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TWO THEOREMS OF STATISTICAL SEEARABILITY
IN THE PERCEPTRON

by

DR. FRANK ROSENBLATT

SUMMARY

A THEORETICAL brain model, the perceptron, has been developed at the Cornell
Aeronautical Laboratory, In Buffalo, New York. The perceptron is a probabi-
listic system, capable of learning to recognize and differentiate stimuli in
its environment. Previous reports have covered the theory of a class of per-
ceptrons based on fixed-threshold neurons, similar to the McCulloch-Pitts
model. The present paper introduces the concept of a "continuous transducer
neuron", and outlines the proof of two theorems which indicate that a
properly designed perceptron will be capable of spontaneously forming
meaningful classifications of the stimuli in its universe, without being
taught by an experimenter.

1. PROBABILISTIC MATHEMATICS VS. SYMBOLIC LOGIC

ONLY a few months before the Office of Naval Research began its support of
the perceptron program, at the Cornell Aeronautical Laboratory, John von
Neumann, one Of the most outstanding advocates of the proposition that man
might some day achieve an artificial device working on the same principles
as the human brain, wrote the following prophetic passage (re.f.4):

"Logics and mathematics in the central nervous system...must
structurally be essentially different from those languages to which our
common experience refers ... When we talk mathematics, we may be
discussing a secondary language, built on the primary language truly
used by the central nervous system. Thus the outward forms of our mathe-
matics are not absolutely relevant from the point of view of evaluating
what the mathematical or logical language truly used by the central
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nervous system is... Whatever the system is, it cannot fall to differ

considerably from what we consciously and explicitly consider as

mathematics."
What von Neumann is saying here deserves careful consideration. The

mathematical field of symbolic logic, or Boolean algebra, has been eminently

successful in producing our modern control systems and digital computing

machines. Nevertheless, the attempts to account for the operation of the

human brain by similar principles have always broken down under close

scrutiny. The models which conceive of the brain as a strictly digital,

Boolean algebra device, always involve either an impossibly large number of

discrete elements, or else a precision in the "wiring diagram" and synchro-

nization of the system which is quite unlike the conditions observed in a

biological nervous system. I will not belabor this point here, as the

arguments have been presented in considerable detail in the original report

on the perceptron (re.3).'The important consideration is that in dealing

with the brain, a different kind of mathematics, primarily statistical in
nature, seems to be involved. The brain seems to arrive at many results

directly, or "intuitively", rather than analytically. As von Neumann has

pointed out, there is typically much less "logical depth" in the operations

of the central nervous system than In the programs performed by a digital
computer, which may require hundreds, thousands, or even millions of

successive logical steps in order to arrive at an analytically programmed

result.
Those readers who are familiar with the concept of the perceptron know

that it is a model of a system which is primarily concerned with the recog-

nition of the forms, sounds, and other stimuli which make up the ordinary
physiCal world, as we know it through our own senses. The theory upon which

this system is based is called the "theory of statistical separability".
The mathematics upon which this theory stands, has much more in common with

the mathematics of particle physics than with the mathematics of digital
computers. The reason for this is fundamental: Boolean algebra, or symbolic

logic, is well suited to the study of completely describable logical
systems, but breaks down as. soon as we attempt to apply it to systems on

which complete information is not available. If we lack a detailed wiring
diagram,- but know only the statistical parameters, or probabilities of

connection within a logical 'net, then the only way we can use Boolean algebra
to determine the probable response of the system would be by complete enumera-

tion of every possible connection diagram which meets the parametric
constraints, whereupon we could actually count the number of alternatives

which respond in each of the logically possible ways. In dealing with systems
of any complexity, the number of possible connection diagrams becomes, for

all practical purposes, infinite, so that we 'can not use this enumerative
approach in practice, even though it may be possible in principle.
Probability theory, on the other hand, is specifically designed to permit us
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to make precise statements in the absence of complete information. If we

know only a few parameters of a statistical distribution, we may be able to
make highly accurate statements about the mass behavior of a collection of

events, a logical network, or a nervous system, even though we have never
unravelled the detailed wiring diagram for any particular case.

2. THE IMPORTANCE OF PERCEPTUAL PROCESSES FOR AUTOMATA

We have said that the perceptron is primarily concerned with the recog-
nition of stimuli, or patterns, in its environment. In this, it is
fundamentally different from any digital computer. Since computers are very
good at something which people, by and large, do very badly, that is,
arithmetic, they have been popularly represented as "giant electronic
brains". This comparison seems to me an unfortunate one. It suggests to
many people that because a computer does certain things that the brain can
do, the brain must work something like a computer. I have already indicated
above that I consider this position to be untenable. But in order to under-
stand the unique capabilities of the perceptron, it might be helpful to
consider the sort of thing that can be done by digital computers.

Computers, in general, are designed to follow rules. If we can set up
rules for multiplication, we can design a computer to multiply. If we give
this computer any two numbers, even if these specific numbers have not been
considered by the designers of the machine, it can multiply them, and form
the correct product. But this does not really satisfy our idea of original
thinking, or intelligence. There has been no discovery involved; the correct
answer simply follows from the fact that the rules of multiplication are
completely universal, and apply to all numbers. Similarly, if we are
ingenious enough to write a set of exact rules for minimizing the cost of
some business operation, we can program a computer to minimize cost, and
other such complex problems. In fact, if we can analyze the way in which
people play chess sufficiently well to write an explicit set of rules for
chess strategy, we can get a computer to play chess, as is being done with
increasing success in recent programs.

But in all of these examples, the computer is following rules which are
the result of human observation and analysis. Computers seem to share two
main functions with the brain:

(a) Decision making, based on logical rules
(b) Control (as in guidance systems, automatic assembly lines, etc.)

again based on logical rules.

The human brain performs these functions, together with a third: interpre-
tation of the environment.

Why do we hold interpretation of the environment to be so important?
The answer, I think, is to be found in the laws of thermodynamics. A

system with a completely self-contained logic can never spontaneously
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Improve in its ability to organize, and to draw valid conclusions from

information. While there are certain trivial cases where this may appear
questionable (for example, we might deliberately design a program to give

wrong answers for the first ten trials and then modify itself to perform
correctly from the eleventh trial on), by and large it seems to be a valid

generalization. Even in the above case, the improvement after the tenth
trial was anticipated and-deliberately built into the program, so that it

did not actually arise spontaneously. Spontaneous changes in such a system
will, in general, lead to a deterioration, rather than an improvement, in ,

its performance. On the other hand, a system which is capable of reorgani-
zing its own logic, to correspond to a logical organization which already

exists in the universe around it, takes on very different properties
indeed. Such a system can improve (if it is properly constructed) by
observing and learning from the organization of the surrounding world. The
human brain is such a system. It is this ability to interpret the environ-

ment which allows the human brain to recognize and devise the logical rules
which are applied by the computer. Conceptualization of the environment is
the first step towards creative thinking.

So far as I know, the only machine prior to the perceptron which has

shown itself to be capable of spontaneous improvement (as opposed to
learning under the tutelage of an experimenter) has been Ashby's homeostat

(ref.1). The homeostat, however, is not'really a case in point here,
because it is not really concerned, as we are, with the representation of
meaningful information, but rather with the maintenance of an optimum state
within the system.

The perceptron, as originally developed, would also have been incapable
of spontaneous concept formation. The original perceptron could be taught to
perceive differences between stimuli, by a process similar to that employed
In training a dog. If you want to train a dog to come when called, you put
him on a long leash, you say, "Come here", or "Come, Rover", and you pull
him towards you. If you want him to sit down, you say, "Rover, sit", and
push his tail down. In other words, we force the desired response. When he
begins doing these things spontaneously, this indicates that we have passed
on our own recognition of the difference between the words "Come here" and
"Sit down", and that the dog can now perceive the distinction. This is
really identical with the process that we originally studied with the
perceptron.

It actually took only a very slight change in the dynamics of the
perceptron to convert it into a system with very different capabilities,
actually the first machine which Is capable of having an original idea.
It is the conversion to this new system which I wish to discuss for the
remainder of this paper.

The key to this transition to a spontaneously organizing perceptron came
with a recasting of our original mathematical analysis in a new and more
elegant form, made possible by a revised concept of the basic unit, the
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neuron. Let me begin, therefore, by presenting the rationale for this new
concept.

3. THE CONTINUOUS TRANSDUCER NEURON

The logical model of the neuron which has been used almost universally
In theoretical brain models during the last few decades is the "McCulloch-
Pitts neuron"(ref.2). This assumes an all-or-nothing response, depending on
whether the signal at some time, t, is above or below threshold. Moreover,
and this is the most critical simplification assumed by the model, the cell
is generally allowed to fire only at integral values of t, where time Is
measured in some convenient unit. Now actually, as is well known, a cell in
the central nervous system does not respond in so simple a fashion. Such a
cell is typically under continuous bombardment by a great number of
impulses, which summate temporally as well as spatially. These impulses,
eventually; may produce a region of depolarization in the membrane, and
when this happens, the cell fires. As a consequence of this, the frequency
of the cell is likely to be roughly proportional to the net, or mean
intensity of the stimulation received. Lightly stimulated, the cell may
respond at a very low frequency; under Intense stimulation, the frequency
increases. Thus, even though each impulse generated by the cell may be of
the same amplitude, the cell is actually acting as a continuous transducer
of the stimulus energy, if we measure the energy transmitted as a rate per
unit time. Such a cell may carry considerably more information than we
would suppose from a simple consideration of its discontinuous on-off
properties.

