EMPIRICAL EXPLORATIONS WITH
THE LOGIC THEORY MACHINE:
A CASE STUDY IN HEURISTICS

by Allen Newell, J. C. Shaw, & H. A. Simon

This is a case study in problem-solving, representing part of a program
of research on complex information-processing systems. We have specified
a system for finding proofs of theorems in elementary symbolic logic, and
by programming a computer to these specifications, have obtained
empirical data on the problem-solving process in elementary logic. The
program is called the Logic Theory Machine (LT); it was devised to learn
how it is possible to solve difficult problems such as proving mathematical
theorems, discovering scientific laws from data, playing chess, or under-
standing the meaning of English prose.

The research reported here is aimed at understanding the complex
processes (heuristics) that are effective in problem-solving. Hence, we are
not interested in methods that guarantee solutions, but which require vast
amounts of computation. Rather, we wish to understand how a mathema-
tician, for example, is able to prove a theorem even though he does not
know when he starts how, or if, he is going to succeed.

This focuses on the pure theory of problem-research solving (Newell
and Simon, 1956a). Previously we specified in detail a program for the
Logic Theory Machine; and we shall repeat here only as much of that
Specification as is needed so that the reader can understand our data. In a
companion study (Newell and Shaw, 1957) we consider how computers
can be programmed to execute processes of the kinds called for by LT, a
Problem that is interesting in its own right. Similarly, we postpone to later
Papers a discussion of the implications of our work for the psychological
theory of human thinking and problem-solving. Other areas of application

109

110 ARTIFICIAL INTELLIGENCE

will readily occur to the reader, but here we will limit our attention to the
nature of the problem-solving process itself.

Our research strategy in studying complex systems is to specify them in
detail, program them for digital computers, and study their behavior
empirically by running them with a number of variations and under a
variety of conditions. This appears at present the only adequatc means to
obtain a thorough understanding of their behavior. Although the problem
area with which the present system, LT, deals is fairly elementary, it
provides a good example of a difficult problem—Ilogic is a subject taught
in college courses, and is difficult enough for most humans.

Our data come from a series of programs run on the JOHNNIAC, one
of RAND’s high-speed digital computers. We will describe the results of
these runs, and analyze and interpret their implications for the problem-
solving process.

The Logic Theory Machine in Operation

We shall first give a concrete picture of the Logic Theory Machine in
operation. LT, ot course, is a program, written for the JOHNNIAC, repre-
sented by marks on paper or holes in cards. However, we can think of
LT as an actual physical machine and the operation of the program as the
behavior of the machine. One can identify L'T with JOHNNIAC after the
latter has been loaded with the basic program, but before the input of data.

LT’s task is to prove theorems in elementary symbolic logic, or more
precisely, in the sentential calculus. The sentential calculus is a formalized
system of mathematics, consisting of expressions built from combinations
of basic symbols. Five of these expressions are taken as axioms, and there
are rules of inference for generating new theorems from the axioms and
from other theorems. In flavor and form elementary symbolic logic is
much like abstract algebra. Normally the variables of the system are inter-
preted as sentences, and the axioms and rules of inference as formaliza-
tions of logical operations, e.g., deduction. However, LT deals with the
system as a purely formal mathematics, and we will have no further need
of the interpretation. We need to introduce a smattering of the sentential
calculus to understand LT’s task.

There is postulated a set of variables p, q, v, . . . A, B, C, . . .,
with which the sentential calculus deals. These variables can be combined
into expressions by means of connectives. Given any variable p, we can
form the expression “not-p.” Given any two variables p and g, we can
form the expression “p or g,” or the expression “p implies g,” where “or”
and “implies” are the connectives. There are other connectives, for example
“and,” but we will not need them here. Once we have formed expressions,

THE LOGIC THEORY MACHINE 111

these can be further combined into more complicated expressions. For
example, we can form:!

“(p implies not-p) implies not-p.” (2.01)

There is also given a set of expressions that are axioms. These are taken
to be the universally true expressions from which theorems are to be de-
rived by means of various rules of inference. For the sake of definiteness
in our work with LT, we have employed the system of axioms, definitions,
and rules that is used in the Principia Mathematica, which lists five axioms:

(p or p) implies p (1.2)
p implies (g or p) (1.3)
(p or q) implies (q or p) (1.4)
[p or (g or r)] implies [q or (p or r)] (1.5)
(p implies g) implies [(r or p) implies (r or g)]. (1.6)

Given some true theorems one can derive new theorems by means of
three rules of inference: substitution, replacement, and detachment,

1. By the rule of substitution, any expression may be substituted for
any variable in any theorem, provided the substitution is made throughout
the theorem wherever that variable appears. For example, by substitution
of “p or g” for “p,” in the second axiom we get the new theorem:

(p or q) implies [q or (p or g)].

2. By the rule of replacement, a connective can be replaced by its defini-
tion, and vice versa, in any of its occurrences. By definition “p implies q”
Mmeans the same as “not-p or g.” Hence the former expression can always
be replaced by the latter and vice versa. For example from axiom 1.3, by
replacing “implies” with “or,” we get the new theorem:

not-p or (g or p).

3. By the rule of detachment, if “4” and “A implies B> are theorems,
then “B” is a theorem. For example, from:

(p or p) implies p,
and [(p or p) implies p] implies (p implies p),
we get the new theorem:
p implies p.
Given an expression to prove, one starts from the set of axioms and
theorems already proved, and applies the various rules successively until

! For easy reference we have numbered axioms and theorems to correspond to
their numbers in Principia Mathematica, 2nd ed., vol. 1, New York: by A. N. White-
head and B. Russell, 1935.

112 ARTIFICIAL INTELLIGENCE

the desired expression is produced. The proof is the sequence of expres-
sions, each one validly derived from the previous ones, that leads from
the axioms and known theorems to the desired expression.

This is all the background in symbolic logic needed to observe LT in
operation. LT “understands” expressions in symbolic logic—that is, there
is a simple code for punching expressions on cards so they can be fed into
the machine. We give LT the five axioms, instructing it that these are
theorems it can assume to be true. LT already knows the rules of inference
and the definitions—how to substitute, replace, and detach. Next we give
LT a single expression, say expression 2.01, and ask LT to find a proof
for it. LT works for about 10 seconds and then prints out the following
proof:

(p implies not-p) implies not-p (theorem 2.01, to be proved)
1. (A or A) implies A (axiom 1.2)

2. (not-A or not-A) implies not-4 (subs. of not-A for 4)

3. (A implies not-A) impliesnot-4 (repl. of “or” with “implies”)
4. (p implies not-p) implies not-p (subs. of p for 4; QED).

