict perfectly the effects of these agents in any given
situation. Thus, it might need to use game trees and minimaxing techniques.
Here, though, we want to consider just the special case in which our robot
system does have perfect information about what other agents will do in any
given situation. Even this special case poses some difficult questions, and we
think progress can be made by answering some of them first.

Before dealing with these questions, we want first to remark that what
is independent and what is causal (that is, caused by our robot) we regard
mainly as a matter of definition. It might, for example, be convenient to
regard all but the immediately proximate effects of a robot action as effects
caused by an independent (although perhaps predictable) agent. For example,
we could take the view that the only immediately proximate effect of removing
the bottom block from a tower of blocks is that the bottom block is no longer
in the tower. An independent agent then is given the opportunity (which it
never avoids) to act, making the other blocks fall down. Although such a
division between causal and independent effects in this case sounds extreme,
it may in fact have some computational advantages. At the other extreme of
the spectrum of actions come those that indisputably are most conveniently
thought of as being performed by an independent agent, say a human or
another robot. If the second robot were constructed by the first one, the
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actions of the offspring could conceivably be regarded as complex effects
caused by the parent, but this interpretation seems obviously unwieldy.

Without other agents of change in the world, nothing changes unless the
robot initiates the change. The robot has a set of actions it can execute and,
for any initial situation, it can predict the effects of each of them. The
'physics' of such a world are simply described by the (assertional or pro-
cedural) representation of the robot's actions. With other agents present the
set of physical laws is more complex. Other agents cause changes, and we
assume that we can predict them. We need a representational system (again
either procedural or assertional) to describe the conditions under which
these changes takes place and what the changes are.
An especially interesting situation arises when our robot system can take

action to avert a change that would ordinarily take place if the robot were
passive. An example is given by the rule: 'The robot will be crushed unless
it gets out of the path of a falling rock.' Thus, in our dynamic world popu-

lated by other agents (some of which may merely be fictitious agents of nature)
we have two main types of rules for describing the 'physics' of the world.

Both descriptions are relative to certain specified preconditions that we
presume are met:
(1) A relation R will change (that is, its truth value will change) if we
perform an action a; otherwise it will remain the same (all other things being
equal).
(2) A relation R will stay the same if we perform some action a; otherwise
it will change (all other things being equal).
These two types of rules can be used as justification either to perform an

action or to inhibit one. (Of course, as we learned in Section 2, it is only in

the case of having multiple goals that it makes sense to speak of 'inhibiting' an
action. An inhibited action is one that we have decided not to execute since,

simply put, it does more harm than good.) Whether we perform or inhibit
an action for each rule depends on whether our goal is to change or maintain
the relation R. If we further divide the class of goals into two types, good or
positive goals and bad or negative ones, we get eight different kinds of re-

sulting tactics. These are listed, with an example of each, in the chart of

table 1.
The split from four to eight tactics depends on whether we choose to

distinguish between positive and negative goals. Such a distinction may

prove unimportant, and we make it here primarily because it allows a nice
correspondence to certain behavioral paradigms explored by psychologists.

(There is considerable neurophysiological evidence indicating two separate
motivational systems in animals: a positive or pleasure system with foci in

the lateral hypothalamus and a negative or pain system with foci in the
medial hypothalamus.)
The actions used by STRIPS (as well as most other robot problem solvers)

correspond to the tactic 'excite action to bring reward.' The main problems
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posed by a dynamic world for a planning system are seen to be those stem-
ming from the need to be able to construct plans using the other seven tactics
as well. Two of the present authors, in collaboration with Ann Robinson,
have given some preliminary thought to matters relating to the execution of
action chains containing all eight types of tactics (Hart, Nilsson and Robinson
1971). We expect that the matter of designing a combined planning and
execution system to operate in a dynamic world will present some very
interesting problems indeed.

Time

When dealing with a dynamic environment, it becomes increasingly difficult
to ignore explicit consideration of the concept of time. We would like a
robot system to be able to respond appropriately to commands like:

Go to Room 20 after 3:00 p.m., and then return before 5:00 p.m.
Go to Room 20 three times a day.
Go to Room 20 and wait until we give you further instructions.
Leave Room 20 at 4:00 p.m.