The transfer function el a continuous transducer neuron, ai, at time t,
Is equal to oci(t). v(t), where vi (the "value" of the neuron ai) is a scale
factor which may fluctuate with time, and which determines the relative
amplitude of the output. We will have more to say about this "value"
presently. A simplified continuous transducer neuron is shown in fig.1 (a).
Note that there are an equal number of excitatory and inhibitory inputs, so
that the input signal 0c, will be zero if stimulation is uniform over the
entire sensory field. If there is a gradient of stimulation, or a localized
region of stimulation such that the total excitatory component (a) is
greater than the total inhibitory component (20, the input signal,a, will
be positive. If the Input from a given stimulus is primarily inhibitory, a
will be negative.

For use in the perceptron, one additional assumption must be made about
the logic of the neuron; it must be given a memory. This memory takes the
form of changes in the magnitude of the "value", v. The value, vi, of the
neuron a., is represented by a stored quantity, which might be represented
physically by an electric charge, the position of a potentiometer, the light
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flux through a variable aperture, or any other convenient means. If we are
thinking in terms of a biological analog, the "value" might be the degree

of polarization of the membrane, the energy reserve of the cell, the volume
of cytoplasm, or any other enduring condition which will affect the potency,

amplitude, or frequency of the cell's output. The higher the "value", the
more "powerful" the output of the cell, measured by whatever variable
happens to be relevant for the system in question. For a perceptron, where
the output function is equal to av, we assume that the amplitude of the
output pulses will be proportional to the value.

The important question about the value, from the standpoint of memory
storage, is how it changes, as a function of the activity of the system.
Figure 1(6) shows a continuous transducer neuron with an additional input
signal, labelled 2,o, which controls the growth rate of the neuron. The
components of fP (1.e.. Pio ,02, etc.) are typically feedback signals, which
originate from the next logical layer of cells, which are called "Response
units", or R-units. In the fixed threshold neurons used in the earlier
perceptron systems (ref.3), the growth of the value was a function which
depended on whether or not the cell was active. If tne cell was active
(M greater than threshold), an increment would be added to 14 which depended
primarily on the presence or absence of a feedback signal corresponding to
FAII4 In the continuous transducer system, three basic forms of growth function
are of' particular interest:

dv = 
 p

..81)

dt

dv
= Ip(a-8y)

dt

The first of these equations is a growth function with a zero decay compo-
nent. It is equivalent to (2) and (3) with 8 .set at zero. In the second two
cases, there is a decay component proportional to the current magnitude of
the value. 8, the decay coefficient, is a constant less than 1. All fixed-
threshold perceptrons considered previously (ref.3) share the characteristic
of the first of these growth functions that the value of a neuron, or
association cell, can continue to grow without bound. Note that over a set
of neurons, since a is 4s likely to be negative as positive, the expected
rate of growth will remain zero. Nonetheless, the variance of the value over
the set of cells will tend to increase towards infinity, as time goes on,
unless there is a decay function which increases Monotonically with v, as in
(2) and (3). The importance of this distinction will become clear presently.
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4. ORGANIZATION OF A PERCEPTRON

Let us now consider the organization of a very simple perceptron, made
up of such "continuous transducer neurons" (1ig.2). Note that the logical -
depth of this system is no greater than two; the first step is from the
sensory system to the association system, and the second is from the
asaociation to response system. The associatuin system is composed of
association cells (A-units) which are continuous transducer neurons. The
Inputs of these A-units come from origin points (which may be randomly
distributed) in the sensory system, or "retina", and their outputs go to

Fig.2. Organization of a Simple Perceptron

the single response unit which is shown in this system. (The organization
of systems with large numbers of response units has been considered in

previous work (ref.3). Those Aunits which tend to turn the response "on"
(to the condition R = 1) are collectively designated the "1 source-set",
while those A-units which tend to turn off, or inhibit, the response, are

designated the "0 source-set". If R = 1, a reinforcement signal, pi, is
transmitted to all members of the 1 source-set. If R = 0, a reinforcement
signal, too, is transmitted to all members of the 0 source-set. When a
stimulus is presented to the visual system, the output signals from each of

the source-sets are summed, and the sign of the difference, 21(0,64av,
determines whether the response is 1 or 0. In other words, if the 1 source-

set delivers a stronger signal, the response will be "1"; if the 0 source-
set delivers a stronger signal, the response will be "0". Note that the
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"reinforcement operator", fA which appears in the growth rate equations
(1), (2) and (3) will, in this system, be either 1 or 0, depending on the
current state of the response.

Corresponding to each of the three growth rate equations, we have the
three limit equations, for the value of an A-unit:

(la)

(2a)

(3a)

where Ea is the expected value of the input signal to the A-unit in question,
and fr; is the mean frequency with which the A-unit is reinforced (i.e., the
freqiiency with which fp = 1). The first and third of these cases will be the
ones with which we are primarily concerned. It can be shown that the second
case (which is more plausible for biological units, since the rate of decay
does not depend on the feedback signal, 2/0) will merely lead to a somewhat
weaker form of the system represented by the third alternative.

5. SOME IMPORTANT CORRELATION COEFFICIENTS

In the analysis of fixed threshold perceptrons (ref.3), it was shown that
the ability of the perceptron to discriminate between similar forms depends
on the proportion of A-units activated In common by each of the forms to be
distinguished. The expected value of this proportion is called Pe In
dealing with classes of forms, it was found possible to measure the "simi-
larity" of the classes in terms of Pe In the case of continuous transducer
perceptrons, however, where every A-unit may be "active", albeit at widely
scattered frequencies, measurements based on probabilities of activation are
no longer suitable. In place of Pc, we will make use of several product
moment correlation coefficients to measure the similarity of the activity
induced by different classes of stimuli. A class of stimuli, in this context,
means any set of forms, or retinal projections, which we will regard,
arbitrarily, as the same "kind" of visual object, e.g., letters of the
alphabet, geometrical shapes such as squares and triangles, dogs and cats,
etc. We will be concerned, particularly, with the binary discrimination of
stimuli into two classes, which we will designate S1 and S2.

Two kinds of correlations are of particular importance in the analysis
of similarity, for a continuous transducer perceptron. These correlations
can be written, in abbreviated form, as'rod and ro. r d is the correla-

1 1
tion, measured over the set of all A-units, of the Input signals, a, from
some particular stimulus of class SI, with the expected value of the Input
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signals from the class Si. In other words, rd (which is roughly

analogous to P . in the old system of notation) measures the similarity

of any arbitrary stimulus of a class to the remainder of the class; it is a

measure of the coherence of the stimulus classes. Note that this measure of
similarity is not based on the stimuli, themselves, but on the signals

received by the association system. ra3 , the second of the two basic
correlations, is the correlation of the expected values of a for the two
classes of stimuli, S1 and S2 . Both correlations are measured over the set
of all admissible A-units, i.e., all units which meet the parametric
constraints of the system.

It should be emphasized that the kinds of similarity relationships which
emerge in a system of this sort will be a function of the organization of

the connection system, by which signals are transmitted from sensory points
to A-units. In our original studies of the perceptron, it was assumed that
the origin points for the input fibers to an A-unit were randomly scattered
throughout the retina, or sensory mosaic. This system, as might be expected,
lead, to a high degree of sensitivity to the location of a stimulus in the
visual field, and tends to create a bias such that the influence of large
stimuli outweighs the effect of small stimuli, in the development of
learning and memory. An alternative system, now being investigated, calls
for a polarization of the origin points for an A-unit about an arbitrarily
selected line in the retinal field, such that all connections originating
on one side of the line are excitatory, while all connections originating
on the other side are inhibitory. The density of connections, in this
system, increases in the neighborhood of the line, or "axis of polarization".
Such a system is primarily sensitive to the location and direction of con-'
tours, rather than to illuminated areas per se, and the resulting measures
of similarity, using the above correlation coefficients, will naturally be
quite different. In order to minimize sensitivity, to the location of a
figure, it is generally desirable to: define a in such a way that negative
values are eliminated. This is equivalent to setting a zero threshold for
the A-unit; otherwise the expected value gain, following the translation of
a figure over the field, will always be zero, If the numbers of excitatory
and inhibitory connections are equal.

