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SOME METHODS OF ARTIFICIAL INTELLIGENCE

AND HEURISTIC PROGRAMMING

by

Dr. MARVIN L. MINSKY*

SUMMARY

THIS paper is an attempt to discuss and partially organize a number of

ideas concerning the design or programming of machines to work on problems

for which the designer does not have, in advance, practical methods of

solution. Particular attention is given to processes involving pattern

recognition, learning, planning ahead, and the use of analogies or

?models!. Also considered is the question of designing "administrative"

procedures to manage the use of these other devices. The paper begins with

a discussion of what is meant by "Intelligence" and concludes with a sec—

tion concerned with some techniques through which a machine might further

improve itself by adding to Its collection of problem—solving methods.

I. INTELLIGENCE

I feel that it would not be useful to lay down any absolute defini—

tion of "intelligence" or of "intelligent behaviour". For our goals in

trying to design "thinking machines" are constantly changing in relation

to our ever—increasing resources in this area.

Certainly there are many kinds of performances which if exhibited by a

man we would all agree, today, require or manifest intelligence. But would

we agree tomorrow? For some purposes we might agree with Turing (ref .24),
to regard the same performances in a machine as intelligent. In so doing

we would be tying the definition of intelligence to some particular con—

cept of human behaviour.

While such a convention might be useful,in some kinds of discourse, its

use in serious analysis Is precluded by two serious faults. First, it

* The work leading to this paper was supported, in too many ways to cite
individually, by the joint services or the U.S.A.
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directly evades any concise specification of the kinds of behaviour we are

looking for. Second, we can often find simple machines which in certain

situations do exhibit performances which would be called intelligent If

done by a man.
We are, understandably, very reluctant to confer this dignity on an

evidently simple machine. Hence the conflict one would suffer in using this

definition would threaten any descriptive value it might otherwise have.

In what situations are we less reluctant to attribute intelligence to

machines? Occasionally, a machine will seem to be more resourceful and

effective than one might expect from casual inspection of its structure.

We may be surprised and impressed and we tend to remain so until through

analysis or "explanation" the sense of wonder is removed. Whenever a system

behaves as though it had more resources than were evident at "first glance"

we react in this way, and this reaction is closely related to that involved

when we judge a performance to be an exhibition of intelligence. But

clearly this reaction depends also an the resources of the individual who

Is making the observation. The behaviour of any machine (as we use the

term) is always explicable in terms of its past states, external contin-

gencies, and the causal or probabilistic relations between them. Hence the

significance of the observer's surprise in this; it can be inferred that

the Observer ielnOt so good a Mathematician that his first glance con-

stitutes an adequate analysis of the situation. In the same way, our

judgements of intelligence on the part of other humans are often related

to our own -analytic inadequacies, and these judgements do shift with

changes in understanding.
We frequently find that a skill which seemed highly intelligent in

others becomes much less impressive when we have learned the trick of

doing it for ourselves. Indeed, we refer to many very complicated pro-
cedures as matters of "skill" rather than of intelligence apparently just

because there happens to be a known method of instruction through which

the ability can usually be acquired.

In attempting to design intelligent machines we are, in effect, con-

cerned with the problems of "creativity". Many people are hostile to such

an investigation, maintaining that creativity (or intelligence) is some

kind of "gift" which simply cannot be understood or mechanized. This view

can be maintained only through a constant shifting of definition. As soon

as any process or performance has been mechanized or otherwise explained,

it must be removed, with qualifications and apologies, from the list of

creative performances. This part is perfectly reasonable; once a process

has been mechanized one no longer needs terms like "creative" for its

description, and we, too, remove it from the list of things to be

accomplished. The weakness of the advocate of inexplicable creativity

lies in the unsupported conviction that after all machines have been
examined some items will still remain on the list.
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Let us put it clearly then, that in exploring what we call "the artifi-

cial intelligence problem" we are not looking for any kind of closed

solution to any question like "what is intelligence and how can it be

mechanized?". The judgement of intelligence is more a reflection on what

we understand than on what we, or machines, can do. Instead, we are search-

ing for new and better ways of achieving performances that command, at the

moment, our respect. We are prepared for the experience of understanding

and the consequent reshaping of our goals.

2. PROBLEM-SOLVING

How do humans solve problems? To begin with we have to replace our

intuitive requirements by reasonably well-defined technical questions.

This may require the largest part of the intellectual effort, but we cannot

dwell on the subject. A minimal requirement is that one have a method of

discerning a satisfactory solution should one appear. If we cannot do this

then the problem must be replaced by one which is well-defined in that

sense, and we must hope that solution of the substitute problem will turn

out to be useful.

In the best case we come equipped with an efficient algorithm: a
systematic procedure which, given the problem as input, is guaranteed to

produce a solution as output; efficient in that the solution will arrive

within reasonable bounds on time and effort. But for new and interesting

problems we don't usually have algorithms, or at least not efficient ones.

At the other extreme we may know nothing about how to get a solution

(except for the ability to recognize one). In such a case we have no

alternative save to launch into an exhaustive search through the ensemble
of potential solutions, e.g., the set of all proper expressions in our

language. Random search is no better in general than systematic exhaus-

tion, and may introduce the possibility of failure. It Is tempting but

irrational to look for a panacea in chaos. But In any case it is well

known that for interesting problems exhaustive search is usually out of

the question, even with the aid of the most powerful conceivable machines.

Normally, we are not motivated to attempt such problems. "Interesting"

problems always have roots in areas which are at least partially under-

stood. We usually have a good deal of partial information about how to

get a solution. But this information may occur in fragmentary form: we

may have some information about the "form" of a solution, recollections

of similar problems solved in the past, general suggestions, hints, and

the like.

We need to find ways of writing programs which will be able to use

these fragments, or general advice, to reduce the amount of search to

reasonable proportions.
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"Hints", "suggestions", or "rules of thumb", which only usually work are
called heuristics. A program which works on such a basis is called a
heuristic prognim. It is difficult to give a more precise definition of
heuristic program - this is to be expected in the light of Turing's demon-
stration that there is no systematic procedure which can distinguish between
algorithms (programs that always work) and programs that do not always work.

3. METHODS USED IN HEURISTIC PROGRAMS

Below are mentioned some of the ingredients that might go into a complex
problem-solving program. Too little is known about heuristics to justify
attempting a systematic or exhaustive catalogue.
Some of the Methods are later disCussedin farther detail.

3.1. Nethods.which set up searches

It has often been convenient to imagine problem-solving as taking place
over a tree-like structure of trial possibilities. The tree structure is
particularly natural for game problems and for theorem-proving; while it
may be less appropriate in other areas, it does seem to have general
suggestive value. Usually the problem is not so much to find the basic
structure (or the domain of things to try) as to find ways of reducing this
structure to reasonable size. Thus, in chess, one may use an evaluation
function technique to terminate lines of search, and some kind of "plaus-
ible move" selection technique to reduce the amount of branching at each
node of the game tree. The problem of designing chess-playing programs has
provided fertile ground for study of such methods; see, e.g., Shannon
(ref.22), Newell (ref.12), Kister (ref.7) and Bernstein (ref.1).•

3.2. Nethods which set up new problems.as.subgoals..

If direct attack fails",—it may be possible to replace the problem by one
or more (presumably) less difficult problems, in such a way that solution
of the subproblems will lead directly to a solution of the original. In
complex problems this may extend to many levels. The Logic Theory machine
of Newell and Simon (refs./3,24) uses a number of such methods.