We would also like the robot system to be able to answer questions dealing
with time. For example: 'How many times did you visit Room 20 before
coming here?' (See the recent article by Bruce (1972) for an example of a
formalism for a question answering system dealing with time.)
A straightforward way to approach some of these issues is to add a time-

interval predicate to an assertional model. Thus TIME(A, B) means that it is
after A and before B. Whenever the system looks at an external clock, then
presumably A and B become identical with the clock time. The model would
then need some mechanism for continually revising A and B. A growing
spread between A and B would represent the known inaccuracy of the model's
internal clock.
For the moment we might for simplicity assume that time stands still while

the robot system engages in planning. That is, we assume that the time
required for planning is insignificant compared to the time duration of other
events such as robot actions. (Incidentally, this assumption is manifestly not
true as regards the present SRI robot system.) We can begin to deal with
time by including in the operator descriptions the effect the operator has on
the time predicate. (We must do the same for descriptions of the effects of
independent agents.) Thus if the operator GOTHRUDOOR takes between
three and five units of time, its effect on the predicate TIME(A, B) is to replace
it by the predicate TIME(A+ 3, B+5).
We might also want to have a special operator called w A (n) that does

nothing except let n units of time pass. With these concepts it will probably be
a straightforward matter to plan tasks such as 'Be in Room 20 after 3:00 p.m.
but not before 5:00 p.m.' The system would calculate the maximum length of
time needed to execute the needed actions and would insert the appropriate
WAIT operator somewhere in the chain if needed. Since much planning will
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probably be done without reference to time at all it will be most con-

venient to ignore explicit consideration of time unless the task demands it.

We suspect that allowing time to progress during planning will present

many problems. Then the planner must operate with world models that will

not 'stand still'. For certain time-dependent tasks; such as 'Meet me in

Room 2 at 3:00 p.m.', the planner will have to be able to coordinate success-

fully the amounts of time spent in planning and task execution.

4. MULTIPLE OUTCOME OPERATORS

One of the interesting properties of a robot system is the inherent incomplete-

ness and inaccuracy of its models of the physical environment and, in most

cases, of its own action capabilities. This property implies a degree of

indeterminism in the effects of the system's action programs and leads one

to consider including in the planning mechanism consideration of more than

one possible outcome for an operator application. We might like to model

certain types of failure outcomes, such as a box sliding off the robot's

pushbar as it is being pushed. We might also like to model operators whose

primary purpose is to obtain information about the physical environment, such

as whether a door is open or whether there is a box in the room. Munson

(1971) and Yates (private communication) have also discussed multiple

outcome operators.
We can extend the STRIPS operator description language in a natural way

to provide a multiple outcome modeling capability as follows: each descrip-

tion can have n possible outcomes each defined by a delete list, an add list,

and (optionally) a probability of the outcome. For example, an operator

that checked to see if a door was open or closed might have the following

description:
CHECKDOOR(DX)

PRECONDITIONS

TYPE(DX, DOOR)

NEXTTO(ROBOT, DX)

outcome 1 outcome 2
DELETE LIST DELETE LIST

NIL NIL

ADD LIST ADD LIST

DOORSTATUS(DX, OPEN) DOORSTATUS(DX, CLOSED)

PROBABILITY PROBABILITY

'0.5 0.5
We may also want to provide advice about when information gathering

operators ought to be applied. For example, it would be inappropriate to
apply CHECKDOOR if the robot already knew the value Of DOORSTATUS.
This advice might be supplied by including in the preconditions a requirement
that the information to be gathered is not already known before the operator
is applied. This requirement would insure that the operator description
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indicates that information is being added to the model rather than being
changed in the model and would therefore allow the planner to distinguish
CHECKDOOR from an operator that opened closed doors and closed open
doors.
Such an 'unknown' requirement would be a new type of precondition for

STRIPS, since what is required is not a proof of a statement but a failure both
to prove a statement and to prove the statement's negation. This requirement
is analogous to the semantic meaning of the THNOT predicate in PLANNER
(Hewitt 1971); that is, THNOT p(x) is true if the PLANNER interpreter
cannot prove p(x) with some prespecified amount of effort. A capability of
handling such preconditions could be added to STRIPS in a natural manner
by defining new syntax for the preconditions portion of an operator descrip-
tion and by adding new facilities to the goal testing mechanism in STRIPS to
attempt the required proofs.