Despite their relativity with respect to the connection system, these
"similarity correlations" (rda and ran) appear to bear a definite relation-
ship to our intuitive, phenomenological concept of "similarity". ParticuT
larly in the case of the contour-sensitive connection system mentioned
above, it can be shown that classes of forms which we tend to regard as
"similar" (e.g., different sizes and locations in the field of the same
letter of the alphabet) will have a high value of ran, while for dissimilar,
or randomly selected forms, rda will be low. Similarly, if we consider roa

* r-- is used as an abbreviated notation .for rz-7aa '1-2
(94009) 430.



between two strongly dissimilar classes of forms (such as horizontal and
vertical bars, or the letters E and X) we will generally obtain a lower
value than between similar classes (such as lower case "x" and upper
case "X").

Now let us consider how these correlations come to be represented in the
perceptron.

If any association cell is exposed exclusively to members of a single
stimulus class, or if the reinforcement operator, p, is equal to 1 for all
members of class S1 and 0 for all members of class S2, then the value of
this cell will grow in a direction and at a rate which is determined by
the expected value of the input signal from S1 stimuli. Over a set of such
units, therefore, as time goes to infinity, we would expect

row raN

where r Is the correlation of the input signals from any one stimulus
(selected at random from the class in question) with the value currently
stored in the 147-units.

Now, if we "force" the responses of the system, so that, for example, in
an environment of triangles and circles, the perceptron is made to give the
response R = I consistently for all triangles, and R = 0 consistently for
all squares, then in the 1 source-set we get

(4)

and in the 0 source-set

rayi raial

r, _ r,
'12'41

(Er c( a < Era )
2i 11

r -
a1v0 

rala2

-
a2v0 . a2a2

(Er Er -)
aia2 a2a2

(5a)

(5b)

In other words, the values of the A-units in each source-set become corre-
lated with the expected values of the input signals from the class of
stimuli which has been "associated" to the corresponding response, and the
correlation with signals from stimuli of the opposite class are expected to
be smaller by a factor which varies with rua. Thus; if the stimulus classes
are completely independent (rm. = 0) we should expect (for the "1" source-
set)

--:>- ra.a.
s z 1 z

r ----) 0a v •
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Now consider the signals which are transmitted from the association

system to the R-unit (fig.2). These signals are equal to the sum of av for

the source-set in question. But the correlation coefficient, r v" for eithera
source-set, has the formula:

El a - tr)(v - 17) Eav + [Naii - - EiZ v] 
rav Naixav Noucv (8)

where N = the number of k-units in the source-set.

If we assume that the two classes of stimuli, SI and S2, produce the same

distribution of signal amplitudes at the A-units, then the expected values

of ora and a will be identical for the 1-source-set and the 0-source-set. If,
in addition, the same number of stimuli have been associated to each of the

two responses, the variable v will also have the same expected distribution

in the two source-sets (under the experimental conditions for "forced

learning", described above) so that crii and P can be considered equal for the

two cases. N is also assumed to be equal for the two source-sets. Thus, the

term in brackets in the numerator of (0) reduces to a constant, which will

be zero if and P = 0. The denominator also becomes a constant, so that the

correlation can be expressed in the form:

r —
fay 

+ 
C2c1 (7)

Consequently, the expected difference of the signals from the two source-

sets, Zial.-2i)av, will be directly proportional to the difference of the

correlations ra,v and ra,v . We have already seen [in equations (5a) and
10ii 

(5b)1 that one of these correlations will be proportional, in the limit, to

ra,a. and the other to ra,a,. The difference will be positive if the
s s s I

subscript i refers to the first class of stimuli, negative if i refers to

the second class.
Under these conditions, therefore, we would expect that the presentation

of any arbitrary stimulus from class S/ will tend to evoke the response

which has been formerly associated to SI stimuli, while the presentation of

an S2 stimulus should evoke the opposite response. This, actually, is the

essence of the theory of "forced learning" in a continuous transducer

perceptron. Predictions of the reliability of the response, as a function of

the number of A-units in the system, can be made by making use of standard

techniques for. determining the probability of an error in the difference of

two correlation coefficients, equal to or greater than the expected

difference, r -
s

Simulation experimen/s, using the IBM 704 digital computer at the

Cornell Aeronautical Laboratory, have substantiated the predictions of this

theory. It has been possible to teach a simulated perceptron to recognize
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the difference between geometrical forms, letters of the alphabet, and

positions on the retina, using continuous transducer neurons. The most

important question, however, still remained unanswered at this point In

the program: What would such a perceptron db If, instead of forcing the

desired response during a "training period", we simply turned it loose in

an arbitrary environment? Would it ever, spontaneously, arrive at the
desired concepts?

6. THE THEORY OF CLASS C PEReEPTRONS

The problem of spontaneous organization was originally investigated with
respect to perceptrons in which the growth function of the value corres-

ponds to equation (1). This study led to the following theorem and
corollary:

TEOREM 1:

There exists a class, C, of perceptrons, which tend toward a statisti-

cally stationary state such that each binary response (R = 1, 0) becomes
established as either 1 or 0 universally, for all stimuli, with an error

probability, E, which approaches zero as t a). In the terminal condition,

each binary response gives 0 bits of information with regard to the current

stimulus.

COROLLARY:

A perceptron in which the values of the A-units are allowed to grow

without bound, and in which the sensory origin points of the A-units are

randomly located, is a member of the class C.
In order to prove this theorem, it is clearly sufficient to prove the

corollary for any particular case. We will consider, as a perceptron of
this type, a continuous transducer perceptron with a single binary response,

such as the one shown in fig.2, with growth function (1). As there is no

decay in the values of the A-units, they can continue to grow Indefinitely,

as indicated by equation (1a). The environment of this system is assumed to
consist of tvqo arbitrary stimulus classes, SI and S2. Stimuli are assumed

to occur in a random sequence, where the probability of an SI stimulus is

P(S1), and the probability of an S2 stimulus is P(S2). We must show that
whatever the relationship of the stimulus classes, the condition stated in

the theorem will tend to occur.

In order to develop a proof for this theorem, it will be necessary,
first, to define some terms. In particular, we must consider several

different methods of representing and classifying the "state of the system"
at time t.
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The description of the "state of the system", which gives us the informa—

tion which we ultimately want, takes the form of a 2 x 2 probability matrix,

11 P12)

P21 P22

where the first subscript denotes the stimulus class (S1 or S2) and the
second denotes the response (R = 0 or R = 1). Thus P21 = the probability
that a Class 2 stimulus would evoke the response R = 0, at time t.

The matrix P can be classified into three cases, as follows:
P is horizontally symmetric if both elements of one column are greater

than 0.5, and both elements of the other column are less than 0.5, i.e.,

P = 
(.5 + .5 - .5 — .5

.5 + A .5 — A 
or P 
( ‘+. A)

.5 — A .5 + A

P is diagonally symmetric if one pair of diagonal elements are greater
than 0.5, and the other pair are less than 0.5, i.e.,

(.5+A .5 —
P =

.5 - A .5 + A
or P =(.5- A.5 +A.5 + A .5 —

P is neutral if the elements of one or more rows are both equal to 0.5.
Theorem 1, stated in terms of these definitions, predicts that In a

Class C perceptron the terminal state will always tend to be horizontally
symmetric, and that A will approach 0.5 as t

In order to evaluate P at some arbitrary time, t, and to show the trend
in its development through time, two other matrices are helpful. The first.

of these is the 2 x '2 matrix, N, where

• ( n11 n12)
N = „

"21 n22

Here the row subscr4 P. again refers to the stimulus, and the column subscript
to the response. Each n is equal to the number of times that the indicated
response has occurred in response to a stimulus from the indicated class.
1221, for example, is the number of times that a stimulus of Class 2 has
evoked the response R = 0, throughout the history of the system up to time t.

The remaining matrix, K, Is again a 2 x 2 matrix of the same form:

K =
(kii •

k21 k22

where JI r o- • The elements of this matrix are proportional to theVI 
expected values of the output signals from the j—source—set, in response to
an arbitrary stimulus of Class i. The significance of the correlations ray
has already been indicated in the preceding section. For simplicity, we
assume a perceptron so designed that '1.7 = 0. The conditions assumed for
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equation (7) all apply, except for the fact that arl. can no longer be assumed
equal for the two source-sets, since the sets may not have been "reinforced"
an equal number of times. The elements of A- have, therefore, been corrected
for the effect of

Now, it can be shown that X(t) is a function dependent only on N(t), and
that P(t) depends exclusively on A(t)..Moreover, we can show that {N(t)} is
a function exclusively of {Nqt-i)}, {P(t-1)}, P(S1) and P(S2), where the
last two probabilities have been defined as constants. Consequently, the
matrix N is a Markovian process, and P is a function of this Markovian
process.

Our general procedure will consist of showing that there exists a path by
which any state of the system can progress to one of the two admissible
terminal states,

P =
/10) (0 1

or
10 \\o l)

It can be shown that, since the system is fundamentally Markovian, these
states are "trapping", i.e., once the system has arrived in either of these
states, by any path whatever, the probability of departing from that state
is zero. The only-other states that might be trapping are the diagonal

1 0 0 1
states, (

0 1 
and J. The proof that the system will always, given

\i O/
sufficient time, tend towards one of the horizontal rather than one of the
diagonal terminal states, rests on the fact that as long as t remains
finite, the states will never be absolutely trapping, i.e., there always
remains some error probability, and that this error probability tends to be
greater for the diagonal than for the horizontally symmetric states.