3.3. Nethods.which set uP new Problems.as.models.'

Some of the most powerful techniques used by humans replace problems by
new ones whose relation to the original is less immediate. These problems
are not equivalent, but only heuristically similar to the original, and
their solution need not directly lead to solutions of the original. But to
the extent that the problems are really related, we may expect that the
methods. which work an the substitutes will be worthwhile trying on the

(94009) 8



original. These techniques include the use of models, analogies, and other
ways of transforming a problem into one in an area in which we have more
experience or more powerful methods.

3.4. Methods of characterization or description

The choice of which method to apply to a given problem depends on what
kind of problem it is. In order to select appropriate methods, the machine
must have facilities for recognizing problems as members of heuristic
categories. If the machine is to be able to learn on the basis of past
experience, it must have some way of discerning which records are relevant
to a given situation, and again the machine must be able to sort things
into heuristically useful classes, i.e., to recognize certain "patterns".

3.5. Administrative methods.

As the problem-solving process goes on, we accumulate an elaborate
structure of related subgoals and analogue problems. New problems are .
adjoined, and old ones, change their status as evidence accumulates. The
management of such a structure requires methods which allocate time and
effort, deciding where to concentrate attention. It would seem that these
methods should include ways of making the following three kinds of
estimates:

(2) Difficulty estimates. For each subproblem, one has to be able to
make some estimate of its difficulty - an estimated relation between
effort expended and the chance of getting a solution. Such estimates would
be based on past experience (using methods of type 4) as well as on what-
ever direct simplicity ,estimates could be discovered.

(b) Sub-Problem utilities. The second estimates the utility of solving
each subproblem with respect to solving the main problem. This will
provide a basis for deciding which problem hext to attack. This method
would use the estimates of type (a) as data as well as data describing
the interrelations between the problems. While solutions to some problems
may contribute directly to solutions of others, frequently solution of
one problem will merely provide "evidence" which has a good chance of

being helpful on another. The utility estimate has to weigh the different
kinds of evidence and take into account the whole sub-problem structure.

(c) Methods.forselecting methods. The estimates above help to select
the next problem for attack; one must then select what methods to try.

This choice may be based on records of past successes and failures,

special experiments on models, and perhaps on the basis of "advice"

given from the outside. In each case it is clear that the advice obtained
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will be most useful if it really does have general applicability, and again
the machine must be able to use adequate methods of categorization.

3.6. Methods.of self—improvement

In the most advanced systems we must include in the framework resources
which can improve the operation of the system through adjustment of
existing methods and addition of new ones. Discussion of these methods is
deferred to section 9.2.

4. PATTERN RECOGNITION

The problem of sorting events and situations into useful categories

arises in so many ways that it is tempting to regard it as the central
problem of artificial intelligence. The enormity of the usual underlying
search process requires that each trial result be used to remove (on the
average) a relatively large class of trial possibilities. Each method will
be fruitful only when applied to some particular class of problems, and

efficient operation requires that these be recognized. The sorting opera—
tion involved may be called "pattern—recognition" or "characterization".
Each category can be assigned a conventional or a computed name. It is only
through such names that we can hope to introduce "general" or "informal"
advice.

In a machine designed to recognize, or learn to recognize, visual
objects or the like, the characterization problem is itself the centre of
attention. The simplest techniques are those in which objects are "matched"
more or less directly against standards or "templates". One usually has to
Introduce some notion of similarity; this will generally involve (1) an
appropriate measure of goodness of fit with the template and (2) searching

for such a match over a set of transformations of either the object or the
template. This type of recognition seems limited, in practice, to patterns
defined by equivalence with respect to modest collections of easily per—
formed transformations — otherwise extensive search and too many templates

would be involved.

A more flexible scheme of categorization Is that of listing "proper—
ties" or "characteristics". A characteristic of an object is the value of

some function from the space of objects into some smaller, more convenient,
rarige. (The values mien be, e.g., numerical, verbal, or even neural

firing patterns. Objects having a common characteristic should tend, of
course, to be heuristically related, e.g., through equivalence under

transformations frequently encountered in the problem area involved.

(refs. 16,21).
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The ordered set of values assigned to a given object by a chosen sequence

of characteristic functions may be called the character, of that object and
may be used as a computed name of the whole set of objects which have that

"character", i.e., have that sequence of properties.

Recognition by (conventional) name of an object is done by matching its

character against a set of standards which now may be very compact, easily

stored, expressions. Here the matching criterion and the templates play a

very small part in the process, and, unless conventional names are required,

they may not be needed at all.

While property lists are quite adequate for many purposes, they do

reflect the use of a number of computations performed independently of one

another. This is not the most efficient way to use computations, and it may

not be adequate for general pattern recognition. Often, the decision con-

cerning which properties are to be examined should depend on the outcome of

previous computations. Consider the case in which we want to recognize the

(topological) pattern of those figures which contain a closed loop. This
particular recognition clearly requires some kind of recursive process
(since topological connectedness is not a local property). The pattern

involved is defined by invariance with respect to a class of transforma-

tions much larger and more complex than is involved in those for the

patterns, e.g., "square" and "circle".

Again, even if we did have a set of properties which could usefully

characterize "single" visual objects, how could we handle scenes containing

a number of such objects? Clearly we want to be able to characterize them

individually, and also characterize their mutual relationships. To do this

in terms of independent properties would clearly be very awkward. But it
would not be very difficult to do it in terms of a program containing

appropriate conditional transfers.

We can expect then that the descriptive expressions, or names of Cate-
tories, will require more than simple lists, at least in advanced systems.
They will have to take the form of complex phrases in expressive languages,

e.g., of fragments of program. Only in this way can we expect to recognize
and express the nature of those most important patterns whose definition

contains a recursive ingredient.
In any case, the success of a recognition program will depend largely

on the adequacy of the elementary characterization operations. In section9

we discuss some of the problems in generating and evaluatingssuch

operations.

5. CHARACTER-METHOD MEMORIES

Each time a subproblem is considered as a candidate for action, it is

important to have access to records based on information concerning
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similar problems, i.e., problems of the same type (character). These
records should be useful in predicting which methods are most likely to
succeed, how much effort will probably be involved, and if possible, what
kind of new sub-problems are likely to be generated. Such records can be
obtained in a number of ways:

5.1. Learning by experience

In the very simplest domains the machine's experience may be summarized

by processes of the "stimulus-response reinforcement" type. In such a pro-
cess there is stored, for each (character, method) pair, a record which
reflects the utility, over the past, of applying that method to problems
having that character. After each instance of such an event, the program

must evaluate the relative success, and aceordingly modify the correspond-

ing utility estimate. (The resulting numbers could be interpreted in
various ways, e.g., as giving a priority ordering for the methods, or

perhaps determining their probabilities of future application.)

The precise details of the way in which this record is up-dated will

constitute a cammittment, on the part of the programmer, about the machine's

basis for inductive inference. For they influence the way in which the
machine's behaviour depends on the evidence acquired earlier in similar

situations.
. For that reason we cannot say, once and for all, which "learning" or

"reinforcement" operators are the most desirable. .Different tasks requires
different standards of evidence. These depend on, among other things, (a)

the cost of acquiring new evidence, (b) the penalty for being wrong, and
(c) the rate at which thesenvironment may be changing - i.e., the way in

which old evidence loses value. The choice of the general form of the

operators has to be made on such bases. Fortunately, the strongly self-

correcting nature of most learning systems makes them insensitive to the

finest details of the operators involved.

In particular one has to decide on how much of the history is to be

recorded and preserved. One might store for each Character-Method pair a

single number representing relative success, or one might store detailed

information about what happened in each such instance. Should one allow

for a possible retreat to an earlier position? Should one record failure

and success information separately? These options always face the

programmer. See Gorn (ref. 25).
The futility of aspiring to an absolute answer to these heuristic

questions can be seen (I think) by examining the evidently equivalent

question - "How can we decide when a question has been properly answered?".