Let us consider the planner's search space when multiple outcome operators
are used. We assume a search tree where each node represents a state and
each branch from a node represents the outcome of an operator applied to the
node. This is a standard AND/OR tree in which the outcomes from different
operators are OR branches and the outcomes from a single operator are AND
branches. Any plan is a subtree of this tree consisting of the initial node of
the tree and for each node of the plan exactly those offspring nodes produced
by the outcomes of a single operator; hence, from each non-terminal node
of a plan there will emanate one set of AND branches. Each terminal node
must correspond to a world model satisfying the goal wff if the plan is to be
successful.
When such a plan is executed, each branch in the tree corresponds to an

explicit conditional test. The test determines what was the actual outcome of
the action routine and the corresponding branch of the remainder of the
plan is executed next. Thus the problem of building into plans explicit
conditional statements does not appear difficult; providing explicit loops
looks considerably harder.

If probabilities of the different outcomes of operators are defined, then the
probability of occurrence of any node in a plan tree (during execution of the
plan) might be considered to be the product of the probabilities of the
branches connecting the node with the initial node of the tree.
One of the interesting issues facing the planning program is when to stop.

One certainly would have the program stop when it achieved absolute success,
in that a plan existed each of whose terminal nodes represented a state that
satisfied the task; for such a plan each of its operators could produce any of

' the described outcomes and the plan would still lead to success. Similarly, the
planner would stop when it reached an absolute failure; that is, when the tree
had been fully expanded and no terminal node of any plan satisfied the task;
in such a situation we know that none of the plans in the tree will lead to
success no matter what the outcomes of the operators. A node has been fully
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expanded when all possible offspring nodes have been included in the tree.
Thus, terminal nodes in a fully expanded tree have no possible offspring.
To make the concept of a fully expanded node more practical, one may
assume that only 'relevant operators' are considered for producing offspring.
But what about other situations? For example, consider the case where

the planning tree is fully expanded (as in the absolute failure case) and
absolute success has not been achieved, but there are nodes in the tree
representing states that satisfy the task. In this situation we have plans in
the tree with a nonzero probability of success; that is, for those plans we
could specify an outcome for each operator in the plan that would cause the
plan to satisfy the task. Since the search tree is fully expanded the planning
program must stop, but what does it return as a result? A reasonable answer
might be to return the plan with the highest probability of success, where the
probability of success of a plan is defined to be the sum of the probabilities
of occurrence of the plan's nodes that satisfy the task.

If we are willing to accept plans with a probability of success less than one,
then perhaps we should consider stopping the planner before achieving
absolute success or full expansion of the tree. For example, we might stop
the planner whenever it has found a plan whose probability of success is
greater than some threshold. Such a stopping criterion would have the
advantage of preventing the system from expending planning effort in a
situation where a plan has already been found that is almost certain to
succeed.
The system's plan executor can deal with less than absolutely successful

planning by being prepared to recall the planner when a terminal node of, a
plan is achieved and the task is still not satisfied. It may be advantageous to
recall the planner before such a terminal node is reached; namely, when a
node is achieved in the plan no offspring of which satisfies the task. Even
though more plan steps might remain to be taken in this situation, they will
not satisfy the task and the planner may determine that some other sequence
of steps is more desirable to successfully complete the execution. In fact,

one could argue that the planner should be given the opportunity to continue

expansion of the search tree after each execution step, since the probabilities

of occurrence of nodes and success of plans changes at each step; such a
strategy seems an extreme one and probably cannot be justified practically.

Just as the planning program could stop with less than absolute success,
there are clear cases when it should stop with less than absolute failure.
Two such cases come to mind. The first is where the search tree has been
expanded sufficiently to allow determination that no plan in the tree will be

able to qualify as a successful plan. This would typically happen when every

plan in the tree has a probability greater than some threshold of achieving a

terminal node that does not satisfy the task. The second case is where the
probability of each unexpanded node in the search tree is less than some small

threshold. In this situation the search tree has been expanded to such an
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CHECKDOOR (D3)

GOTORM (R3, D3, RI)

CHECKOBJECT (WI, RI)

GOTORM

(RI, D3, R3)

NII

P=0.25

PUSH RM

(BI, R3, D3, RI)

success

CHECKDOOR (D2)