The initial state of the system, at t = 0, can generally be characterized
by the conditions: '

P(o) =
.5 .5

(5 .5)
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or, in abbreviated notation,

(0 0 (0 0 .5)

0 0/,

(.5

0 OJ, .5 .5

where the matrices are assumed to be written in the order Ac K, P.
If we now treat the occurrence of a stimulus, S1 or S2, as an operator on
the state of the system, we can indicate the development of the system over

any period of time as a tree, with a fourfold branching of possibilities at
each successive moment in time (assuming time, for the sake of convenience,

to be quantized rather than continuous):

(0 0) (0 0) (5 .5

0 0 , 0 0 , .5 .5).

Pil 0)
 - 0 0

P12 P(S1)(
0 0)

0 1)

P21.P(S2) ( 0 0

 \i 0 1

P(S2) (00 o)

(8)

To each of these new N matrices, there again corresponds a K and a P matrix,
which governs the probabilities on the next split, etc. In general, N(t) =
b(t-1), with one of the four elements incremented by 1 for each of the four
possibilities, as indicated in equation (8), with the probabilities
indicated by the expressions above the arrows. Thus, the sum of all the

elements in N is always equal to t, and the sum of the elements in either
column is equal to the number of occurrences of the corresponding response,

in the prior history of the system.

The number of terminal branches in a tree of the form indicated in (8)

will be equal to 4, a number which grows large far too rapidly to permit

exhaustive computation of the spectrum of terminal states beyond the first

few generations. The probability of any given terminal state or branch is

equal to the product of the branch probabilities (PsrP(Ss)) for each step of
the sequence prior to t, where Ss is the stimulus, and Rr thp response which
occurred. These "world lines" of the system yield the expected values of the

elements in the terminal P matrices, and the total probability that the
system will terminate in a horizontal or diagonal state can be obtained by

summing the branch probabilities of the terminal branches of each class.
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In order to prove the theorem, which is our primary concern here, we must
first show how the P matrix depends on AT. The first step will be the develop-
ment of the elements, of the K matrix.

We have said that k.. = ra ti.a , which we have seento be proportional toI) . j •vj

the expected output signal from the j-source-set, in the presence of a
siimulus of Class i. If we let a. be the component of the variance of v
which is correlated with a, then

and
o2

_
•• v. cl •

a2
vi

In other words, the elements, 11.., are measures of the expected covariance
of a and v, for stimulus Class i and source-set j. Now this covariance comes
from the nij increments to the value from S1 stimuli, and the n2jincrements
from S2 stimuli. It is convenient, for purposes of analysis, to factor the
square of the required covariance in an approximate fashion as follows:

2 2
"'v.a • ' a .a. 71 i•is is j 

which means that we need only find the covariance of v. and a., the expected
value of a for the stimulus class Si. Now each increment to the value of the
source-set has an expected value equal to Ea, for all A-units in the source-
set. This increment has an expected variance which we can arbitrarily set
equal to unity. This variance can be divided into four components, as follows:

A Variance which is "unique" to the particular stimulus, and1 '
uncorrelated with either Ni or &72

6,2 E Variance which is correlated with
6.3 E Variance which is correlated with

141 
=7- Variance which is correlated with

(9)

(10 )

a but not with
1 2

both Ul and a2
g2 but not with al

The magnitudes of these four components will be:

61 = I - 02 + 6,3 64)

A2 = rg.a. (1 - r a)s
63 r .a. r2E3

t

41 r(71
i
aj(1 - re-)aa

The first and fourth of these components clearly makes no contribution to
o 
.

2- The second two components each make a contribution, which combine in theva 
covariance as follows:
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A 2 A 2 A

cry nij "2(i) Vnij "3(1) 4.-/n2j "3(2)) 2

2 2

n j• r - - 404) + rizij raial rE + no •i

2
Multiplying through by rceE, as indicated in equation (10),

2 2 4 (' 2\ 2 2  -
k.. = n.j rad 

- 1 - r— +. r - r-- n • r -
sj sa. aa a.a. aa li alais i 

raid2 rm.]

we obtain:

+ no
j - 
r22
-- (12)

One point which has been overlooked thus far concerns the signs of the

kij. Since kij has been squared in the course of this analysis, the sign of

the element, as obtained from equation (12), might be either positive or

negative. Now it must be remembered that kii is intended to be proportional
to the ovtput signal of the j-source-set, I".av, and to rave If the values,

31

1).have been built up exclusively by increments from stimuli of the

opposite class from Class i, then it is quite conceivable that ra.v. could
j

be negative, if rEE were negative. ray, could also be negative, for some

specific stimulus of Class i, if ra.a. were negative for the stimulus in
ii

question. Under all other conditions, the signs will remain positive. Now,

if we limit our discussion to perceptrons with random spatial distributions

of origin points for the A-unit input fibers, it can be shown that raa will
always be positive. If the stimulus classes, Si and S2, are totally

disjunct, rEa may be equal to zero, but it will never go negative. If, on

the other hand, the distribution of origin points is organized in some

special pattern, such as the polarized contour-sensitive distribution

described above, it is possible to obtain negative values of ras. If this

should be the case, then there will be certain environments in which the

perceptron which has been described will not behave as a Class C system,

but will begin to acc as a Class C' system (to be described in the following
section) instead. Let us therefore limit ourselves to perceptrons with

random spatial distributiOns of origin points (as indicated in the Corollary),

for which the elements k will always be positive. We should also assume aij
"well behaved" system in which rE is always positive, for any stimulus of

Class i.

Now the difference between the two /els of the same row, ki2 - kip will
clearly be proportional to the difference, Elav-Ebav, between the signals
from the two source-sets, which determines the response. The probability

that the response R = 1 will occur is a positive monotonic function of this

difference. It Is also clear from equation (12) that if 'Tot to, the

magnitude of the kij will increase monotonically with nii + n2i, 1.e., with

the column sums of the N matrix. Consequently, if the ratio orthe sum of
the i-column to the sum of the j-coluMn should increase without bound, it is
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clear that pli and hi will tend towards unity, while pij and hi tend
towards zero, which is the condition of horizontal symmetry predicted by

the theorem. It is also clear that, if the elements of one row of the N
matrix are equal, then an inequality between the elements of the remaining

row will cause the P matrix to be horizontally symmetric.
Let us now consider what happens as soon as a stimulus of either class

is presented to the perceptron [equation (8)]. It is clear that the first

increment will immediately introduce a bias towards either the left column

or the right column, so that equation (8), in more complete form, can be

written:

(0
0
0
0,),

(0 0
0 a),

(.5
.5

5
.5

.5P(S1) 0) (:k 0 (. + A .5 - A
0 0 , k a), .5 + A .5 _

15P(S1)...2, (0 1) k) (.5 - A .5 +
'00, Ok, .5 -A.5 + A

.5P(32) (0 0 (k 0) E5 + A .5
1 k 0 , .5 + A .5

.529(52) (0 0 (0 - A .5

0 1 , 0 k , 5 - A .5

- A)
- A

+A;)

+ A

Each of the resultant first generation matrices is of horizontally

symmetric form. (In the event that raa = 0, the first generation matrices
would be neutral, but this can be regarded as a limiting case for the

Class C perceptron, in which horizontally and diagonally symmetric states
remain equally probable, no matter how far t is extended.) It is now clear

that, whichever stimulus is the next to occur, the probability is greater
than 0.5 that the same response will occur which occurred originally; and
if this does happen, then it is evident that the same column of the AT-
matrix which was incremented before will be incremented again, leading to
an increase in A, and strengthening the tendency towards the horizontal
form. Thus, we find that a matrix which is already a horizontally
symmetric case tends to remain so, and that the application of further
stimuli will always tend to increase the existing tendency. In the limit,
as A approaches 0.5, it Is clear that the probability of ever gaining an
increment in the "weak" column of the N-matrix goes to zero, and conse-
quentiy, the state can be considered strongly trapping.

We must still consider, however, the eventuality that, before becoming
"trapped" in a horizontal state, sufficient responses should occur in each
column so that the system goes into a diagonap.y symmetric state. Consider,
for example, the second generation matrix N i for which we would have:

P 
_(.5+A   .5 - 

5 - A .5 + A

( 1 3 )
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k k
Note, however, that the IC-matrix, in this case, takes the form (k k), with a

nonzero element in each cell, whereas in a second generation horizontal case,

= 
( )

k 0 . Moreover, it is clear from equation (12) that each k
1j 
. In the

k 0 
diagonal case will be less than the dominant kis in the horizontal case, ,

since the magnitude of the kis tends to increase with the square of the
column sums of the AT matrix. Consequently, the row differences, k12 - kii,
which determine the pip are bound to be greater for the horizontally
symmetric cases than for the diagonally symmetric cases; in other words, the

horizontal cases are "stronger", or more binding, than the diagonal cases,

and the probability of an "atypical" response (one which goes counter to the

current tendency of the P matrix) is greater for the diagonal than for the
parallel case. This argument can clearly be extended for any generation

matrix. Consequently, no matter how far the matrices progress towards a
perfectly trapping condition, the horizontal cases will always be more

strongly trapping than the diagonal cases.
It remains only to be shown that any diagonal state of the system can

be transformed Into a horizontally symmetric state, in order to prove the
(nt n

theorem. Consider the arbitrary diagonal state, N = , where the
n n f

primed elements indicate large integers, and the unprimed letters indicate
smaller integers. To each of the large elements corresponds some pii < 1,
and to each of the small elements corresponds some pii > o. Consequently, on
the subsequent cycle, (t + 1), there is a nonzero probability that n n +1.