Clearly this question is itself not well-defined until we have chosen
(not discovered!) its answer.

In any case simple reinforcement will be nearly useless in those

problems, like chess-playing, in which a very large amount of effort is
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expended in each trial, e.g., game. One has to obtain much more information
than is implied by success or failure in reaching the main goal. This can
be done by the independent reinforcement of the mechanisms involved in each
of the many subgoals. As Newell (ref. 12) notes, we can reinforce for each
subgoal achieved, the methods directly responsible, as well as the methods
which generated its sub-sub-goals. If such information is to be useful the
machine must, of course, be able to evaluate the utility of the subgoals
with respect to the main goals.

5.2. Advice from the outside

One could also introduce information into the character-method tables

directly from the outside. Each entry in these tables entails an injunction

to the machine of this form: - "In situations of such and such a type, try
such and such a method...". Of course, the ease with which this can be done
will depend on the extent to which the characters in use represent abstrac-
tions familiar to the operator, or to humans in general. McCarthy (ref.9)
discusses this general topic.

Devotees of completely self-organizing systems may feel that this is an
irrelevant, if not objectionable, technique. But perhaps we ought not be so
ambitious as to be able to design a machine which, from the very start,
will have great problem-solving ability. We do not yet know enough about
heuristics. Perhaps we have to first learn how to design machines with
which we can establish effective communication. At this stage we need, at
the least, a channel through which we can introduce suggestions which will
help the machine evolve.

5.3. Guidance through gradation of problem difficulty

In evolutionary systems, the ability to learn to solve difficult
problems usually depends on the opportunities for exposure to sequences of
related problems of graded difficulty, e.g., to a slowly changing environ-
ment. We do not expect systems like those of Solomonoff (ref.23), Newell
et. al. (ref./), or the like, to efficiently solve problems far in
advance of the kind they have already worked. Presentation of a graded
series of problems provides the opportunity to work up sets of simple
heuristics which may later be combined to form more powerful ones. Complex
actions are usually formed of previously available elements; blind search
through the space of complex methods would be as hopeless as exhaustive
search in any other complex problem domain. We note that the presentation
of carefully prepared sequences of problems may be regarded as a form of
(indirect) instruction. Evolution moves rapidly in the presence of a help-
ful intelligence. Thus, in teaching arithmetic, one presents children (and
Solomonoffis machine) first with addition without carries. When that is
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mastered, one can introduce carries; to do this at the start would strain

the available resources for method-generation or concept-formation.

In the very near future we shall be working with heuristic programs of

such complexity that the designers will be unable to keep in mind a clear

picture of their manner of operation. This is already the case in regard to

programs resulting from collaboration, and in the case of some existing

large switching systems. Even so, if we have available a method or channel

through which we can tell how a problem is being attacked, we may still be

able to guide the system with helpful suggestions. But without such com-

munication, we may quickly lose the ability to diagnose, correct, or

improve the operation of the system.

6. PLANNING AHEAD

Before we attempt to solve a problem or sub-problem we want to select

promising methods, perhaps arranged in a strategy or plan. People often do

this by indirect methods involving simplifications or models of the problem.

If the task is to prove a general theorem, we may first try to find a

string of methods which will work in some special case, and later extend

the proof scheme.'In plane geometry we will draw a relatively crude figure

and use visual pattern recognition techniques. In a game one might play

out continuations confined to a limited part of the board; only if some-

thing promising turns up will one examine the rest of the problem in

detail.

Heuristic models need not be consistent in order to be useful. A mathe-

matician can often test the plausibility of a high-dimensional geometric

assertion through the use of 2- and 3- dimensional figures whose

mathematical structure is quite obscure and personal. Much abstract

thinking seems to involve the use of such structures, for which some

calculations may be especially simple, provided that the operator knows

how to steer around the contradictions that may arise. It may be very

difficult to find any single model which reflects all the important

features of a class of problems. But fortunately this isn't always

necessary. For a partial model may serve well on those sub-problems which

themselves don't contain all those features. More detailed examples of

this will be seen later.

Just what is a model? One cannot give an absolute definition of the

relation between an object and a model of it, simply because the adequacy

of the model depends on the questions that one is going to ask it. Perhaps
one should say that A* is a model of A to the extent that A* and A give

similar answers to those questions considered relevant to the current

problem (given suitable codings for the questions). This dependency on a

third party cannot be avoided by phrases like "preserving the essential
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features of the situation"; still, a structure will not be very useful

unless it will serve as a source of models for a range of situations.

6.1. "Algebraic prediction models",

Suppose that the character-method tables have accumulated a body of

reliable predictions concerning (1), which methods are likely to be useful

in solving problems of a given character and (2) the expected distribution

of the resultant subproblems. It may be possible to use this information

in planning ahead, even when the entries do not point directly toward a

solution method. This Is done by finding, in the algebraic structure of

the predictions, chains of methods whose expectation of success is reason-

ably high. No particular formalism is proposed here, but one can imagine

that for each character there is a table indexed by (1) the plausible

methods and (2) the plausible resulting subproblem characters. The entries

contain data concerning (l) the plausibility, and (2) the estimated

difficulty of carrying the method through.

In the most favourable cases the Dredictions will be relatively definite,

asserting that it is good to apply method Mi to problems of type Cj and

that the resulting situation will have character dc. This will tend to

occur in machines which have really well-matched characters and methods.

To the extent that these predictions contain reliable information about

how problems are transformed, it will be practical to look ahead a number

of steps. Naturally, the reliability falls off rapidly with the number of

steps. The important point is that this unreliability is out-weighed, for

a certain prediction span, by the fact that the look-ahead itself is com-

putationally trivial; at each stage it involves only a few table look-ups.

The corresponding application of an actual method to a real problem would

involve a substantial effort. Thus we search through the algebraic

structure looking for predicted solution chains of reasonable reliability,

and we choose those for which the estimated total difficulty is not

excessive.

If such a chain of both reasonable estimated reliability and diffi-

culty is discovered, it will be worth-while attempting to perform the

corresponding methods. Naturally, there is a good chance that the plan

will not work out in detail. But the value of the plan does not then

evaporate. It still retains heuristic value. The chain of methods may

fail in such a way that it can still be repaired locally; one might

eventually invoke, on the basis of experience, a measure of relatedness

between methods, and so explore the chains neighbouring those of the plan.

6.2. ApPlicability

In applying the character-method algebra, one proceeds to look far

ahead, without paying attention to small details, and taking a rather
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optimistic attitude. Perhaps some such technique is required in any system
which can hope to solve complex problems. One has to first lay down a plan

or plausible sequence of major steps, and only then try to fill in the

details. Otherwise one gets involved in hopelessly large search trees.

Whenever possible, we do his by using an analogy or model which is either

very simple or very familiar. But if no such structure is available, we can
try a formal device such as the above algebraic summary of the available

information.

Naturally, if the predictions are unreliable, the model will not be very

helpful. But if this is the case then the machine would have been in diffi—

culty already, since either (1) the characteristics in use don't describe

the situations in heuristically effective ways (so that methods cannot be

efficiently selected), or (2) the machine's learning methods are not

adequate to discover the relations between problem types and successful

attacks.

The plans or chains or predictions could be interpreted as assertions or

generalizations of the form: 'Problems of such and such a type can be

solved by such and such a strategy'. We might choose for the main goal of a

machine, the discovery of reliable statements of this sort. If this were

done in a machine working on mathematical problems, such statements might

take on the form of assertions of metatheorems or deduction theorems.