Next we ask LT to prove a fairly advanced theorem (Whitchead and
Russell, 1935), theorem 2.45; allowing it to use all 38 theorems proved
prior to 2.45. After about 12 minutes, LT produces the following proof:

not (p or g) implies not-p (theorem 2.45, to be proved)
1. A implies (A4 or B) (theorem 2.2)
2. p implies (p or q) (subs. p for A, g for Bin 1)

3. (A implies B) implies (not-B (theorem 2.16)
implies not-A4)
4. [p implies (p or q)] implies [subs. p for 4, (p or q) for B
[not (p or g) implies not-p] in 3]
5. not (p or g) implies not-p (detach right side of 4, using 2;
QED).

Finally, all the theorems prior to (2.31) are given to LT (a total of 28);
and then LT is asked to prove:

[p or (q or r)] implies [(p or g) or r]. (2.31)

LT works for about 23 minutes and then reports that it cannot prove
(2.31), that it has exhausted its resources.

Now, what is there in this behavior of LT that needs to be explained?
The specific examples given are difficult problems for most humans, and
most humans do not know what processes they use to find proofs, if they
find them. There is no known simple procedure that will produce such
proofs. Various methods exist for verifying whether any given expression is

THE LOGIC THEORY MACHINE 113

true or false; the best known procedure is the method of truth tables. But
these procedures do not produce a proof in the meaning of Whitehead and
Russell. One can invent “automatic” procedures for producing proofs.
We will look at one briefly later, but these turn out to require computing
times of the orders of thousands of years for the proof of (2.45).

We must clarify why such problems are difficult in the first place, and
then show what features of LT account for its successes and failures.
These questions will occupy the rest of this study.

Problems, Algorithms, and Heuristics

In describing LT, its environment, and its behavior we will make re-
peated use of three concepts. The first of these is the concept of problem.
Abstractly, a person is given a problem if he is given a set of possible solu-
tions, and a test for verifying whether a given element of this set is in fact a
solution to his problem.

The reason why problems are problems is that the original set of pos-
sible solutions given to the problem-solver can be very large, the actual
solutions can be dispersed very widely and rarely throughout it, and the
cost of obtaining each new element and of testing it can be very expensive.
Thus the problem-solver is not really “given” the set of possible solutions;
instead he is given some process for generating the elements of that set in
some order. This generator has properties of its own, not usually specified
in stating the problem; e.g., there is associated with it a certain cost per
element produced, it may be possible to change the order in which it
produces the elements, and so on. Likewise the verification test has costs
and times associated with it. The problem can be solved if these costs are
not too large in relation to the time and computing power available for
solution.

One very special and valuable property that a generator of solutions
sometimes has is a guarantee that if the problem has a solution, the gen-
erator will, sooner or later, produce it. We will call a process that has this
property for some problem an algorithm for that problem. The guarantee
provided by an algorithm is not an unmixed blessing, of course, since
nothing has been specified about the cost or time required to produce the
solutions. For example, a simple algorithm for opening a combination safe
is to try all combinations, testing each one to see if it opens the safe. This
algorithm is a typical problem-solving process: there is a generator that
produces new combinations in some order, and there is a verifier that deter-
mines whether each new combination is in fact a solution to the problem.
This search process is an algorithm because it is known that some combina-
tion will open the safe, and because the generator will exhaust all combina-
tions in a finite interval of time. The algorithm is sufficiently expensive,

114 ARTIFICIAL INTELLIGENCE

however, that a combination safe can be used to protect valuables even
from people who know the algorithm.

A process that may solve a given problem, but offers no guarantees of
doing so, is called a heuristic? for that problem. This lack of a guarantee is
not an unmixed evil. The cost inflicted by the lack of guarantee depends
on what the process costs and what algorithms are available as alternatives.
For most run-of-the-mill problems we have only heuristics, but occasionally
we have both algorithms and heuristics as alternatives for solving the same
problem. Sometimes, as in the problem of finding maxima for simple dif-
ferentiable functions, everyone uses the algorithm of setting the first deriva-
tive equal to zero; no one sets out to examine all the points on the line one
by one as if it were possible. Sometimes, as in chess, everyone plays by
heuristic, since no one is able to carry out the algorithm of examining all
continuations of the game to termination.

The Problem of Proving Theorems in Logic

Finding a proof for a theorem in symbolic logic can be described as
selecting an element from a generated set, as shown by Fig. 1. Consider
the set of all possible sequences of logic expressions—call it E. Certain of
these sequences, a very small minority, will be proofs. A proof sequence
satisfies the following test:

Each expression in the sequence is either

1. One of the accepted theorems or axioms, or
2. Obtainable from one or two previous expressions in the sequence by
application of one of the three rules of inference.

Call the set of sequences that are proofs P. Certain of the sequences in E
have the expression to be proved—call it X, as their final expression. Call
this set of sequences Tx. Then, to find a proof of a given theorem X means
to select an element of E that belongs to the intersection of P and Tx. The
set E is given implicitly by rules for generating new sequences of logic
expressions.

The difficulty of proving theorems depends on the scarcity of elements
in the intersection of P and Ty, relative to the number of elements in E.
Hence, it depends on the cost and speed of the available generators that
produce elements of E, and on the cost and speed of making tests that
determine whether an element belongs to Tx or P. The difficulty also de-

* As a noun, “heuristic” is rare and generally means the art of discovery. The
adjective “heuristic” is defined by Webster as: serving to discover or find out. It is
in this sense that it is used in the phrase “heuristic process” or “heuristic method.”
For conciseness, we will use “heuristic” as a noun synonymous with “heuristic proc-
ess.” No other English word appears to have this meaning.

o

THE LOGIC THEORY MACHINE 115

pends on whether generators can be
found that guarantee that any ele-
ment they produce automatically
satisfies some of the conditions.
Finally, as we shall see, the difficulty
depends heavily on what heuristics
can be found to guide the selection.
A little reflection, and experience
in trying to prove theorems, make it
clear that proof sequences for speci- Figure 1. Relationships between E, P,
fied theorems are rare indeed. To re- and 7.
veal more precisely why proving
theorems is difficult, we will construct an algorithm for doing this. The
algorithm will be based only on the tests and definitions given above, and
not on any “deep” inferred properties of symbolic logic. Thus it will re-
flect the basic nature of theorem proving; that is, its nature prior to build-
ing up sophisticated proof techniques. We will call this algorithm the
British Museum algorithm, in recognition of the supposed originators of
procedures of this type.