'to

CHECKDOOR (Dl)

failure

Figure 3. An example of a conditional plan.
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extent that none of the states to be considered are very likely and therefore
any further planning effort will only minimally increase the probability of
success of any plan in the tree.
During planning, a node selection function will be needed to direct

expansion of the search tree. One reasonable selection strategy is to first
select the most promising plan in the tree and then select a node in that plan
for expansion. Plans could be evaluated on such criteria as the probabilities of
the plan's success and failure nodes, distance estimates to the goal from the
plan's unexpanded nodes, and so on. Nodes within a plan could be evaluated
on such criteria as estimated distance to goal and probability of occurrence.
An interesting example of the use of multiple-outcome operators can be

seen by reconsidering the wedge and boxes problem discussed in Section 2
above. In the problem we wish the robot to move box BI into room RI under
the constraint that there should never be a box in the same room with a
wedge wi (see figure 2). Assume now that the system does not know the
status (open or closed) of the doors DI, D2, and D3, nor does it know if
wedge wi is in room RI. Hence, the desired plan will contain checks on the
status of doors and a check to see if wedge wi is in room Rl. If we further
assume that the planner halts when all unexpanded nodes have probability
less than 0.2, then the plan shown in figure 3 might be the output from the
planner.
This plan begins by checking the status of door D3. If D3 is closed, then D2

is checked. If D2 is closed then there are no relevant applicable operators
and therefore this is a failure node. In the case where D2 is open, then box BI
is pushed into room R2 and door DI is checked. The probability of occurrence
of each of the nodes resulting from the check of DI is less than 0.2; hence
they are not expanded further. Back up at the beginning of the plan, if door
D3 is found to be open, then the robot goes to room RI and checks for wedge
wt. If wt is not found then the plan is to go back to room R3 and push box
El into room RI; this branch of the plan completes the task and therefore
forms a success node. In the case where WI is found to be in room RI, a
check is made on door DI. The probability of occurrence of each of the nodes
resulting from this check is less than 0.2, and they are therefore not expanded.
For this plan the probability of success is 0.25, the probability of failure is
0.25, and the remaining possible outcomes are unexpanded.

5. TEAMS OF ROBOTS

Thus far we have considered robot systems having only a single effector with
which to manipulate the world. We now consider some of the problems
posed by multiple robot systems.
Let us agree first that a multiple or team robot system is a system composed

of several effectors controlled, at least in part, by a common set of programs.
If this were not the case, then we would have several single robots whose
environments happened to be complicated by the presence of other robots.

422



FIKES, HART AND NILSSON

To make the discussion specific, imagine a system with two effectors: a
mobile vehicle that can fetch boxes, and an arm that can lift boxes and put
them on a shelf. For simplicity, we will say that these abilities are characterized
by only two operators, FETCH and SHELVE. The preconditions for sHELving
a box are that the box be in the workspace of the arm. There are no pre-
conditions for FET c Hing a box (there is an inexhaustible supply of boxes
and the vehicle can always bring one to the arm).
We now give the robot system the task of putting three identical boxes on

the shelf. It is interesting first to note that typical current problem-solving
programs would not need to recognize explicitly that the two available
operators are actually implemented by separate devices. Oblivious to this
fact, a successful problem solver would produce any of a number of satis-
factory plans, including, for example, the sequence FETCH, FETCH, FETCH,
SHELVE, SHELVE, SHELVE.

Our interest now centers on the real-world execution of this plan. In
particular, we would consider a robot system a bit stupid if it waited until all
three FETCHeS were successfully executed before it proceeded to SHELVE.
What is needed here is a means of analyzing the interdependencies of the
components of the plan and of concurrently executing independent actions
of the two effectors. Now, the general issue of partitioning a process into
partially independent subprocesses is a complicated one that arises in studies
of parallel computation (Holt and Commoner 1970). Here, though, we can
make use of the triangle-table format to obtain the dependencies directly.
Figure 4a is a sketch of the triangle table for the complete plan. Recall that
a mark in a cell means that the operator heading the column produced an
effect needed to help establish the preconditions of the operator on the same
row. The bottom row of the table corresponds to the 'precondition' GOAL,
while the first column of the table corresponds to preconditions provided by
the initial state of the world. (Since FETCH has no preconditions, and since
all of the preconditions for SHELVE are established by FETCHeS, the first
column in figure 4a has no marks.)
The complete triangle table can be partitioned into a pair of subtables as