Clearly the machine would only be asserting such statements, while not

necessarily capable of proving them. But if they had a good record of

validity, this alone might seem impressive. In mathematics, one frequently

gives as much or more credit to the man who first conjectures a theorem as

one gives to the man who later finds a proof; the former may be considered

the more creative achievement.

7. "SEMANTIC" MODELS AND HEURISTIC DIAGRAMS

In order that a model be useful, it is not necessary that it be

especially simple; it may even be of value to use a substitute problem

which is really more complex than the original, provided that we happen to

have more experience and facility in that domain. Consider the behaviour

of a student attempting to prove a theorem in plane geometry. He has been

given a set of basic propositions and is presumed to be able to apply some

(usually unformalized) rules of inference so as to obtain proofs.

Now both the teacher and the student may, and usually do, pretend that

they are operating within the formal system. While they make liberal use

of "diagrams" they like to believe that the diagrams are "mere heuristic

devices" that they could, if necessary, do without. Of course the fact is

that most, if not all, geometers do make use of these diagrams, and if

paper were not available they would construct them. "in their heads".
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Most people find that searching within the logic alone seems meaningless -

they find that the diagrams are really necessary to give any "meaning" or

"Interpretation" to the logical expressions. Without such meaning one can-

not guide or motivate the search. But with the "meaning" we can use our

"geometric intuition"; we can usually tell quite quickly, for example,

whether a proposition is true (and thus save a vast amount of work in

trying to find proofs for false subgoals). This ability represents, of

course, our powerful (informal) resources derived from our spatial

experience.

Thus once the mathematical problem is given a geometric interpretation,

we can bring to bear heuristic methods acquired in a more familiar domain.

A glance at a diagram tells us at once that it is plausible that two lines

are parallel - if there is any doubt it is settled by drawing the figure

again with some variation of the unconstrained relations. The good

geometer may be able to view the figure as a constrained linkage during

such a variation, and thus see whether an apparent parallelism is or Is

not an accident in a particular sketch.

Now such a heuristic diagram certainly represents some kind of

(semantic) interpretation of the problem. But is is important to observe

that these interpretations need not always be strictly consistent with the

logical system as a whole. We may be satisfied with a much more modest

kind of "consistency". For our figure needs to supply interpretations only

for those expressions in the formal work which are under scrutiny or are

likely to arise shortly. If a new expression fails to find an Interpreta-

tion in the figure, then we draw a new one with, perhaps, a few additional

constructed elements. It is far easier to modify figures occasionally than

to try to find one that is completely satisfactory from the start.

Thus in working on a problem, our model need not always be fixed from

the start. We may modify it whenever an important expression fails to find

a meaning. In a geometry theorem-proving program the figure-drawing

process could be under the control of an interpretation unit which would

make the alterations when necessary. (This is reminiscent of the system

proposed by MacKay (ref. ii). A heuristic model may serve well up to the

point where trouble is detected, and even then it may turn out that the

trouble can be ignored with relative safety. Such is usually the case in

practical mathematics; - one seems to stay out of trouble unless one is

seeking it, e.g., in connection with the operational calculus or the

logical paradoxes.

8. A PROPOSED SEMANTIC MACHINE FOR PLANE GEOMETRY

The experimental programming of machines to prove theorems In

Euclidean geometry is of particular interest in connection with the
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possibility of substantial use of the interpretations provided by diagrams.
(The problem is also particularly attractive because of our highly
developed understanding of this interpretation, and because the rather
"natural" language used by geometers is not particularly difficult to put
into a form suitable for computers.) A program of this sort might consist
basically of (1) a logic program, perhaps along the lines of Newell et. al.
(ref.ia), (2) a figure-construction program, and (3) a collection of methods
which interpret logic expressions, find properties of the figures, and
apply the results to control the logical exploration. A program that could
do all this would be quite complicated, and our plans are not yet complete.
Below are discussed a few of the ingredients that promise to be useful.

8.1. Construction methods

Much of the complexity, as well as the richness, of geometry is due to
the large domains of constructions available at each stage; one rarely
finds a proof that can be easily expressed solely in terms of the geometric
elements mentioned explicitly in the statement of the theorem. The new
elements are supplied, of course, by "construction", and in the formal
system, the construction methods may be regarded as additional rules of

inference. If we compare this logic with the one treated by Newell, we see
that the available search trees are comparatively overwhelming, and
clearly we will need powerful heuristics to minimize the consideration of
irrelevant constructions. One might do this by screening proposed con-

structions for "plausibility", just as one might in a chess-playing
program. The program would compute some carefully chosen function of the
set of simple relationships between elements of the figures (with special
weighting on the kinds of relations important in the current subgoals.
Such a program might include some visual pattern recognition techniques,

also discussed below.

Introspection seems to reveal that one does not consider a great many

constructions in the course of finding a proof, and that many of these
are quickly rejected. In addition to the above screening technique, the
program would be limited to a small number of construction techniques,
e.g., those which produce only a small number of new elements or which
have simple symmetry properties.

8.2. Validity tests.

We have already noted (section 7) one important way of coupling the
model to the formal system, in connexton with deciding whether or not a

proposition is true. This could be done by more or less direct measure-
ment with little computer effort. A simple procedure has been found
which takes the statement of a theorem as input and constructs an

appropriate figure in "general position"; this procedure works for the
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great majority of theorems in Euclid. It fails on a few, for which an

approximation method can be used. The accuracy required is not large, for

if two angles or segments differ by very little there would be no great

risk in assuming their equality. It is important to observe that an error

in the interpretation programs will not induce the machine to present

false proofs; an error will only tend to mislead the main program and make

it more difficult to find a correct proof. It should also be noted that

confining the logical search to the study of propositions which have been

shown (by the semantical methods of this section) to be true statements

does not in itself make trivial the problem of finding proofs for

difficult theorems. It is, however a crucial heuristic step in reducing

the otherwise hopelessly large search through the expressions of this big

logical system.

8.3. Pattern recognition methods.

Another use of the figures suggests itself in connexion with the problem

of characterizing situations and choosing methods. For once a subgoal has

been chosen, a glance at the diagram will often tell the student how to

proceed. He recognizes within the diagram certain patterns which suggest

the application of particular methods. Thus, if the subgoal is to prove

that a certain pair of angles are equal, the student will become alert to

certain configurations of parallels and transversals, congruent or similar

triangles, or appropriate patterns involving arcs. (He will recognize these

configurations long before he can logically establish their character.) It

will not be particularly difficult to program these recognitions. The pro—

grammer has the choice of representing the diagrams within the machine

either in an abstract algebraic form, or as a real punctate visual pattern.

The former is, of course, more convenient for formal manipulations, and the

latter would be a valuable aid for the programmer for communicating with,

and understanding what is happening within, the machine.

8.4. Characters.and methods.

The author has hand—programmed the machine to the point that it can

handle some of the early theorems of Euclid with reasonably efficient

search processes. In the early stages it seems sufficient to characterize

problems in terms of their goal relations. Thus theorems are classified

simply according to whether they assert that two angles are equal, two

lines equal, one line twice another, etc; The methods, too, in the early

stages can be simply described. Thus to show that two angles are equal, the

character—method tables will list, in order of descending priority, methods

whose goals are to (I) show that they are in congruent triangles, (2) in

similar triangles, (3) are alternate interior angles, etc. (The proper

order is not yet known; they must certainly follow the Euclidean order of
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generation, and an important part of the program will contain the methods
which decide when the assertions of earlier proven theorems should be
incorporated into new methods. This machine will probably be supplied, from
the start, with deduction metatheorems which can so exploit earlier results.
Later, one can try learning programs for each of these things.)