This yields a new matrix, which is subject to the same argument. It is there-

fore clear that after n t - n such events, either of the small elements (n)
might grow to the magnitude of the large elements (n 1), which is a sufficient
condition Tor a horizontally symmetric state (since the n's of one row are
now equal, and the n's of the other row unequal).

This completes the proof for Theorem 1. The behavior of such a Class C
system can be most clearly represented by an equilibrium diagram (fig.3),
in which heavy arrows indicate strong tendencies, and light arrows indicate
weak tendencies. In general, as time goes to infinity, all systems will
eventually assume a horizontally symmetric form, with continually decreasing
probability of escaping to either a neutral or a diagonal condition.

7. THE CLASS C' THEOREM

Theorem 1 indicates that the type of perceptron which had been considered
• at the outset would be incapable of "spontaneous organization". In fact,
such a system, even if it has been deliberately taught to associate opposite
responses to two classes of stimuli, is likely to degenerate to the terminal
condition described by the theorem, if it is subsequently left on its own,
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(.5-A .5+A)

.5tA .5-A

(.5+A .51

.5-A.5+6 

I
..55 :55)

I

(.5-A5 A 55 AA

Fig.3. Equilibrium diagram for a Class C System

(States of the System are represented by P Matrices)

without further training or supervision by a human operator. This discovery

led to a search for a system which would not be subject to the Class C

effect, and which would tend, instead, to arrive at a "useful" division of

its environment, without human intervention. The following existence theorem

states the conditions with which we are specifically concerned:

THEOREM 2

There exists a class, C', of perceptrons, which always tend toward a

statistically stationary state, such that for each binary response

(? = 1, 0) the environment will be dichotomized into the two stimulus

classes, .51 (whose members evoke the response R = 1) and S2 (whose members
evoke the response R = 0). The dichotomy which is established will, in
general, te characterized by a high degree of similarity between stimuli
of the same class, and marked dissimilarity between stimuli of opposite

classes. In the limit, each response of such a system contains 1 bit of
information, with respect to the current stimulus.
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Actually, there are many systems which meet the conditions of this

theorem. The simplest of these, mathematically, is one in which the output

signals of each source-set of A-units are divided by the current value of

a thus making the elements of the &matrix (defined above) proportionalvo
to rap. A system of much greater practical interest, however (which, more-

over, converges to its terminal condition more rapidly), results from the

growth functions defined by equations (2) and (3). As indicated in (2a)

and (3a), the values of the A-units tend towards a limit which is propor-

tional to the expected value of the input signal times the associated

magnitude of the reinforcement operator, which is assumed here to be 1 or 0.

Hence, we have the following corollary:

COROLLARY:

A perceptron in which the values of the A-units decay at a rate

proportional to their current magnitude is a member of the Class V.

With the proof of the Class C theorem as a model, we are now prepared to

undertake the rather more subtle proof of the Class CI theorem. As before,

it will be sufficient to prove the corollary, for any particular system, in

order to prove the theorem. Actually, this proof involves two distinct

points:

1. We will prove that the system always tends to dichotomize the

environment into some two classes. To prove this, it is sufficient to

show that, given any two stimulus classes, S1 and S2, the system will
tend towards a diagonally symmetric terminal state in preference to a

horizontally symmetric terminal state.

2. We must then prove that the dichotomy which is most strongly

preferred by the system, in any environment, will correspond to our

concept of "good similarity and dissimilarity", i.e., that it will tend

toward a dichotomy which maximizes raa and minimizes ruz.

The analysis will be carried out for a perceptron having the same organi-

zation as before, and characterized by the growth function stated in

equation (3).

As in the case of the Class C perceptron, the state of the system will
be described in terms of three matrices. The matrix P has precisely the same •

meaning as before, and can be classified, in the same manner, into horizon-
tally and diagonally symmetric cases, and neutral cases. If we try to use

the N matrix as a basis for calculating the state of the system, however, we
will run into serious difficulties, for AT is no longer Markovian. In the
Class C perceptron, it makes no difference in what sequence the contribu-
tions to the elements nij 

occur; a given number of reinforcements in a

specified category will always have the identical effect, regardless of the
time at which they occur. In the Class C, system, however, this is no longer
the case. The elements of the N matrix no longer unambiguously determine the
P matrix, and consequently, the probability of each subsequent N matrix can

(94009) 442



no longer be predicted as before. FOrtunately, we can replace N with an
alternative matrix, which is Markovian, and which we will call V. The V

matrix is a 2 x 2 matrix with elements vij, where, as before, the row

corresponds to the stimulus class, and the column to the response. The

element vii can be interpreted as a measure of the residual value, at

time t, which is due to the past reinforcements of the j source-set by

stimuli of Class i. In accordance with equation (3), the elements of V

will decay by a fraction 8, whenever the source-set j is reinforced (i.e.,
whenever the response R = Ri). The column sums of V correspond to the total
values of the elements in the j source-set at time t due to all previous
stimuli. It is clear that if the proportional decay, 8, is applied to each

component of the sum individually (i.e., to the elements vl. and v2.) the

net effect will be the same as if the decay had been appliel to thelcolumn

sums at each step, so that the analysis of the source-set value into two

components does not introduce any error in the stochastic process.

Specifically, the elements of each successive V matrix can be obtained by
the rule:

fNi(t - 1) if R(t) p R.
= (14)

1,(1 - 8)vii(t - 1) + 1 if R(t) =

Now we have indicated that the terminal values of the A-units in a

Class C° perceptron will be proportional to the expected values of (1,

measured over the set of stimuli to which the A-units in question have been

exposed. The variance of the value, 4, will therefore tend towards a

statistically stable magnitude. If we assume that the initial value distri-

bution over the set of A-units has the same variance as this terminal
distribution, then we would actually not expect the variance to change at

all, as a result of reinforcement of the A-units; in effect, we will be
changing the correlations of the A-unit values without changing the moments
of the distribution. Consequently, the covariance matrix, A, which was used
in the preceding analysis, can be replaced with the correlation matrix R.
which consists of the coefficients rii = ra.v.. These correlation coeff1,-,

clents are clearly equal to the covariance-Which can now be obtained in
terms of the V matrix just as it was before from the N matrix) divided by
ay. We now require an explicit expression for ori, Specifically, the variance
crj3 can be divided into five components as follows:

Ao E residual of initial noise component, present at time t = O.
= variance correlated with a but not with a.1- 2.

82 E variance correlated with 72.2 but not with El.
A = variance which is correlated with both d1 and N 2'

• 

= variance which is "unique" to the individual stimulus (corresponding4-
to 61 in the previous analysis)
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The magnitude of these components is given by the expressions:
2

N •
Ao 

2
= vii rgial (1 - rga) + v?'

j ra1a2 
2 (1,- raa)2 

2 2 2 2 2
A2 = v2j ra

2 2 (1 - ra--c4) v 1 j ret2 1 (1 7 41.7)

2 
r 

r , 2
A = Lv • r - -
3- a + a $.7 alai r 2aa2

A4 = v • (1- r
2 *) + v2j (1 - r2 _

c12a2)a1;51.

where 170 is the magnitude of the initial mean value, at t = 0, and N• Is
the number of times that the response R = Ri has occurred. From these
components, we can readily obtain the approximation:

(15)

In terms of these r's, it is easy to approximate the elements of the
P matrix, through the use of Fisherls z-transformation:

zil — ziiN\

Pii = 2 

NAr — 3

= 1 -

1 1
where zji = 2 In (1 + ret .) - E In (1 - rci.v.

s s

c(x) = normal probability integral from - cc to x

and NAr = number of A-units in a source-set.

We must now define the concept of a "saturated state" for a CI system.
Such a system will be called "saturated" when the sum of the squares for
each column of the R matrix is maximum, 1. e. , when •
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This expression represents the upper limit for the correlations, as ro -- 1

for the two elements of the column, taken jointly.