£: oll sequences of logic
expressions

P: proof
sequences

Ty: sequences
ending in X

Proofs of X

The British Museum Algorithm

The algorithm constructs all possible proofs in a systematic manner, check-
ing each time (1) to eliminate duplicates, and (2) to see if the final
theorem in the proof coincides with the expression to be proved. With this
algorithm the set of one-step proofs is identical with the set of axioms
(i.e., each axiom is a one-step proof of itself). The set of n-step proofs is
obtained from the set of (n — 1)-step proofs by making all the permissible
substitutions and replacements in the expressions of the (n— 1)-step
proofs, and by making all the permissible detachments of pairs of expres-
sions as permitted by the recursive definition of proof.?

Figure 2 shows how the set of n-step proofs increases with n at the very
start of the proof-generating process. This enumeration only extends to
replacements of “or” with “implies,” “implies” with “or,” and negation of
variables (e.g., “not-p” for “p”). No detachments and no complex sub-
stitutions (e.g., “qg or r” for “p”) are included. No specializations have
been made (e.g., substitution of p for q in “p or g”). If we include the
Specializations, which take three more steps, the algorithm will generate

* A number of fussy but not fundamental points must be taken care of in con-
Structing the algorithm. The phrase “all permissible substitutions™ needs to be quali-
fied, for there is an infinity of these. Care must be taken not to duplicate expressions
that differ only in the names of their variables. We will not go into details here, but
simply state that these difficulties can be removed. The essential feature in construct-
ing the algorithm is to allow only one thing to happen in generating each new ex-

[y]

Pression, i.e., one replacement, substitution of “not-p” for “p,” etc.

!
|

116 ARTIFICIAL INTELLIGENCE

an (estimated) additional 600 theorems, thus providing a set of proofs
of 11 steps or less containing almost 1000 theorems, none of them
duplicates.

In order to see how this algorithm would provide proofs of specified
theorems, we can consider its performance on the sixty-odd theorems of
chap. 2 of Principia. One theorem (2.01) is obtained in step (4) of the
generation, hence is among the first 42 theorems proved. Three more
(2.02, 2.03, and 2.04) are obtained in step (6), hence among the first
115. One more (2.05) is obtained in step (8), hence in the first 246. Only
one more is included in the first 1000, theorem 2.07. The proofs of all the
remainder require complex substitutions or detachment.

We have no way at present to estimate how many proofs must be gener-
ated to include proofs of all theorems of chap. 2 of Principia. Our best
guess is that it might be a hundred million. Moreover, apart from the six
theorems listed, there is no reason to suppose that the proofs of these
theorems would occur early in the list.

Our information is too poor to estimate more than very roughly the
times required to produce such proofs by the algorithm; but we can esti-
mate times of about 16 minutes to do the first 250 theorems of Fig. 2 [i.e.,
through step (8)] assuming processing times comparable with those in LT.
The first part of the algorithm has an additional special property, which
holds only to the point where detachment is first used; that no check for
duplication is necessary. Thus the time of computing the first few thousand
proofs only increases linearly with the number of theorems generated. For
the theorems requiring detachments, duplication checks must be made, and
the total computing time increases as the square of the number of expres-
sions generated. At this rate it would take hundreds of thousands of years

of computation to generate proofs

B for the theorems in chap. 2.
Includes only: The nature of the problem of
200 22}:{; ;8;,; proving theorems is now reasonably
4 not- 7 for » clear. When sequences of expres-
S S 'eé’r'ﬂfgifi“;glf; . sions are produced by a simple and
5 implies for or cheap (per element produced) gen-
& 100} erator, the chance that any particu-
§ lar sequence is the desired proof is
- exceedingly small. This is true even
if the generator produces sequences
Y L v o1y that always satisfy the most com-

0O 1 2 3 4 5 6 7 8

Proof steps plicated and restrictive of the solu-
Figure 2. Number of proofs generated tion condlgons: that each is a proof
by first few steps of British Museum of something. The set of .sequences
algorithm. is so large, and the desired proot

A

THE LOGIC THEORY MACHINE 117

so rare, that no practical amount of computation suffices to find proofs by
means of such an algorithm,.

The Logic Theory Machine

If LT is to prove any theorems at all it must employ some devices that
alter radically the order in which possible proofs are generated, and the
way in which they are tested. To accomplish this, LT gives up almost all
the guarantees enjoyed by the British Museum algorithm. Its procedures
guarantee neither that its proposed sequences are proofs of something, nor
that LT will ever find the proof, no matter how much effort is spent. How-
ever, they often generate the desired proof in a reasonable computing time.

Methods

The major type of heuristic that LT uses we call a method. As yet we have
ho precise definition of a method that distinguishes it from all the other
types of routines in LT. Roughly, a method is a reasonably self-contained
oOperation that, if it works, makes a major and permanent contribution
toward finding a proof. It is the largest unit of organization in LT, sub-

ordinated only to the executive routines necessary to coordinate and select
the methods.

THE SUBSTITUTION METHOD

This method seeks a proof for the problem expression by finding an axiom
or previously proved theorem that can be transformed, by a series of sub-
stitutions for variables and replacements of connectives, into the problem
expression.

THE DETACHMENT METHOD

This method attempts, using the rule of detachment, to substitute for
the problem expression a new subproblem which, if solved, will provide a
Proof for the problem expression. Thus, if the problem expression is B,
the method of detachment searches for an axiom or theorem of the form
“4 implies B.” If one is found, A is set up as a new subproblem. If 4 can
be proved, then, since “A implies B” is a theorem, B will also be proved.

THE CHAINING METHODS

These methods use the transitivity of the relation of implication to create
4 new subproblem which, if solved, will provide a proof for the problem
€xpression. Thus, if the problem expression is “a implies ¢,” the method
of forward chaining searches for an axiom or theorem of the form “a

118 ARTIFICIAL INTELLIGENCE

implies b.” If one is found, “b implies ¢” is set up as a new subproblem.
Chaining backward works analogously: it seeks a theorem of the form
“b implies c,” and if one is found, “a implies b” is set up as a new
subproblem.

Each of these methods is an independent unit. They are alternatives to
one another, and can be used in sequence, one working on the subproblems
generated by another. Each of them produces a major part of a proof.
Substitution actually proves theorems, and the other three generate sub-
problems, which can become the intermediate expressions in a proof
sequence.