Each method may itself generate a sequence of subgoals. Thus the first

method we mentioned was one which tries to show two triangles congruent.
Subgoals for this would be to (1) show equality of two corresponding sides

and included angle, (2) three corresponding sides, etc. The very first test

of this proposed initial priority structure actually obtained a proof

unknown to the author and nearby associates.
The first theorem attempted was the proposition: The base angles. of an

isoceles triangle are equal.'The character—method tables generated the
following steps; In ABC, with AB equal to AC, we are to show that two
angles (B and C) are equal. Goal: Are they in congruent triangles? (What .

triangles are they in? ABC and AC3.) Can we show these congruent by "side—
angle—side"? Yes. (BA,A,AC matches CA,A,AB!) Q.E.D. Most students prove
this theorem by constructing the median and proving (easily enough) that
the two inner triangles are congruent.

While this doesn't really tell us much about the power of the basic

schemes used, it does point out an interesting property of such machines.
They need not become so confused as do humans in "degenerate" situations;
the student feels uneasy about using the same triangle in two ways at the

same time. This does not point to any basic difference between people and

machines, however; when more powerful heuristics are programmed, we will

not be surprised if the machines too become confused in the special cases

in which the internal models fail to give unambiguous representations of

things.*

*NOTE. Most of the remarks in this section were based on multilithed
notes distributed by the author at the Dartmouth Summer 1956 Artificial

Intelligence Project which was supported by the Rockefeller Foundation

(with the author attending as a member of the M.I.T. Lincoln Laboratory

and also of the Harvard University Society of Fellows). Since then work

along these lines has been under way on a program for the IBM 704 by

H. Gelernter and others in N. Rochester's group at the IBM Research

Laboratories. The work of the latter group will presumably be reported

elsewhere. It will be some time before the author's program will actually

run on a computer. The actual coding is awaiting construction of a suit—

able programming language and compiler.
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9. THE GENERATION OF CHARACTERS AND METHODS
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An intelligent system should have the ability to learn to solve more anciN4

more difficult problems as it gains in experience. Such a system ought to

be able to increase its resources when necessary, e.g., through the creation

of new and/or better characteristics and methods. How can such resources be

invented?

One could legitimately regard this as just another kind of search

problem — a method, or a characteristic, is just a fragment of program. If

we had a way of deciding when such an object was useful, then we could, in

principle, search through the space of programs. As usual, to attempt such

a search without having powerful heuristics, would be folly. How can such

a search be made reasonable?

9.1. Theories, or. hierarchies of comPlexity

An ancient and still attractive idea is that of trying the simplest

methods first, and progressing through successively more complex techniques.

It would be easy to make this more precise if there were available an

acceptable theory or effective method of enumerating methods (or programs,

or machines, or logical expressions) in order of simplicity. A number of

such rankings have been proposed; these are too numerous to mention here

and none of them may be said to give much practical guidance..

In this connection the results of recursive function theory, in estab;-.

lishing hierarchies of relative solvability classes, are certainly

suggestive. The trouble is that all of the computable functions get lumped

into one base category. Perhaps these "transfinite techniques contain ,

ideas which could be used to make finer and more useful distinctions with—

in the basic class of computable functions. Time will tell.

9.2. Invention based on a measure of similarity.

For want of an absolute ranking of methods, one must, as always, fall

back on the basic heuristic principal: Try methods that are similar "in an

appropriate sense" to those that have been successful in the past. Each

problem domain has, of course, Its own structure, and its own relevant

kinds of similarity. In each domain it turns out that, once the available
methods.are designated by eipressions.in some chosen language, then, for
better or for worse, particular "notions of similarity suggest themselves.

Suppose, for example, that the methods are to be described by programs

' in the order code of a particular computer. Then we might take two

programs to be "similar" to the extent that they have, or share, common

instructions. This idea was explored in an interesting program due to

R. Friedberg (ref.5). The method did not seem to work out as a powerful
heuristic generator in itself. Presumably, a powerful method generator of
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this kind would have to be able to detect those larger fragments of program
("subroutines") which act as more or less separate entities (performing
isolable functions). The detection of such entities constitutes in itself
a major problem in inductive inference, of course. The author knows of at
least one effort under way to work out a program along these lines (ref.18).

9.3. Assembly from smaller.elements.
It is clear that ordinary elementary machine instructions are too small

to serve well as basic terms in languages which can conveniently describe
methods. Perhaps such schemes will be much more effective when operating on
the expressions of the more powerful programming languages under develop-
ment. The most effective kinds of schemes are those in which the methods
already known to be useful can be "factored" into relatively large common
parts (raising again the kind of problem involved in detection of sub-
routines). Two examples of generators of apparently high heuristic power
are described in the works of Selfridge and Dineen (refs.4,15,16,17), and
Solomonoff (ref. 23).

9.4. The model ofSelfridge and Dineen
The target of this program is to obtain, for the purpose of recognition

of visual patterns, a property list description of the type discussed in
section 4 above. What is interesting here is the manner in which it Is
proposed that new characteristics be generated. ,

The program starts equipped with a basic set of "elementary" transforma-
tions AI' each of which is an operation or transformation which operates on
one picture to produce another. These elementary operations might include
such potentially useful operations as extraction of boundaries, detection
of vertices or line segments, intensification of contrast, filling of
hollow figures, and the like. The machine may apply to a given figure any
sequence,of such elementary operations, each working on the figure result-
ing from the previous application.

Now each such sequence could be regarded as a particular transforma-
tion, so that (starting with a finite base) there is available an infinite
variety of picture-transforming. operations. Each of these can be converted
into a "characteristic" or "property" by following it, e.g., with any
function from the space of pictures to the integers. The "blabbing"
operation, which replaces a picture by the number, Or separate objects in •
the picture, was chosen for this purpose.

It would be impractical to generate trial sequences either by enumera-
tion or at random. As Selfridge remarks, we want to try new sequences
which are like those that have already Proven their worth. Determining
the value of a characteristic does not pose any particular problem here;
one might compute the correlations between,the names of pictures and the
values of a given characteristic.
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The proposed generation scheme is this; the machine will collect data on

the transition properties of the sequences of established utility, and

build new sequences for trial on the basis of these transition data. The
occurrence of a relatively large coefficient would tend to indicate the

presence of something like a subroutine. It would be remarkable if such a

generator did not perform much more efficiently than one based on random

selection. It may be noted that if one of the elementary operations is

itself useless or destructive it will automatically be retired. A worthless

but benign operation will be retired, but more slowly. Thus one could

occasionally add new elementary operations, if desired.

This promising approach to pattern recognition has never been followed
through in full detail, to the author's knowledge, The author has been

able to explore some of the properties of these sequences, with the help of

a much faster computer than was available to Selfridge and Dineen at the
time their work was done, and my results bear out their contention that

this way of generating new characteristics is very effective. Further

interesting work along this line is reported by Kirsch et. al. (ref.6).

9.5. Solomonoff's.proposed Inductive Inference Machine

tach of the method-creation schemes discussed above may be regarded

(although the reader is not compelled to do so) as operating on the

expressions or strings of a method-describing language. The probably use-

ful methods are obtained by reshuffling in various ways those terms and

other grammatical structures that have already been outstanding. As

experience accumulates, it might be desirable to revise the language,

e.g., by assigning briefer names to the more useful linguistic objects.

The generating schemes of Solomonoff, working on a different class of

problems, are much more difficult to describe in brief, and we must

refer to his original paper (ref.23). The difficulty is twofold; his
elementary structures are two-dimensional, and the published description

is not complete in all details. A revised version is expected to appear

in an early issue of the Journal Information and Control. The proposed
mechanism is quite complex, and can be summarized only incompletely here.