Now, it is clear that every increment to the values of the A-units will

bring the system closer toothis saturated condition. Moreover, the degree of
saturation can only increase; once a system has become saturated, it can
never become unsaturated, since whichever stimulus occurs, and whatever the

sequence of events, every new increment will only increase the tendency of

r - to approach unity. If we now examine the saturated state, it is clearva
that in the limit a horizontally symmetric system will become neutral as the

two columns saturate, while a diagonally symmetric system will tend to
remain diagonally symmetric. Thus, the only acceptable terminal conditions,

for a Class C' system, are either neutral or diagonally symmetric.
neutral

neutral terminal state, each of the rij elements is equal to raa\

n the
2 --

1+3rA77,7

2+2raa

while in the diagonal terminal state, the strong elements go to r„,-= and9 ui
the weak elements go to raw. Consequently, the diagonal terminal states

I
tend to be "trapping", and the neutral states have a low probability. A
Class C system can now be recognized as a limiting case of the Class CI
system, in which the time for saturation goes to infinity, due to the fact
that al, never approaches a limit.

This completes the first part of our proof, i.e., we have shown that,

given any two classes, Si and S2, the perceptron will prefer a diagonal
terminal state to a horizontally symmetric state. The equilibrium diagram
which characterizes this type of system is shown in hg.4. It is now
necessary to show that the particular dichotomy which is formed in an
arbitrary environment will tend to be one which corresponds to our criterion
of similarity. In order to do this it will be sufficient to show that the
net terminal error probability (considering as an "error" any response which
is contrary to the bias of the terminal P matrix) will be minimum for a
dichotomy which meets our similarity criteria. If the system terminates in a
state in which the error probabilities are not minimum, then it will always
tend (given infinite time) towards a state In which the error probabilities
are still smaller, i.e., it will tend towards a more "strongly trapping"
terminal condition. Let us, therefore, examine the various possible
dichotomies, in an arbitrary environment, from the standpoint of their error
probabilities.

Consider, first,

classes of stimuli)
will be equal to 1,

dichotomy possible,

an environment consisting only of two stimuli (not two
, Si and S2. Under these conditions, raN for each stimulus
and rua is equal to ra1a2. Here there is only one

so there is no doubt about which will be selected. As
long as the two stimuli do not produce identical signals, (i.e., as long as

the perceptron should tend to give a 1-response for one stimulus,
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(5ta .5-A

.5+ a .5-A

(.54A .5- a ) .....— ( .5 .5 ) -0,... (•5 - A .5 4A )

.5-a .5+ a --1.- .5 .5 '60-- .5 -I- A .5-A

1

( . . 5-1 .55 - it a . 5 ++ila

Fig.4. Equilibrium diagram for a Class Co System

and a 0-response for-the other. Now, if there are more than two stimuli, we
can represent the state of the system unambiguously, without presupposing
any particular division of the environment into classes, by adding a row to
the V, R, and P matrices for each additional stimulus. Thus, for n possible
stimuli, the P matrix becomes:

Pu i P12.

Pa P22 \

0

I. 0

0 0

Pni Pn2

This matrix can be classified as horizontally symmetric if all elements
of one column are less than 0.5, and all elements of the other column are
greater than 0.5. If for any row, pii >pi2, and for any other row,
pit < fil12, the matrix is diagonal. All of the development which previously
applied to the calculation of the ,P matrix from V and R can similarly be
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restated in terms of this expanded matrix. Equation (16) still applies to
the calculation of the pls, equation (14) to the v's, and a suitable

extension of equation (15) (in which the variance contributions from each

element in the appropriate column of the V matrix are included) permits us
to calculate the r's.

Now, the total error probability for such a system at time t will be

= zg P(S) (18)

where gi is the "weak" probability (i.e., the probability which is less
than 0.5) from the i row of the p matrix, and P(51) is the probability that
the particular stimulus, Si, will occur. It is clear from, the general
dynamics of the Class C' systems, as discussed above, that the system will
tend to keep changing until it arrives in a maximally stable terminal
condition, and this maximally stable condition will be one in which Pe, as
defined by equation (18), is minimized.

Now consider any class, S, of stimuli. The probability, P(S), that some
member of this class will occur, is equal to the sum of the probabilities,
P(S.) that the individual members of that class will occur. Consequently,t '
if the system Is in state P at time t, and if we define the two stimulus
classes, S1 and S2, so that S1 is the class of all stimuli for which the
response R = 1 is preferred at time t, and S2 is the class of all stimuli
for which R = 0 is the preferred response, we can write [from equation (16)]:

Pe(t) = gi P(S1) + e2 P(S2) (19)

But we can write explicit expressions for gi and g2 (the weak diagonal
elements of a terminal P matrix) in terms of equation (16), i.e.,

= 1 -

Z(ra.d.) - Zlra.N)\
.1

V2/117Ar - 3 //

where the z's are defined as for equation (16). Consequently, we have
/Z(ret.a.) - Z(ra.u.)

1 I 
= 1 -

2 V2/ArAr-3
- P (Si) (20)

which is the function which must be minimized in order to find the most
stable classification system for the environment in question. An examination
of this expression shows the following:

1. The terminal condition depends on the frequency of stimuli in the two
classes; a highly coherent class which is very small, or the members of
which are all highly unlikely to occur, will be less likely to occur
(other things being equal) than a larger class, or a class which includes
more frequent stimuli. This means that the system will tend to favor
dichotomies which divide the environment evenly between classes.
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2. Other things being equal, the system will favor dichotomies such that
the intraclass correlations, ra, are large, and interclass correlations,
r-- are small. This is the similarity condition which we set out toaa,

establish.
Since we have shown that the error function, [equation (20)], will be

minimum under the conditions which best satisfy our similarity criteria, we
have effectively proven Theorem 2. The predictions of this theorem, as well
as those of Theorem 1, have been successfully demonstrated using the IBM 704
computer to simulate the performance of a perceptron in a simple perceptual
environment. In the first experiment to be successfully completed, a 500
k-unit perceptron spontaneously learned to distinguish the class of squares
on the left from the class of squares on the right, in an environment in
which squares were allowed to appear in random positions anywhere in the
right or left halves of a visual field, being excluded only from positions
in which they would overlap the center line. After being exposed to
/00 squares chosen at random from this environment, the perceptron
exhibited the P matrix (based on 100 test-stimuli of each class):

=
0 1.00)

P
(.94 .08

in which the net error probability is only 0.03.

8. SIGNIFICANCE OF THE CLASS C' PERCEPTRON

In discussing the Class C' system, I have taken pains to avoid any
reference to the concept_of entroPy.'A number of theorists have felt that a
system...whIch is self-organizing, in the sense that the Class C' perceptron
appears to be, is in contradiction to the second law of thermodynamics.
Actually, of course, if we concern ourselves simply with the physical state
of the system, entropy is clearly increased, as the perceptron is an energy
consuming device. From the standpoint of information, on the other hand, we
may still ask the question whether the total amount of information has
somehow been increased as a result of the perceptron's organizing process.'

Consider an environment of eight stimuli, Si S8' At the outset, the
response R = 1 might denote the presence of any of the stimuli Sl, S5, S5,
or S7, while in its terminal condition, R = 1 might indicate the presence of
S/' S2' S3' or S4' Can we legitimately say that the information given by
the response R = 1 in the terminal state is greater than the information
given in the initial state? In any absolute sense, probably not. On the
other hand, if we recognize that the first four stimuli are all triangles,
while S5".S8 are all circles, we can legitimately say that the information
carried by the terminal response is more meaningful than the information
carried by the initial response. Nleaningful", in this sense, means that,
while R = 1 conveys one bit of information in either case, .the information
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in the terminal condition has become correlated with certain aspects of the

environment which we wish to have reported, whereas in the original state,
the information conveyed by R = I was of no interest or utility.

This argument is, admittedly, a sketchy one, and may contain loopholes.
In any case, the fact that such questions arise (and the difficulty in

answering them convincingly), seers to indicate a certain ambiguity in our

concept of "information". The fact that "information" is not equivalent to

"meaning" has often been noted before. The performance of the Class C'

perceptron seers to make this distinction even more apparent.

Be that as it may, it seems clear that the Class C' perceptron intro-

duces a new kind of information-processing automaton: for the first time,
we have a machine which is capable of having original ideas. As an analog

of the biological brain, the perceptron, or, more precisely, the theory of

statistical separability, seems to come closer to meeting the requirements

of a functional explanation of the nervous system than any system previously

proposed. The neuroeconomy, and the number of necessary constraints required
in order to specify a system of this type, seems to be well within the

bounds of biological plausibility. So far as we have been able to ascertain,
no known facts about the central nervous system have been violated by our

assumptions, even though at times we have used simplification and short cuts
which are not available in a biological organism. Wherever we have made such

assumptions, as in the simplification of a "response unit" to a single two-

stage element, the biological equivalent can be clearly indicated. Thus,

while we have not proven the validity of statistical separability as the

explanation of an organic brain, this explanation now seems to be the most

Plausible of the available alternatives.

As a machine, the future of the perceptron will depend heavily upon our

ability to achieve an efficient and inexpensive A-unit. Studies of compo-

nents and circuitry are currently in progress, and success seems imminent.

We will not speculate here upon the possible applications of such a device.

The perceptron is in its infancy, and it would be a mistake to rush it too

abruptly towards an adolescence which can still scarcely be foreseen.