These methods give no guarantee that they will work. There is no guar-
antee that a theorem can be found that can be used to carry out a proof
by the substitution method, or a theorem that will produce a subproblem
by any of the other three methods. Even if a subproblem is generated,
there is no guarantee that it is part of the desired proof sequence, or even
that it is part of any proof sequence (e.g., it can be false). On the
other hand, the generated methods do guarantee that any subproblem
generated is part of a sequence of expressions that ends in the de-
sired theorem (this is one of the conditions that a sequence be a proof).
The methods also guarantee that each expression of the sequence is de-
rived by the rules of inference from the preceding ones (a second condi-
tion of proof). What is not guaranteed is that the beginning of the se-
quence can be completed with axioms or previously proved theorems.

There is also no guarantee that the combination of the four methods,
used in any fashion whatsoever and with unlimited computing effort, com-
prises a sufficient set of methods to prove all theorems. In fact, we have
discovered a theorem [(2.13), “p or not-not-not-p”’] which the four meth-
ods of LT cannot prove. All the subproblems generated for (2.13) after a
certain point are false, and therefore cannot lead to a proof.

We have yet no general theory to explain why the methods transform
LT into an effective problem-solver. That they do, in conjunction with the
other mechanisms to be described shortly, will be demonstrated amply in
the remainder of this study. Several factors may be involved. First, the
methods organize the sequences of individual processing steps into larger
units that can be handled as such. Each processing step can be oriented
toward the special function it performs in the unit as a whole, and the
units can be manipulated and organized as entities by the higher-level
routines.

Apart from their “unitizing” effect, the methods that generate subprob-
lems work “backward” from the desired theorem to axioms or known
theorems rather than “forward” as did the British Museum algorithm.
Since there is only one theorem to be proved, but a number of known
true theorems, the efficacy of working backward may be analogous to the

THE LOGIC THEORY MACHINE 119

ease with which a needle can find its way out of a haystack, compared
with the difficulty of someone finding the lone needle in the haystack.

The Executive Routine

In LT the four methods are organized by an executive routine, whose flow
diagram is shown in Fig. 3.

1. When a new problem is presented to LT, the substitution method is
tried first, using all the axioms and theorems that LT has been told to
assume, and that are now stored in a theorem list.

2. If substitution fails, the detachment method is tried, and as each new
subproblem is created by a successful detachment, an attempt is made to
prove the new subproblem by the substitution method. If substitution fails
again, the subproblem is added to a subproblem list.

3. If detachment fails for all the theorems in the theorem list, the same
cycle is repeated with forward chaining, and then with backward chaining:
try to create a subproblem; try to prove it by the substitution method; if
unsuccessful, put the new subproblem on the list. By the nature of the
methods, if the substitution method ever succeeds with a single subproblem,
the original theorem is proved.

4. If all the methods have been tried on the original problem and no
proof has been produced, the executive routine selects the next untried
subproblem from the subproblem list, and makes the same sequence of at-
tempts with it. This process continues until (1) a proof is found, (2) the
time allotted for finding a proof is
used up, (3) there is no more avail-
able memory space in the machine,
or (4) no untried problems remain
on the subproblem list.

(Start)

Select problem ~——(no more methods) =~

Try method <———(no more theorems)=—,

In the three examples cited ear-
lier, the proof of (2.01) [(p im-
plies not-p) implies not-p] was ob-
tained by the substitution method
directly, hence did not involve use

Select fheorem<——-ﬁ
Try it —» {fqil) ——————s—

(get new problem)

of the subproblem list - no more
. Try substituti
The proof of (2.45) [not (p or Y sbyaton (heorems)
q) implies not-p] was achieved by Select theorem ~—
an application of the detachment
Try it {fail)=

method followed by a substitution.
This proof required LT to create a

(proof)
Subproblem, and to use the substi-

tution method on it. It did not
"equire LT ever to select any sub-

through
Figure 3. General flow diagram of LT,

120 ARTIFICIAL INTELLIGENCE

problem from the subproblem list,

since the substitution was successful.
Figure 4 shows the tree of subprob-

lems corresponding to the proof of

v (2.45). The subproblems are given in
\ the form of a downward branching
\ tree. Each node is a subproblem, the

b original problem being the single node
Figure 4. Subproblem tree of proof at the top. The lines radiating down
by LT of (2.45) (all previous from a node lead to the new subprob-
theorems available). lems generated from the subproblem

corresponding to the node. The proof
sequence is given by the dashed line; the top link was constructed by the
detachment method, and the bottom link by the substitution method. The
other links extending down from the original problem lead to other sub-
problems generated by the detachment method (but not provable by direct
substitution) prior to the time LT tried the theorem that leads to the final
proof.

LT did not prove theorem 2.31, also mentioned ecarlier, and gave as its
reason that it could think of nothing more to do. This means that LT had
considered all subproblems on the subproblem list (there were six in this
case) and had no new subproblems to work on. In none of the examples
mentioned did LT terminate because of time or space limitations; however,
this is the most common result in the cases where LT does not find a proof.
Only rarely does LT run out of things to do.

This section has described the organization of LT in terms of methods.
We have still to examine in detail why it is that this organization, in con-
nection with the additional mechanisms to be described below, allows LT
to prove theorems with a reasonable amount of computing effort.

not {p or ¢) implies not-p

The Matching Process

The times required to generate proofs for even the simplest theorems by
the British Museum algorithm are larger than the times required by LT by
factors ranging from five (for one particular theorem) to a hundred and
upward. Let us consider an example from the earliest part of the genera-
tion, where we have detailed information about the algorithm. The 79th
theorem generated by the algorithm (see Fig. 2) is theorem 2.02 of
Principia, one of the theorems we asked LT to prove. This theorem, “p
implies (q implies p),” is generated by the algorithm in about 158 seconds
with a sequence of substitutions and replacements; it is proved by LT in
about 10 seconds with the method of substitution. The reason for the dif-
ference becomes apparent if we focus attention on axiom 1.3, “p implies
(g or p),” from which the theorem is derived in either scheme.

THE LOGIC THEORY MACHINE 121

Figure 5 shows the tree of proofs of the first twelve theorems obtained
from (1.3) by the algorithm. The theorem 2.02 is node (9) on the tree
and is obtained by substitution of “not-g” for “g” in axiom 1.3 to reach
node (5); and then by replacing the “(not-g or p)” by “(q implies p)”
in (5) to get (9). The 9th theorem generated from axiom 1.3 is the 79th
generated from the five axioms considered together.