The machine is tb be given a sample collection of correctly worked

examples of (initially simple) mathematical problems. It is then given I/

some uncompleted problems and required to supply the missing parts. To

do this, it must be able to discover the meanings of the symbols involved

and learn how to use them. This is a prototype problem of the sort in

which the task is to make an acceptable generalization about a body of

available empirical evidence.
Now as we know, there is no possibility of finding a method of con-

structing generalizations which will always remain valid. The machine may

be able to learn the meaning of the symbol for addition in the context of
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problems which do not require "carries". But this interpretation, or
generalization, about what the symbol means will certainly turn out to be
incorrect as soon as the machine is given addition problems which do
require carries. When this happens, the "empirical utility" of the now
incorrect generalization must drop to zero. It has no further value in the
role of finding solutions. But it would be disastrous if the machine had
then to start again from the beginning. The "patterns" involved in addition
with carries are very complex (since the most significant digit of the
answer is a function of all the digits of the summands). Fortunately, as
Solomonoff observes, even when a generalization loses all predictive value,
it may still have precious heuristic content, e.g., for the generation of
new hypotheses. The next discovery may be accomplished through a relatively
small variation of the otherwise discredited structures. To exploit this
value, one must of course have some method of building new structures out
of old ones, and the body of the paper under discussion is concerned with

proposals in this direction.
In connection with the problem of constructing administrative methods

to manage these techniques, it turns out that one must deal with at least
two distinct notions of utility: (1) the relatively straightforward notion

of an empirical or predictive utility, and, (2) some kind of a priori
estimate of the utility that a structure will have in its role of generat-

ing new structures. The forthcoming version of this proposed program will

attempt to formulate in mathematical form some of the properties required

of these functions.

9.6. Structural similarity and network machines.

Most of the systems discussed up to this point may be regarded as

dealing with rather clear-cut syntactic processes involving the manipula-

tion of symbolic expressions. But other kinds of adaptive machines have

been studied for which there seem to be no such natural linguistic

descriptions. These are the "network" machines which are composed of large

assemblies of interconnected components, many of which may be operating at

one moment. The variations of behaviour, the source of new modes of

operations, are obtained from local variations in the properties of and

the interconnections between the elements or "cells". In such machines,

the cells may be simple and more or less similar to one another, as in the

so-called "neural-net" models, or they may be specialized and individually

relatively powerful, as in the "pandemonium" schemes of Selfridge (see

this volume). In the neural-net models (to which this discussion is con-

fined) the interconnections are often supposed to be organized in a

rather loose way on the local level; more precise specifications may be

made about how larger sub-assemblies are put together.
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The motivation for the study of such machines is at least threefold.

First, people feel that the brain must be such a machine, so that eventually

we shall be bound to make such studies. Second, we may have here a sort of

"natural" source of heuristically useful behavioural variations (useful if

we can find ways to reinforce those that we prefer) and the problem is thus

of interest from the purely artificial intelligence viewpoint. Finally it is

clear that for reasons of speed and economical use of components we shall

eventually be forced into the use and study of "parallel" machines.

The variations (and the associated notion of similarity) are derived

from local variations in the properties and interconnexions of the

individual cells, and it is hoped that these changes on the "microscopic"

level will lead to heuristically useful variations on the gross behavioural

level. It is well known that this would be a very poor concept to apply to

machines like modern computers which are designed so that local variations

produce very large behavioural changes. ("Large" has to be interpreted in

an appropriate heuristic sense.) We are very nearly forced to the con-

clusion that this kind of variation can be useful only in machines.whose

exact connexions. don't much matter from the beginning. This, I think, is

the reason that proposals of this sort have so often been concerned with

varieties of "locally random" machines. One should add, of course, that

there is general agreement that the genetic control over brain structure

is probably not precise enough to permit much more highly organized

alternatives. Among the proposals of this sort are, for example, those of

Hebb (ref.8), Farley and Clark (refs.20), Minsky and Edmonds (ref. 10),

Rochester et. el. (ref.19), and Rosenblatt (ref.20 ).

It has been shown, in all these ways, that it is possible to obtain

elementary learning and other kinds of adaptive behaviour (including

various reinforcement, association, and servomechanical modes) from these

locally random or "self-organizing" nets. We cannot escape the feeling

that, if really sophisticated behaviour is. desired, there must be some

way in which the system can acquire highly developed hierarchies.of

organization; that there must develop some kind of relatively substan-

tial physical representation for higher order concepts. Most of the net

theorists who were not satisfied with the simplest forms of learning have

tended in this direction,, usually by trying to show that fragments of the

net will tend to become grouped into, functionally unitary entities. This

was first made plausible by Hebb, who formulated the first reasonably

sophisticated, if rather incomplete, theory; he named these functional

groups "cell-assemblies". These cell-assemblies are themselves supposed

to represent heuristically useful concepts, e.g., individual characteris-

tics of stimuli, and higher order concept-formation is to occur through

the development of useful connexions between them. Although at first the

development of satisfactory theories about such structures appears nearly

hopeless, it would not be too surprising if, once we have mechanisms for
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the formation of simple concepts as physical sub-structures, the remaining
heuristic theory would not be very different from the kind concerned with
the formal or linguistic models. One might soon need have little concern
with the underlying nets. This is one reason why the author feels that,
even for those whose central interest is in unravelling the mysteries of
the brain, it might be well to devote a major share of the effort, at the
present time, to the uhderstanding and development of the kind of
heuristic considerations that some of us call "artificial intelligence".
There seems to be no real danger, at the moment, that we are going to be
overwhelmed with so many plausible theories of how people might think,
that we would not be able to choose from these a few which might help in
the understanding of "natural intelligence"!
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DISCUSSION ON THE PAPER BY DR. M. L. MINSKY

PROF. VAN SOEST: I am very much impressed by so many most interesting

papers presented to this symposium, one of which being that of Dr. Minsky.

It is of great value forme to come into contact with others working in the

same sort of field as we are doing at the Technical University at Delft.

Our aim there is to look for useful and efficient combinations of pure

logical machinery with machinery having some degree of intelligence. The

pure logic machine, in some cases, can be too complicated, maybe too expen—

sive. The other type, equipped with trial and error and with learning

behaviour could be too wasteful in time. It is a search for a reasonable

harmony in combining both together. As a very preliminary example indeed,

we have built, among others, an apparatus determining the design character—

istics of an electromagnetic transformer of which a priori, a few data have

been given.

I completely agree with Dr. Minsky on his views on a definition of

intelligence and creativity. Doing otherwise, demonaical thoughts of the

outer physical world are too easily introduced, confusing the straight—

forward way in which research in this field seems to be necessary.

A problem related to the topics of Dr. Minsky's paper is of particular

interest to me. It is a problem of systematics and taxonomics, say in

botany: the identification and recognition of species. Biologists use a

complexity of means for this purpose, the most powerful, and the most

extensive at the same time, being the use of identification keys, generally

of a tree—like structure, as mentioned by Dr. Minsky In para. 3.1. Those

keys only can represent in a useful way if the definitions used are sharp,

and if the plant material in study is complete enough. If not, the botanist

has to take other considerations into account.
An example for this is the use of pictures or figures in audition to the

language written or printed keys. They deliver a pattern recognition in a

better way than is possible with a rather short text. See Dr. Minsky's

paper, para. 3.4.
Very often the identification key is not composed in the most scientific

way. Say, for instance, that fruit characteristics are predominant, but

that in practice fruits very often are not available; if a first split—up

in the tree structure of the identification key depends on it, this will
not be very useful at all. So a transformation in key—characteristics,
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often to vaguer ones, is necessary; see Dr. MInskyls paper para. 3.3. I
could continue to show the resemblance with Dr. Minsky's problem.