shown in figures 4b and 4c. To create the FETCH subtable, we copy all marks
in F columns and non-F rows of the complete table into the bottom row of
the subtable. To create the SHELVE subtable, we copy all marks in s rows
and non-s columns of the complete table into the first column of the subtable.
Notice the motivation here: the purpose of each FETCH is to satisfy a condi-
tion external to the FETCHing robot, and so are external (bottom row) goals.
Similarly, the preconditions for the s HEL ving robot are established by an
agent external to it, and so are external (first column) preconditions. (We
defer for a moment discussing a procedure for partitioning a complete
triangle table when the effectors are more intimately interleaved.)
Once the two subtables have been constructed, the PLANEX algorithm

described earlier can be used — in a slightly modified form — to direct the
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actions of the two effectors. It is plain from figure 4b that the vehicle can fetch
boxes independently of any arm actions, since the arm contributes nothing
toward establishing preconditions for FET cuing. The situation with respect
to the arm is a little more complicated. Using the standard PLANEX algorithm,
the arm could not execute a SHELVE action until all the FETCH operations
had been completed, which of course is the very thing we are trying to avoid.

1

2

3

4

5

6 V

7 V GOAL

2 3 4 5
(a) complete table

6

1 V S

2 V

3 3 N./

4 GOAL 4 GOAL

1 2 3 4 1 2 3 4
(b) FETCH (vehicle) subtable (c) SHELVE (arm) subtable

Figure 4. Triangle tables for FETCH-SHELVE example.

We must therefore distinguish between those preconditions of sHELving
that are to be established by the other effector, and those preconditions that
must simply be true in the initial world (there are none of the latter in our
example). Upon making this distinction, we recognize that, in order to
execute the first SHELVE operation, we need only have achieved the effect
marked in the top cell of the first column of figure 4c; the other effects marked
in succeeding cells of that column will be added by an active agent external
to the arm. In other words, whereas a single robot must have all of the basic
preconditions of its plan satisfied before it begins executing the plan, the

424



FIKES, HART AND NILSSON

team robot can have some ,of the initial requirements of its plan satisfied by
other robots while its own plan is being executed.
The foregoing discussion can be made more precise and, we believe, can

be formulated into a straightforward algorithm for executing linear plans for
multiple robots. Instead of pursuing this algorithm, let us return to the
question of partitioning a complete two-robot triangle table.
We will present the algorithm by means of an example. Figure 5a shows a

complete triangle table for an imaginary system composed of two robots, A
and B. For present purposes we need not consider in detail the variety of
different operations that A and B can perform; we need only note in the
complete table which robot performs each operation. The X in cell (5, 4) is a
mark like all the others, but merely for purposes of exposition we have
distinguished between the two marks in column 4.

•■■■■,11,

1 V A1

2 V A2

3 V

4 V

5 X B2

6 V B3

7 A4'

8 V V GOAL

1 2 3 4 5 6 7 8
(a) complete table

1

2 A2 1

3 A3 2 X B2

4 V A4 3 V 113

5 GOAL 4 V V GOAL

1 2 3 4
(b) A subtable

Figure 5. Triangle tables for algorithm illustration.
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The algorithm proceeds by scanning the columns corresponding to either
of the robots; let us begin with B, just to illustrate this insensitivity to order.
Every mark in a B column and a non-B row is entered in the corresponding
column of the bottom row of the B subtable. Cell (4, 4) of the complete table
contains such a mark, and this mark is therefore entered in cell (4, 2) of the
B subtable. A mark in a B column and B row of the complete table is entered
into the corresponding cell of the subtable; cell (5, 4) contains such a mark.
Next, we consider the B rows of the complete table. Every mark in a B row
and non-B column is entered in the first column of the corresponding row of
the subtable. Cell (3, 3) of the complete table contains such a mark, and this
mark is entered into cell (1, 1) of then subtable. When this process of scanning
rows and columns is completed for the B robot, it is repeated for the A robot,
producing finally the two subtables shown.