This proof is obtained directly by LT using the following matching pro-
cedure. We compare the axiom with (9), the expression to be proved:

p implies (g or p) (1.3)
p implies (g implies p). (9)

First, by a direct comparison, LT determines that the main connectives
are identical. Second, LT determines that the variables to the left of the
main connectives are identical. Third, LT determines that the connectives
within parentheses on the right-hand sides are different. It is necessary to
replace the “or” with “implies,” but in order to do this (in accordance
with the definition of implies) there must be a negation sign before the
variable that precedes the “or.” Hence, LT first replaces the “g” on the
right-hand side with “not-g” to get the required negation sign, obtaining
(5). Now LT can change the “or” to “implies,” and determines that the
resulting expression is identical with (9).

The matching process allowed LT to proceed directly down the branch
from (1) through (5) to (9) without even exploring the other branches.
Quantitatively, it looked at only two expressions instead of eight, thus re-
ducing the work of comparison by a factor of four. Actually, the saving is
even greater, since the matching procedure does not deal with whole ex-
Pressions, but with a single pair of elements at a time.

An important source of efficiency in the matching process is that it pro-
ceeds componentwise, obtaining at each step a feedback of the results of
a substitution or replacement that can be used to guide the next step. This
feedback keeps the search on the right branch of the tree of possible ex-

<~——————— pimplies {g or p}

Figure 5. Proof tree of proof
2‘-02 by British Museum algo-
tithm (using axiom 1.3).

122 ARTIFICIAL INTELLIGENCE

pressions. It is not important for an efficient search that the goal be known
from the beginning; it is crucial that hints of “warmer” or “colder” occur
as the search proceeds.* Closely related to this feedback is the fact that
where LT is called on to make a substitution or replacement at any step,
it can determine immediately what variable or connective to substitute or
replace by direct comparison with the problem expression, and without
search.

Thus far we have assumed that LT knows at the beginning that (1.3)
is the appropriate axiom to use. Without this information, it would begin
matching with each axiom in turn, abandoning it for the next one if the
matching should prove impossible. For example, if it tries to match the
theorem against axiom 1.2, it determines almost immediately (on the sec-
ond test) that “p or p” cannot be made into “p” by substitution. Thus,
the matching process permits LT to abandon unprofitable lines of search
as well as guiding it to correct substitutions and replacements.

MATCHING IN THE SUBSTITUTION METHODS

The matching process is an essential part of the substitution method.
Without it, the substitution method is just that part of the British Museum
algorithm that uses only replacements and substitutions. with it, LT is
able, either directly or in combination with the other methods, to prove
many theorems with reasonable effort.

To obtain data on its performance, LT was given the task of proving
in sequence the first 52 theorems of Principia. In each case, LT was given
the axioms plus all the theorems previously proved in chap. 2 as the mate-
rial from which to work (regardless of whether LT had proved the
theorems itself).®

Of the 52 theorems, proofs were found for a total 38 (73 per cent).
These proofs were obtained by various combinations of methods, but the
substitution method was an essential component of all of them. Seventeen
of these proofs, almost a half, were accomplished by the substitution
method alone. Subjectively evaluated, the theorems that were proved by

*The following analogy may be instructive. Changing the symbols in a logic ex-
pression until the “right” expression is obtained is like turning the dials on a safe
until the right combination is obtained. Suppose two safes, each with ten dials and
ten numbers on a dial. The first safe gives a signal (a “click”) when any given dial
is turned to the correct number; the second safe clicks only when all ten dials are
correct. Trial-and-error search will open the first safe, on the average, in 50 trials;
the second safe, in five billion trials.

5The version of LT used for seeking solutions of the 52 problems included a
similarity test (see next section). Since the matching process is more important than
the similarity test, we have presented the facts about matching first, using adjusted
statistics. A notion of the sample sizes can be gained from Table 1. The sample was
limited to the first 52 of the 67 theorems in chap. 2 of Principia because of memory
limitations of JOHNNIAC,

THE LOGIC THEORY MACHINE 123

the substitution method alone have the appearance of “corollaries” of the
theorems they are derived from; they occur fairly close to them in the
chapter, generally requiring three or fewer attempts at matching per theo-
rem proved (54 attempts for 17 theorems).

The performance of the substitution method on the subproblems is
somewhat different, due, we think, to the kind of selectivity implicit in the
order of theorems in Principia. In 338 attempts at solving subproblems by
substitution, there were 21 successes (6.2 per cent). Thus, there was
about one chance in three of proving an original problem directly by the
substitution method, but only about one chance in 16 of so proving a sub-
problem generated from the original problem.

MATCHING IN DETACHMENT AND CHAINING

So far the matching process has been considered only as a part of the
substitution method, but it is also an essential component of the other
three methods. In detachment, for example, a theorem of form “A implies
B” is sought, where B is identical with the expression to be proved. The
chances of finding such a theorem are negligible unless we allow some
modification of B to make it match the theorem to be proved. Hence, once
a theorem is selected from the theorem list, its right-hand subexpression
is matched against the expression to be proved. An analogous procedure
is used in the chaining methods.

We can evaluate the performance of the detachment and chaining meth-
ods with the same sample of problems used for evaluating the substitution
method. However, a successful match with the former three methods gen-
erates a subproblem and does not directly prove the theorem. With the
detachment method, an average of three new subproblems were generated
for each application of the method; with forward chaining the average was
2.7; and with backward chaining the average was 2.2. For all the methods,
this represents about one subproblem per 7% theorems tested (the num-
ber of theorems available varied slightly).

As in the case of substitution, when these three methods were applied
to the original problem, the chances of suctess were higher than when they
were applied to subproblems. When applied to the original problem, the
number of subproblems generated averaged eight to nine; when applied to
subproblems derived from the original, the number of subproblems gen-
erated fell to an average of two or three. _

In handling the first 52 problems in chap. 2 of Principia, 17 theorems
were proved in one step—that is, in one application of substitution. Nine-
teen theorems were proved in two steps, 12 by detachment followed by
substitution, and seven by chaining forward followed by substitution. Two
others were proved in three steps. Hence, 38 theorems were proved in all.
There are no two-step proofs by backward chaining, since, for two-step

124 ARTIFICIAL INTELLIGENCE

proofs only, if there is a proof by backward chaining, there is also one by
forward chaining. In 14 cases LT failed to find a proof. Most of these
unsuccessful attempts were terminated by time or space limitations. One
of these 14 theorems we know LT cannot prove, and one other we believe
it cannot prove. Of the remaining twelve, most of them can be proved by
LT if it has sufficient time and memory (see section on subproblems,
however).