There exist three ways to improve, by some mechanisation process, the

identifications in question. Firstly; to change the existing key into a,

maybe, totally automatic machine that observes colours, patterns and so on.

The technology to reach this may be difficult, but it is not impossible.
It does not so much belong to the items of this symposium, perhaps. I
would go over to the second point, to develop a machine that has the
property of pattern recognition in order to compare identification-key
results with pictures and other figures. Thirdly, to develop methods with
which a machine, exactly in the way as an author-taxonomist has to do,
can compose such keys. A priori, the whole knowledge of the species and
their variability concerned has to be put at its disposal.

How can all this be done? I am studying very carefully the general
philosophy of how the botanist is doing this work himself, and how this
analytical process takes place in him. The ideas explained by Dr. Minsky
are relevant to all this, and important and stimulating for my study. I
wish him all success with his geometrical model.

DR. H. B. BARLOW: I am impressed by the fact that Dr. Minsky does not
seem to put forward any ideas as to the general nature of intelligence, or
about the end towards which it is normally directed. He is concerned with
a particular manifestation of it -- that which enables a person to prove
simple geometrical thereoms for instance -- and as I understand him he is
trying to get this capacity incorporated into a machine. But this is an
advanced manifestation of intelligence which is beyond the powers of many
human brains. In other words, isn't Dr. Minsky trying to put the thick end
of the wedge into his programmes?

People Seem agreed that, in their present form, high speed digital
computors are fantastically "stupid";,it would therefore seem logical to
try inserting the thin end of the wedge first. A task which seems to me to
require such elementary "Intelligence" would be the processing of data so
that they can be displayed or stored more economically. At its simplest
this is an easy task, but it links up directly with Ernst Mach (ref.1)
and Karl Pearson's (ref.2) contention that "Economy of Thought", or the
economic description of observations, Is the essential activity of
science.
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The programming of such tasks might throw more light on intelligence

than the programming of problem solving routines.

DR. L. C. PAYNE: I should first like to congratulate the author on what I

thought was a most stimulating paper. I have about five points to make and

five minutes to do it in, and each of them really requires a paper on its

own to do it justice. Although there are extremists on both sides I don't

think anyone is under any illusions about whether a machine can think in

the same sense that a human being can think. We are here this week to

discuss the role of data processing and control systems. Nearly all

important control systems depend on the flow of formation in closed loop

systems — what might be described as data processing circuits — and such

loops generally embody the human brain as the processing mechanism of the

loop. What we are trying to do is to find how effectively we can replace

this by computing techniques. Simple and familiar examples of first

attempts in this direction are the thermostat using one bit of information,

and analogue circuits with linear feedback. The problem is, in what way,

and to what extent, can we complicate the data processing part of the

servo—loop so as to achieve more sophisticated forms of control along the

lines suggested by Dr. Sutherland; that is doing less than completely

emulating a human being, but perhaps doing something faster or for less

cost, which is certainly a sufficiently limited first objective.

I believe that starting in this modest way it is realistic to hope that

further developments will lead to equipments that simulate thinking more

and more. The grounds for this belief will be clearer if I start with a

fairly large generalization and show how it can be narrowed and focussed
to manageable proportions. -

The essence of all scientific activity, what we call the application of
scientific method, is talking consistently about what we have observed.
This activity distils itself into the laws of science. With these rules —

they might be called programmes — the human brain operates. With the

rules of, say, Newton's Laws of Motion, a brain can evaluate the motion of
a projectile without going through the original labour of Newton. This is
analogous to a computer, which once loaded with a set of rules — a
programme — can evaluate results without going through the original labour
of drawing up the rules — or programme. The human being can therefore be
regarded as a digital computer Par excellence; his inputs are the very
diverse sensory inputs, not nearly so simple as punched paper tape and such
like, and many orders more subtle. His data processing element — his brain
— can draw from the whole "library" of systematized knowledge that we call
science. He can draw from Newton's "subroutines", or Darwin's or anybody
else's, by which to process the sophisticated input data. Furthermore, he
can then output it in a very complex way through elaborate muscular actions,
which make punched and magnetic tapes look very primitive indeed.
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That is certainly a large generalization, and I do not want to pursue

it; but I think it gives hope that we can go a long way in making control

loops with sophisticated control elements simulating human control. As

A.N. Whitehead said in "Science and the Modern World","it is the large

generalization limited by the happy particularity which is the really

fruitful conception". Having sketched a rather large generalization I

would now like to particularize it, to bring it down to earth and link it

with what is being, and could be, achieved.
We may define intelligence, in a way which is perhaps less than adequate

to a philosopher but certainly good enough to recognise intelligence, as

the ability to discern relationships both analytically and synthetically.

The analytical, of course, we associate with the deductive mode of human

reasoning, and the synthetic is what we call the inductive mode of human

reasoning. The mechanical nature of deductive reasoning has been recog-

nized for a long time; a person trained exclusively in this process, such

as many mathematicians, do not make very successful research workers, at

least to begin with. The power of deductive logic in tackling new problems

is very limited, and indeed mathematics tend to follow in the wake of new

developments rather than in the nn. As my Cambridge professor aptly put

It, "mathematics is no substitute for clear thinking". However, once rules

are established, and I have maintained that scientific activity is simply

consistent rule making about observed phenomena, deductive logic can

elicit many latent ramifications which are by no means immediately

obvious. Further, when science has found rules, for example the physics of

colour, we do not think it has failed in its object because subjective

experiences, such as redness, are no part of the rules. Similarly, I
think eventually, rules will be found for human intelligence so that
machines built on those lines can simulate intelligence. I suggest that
these will be no less complete because they do not treat the subjective
experience of intelligence; and that the arguments that a machine can not
be intelligent because it can not feel or experience intelligence as we
feel it are irrelevant. Once such laws are found, doubtless they will
become more and more refined as the science of intelligence becomes
established. Deductive logic applied to such laws may elicit many ramifi-
cations which engineered into programmes will doubtless give the appear-
ance of subtlety to many machine decisions.

However, one feels much less optimistic that a machine will simulate
the inductive mode of reasoning, especially of the kind that we call
intuitive insight. This constitutes the essence of originality and
creativeness which we tend, perhaps rightly, to regard as more essentially
characteristic of human intelligence, than the mechanical-like processes
of deduction. Inductive inference Is controversial, and some people lAnuld
contend that there are no systems for induction. However there is one
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system which Sir Ronald Fisher calls the fiducial argument (ref.1). It

only applies to a restricted class phenomena but it is a mode of induction

which is logically sound and watertight. It could therefore be programmed

into a machine so that one class of inductive inferences could be made by

machine. This is a start. I think any intensification of the study of

induction which could result in further systemization would greatly extend

the ability of computers to emulate inductive mode of human reasoning.

There is one thing more I would like to say on this subject of induction,

or the synthetic aspect of human reasoning, that is that a good part of

research, of solving problems, is formulating them in such a way that a

solution is possible. This should make us very sceptical about a machine

solving problems in the more general sense.
The history of science, for example the hereditary process, is punctua-

ted with wrong questions, metaphysical propositions which only yielded,
ground when a scientific approach was adopted. I think a lot of obscure
metaphysical thinking surrounds discussions of intelligence today. With a
truly scientific approach, a single new concept can clarify the air
considerably, making further progress possible, and other questions
meaningful. I think it Is possible to advance in a similar way with human
Intelligence and ,that with the rules or laws established, that is,
intelligent behaviour logically systematized, we can look forward to
engineering these rules and having machines acting as intelligently as we
understand the mechanism (If intelligence at any given epoch.