It appears that this basic algorithm is easily extended to any number of
robots. If we had n robots, we would partition them into two subclasses:
robot 1 and the remaining n-1. After processing this 'two-robot' system, we
would recursively process the subtable corresponding to the n —I system, and
so forth, until n subtables were produced. However, we have not analysed
whether systems of more than two robots can encounter such difficulties as
'locked states,' in which each robot waits for the results of all the others.
A final speculation concerns extending the notion of problem-partitioning

from the execution phase into the planning phase. Specifically, we would
like to give our multi-robot system an executive planner that has a rough
characterization about the abilities of each of its effectors, and subordinate
planners that do detailed planning for each effector once its goals have been
established by the executive. To use the preceding example, we would like
the executive planner to recognize that the initial problem can be partitioned
into the two subproblems 'fetch three boxes' and 'shelve three boxes.' The
ability to partition a problem in this fashion requires, of course, a deep
understanding of its structure.

6. OTHER ISSUES OF INTEREST

In the foregoing sections we discussed a number of topics in robot problem-
solving research that, we think, may be profitably explored. Of course, we
do not mean to imply that there are no other worthy avenues of research.
On the contrary, one could compile a long list of such possibilities. In the
remainder of this section we mention a few of them, together with some
personal observations on the issues they raise.

Task specification languages

A number of early problem-solving programs accepted problem statements
in the form of a static assertion to be made true. (STRIPS, obviously, falls in
this class.) We are increasingly convinced of the inadequacy of this formula-
tion, chiefly because there is a large class of tasks that are most naturally
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posed in procedural terms (Fikes 1970). For example, the task 'Turn off
the lights in every room on the corridor' can be posed procedurally in a
straightforward manner, but can be posed assertionally only by enumerating
the rooms or by introducing awkward notations.
As a general observation, we note that there is a trend for problem solvers

to avoid explicit use of state variables because of the attending frame problem.
But suppressing state variables makes it difficult to pose problems requiring
the identification of distinguished states. Thus, for example, STRIPS cannot
naturally be given the problem 'Bring the box from Room 3' because the
description of the box depends on a property of the current state.
The importance of incorporating procedural information in problem

solvers is now generally recognized. Our point here is that a procedural
formalism is badly needed even to state an interestingly broad class of
problems.

Multiple levels of planning

Two topics of interest entailing multiple levels of planning have arisen from
our work with the SRI robot system. The first results from our learning
experiments in which we store plans in memory to be used during the creation
of future plans. Roughly speaking, we create a description of a plan when we
store it away so that STRIPS can consider it to be a new operator, or MACROP,
and can include it as a single step in a new plan. A major problem arises when
one attempts to generate automatically the operator description for the plan
to be stored. Specifically, the components of that description are too detailed.
Typically the preconditions of a STRIPS operator will have 4 or 5 statements
in it; the preconditions for a typical MACROP might have 15 or 20 such
statements. If that MACROP now becomes a single step in some new MACROP,
then the preconditions will be even larger in the new operator description.
This explosion in precondition complexity is clearly a major barrier to the
bootstrapping capabilities of this system.
The source of this difficulty is that the level of detail in a MACROP descrip-

tion does not match the level of planning at which the MACROP is to be used.
Somehow, there must be an abstraction process to suppress detail during the
construction of a MACROP description. One way in which this suppression of
detail might be accomplished is by including only some subset of the pre-
conditions and effects that would normally appear in the MACROP description.
The challenge, obviously, is to determine some reasonable criteria for deter-
mining those subsets. It may be necessary to consider more sophisticated
abstraction schemes involving alteration of predicate meanings or creation
of new predicates. For example, the meaning of a predicate such as 'location'
in human planning depends on the level at which the planning is being done.
In the initial planning stages for a trip to the MI-7 conference it is sufficient
to consider the location of the conference to be Edinburgh. When planning
hotel accommodations, the location of the conference as a street address is of
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interest. On arrival for the first conference session, the location of the
conference as a room number becomes important. Similarly, a robot planner
needs to employ meanings for predicates that match its planning level.
The second interesting issue concerning multiple levels of planning is

communication among the levels; in particular, transmission of information
concerning failures. For example, in the current SRI robot system, STRIPS
considers it sufficient for applying o oTo(B o xi ) to get the robot into the
same room as B o xi. When OTO(BOX1) is executed, a lower level . path-
finding routine attempts to plan a path for the robot to Boxi. If no such path
exists, the routine exits to PLANEX, which in most cases will try the same
GOTO action again. Even if a replanning activity is initiated, STRIPS might
still generate a plan involving o To(B o xi ) under similar circumstances,
and the system will continue to flounder. The problem here is the lack of
communication between the path finding planner and STRIPS. Somehow,
the failure of the path planner should be known to a planning level that can
consider having the robot move obstacles or re-enter the room from another
door.
In general, what is needed is a system capable of planning at several