Similarity Tests and Descriptions

Matching eliminates enough of the trial and error in substitutions and
replacements to make LT into a successful problem solver. Matching
permeates all of the methods, and without it none of them would be
useful within practical amounts of computing effort. However, a large
amount of search is still used in finding the correct theorems with which
matching works. Returning to the performance of LT in chap. 2, we find
that the over-all chances of a particular match being successful are 0.3
per cent for substitution, 13.4 per cent for detachment, 13.8 per cent for
forward chaining, and 9.4 per cent for backward chaining.

The amount of search through the theorem list can be reduced by
interposing a screening process that will reject any theorem for matching
that has low likelihood of success. LT has such a screening device, called
the similarity test. Two logic expressions are defined to be similar if both
their left-hand and right-hand sides are equal, with respect to, (1) the
maximum number of levels from the main connective to any variable; (2)
the number of distinct variables; and (3) the number of variable places.
Speaking intuitively, two logic expressions are “similar” if they look alike,
and look alike if they are similar. Consider for example:

(p or q) implies (g or p) (1)
p implies (g or p) (2)
r implies (m implies r). (3)

By the definition of similarity, (2) and (3) are similar, but (1) is not
similar to either (2) or (3).

In all of the methods LT applies the similarity tests to all expressions
to be matched, and only applies the matching routine if the expressions are
similar; otherwise it passes on to the next theorem in the theorem list. The
similarity test reduces substantially the number of matchings attempted,
as the numbers in Table 1 show, and correspondingly raises the prob-
ability of a match if the matching is attempted. The effect is particularly
strong in substitution, where the similarity test reduces the matchings
attempted by a factor of ten, and increases the probability of a successful
match by a factor of ten. For the other methods attempted matchings were

THE LOGIC THEORY MACHINE 125

TABLE 1 Statistics of Similarity Tests and Matching

Per cent Per cent
similar of matched
Theorems Theorems Theorems theorems of theorems

Method considered similar matched considered similar
Substitution 11,298 993 37 8.8 3.7
Detachment 1,591 406 210 25.5 51.7
Chain. forward 869 200 120 23.0 60.0
Chain. backward 673 146 63 21.7 43.2

reduced by a factor of four or five, and the probability of a match in-
creased by the same factor.

These figures reveal a gross, but not necessarily a net, gain in per-
formance through the use of the similarity test. There are two reasons why
all the gross gain may not be realized. First, the similarity test is only a
heuristic. It offers no guarantee that it will let through only expressions
that will subsequently match. The similarity test also offers no guarantee
that it will not reject expressions that would match if attempted. The
similarity test does not often commit this type of error (corresponding to
a type II statistical error), as will be shown later. However, even rare
occurrences of such errors can be costly. One example occurs in the proof
of theorem 2.07:

p implies (p or p). (2.07)
This theorem is proved simply by substituting p for g in axiom 1.3:
p implies (g or p). (1.3)

However, the similarity test, because it demands equality in the number of
distinct variables on the right-hand side, calls (2.07) and (1.3) dissimilar
because (2.07) contains only p while (1.3) contains p and q. LT discovers
the proof through chaining forward, where it checks for a direct match
before creating the new subproblem, but the proof is about five times as
expensive as when the similarity test is omitted.

The second reason why the gross gain will not all be realized is that the
similarity test is not costless, and in fact for those theorems which pass
the test the cost of the similarity test must be paid in addition to the cost
of the matching. We will examine these costs in the next section when we
Consider the effort LT expends.

Experiments have been carried out with a weaker similarity test, which
compares only the number of variable places on both sides of the expres-
sion, This test will not commit the particular type II error cited above,
and (2.07) is proved by substitution using it, Apart from this, the modifi-

i
|
|
|
i
|

126 ARTIFICIAL INTELLIGENCE

cation had remarkably little effect on performance. On a sample of ten
problems it admitted only 10 per cent more similar theorems and about
10 per cent more subproblems. The reason why the two tests do not differ
more radically is that there is a high correlation among the descriptive
measures.

Effortin LT

So far we have focused entirely on the performance characteristics of the
heuristics in LT, except to point out the tremendous difference between
the computing effort required by LT and by the British Museum algorithm.
However, it is clear that each additional test, search, description, and the
like, has its costs in computing effort as well as its gains in performance.
The costs must always be balanced against the performance gains, since
there are always alternative heuristics which could be added to the system
in place of those being used. In this section we will analyze the computing
effort used by LT. The memory space used by the various processes also
constitutes a cost, but one that will not be discussed in this study.

MEASURING EFFORTS

LT is written in an interpretive language or pseudocode, which is described
in the companion paper to this one. LT is defined in terms of a set of
primitive operations, which, in turn, are defined by subroutines in
JOHNNIAC machine language. These primitives provide a convenient
unit of effort, and all effort measurements will be given in terms of total
number of primitives executed. The relative frequencies of the different
primitives are reasonably constant, and, therefore, the total number of
primitives is an adequate index of effort. The average time per primitive is
quite constant at about 30 milliseconds, although for very low totals (less
than 1000 primitives) a figure of about 20 milliseconds seems better.

COMPUTING EFFORT AND PERFORMANCE

On a priori grounds we would expect the amount of computing effort re-
quired to solve a logic problem to be roughly proportional to the total
number of theorems examined (i.e., tested for similarity, if there is a
similarity routine; or tested for matching, if there is not) by the various
methods in the course of solving the problem. In fact, this turns out to be a
reasonably good predictor of effort; but the fit to data is much improved
if we assign greater weight to theorems considered for detachment and
chaining than to theorems considered for substitution.

Actual and predicted efforts are compared below (with the full similarity
test included, and excluding theorems proved by substitution) on the as-
sumption that the number of primitives per theorem considered is twice
as great for chaining as for substitution, and three times as great for de-

THE LOGIC THEORY MACHINE 127

tachment. About 45 primitives are executed per theorem considered with
the substitution method (hence 135 with detachment and 90 with chain-
ing). As Table 2 shows, the estimates are generally accurate within a few
per cent, except for theorem 2.06, for which the estimate is too low.