As a concept, it would seem that the perceptron has established, beyond

doubt, the feasibility in principle of nonhuman systems which may embody

human cognitive functions at a level far beyond that which can be achieved

through present day automata. The future of information processing devices

which operate upon statistical, rather than logical, principles, seems to

be clearly indicated.
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APPENDIX TO THE PAPER BY DR. F. ROSENBLATT 0

Since the draft of the preceding paper was written, a much improved
method of analysis has been developed, which should really supersede much
of the foregoing material. This method is applicable to networks of "con-
ventional" on-or-off neurones, rather than to neurones of the continuous
transducer variety. Each A-unit, az, is characterized by a threshold, 9,
and a variable output strength, vi, which serves as the memory variable. If
the algebraic sum of the excitatory and inhibitory input signals from the
retina is greater than the threshold, an A-unit "fires", and delivers its
output, v, to the R-unit to which it is connected. If the measure of the
total input signal to the A-unit is a, then we can define the "activity
function", a*, as

Ii if a > 0
a* -=1.

0 if a < 0

The output signal from every A-unit will thus be equal to a*v, and we will
assume that the R-unit is "activated" by a net input signal greater than
zero, and "suppressed" by a net input signal less than zero. Specifically,

R = il1 if Z a.* v. >- 00 if I a.* v. < 0

where the summation is over all A-units, ai.

Now let Pa, = the proportion of A-units responding to stimulus Si, and

let P = the proportion of A-units responding both to stimulus S. and toa1,,

S
j. 

The expected values of these proportions are known functions, which

have been previously described (ref.1). While a small perceptron may show
appreciable deviations from these expected values, in a very large per-
ceptron, the proportions of responding units should be very close to the
expected values. In order to eliminate from consideration the variability
of different perceptrOns, the following remarks will be restricted to the
assumption of a very large, or infinite, perceptron, in a finite universe
of stimuli, S1, S2, ..., S.

If a perceptron is exposed to some stimulus, Si, and its association
system is reinforced, then the total amount of value gained by the set of
A-units responding to Si will be some function of which depends on

0 Added after the Symposium
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the particular rules of reinforcement which are applied. For example, if we

simply have a rule that the active units gain some increment of value, i(!a/,

and inactive units are unaffected then the total amount of value gained by

the set of A—units responding to Si will be kF2., where k is a constant of
%

proportionality. Such a system is called an "alpha system". Now suppose we

present stimulus Si, and apply the above rules for reinforcement. Each of

the A—units thus reinforced is likely to respond not only to Si, but to one

or more other stimuli as well. Let us now examine the effect of the rein—

forcement of Si upon the sets of A—units responding to each of the other

possible stimuli. The measure of the value change in the set of units

respondingtoS.as a result of having reinforced St., will be called the.7'
"generalization coefficient", gip In the alpha system, considered above,

gij will clearly be equal to Oa. . If we arbitrarily define our units of
ij

reinforcement so that k = 1, then we have for the alpha system that

= Pctii'

In a different system, which we have called a "gamma system", the rein—

forcement rules specify that the total value, measured over the entire set

of the A—units, must remain equal to zero. In this case, if the active

units gain a quantity equal to P,., then this same quantity is subtracted—I

uniformly over the association set as a whole, so that, again assuming the

proportionality constant, ko to be equal to 1, we have for the gamma system:

gij = Paij — Pai Pctj'

Now if there are exactly n possible stimuli, there will be an n by n

matrix of generalization coefficients, gii. The rows, of this matrix repre—

sent all of the "contributions" from a reinforcement of Si to the sets of

A—units responding to each possible stimulus, S (where Si may be identical
with Si). he columns, represent all or the possible contributions to the
set of A—units responding to Si, from reinforcements of each possible con—

tributing stimulus, including itself. Let us designate the row vectors of

this matrix Gi, and the column vectors G. t Let us represent the expected
.1

frequency of occurrence of each of the n stimuli by a positive scalar

number, fi. The set of n frequencies, for the n stimuli, can be represented

by a vector, F. The scalar product, FG, will then be equal to the expected
1rate of change for the total value of he set of A—units responding to Si,

as a result of being shown each of the possible stimuli at its expected

frequency, each one being positively reinforced. Thus, over a period of

time, t, assuming a zero decay rate, we would expect the value measured

over this set of A—units to grow to tFG1 '.K.
Let us now consider the effect of the reinforcement operator, p, which

Is set equal to +1 if the response R = 1 is to be "positively reinforced",
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and -1 if the response is "negatively reinforced", for a given stimulus.
Assume that this reinforcement is applied consistently for each stimulus,
i.e., whenever stimulus St occurs, its responding A-set is either posi-

tively reinforced or else negatively reinforced on each occasion. Then
the generalization coefficient, gil, must be multiplied by the sign of A
and the column vector now consists of elements If we sum the

elements of each such column vector, multiplying each element by its appro-
priate frequency, ft, then the array of column sums forms the vector:

V =2f pG= (vi, v2, --- vn)t

Each element of this vector, v, represents the expected rate of change of
thevalueoftheA-setrespondingtoS

), 
as a result of exposure to a random

sequence of stimuli from the universe in question. If vi is positive, the
stimulus S will tend to turn on the response R = I, while if v.. Is

inegative, t will induce the response R=0.
Let us first consider the simple alpha system, with no decay. The

generalization coefficients for this system, gij•, are simply equal to Pa ,
tj

and consequently are all positive. Suppose Si occurs, at time ti. This

immediately gives us the value vector, V(ti) = G. Since every element of
this vector is positive, it follows that whichever one of the n possible
stimuli occurs at time t2' the response R = 1 will occur. But the occurrence

of this response means that we will again add an all-positive vector to V,

and, in fact, it is clear that no element of V can ever become negative.
Consequently, this system behaves as a "Class C perceptron", in accordance
with our first theorem.

Now consider the gamma system, for which gi, = Fa -Pa Pa . It can be

shown that for a perceptron in which the A-units are randomly connected to
the retina, and each A-unit receives a fixed number of excitatory and a

fixed number of inhibitory input connections, it will always be true that

P = P Pail at aj

provided that the area of the intersection of the two stimuli Is equal to
the product of their normalized areas (i.e., C.1.7 = RiRJ, where CI, is the

cammon area, and R and R are the retinal areas of the stimuli Si and S1,
with the area of the retina taken as unity). If stimuli can occur with

equal probability in any retinal position, then their expected inter-

section will indeed be equal to this value of C. If all intersections

are equal to their expected value, the corresponding value of will be

zero. If, however, two stimuli have a common area, Cii, greater than this

expected value, ffil will be > 0, and if the stimuli are disjunct, or have

a common area less than the expected value of C' it follows that13
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will be negative. Even though the expected value of C
ij 

for a class of
randomly placed stimuli is equal to zero, it can be shown that, due to non-
linear characteristics of the P function, the expected value of gij overPa

the class of stimuli may be greater than zero. This is actually a necessary
condition to permit a response to generalize consistently over the class of
stimuli.

To analyze the simplest possible case, consider a stimulus universe con-
sisting of two disjunct stimuli S1 and S2. From what has just been said,
the generalization coefficients gli and g22 will clearly be positive, and
g12 and g21 will be negative. Consequently, each stimulus will generalize
positively to itself, and negatively to the other stimulus, and the per-
ceptron will necessarily behave in the fashion of a Class C, system,
described in Theorem 2. It should be noted, however, that no decay has been
postulated in this system, and none is necessary. Even though the magnitude
of the values of the A-units, and consequently the variance of the value,
will grow without bound, the system remains well-behaved, so that the
Corollary of Theorem 1 is disproved, at least for this special case.

Due to the fact that the expected value of gij for stimuli of opposite
classes, in an environment in which every placement of the stimulus on the
retina is equally probable, is equal to zero, it is desirable in some cases
to add a constant loss rate, c, to the value dynamics. In this case, every
A-unit always loses a slight decrement of value, in addition to any other
changes upon which the loss may be superimposed. This gives us a modified
gamma system, with the generalization equation:

= ij - 6

If a decay rate, 8, is also incorporated in the system, it is clear that in
the absence of any reinforcements, the system will stabilize with all units
at a level in which the values are proportional to - at which point the

decay rate (which is now positive) will exactly balance the rate of loss.
This system has the advantage of adding a slight negative interaction
between stimulus classes, which otherwise might develop a positive relation-
sMp.Again,dueWthenonlineariVoftheAulction, this negative

ii
interaction tends to affect "well separated classes" more strongly than
classes of "similar" stimuli, and thus generally helps in establishing a
desirable separation.