DR. M. L. MINSKY (in reply):
I. (to Prof. van Soest) I wish to thank Prof: van Soest for his kind
remarks. The problem of taxonomic retrieval is a challenging one and
mechanization of the composition of keys would require a powerful combina-
tion of resources. Prof. van Soest's second proposal -- to mechanize the
comparison between a real visual object and a set of diagrammatic
representations or pictures --is an interesting one and I wonder how this
task would compare in complexity with the more usual problem of characteri-
zing objects in terms of symbolic descriptions or names.

2. (to Dr. Barlow) I am surprised that Dr. Barlow feels that it is somehow
wrong to attack the more impressive manifestations of intelligence. The
apparent "stupidity" of digital computers is, of course, only a reflection
of the things that their programmers make them do (or know how to program).
Accordingly, most computers spend most of their time either on conventional
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numerical calculations or indeed on the processing of data so tliat it can
be stored or displayed more efficiently. To be sure, an intelligent

system will need a powerful data retrieval facility, if it has to work in

an area whose problems require. large amounts of storage. But a retrieval

system alone, i.e., one not concerned with the meanings of the data, will
not be intelligent: one cannot forever avoid the intellectual structures

involved in the strategies and techniques of problem—solving.

I think there is some misunderstanding about the reasons for the choice

of problem domains in the earlier "artificial intelligence" programs. It

is true that these have tended to be concerned with problems of formal or

mathematical character. But this was not done as a deliberate attempt to

simulate the most "advanced manifestations" of intelligence. On the

contrary, such problems have been chosen for their relative clarity and

simplicity! And they bring out the problems of strategy with a minimum of

concern for ordinary data—processing and retrieval routines. Indeed, we

have found it more difficult to deal with the "ordinary" manifestations of

intelligence that the "extraordinary" ones of games and mathematical

problems. In the work on the "Advice—Taker", Dr. McCarthy and I hope to

make some attempts on this retrieval problem that Dr. Barlow has raised.
The system will have to file advice away in a manner which reflects what

Is known about its relevancies.

3. (to Dr. Payne). I feel that Dr. Payne is over-pessimistic in two

respects. The first matter is connected with the desire for a logically
sound, watertight, basis for inductive inference. Now everyone should

agree that we cannot expect to find an absolute basis for inductive

inference. (See my paper, 5.1). For the appropriate inductive inference

basis depends on the universe in which we are embedded, and this in turn

can be hypothesized only through an already assumed basis of inference.
Clearly for either men or machines the basis of induction must be
empirical and heuristic; suitable for some universes and not others; and

only partially suitable for most (including, presumably the one in which
the machine will actually find itself). Now I think that everyone will
also agree that the problem of mechanization of inductive inference is
indeed basic to the artificial intelligence problem. If we are realistic
about this we see that we need not and must not concern ourselves with the
question of absolutes but can attend instead to the practical problems of
1) formulating heuristically useful (pragmatic) bases and 2) effectively
mechanizing them. The same is true of-the problem of pattern—recognition
or categorization.

I disagree with Dr. Payne in a second matter (we have no real quarrel
on the first) concerning our guesses about how to proceed and what we can
expect to achieve. It may seem like common—sense to say that scientific
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procedure requires that each phenomenon be well-understood before more

complex systems can be effectively studied. But one must be cautious

about such assertions when one is in an essentially engineering domain.

Obviously Mechanical Engineering goes far beyond what can be inferred on

the basis of present-day chemical theories of structural materials. And
the latter, as we all know, goes far beyond what can be inferred from the

state of atomic physics, etc. Similarly, I believe, the overall flow

diagrams or "principles" of some complex intellectual processes can

profitably be studied without full attention directed at the fine structure

of, e.g., some of the "learning" sub-processes. For one thing the fine

details of the sub-processes may not have very much influence on the over-

all performance of the system. For another, we will be in a position to

evaluate the significance of various proposed sub-processes only when they

are embedded in larger systems involved in really respectable performances.
We have to be careful not to attack problems that are really too simple.

Otherwise our models will perhaps not tell us anything new or, more

serious, not tell us whether the methods that we have tried are really
extendable to more challenging problems. This extensional inadequacy Is a
property of most present-day psychological models of elementary learning
and association. They can be as elaborate and mathematical as you like,
but they simply don't suggest what to do when, e.g., the rewards are

contingent In en interesting way on what the creature might do. This is
because they summarize, in a "scientific" way the data obtained when
experimental animals are challenged with perfectly trivial problems. As
logicians, perhaps, we ought to "walk before we can run" but, as engineers,
we must run just as fast as we possibly can: Science will stop if we wait
to allow the "foundations" catch up with the pragmatic theories!

Now what I am maintaining is that Dr. Payne is over-pessimistic in his
statement that "we can look forward to...having machines acting as intelli-
gently as we understand the mechanism of intelligence at any given epoch".

Let me explain my position with a few remarks on the question of systems
design and the problem of how one is to understand how very complex pro-
cesses work. These remarks tie in very closely with those of my colleagues
John McCarthy and Oliver Selfridge. (See Session 1, paper 3 and Session 3.
paper 6). If you will examine the systems proposed in these papers you
will see that underlying each of them is a deliberate attempt to show how
one might be able to create large systems without actually understanding
them in full "chemical" or "atomic" detail. (As a visitor I must bow to
your great humorist who has so relentlessly shown us how to do so many
things "without actually" doing anything much at all. In America there is
rising, among those connected with computers, a science called "Research
Simulation" which seems distinctly related to this.) .

The idea is that we' hope to be able to build up some very complex
structures with these systems by use of Ompirical, heuristic, evolutionary
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techniques. These techniques depend critically on being able to observe

the system in operation and make srall changes In the desired direction.
Both the Pandemonium and Advice—Taker systems are expected to be capable
of tolerating such interference: in the first by alteration of the "sub—

demons" and in the second by addition of general advice to handle new

classes of situations. The hope is that in the usual case this inter—

ference can be tolerated without extensive revision of the system. We are

prepared to find that as these modifications accumulate we will lose our

detailed understanding of all but the more general principles of the

system's operation. But we should learn, so to speak, the art of steering

such evolutionary processes into levels of performance well beyond what

we could reasonably hope to obtain through any kind of analytic solutions

of systems equations (if any exist).

CHAIRMAN: I wonder whether, in your last few minutes you could say a

little bit more about the word 'heuristics', as that is something which is

not quite clear. It appears that in,different papers the word is used in

rather different senses. We would be very grateful if you would say a

little about its use.

DR. M. L. MINSKY: By "heuristic" we mean to refer to things related to

problem solving. In particular we tend to use the term in describing rules

or principles which have not been shown to be universally correct but which

often seem to be of help, even if they may also often fall. The term

"heuristic program" is thus used in reference to the distinction between

programs which are guaranteed to work (and are called "algorithms") and

programs which are associated with what the programmer feels are good

reasons to expect some success. The term "heuristic" has come Into use as
a noun as well.. We ask someone "what heuristics does your program use?"
and he answers with a listing of particular tricks, short—cuts, inductive
bases, and the like, regarding each heuristic feature as an Individual

"heuristic".

(The term has been much used by Polya, whose pioneering work on problem—
solving and induction is, It seems, being widely neglected at the present
time. (ref./),The reason for this neglect is, I think, the Polya's
writing is actually so rich in unsystematic heuristic suggestions that

one's own attempt at systematic development is overwhelmed. As the field
becomes more organized we will be more able to exploit this great quarry
of insight.)
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