TABLE 2 Effort Statistics with
“Precompute Description’” Routine

Total primitives, thousands

Theorem Actual Estimate
2.06 3.2 0.8
2.07 4.3 4.4
2.08 3.5 3.3
2.11 2.2 2.2
2.13 24.5 24.6
2.14 3.3 3.2
2.15 15.8 13.6
2.18 34.1 35.8
2.25 11.1 11.5

There is an additional source of variation not shown in the theorems
selected for Table 2. The descriptions used in the similarity test must be
computed from the logic expressions. Since the descriptions of the theorems
are used over and over again, LT computes these at the start of a problem
and stores the values with the theorems, so they do not have to be com-
puted again. However, as the number of theorems increases, the space
devoted to storing the precomputed descriptions becomes prohibitive, and
LT switches to recomputing them each time it needs them. With recom-
Putation, the problem effort is still roughly proportional to the total number
of theorems considered, but now the number of primitives per theorem
is around 70 for the substitution method, 210 for detachment, and 140 for
chaining.

Our analysis of the effort statistics shows, then, that in the first approxi-
Mation the effort required to prove a theorem is proportional to the number
of theorems that have to be considered before a proof is found; the number
of theorems considered is an effort measure for evaluating a heuristic. A
good heuristic, by securing the consideration of the “right” theorems early
in the proof, reduces the expected number of theorems to be considered
before a proof is found. ‘

EVALUATION OF THE SIMILARITY TEST

As we noted in the previous section, to evaluate an improved heuristic,
account must be taken of any additional computation that the improve-
ent introduces The net advantage may be less than the gross advantage,

128 ARTIFICIAL INTELLIGENCE

or the extra computing effort may actually cancel out the gross gain in
selectivity. We are now in a position to evaluate the similarity routines as
preselectors of theorems for matching.

A number of theorems were run, first with the full similarity routine,
then with the modified similarity routine (which tests only the number of
variable places), and finally with no similarity test at all. We also made
some comparisons with both precomputed and recomputed descriptions.

When descriptions are precomputed, the computing effort is less with
the full similarity test than without it; the factor of saving ranged from 10
to 60 per cent (e.g., 3534/5206 for theorem 2.08). However, if LT must
recompute the descriptions every time, the full similarity test is actually
more expensive than no similarity test at all (e.g., 26,739/22,914 for
theorem 2.45).

The modified similarity test fares somewhat better. For example, in
proving (2.45) it requires only 18,035 primitives compared to the 22,914
for no similarity test (see the paragraph above). These comparisons in-
volve recomputed descriptions; we have no figures for precomputed
descriptions, but the additional saving appears small since there is much
less to compute with the abridged than with the full test.

Thus the similarity test is rather marginal, and does not provide anything
like the factors of improvement achieved by the matching process, although
we have seen that the performance figures seem to indicate much more
substantial gains. The reason for the discrepancy is not difficult to find. In
a sense, the matching process consists of two parts. One is a testing part
that locates the differences between elements and diagnoses the corrective
action to be taken. The other part comprises the processes of substituting
and replacing. The latter part is the major expense in a matching that
works, but most of this effort is saved when the matching fails. Thus match-
ing turns out to be inexpensive for precisely those expressions that the
similarity test excludes.

Subproblems

LT can prove a great many theorems in symbolic logic. However, there
are numerous theorems that LT cannot prove, and we may describe LT as
having reached a plateau in its problem solving ability.

Figure 6 shows the amount of effort required for the problems LT solved
out of the sample of 52. Almost all the proofs that LT found took less than
30,000 primitives of effort. Among the numerous attempts at proofs that
went beyond this effort limit, only a few succeeded, and these required a
total effort that was very much greater.

The predominance of short proofs is even more striking than the approxi-
mate upper limit of 30,000 primitives suggests. The proofs by substitution

THE LOGIC THEORY MACHINE 129

n
o

w

Figure 6. Distribution of
LT’s proofs by effort. Data
include all proofs from
attempts on the first 52 0

theorems in chap. 2 of 0O 10 20 30 40 50 60 70 80 90 100
Prmczpta. Effort, thousands of primitives

w

Number of proofs
o

—almost half of the total—required about 1000 primitives or less each.
The effort required for the longest proof—89,000 primitives—is some 250
times the effort required for the short proofs. We estimate that to prove
the 12 additional theorems that we believe LT can prove requires the
effort limit to be extended to about a million primitives.

From these data we infer that LT’s power as a problem solver is largely
restricted to problems of a certain class. While it is logically possible for
LT to solve others by large expenditures of effort, major adjustments are
needed in the program to extend L T’s powers to essentially new classes of
problems. We believe that this situation is typical: good heuristics produce
differences in performance of large orders of magnitude, but invariably a
“plateau” is reached that can be surpassed only with quite different
heuristics. These new heuristics will again make differences of orders of
magnitude. In this section we shall analyze LT’s difficulties with those
theorems it cannot prove, with a view to indicating the general type of
heuristic that might extend its range of effectiveness.

The Subproblem Tree

Let us examine the proof of theorem 2.17 when all the preceding theorems
are available. This is the proof that cost LT 89,000 primitives. It is repro-
duced below, using chaining as a rule of inference (each chaining could be
expanded into two detachments, to conform strictly to the system of
Principia). '

(not-g implies not-p) implies (p-im- (theorem 2.17, to be proved)
plies g)
1. A implies not-not-4 (theorem 2.12)
2. p implies not-not-p (subs. pforAin 1)
3. (A4 implies B) implies [(B implies (theorem 2.06)
C) implies (A implies C)]
4. (p implies not-not-p) implies [(not- (subs. p for A4, not-not-p for
not-p implies ¢) implies (p implies B, g for Cin 3)
q)]

.

130 ARTIFICIAL INTELLIGENCE

5. (not-not-p implies q) implies (p im- (det. 4 from 3)
plies gq)
6. (not-A implies B) implies (not-B (theorem 2.15)
implies A4)
7. (not-g implies not-p) implies (not- (subs. g for A, not-p for B)
not-p implies q)
8. (not-g implies not-p) implies (p im- (chain 7 and 5; QED)
plies g)

The proof is longer than either of the two given earlier. In terms of
LT’s methods it takes three steps instead of two or one: a forward chain-
ing, a detachment, and a substitution. This leads to the not surprising notion,
given human experience, that length of proof is an important variable in
determining total effort: short proofs will be easy and long proofs difficult,
and difficulty will increase more than proportionately with length of proof.
Indeed, all the one-step proofs require 500 to 1500 primitives, while the
number of primitives for two-step proofs ranges from 3000 to 50,000.
Further, LT has obtained only six proofs longer than two steps, and these
require from 10,000 to 90,000 primitives.