levels of abstraction and having the appropriate operator descriptions and
world models for each planning level. Given a task, a plan is constructed at
the highest level of abstraction with the least amount of detail. The planner
then descends a level and attempts to form a plan at the new level. The
higher-level plan is used to guide the new planning effort so that in effect the
attempt is to reform the higher-level plan at the current level of detail. This
process continues until the desired level of detail is obtained or a failure
occurs. In the case of a failure, the result of the more detailed planning needs
to include some information as to , why the failure occurred, so that an
intelligent alternative plan can be formulated at a higher level.

'Ad hocism' in robot planning

An important issue in the design of planners for robot systems centers on
the amount of 'ad hocism' one will allow to be preprogrammed into the
system. STRIPS, to cite one example, is a general purpose planner requiring
only simple operator descriptions and a set of axioms describing the initial
state of the world. Our design of STRIPS can be viewed as an extreme on the
side of generality, emphasizing automatic mechanisms for extracting planning
decision criteria from any problem environment presented.
A currently popular strategy for designing a planning program is to use

one of the new languages, PLANNER (Hewitt 1971) or Q A4 (Derksen,
Rulifson and Waldinger 1972), and write programs as consequent theorems
and antecedent theorems instead of operator descriptions. This approach
has the advantage of allowing the person defining the problem environment
to guide the plan formation process by ordering goals and giving advice as
to which operators to consider. In general, this means that the problem
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definer is free to build into the programs information about the problem
domain that will aid in the planning process.
These alternative approaches prompt an inquiry into the goals of problem-

solving research. If the purpose is to design a planner for a fixed physical
environment, a given robot with a fixed set of action routines, and a fixed
set of predicates and functions to appear in the models, then one builds into
the system as much specific information as possible about how to accomplish
tasks in the environment. For example, one might specify the optimal paths
between any two rooms, provide recognition programs for each object in the
environment, and so forth. Such a system might be useful for some particular
application, but interest in its design as a research task is minimal.
What kind of robot planning system is of interest for problem-solving

research We suggest that a key issue in the consideration of that question
is the system's capability of being extended. One type of extendability of
interest is exploration. That is, we want a robot system to be capable of
going into new areas of its environment, adding information obtained in the
exploration to its world model, and finally, performing tasks in the new
area. An exploration capability limits the level of 'ad hocness' we can
program into the system. For example, the planner cannot depend on pre-
programmed paths between rooms and preprogrammed object recognition
programs if exploration is going to bring new rooms and new objects into
consideration.
A second type of extendability of interest to us is the learning of new

action capabilities. One would like the system to produce automatically new
action routines (like, for example, the STRIPS MA CROPS) from its experience;
but even merely allowing human introduction of additional action programs
places restrictions on the level of 'ad hocness' in the system. For example, if
there is only one action routine in the system for moving a box from one
room to some other room, and if we know that no new actions will ever be
added to the system, then we could preprogram the planner to call that action
whenever a box was needed in a room. But if we allow the possibility of a
new action being added to the system that, say, is specially designed to move
a box to an adjacent room, then we want our system design to be such that
the new program can be easily added and that the planner will then make
intelligent use of it.

Another aspect of the extendability issue is that a system should be a good
experimental tool for research. That is, we might want to be continually
extending the system to include new areas of interest such as those discussed
in this paper. Hence, we would like the basic formalism and structure of our
system to be flexible enough to allow exploration of these areas without
requiring large amounts of reprogramming effort.
In conclusion, then, we can say that it seems certainly worthwhile to

provide facilities in planning programs for easy specification of ad hoc
information, and STRIPS is still deficient in that regard. The danger seems to
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be that AI researchers may be seduced into designing systems that are so
dependent on advice about specific situations that they have no extendability
and are little more than programs containing solutions to a very restricted
set of problems. Our discussion in this section has attempted to point out that
one way to temper the nature and extent of a problem-solving program's
dependence on ad hoc information is to consider various ways in which one
might wish the program to be extendable.
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