The significance of length of proof can be seen by comparing Fig. 7,
which gives the proof tree for (2.17), with Fig. 4, which gives the proof
tree for (2.45), a two-step proof. In going one step deeper in the case of
(2.17), LT had to generate and examine many more subproblems. A
comparison of the various statistics of the proofs confirms this statement:
the problems are roughly similar in other respects (e.g., in effort per
theorem considered); hence the difference in total effort can be attributed
largely to the difference in number of subproblems generated.

Let us examine some more evidence for this conclusion. Figure 8 shows
the subproblem tree for the proof of (2.27) from the axioms, which is the
only four-step proof LT has achieved to date. The tree reveals immediately

(not-g implies not-p) implies (p implies g)

Figure 7. Subproblem tree
of proof by LT of (2.17)
(all previous theorems
available).

sy

THE LOGIC THEORY MACHINE 131

why LT was able to find the proof. Instead of branching widely at each
point, multiplying rapidly the number of subproblems to be looked at, LT
in this case only generates a few subproblems at each point. It thus man-
ages to penetrate to a depth of four steps with a reasonable amount of
effort (38,367 primitives). If this tree had branched as the other two did.
LT would have had to process about 250 subproblems before arriving at a
proof, and the total effort would have been at least 250,000 primitives.
The statistics quoted earlier on the effectiveness of subproblem generation
support the general hypothesis that the number of subproblems to be ex-
amined increases more or less exponentially with the depth of the proof.

The difficulty is that LT uses an algorithmic procedure to govern its
generation of subproblems. Apart from a few subproblems excluded by the
type II errors of the similarity test, the procedure guarantees that all sub-
problems that can be generated by detachment and chaining will in fact be
obtained (duplications are eliminated). LT also uses an algorithm to deter-
mine the order in which it will try to solve subproblems. The subproblems
are considered in order of generation, so that a proof will not be missed
through failure to consider a subproblem that has been generated.

Because of these systematic principles incorporated in the executive
program, and because the methods, applied to a theorem list averaging 30
expressions in length, generate a large number of subproblems, LT must
find a rare sequence that leads to a proof by searching through a very
large set of such sequences. For proofs of one step, this is no problem at
all; for proofs of two steps, the set to be examined is still of reasonable
size in relation to the computing power available. For proofs of three steps,
the size of the search already presses LT against its computing limits; and
if one or two additional steps are added the amount of search required to

2 implies [(p implies q) implies ¢]

Figure 8. Subproblem tree of proof by
LT of (2.27) (using the axioms).

132 ARTIFICIAL INTELLIGENCE

find a proof exceeds any amount of computing power that could practically
be made available.

The set of subproblems generated by the Logic Theory Machine, how-
ever large it may seem, is exceedingly selective and rich in proofs compared
with the set through which the British Museum algorithm searches. Hence,
the latter algorithm could find proofs in a reasonable time for only the
simplest theorems, while proofs for a much larger number are accessible
with LT. The line dividing the possible from the impossible for any given
problem-solving procedure is relatively sharp; hence a further increase in
problem-solving power, comparable to that obtained in passing from the
British Museum algorithm to LT, will require a corresponding enrichment
of the heuristic.

Modification of the Logic Theory Machine

There are many possible ways to modify LT so that it can find proofs
of more than two steps in a way which has reason and insight, instead of
by brute force. First, the unit cost of processing subproblems can be sub-
stantially reduced so that a given computing effort will handle many more
subproblems. (This does not, perhaps, change the “brute force” character
of the process, but makes it feasible in terms of effort.) Second, LT can
be modified so that it will select for processing only subproblems that have
a high probability of leading to a proof. One way to do this is to screen
subproblems before they are put on the subproblem list, and eliminate
the unlikely ones altogether. Another way is to reduce selectively the num-
ber of subproblems generated.

For example, to reduce the number of subproblems generated, we may
limit the lists of theorems available for generating them. That this approach
may be effective is suggested by the statistics we have already cited, which
show that the number of subproblems generated by a method per theorem
examined is relatively constant (about one subproblem per seven
theorems).

An impression of how the number of available theorems affects the
generation of subproblems may be gained by comparing the proof trees of
(2.17) (Fig. 7) and (2.27) (Fig. 8). The broad tree for (2.17) was pro-
duced with a list of twenty theorems, while the deep tree for (2.27) was
produced with a list of only five theorems. The smaller theorem list in the
latter case generated fewer subproblems at each application of one of the
methods.

Another example of the same point is provided by two proofs of
theorem 2.48 obtained with different lists of available theorems. In the
one case, (2.48) was proved starting with all prior theorems on the
theorem list; in the other case it was proved starting only with the axioms
and theorem 2.16. We had conjectured that the proof would be more

THE LOGIC THEORY MACHINE 133

difficult to obtain under the latter conditions, since a longer proot chain
would have to be constructed than under the former. In this we were
wrong: with the longer theorem list, LT proved theorem 2.48 in two steps,
employing 51,450 primitives of effort. With the shorter list, LT proved
the theorem in three steps, but with only 18,558 primitives, one-third as
many as before. Examination of the first proof shows that the many “ir-
relevant” theorems on the list took a great deal of processing effort. The
comparison provides a dramatic demonstration of the fact that a problem
solver may be encumbered by too much information, just as he may be
handicapped by too little.

We have only touched on the possibilities for modifying LT, and have
seen some hints in LT’s current behavior about their potential effective-
ness. All of the avenues mentioned earlier appear to offer worthwhile
modifications of the program. We hope to report on these explorations at a
later time.

Conclusion

We have provided data on the performance of a complex information
processing system that is capable of finding proofs for theorems in ele-
mentary symbolic logic. We have used these data to analyze and illustrate
the difference between systematic, algorithmic processes, on the one hand,
and heuristic, problem-solving processes, on the other. We have shown
how heuristics give the program power to solve problems in a reasonable
computing time that could be solved algorithmically only in large numbers
of years. Finally, we have assessed the limitations of the present program of
the Logic Theory Machine and have indicated some of the directions that
improvement would have to take to extend its powers to problems at new
levels of difficulty.

Our explorations of the Logic Theory Machine represent a step in a
program of research on complex information processing systems that is
aimed at developing a theory of such systems and applying that theory
to such fields as computer programming and human learning and problem-
solving.