The performance of an infinite perceptron, in which gij is obtained from
the above formula, is illustrated in fig. 1. The reinforcement operator, A
was set equal to +1 for R = 1, and to 0 for R = 0, i.e., the system was
reinforced only for R = 1, and was left unchanged for R = 0. In this experi-
ment, two classes of stimuli were assumed: one class consists of horizontal
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bars, covering an area of 4 x 20 retinal units, and the other class consists

of vertical bars of the same area. The retina is a 20 x 20'mosaic, and is

assumed to have a torroidal connectivity, i.e., if a stimulus image is

shifted off of one edge of the retinal space, it re—enters at the opposite

edge. This guarantees a uniform coverage of all retinal points by each class

of stimuli. The first set of curves shows the probability of correct (i.e.,

consistent) generalization of the response R = 1 to one class of stimuli,
and R=0 to members of the other class, for different values of the decay

rate, 5. Note that even with a zero decay rate, the system eventually dis—
criminates perfectly between the two classes. As the decay rate increases,

performance gradually improves, up to a point where, with 8 > 0.01, the
perceptron begins to "forget" too rapidly, and performance becomes unstable.

This condition is also reflected in fig.2, which shows the expected waiting

time to perfect performance, as a function of S.
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DISCUSSION ON THE PAPER BY DR. F. ROSENBLATT

MR. E. A. NEWMAN: Several years ago Mr. Day, of the N.P.L., and I thought
Up a device which I will say a little about. This assumed a matrix of

photocells as a sensing network, random connected to an association network
which in turn was connected to a response unit. There was feedback between
the input and output of the association network via the response unit,
arranged to reinforce association cell activity by reducing gate thresholds
should the response to a stimulus be the desired one. Since in England we
have not the large amounts of programming effort available to our friends
abroad we never programmed the device.

We would have liked our device to possess properties, which, as far as
we could see it did not have. The first is that if presented with a slowly
changing shape it would infer that all the shapes covered by the transitions
were related, the second was that if presented with a set of shapes all
varying but slightly from each other, it would infer they were related, even
If other shapes were perceived in between. What it did do was to relate in
a random way some items out of a set of coincident ones, afterwards putting
special stress on this accidental selection, and to be more likely to relate
inputs which followed in time but had no continuity of spatial pattern than
those that had. This I suggest is not quite what one wants to do.

Most patterns that interest us contain a great deal of special connecti—
vity and continuity. The information needed to specify that a pattern is

continuous, and not a snow storm is very large indeed. In our system

information about spatial order was thrown away in the radom connection to
the association network and had to be learnt. An association network which

was connected to the photocell matrix in a spatially ordered manner would

be better in this respect.

Our device took note of too much information. The only interesting part

of a pattern is its edges, and these only if they alter in time. What we

would have liked our device to do was to react to changes in pattern in

space time. Apart from any other aspect of the matter, a device which takes

note of other than space time changes rapidly uses up all its storage.

Our device reached different end states for different kinds of pattern,

but these end states were patterns of dots which had to be recognised. '

There is not much point in knowing that a device gives a 1:1 correspondence

between input and output state, if one cannot recognise the output states.

I think the device has at least something in common with the perceptron.

Would Dr. Rosenblatt explain how this latter device overcomes the

limitations given above.
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DR. SHUEY: I have four questions. I would like to say, first, that I think
Dr. Rosenblatt's work has contributed a great deal to the analysis of net—
works of the neural type. My questions do not refer to the new material
Dr. Rosenblatt has just presented, but to the material in the printed paper
and other published material which people in both England and the United
States have seen.

First, some of the initial reports made a great point of random distri—
butions and probability. I have a question as to whether randomness and
probability are philosophical essentials or merely a very significant
feature of this particular analysis. I do not wish to de—emphasize the
importance of analysis. I am merely raising the point as to whether
probability is a philosophical necessity in networks of this type.

Second, it seems to me that the detailed connectivity either in a pre—
cise fashion, or in a statistical fashion, should be determined by the
class of objects or environment that you want the device to recognize. I
think I can illustrate my point quite simply if I take a pattern recogni—
tion system with three levels. Let the first level contain Ar binary
receptors. Let the second level of binary elements have one element for
each of the 21" input states. Let the third level of binary elements have
one element for each ipossible association that can be formed between input
states; there are 221V such associations. A specific input can belong to 0
many associations. In other words, given a set of 2N points, there are 22H
subsets that I can form from these points. 221V soon becomes a very large
number as N is increased and it is, of course, even larger in a non—binary
system. I do not believe that you want a system that will be able to make
all possible associations. I think the possible associations should be
determined by what you want the machine to do.

It seems to me that, if you assign the original connections at random,
you are in a sense going to make a machine that is equally sensitive to
all classes of patterns. I do not believe you want to do this any more than
you as a person want to be able to differentiate snowstorms on a TV screen.
The differentiation of individual snowflake patterns is in general of no
Interest to you.

I think one has to place some constraint on the connection. In the per—
ceptron, you do not have all possible connections. You can change the
gain of the connections, but you cannot change the connections. If with a

given number of elements and connections, I am allowed to change the
connections, I shall have a much more flexible system. There is a parallel
In the nervous systems of animals. If the connections of dendrites and
axons are •in part determined by environment, the biological machine will
be more flexible than if environment can determine only the strength of

those connections. I understand, although I am not a physiologist, that

this is an unanswered question as far as the cortex is concerned.
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In the example I took earlier, the 22N possible associations is deceiv-
ing. This is not necessarily the number of elements needed to form that
number of associations. The associations might be formed by the state of
another system. In a binary system with Ni elements, it is only required that
12N 2 22N. Possibly, the perceptron does this type of thing.
My third question is related to one of Mr. Newman's points. In the

experiments which have been done, if you continuously distort one object
into another object, does the probability of making a correct selection
smoothly go over or does it jump as a step function?

Fourth, can you make any statement relating how the perceptron discrimi-
nates to how we as individuals discriminate? I realize that this is a
speculative field.

DR. A. M. UTTLEY: I want to say something about this 2n.
We know that a set of n binary inputs has 2n logical states, 2272 logical

functions of those functions, and so on indefinitely. But each of our
"outputs" to the external world provides a set of proprioceptive "inputs"
to the analyser, in fact, some of the 2n inputs and not one of the 22n
logical functions which, anyway, is just 0 or 1 depending on the input state.

Consider now the problems of a computer learning to produce an output
01 which is a logical function of n inputs, /1, .... In. Let there be an
input S1 to indicate success in choosing 01 at random. Also let the random
choice of 01 be fed back as an input to the computer. We now have a machine
with (n + 2) inputs and 2n+2 units which can solve the problem. If the
machine has, in addition, to learn a second output 02 which is another
logical function of the inputs then there must be 2n+4 units, and so on.

MR. STAFFORD BEER: I.should like to address my remarks to the written
paper, rather than to any of the chimerical perceptrons which have been
floating about outside it.

My criticism begins in the first section where Dr. Rosenblatt says
"symbolic logic or Boolean algebra", and later on the same page "Boolean
algebra or symbolic logic". That is, he presumably takes these terns as
synonymous whereas they are not. Surely Boolean algebra is a small sub-set
of the class of symbolic logics. There is a whole range of these, most of
which are non-Boolean. For example, there is the predicate calculus.

The confusion the author has made leads him to a false dicuotomy between
Boolean algebra and statistical mathematics as tools. This excludes the
most useful semantic tools at our disposal. For example, the kind of logic
used by Ashby in this work is an algebra of classes, the precise virtue of
which is that the classes need only be specified as bounded in dimensions
that are of interest, and that their behaviour is entirely probabilistic.
This gives us the virtues of statistical methods, without the lack of
logical distinctness which seers to characterize this paper. I would
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concede that this might be just a question of terminology (if it is, my
point is merely captious) were it not for the disastrous consequences
which seem to follow.

For example, an A-unit (one of the association cells) Is conceived as a
set of v - values. These may be, it seems to me, either a point-set covering
the neurons in the A phase-space, or a set of values through time taken up
by one neuron, or again the values taken up over time by the phase averages.
By spurning the kind of logic which would distinguish between these possi-
bilities, Dr. Rosenblatt has left himself open to a charge of circularity.
For he proposes two theorems which clearly purport to demonstrate ergodic
properties in the perceptron, whereas the ergodicity Is probably subsumed
in the logically loose definitions of the v - set from which he starts.

From that example, I shall now go on to generalize the charge of circu-
larity. In Theorem 2, Dr. Rosenblatt distinguishes dichotomously between
two classes of stimuli. I shall amend his diagram by doing the same. All
stimuli must belong to one class or the other. This is an arbitrary division
of the set of all stimuli, but one which I am entitled to make; note that I
say nothing of the criteria by which a particular stimulus is identified as
belonging to Si or S2. I say only that any stimulus can be regarded as
belonging to one of two classes and as feeding into the retina thus:-

This does not say what effect these stimuli have on the system.
The possibility is given in this system that events take place which

cause the response to go to "1". Therefore we can collate these events, and

assert that a class C of them exists if and only if the responses go to
Niff:

a !

Equally, there exists another class of events if and only if the responses

go to "0". We shall extend class C to include these too, and assert the
existence of the class in which events take the response either to "1" or

to "0", but not both:-

3 1 C=--- R -*1 A 0
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What information is given in the system about the role of the stimuli?
In the system as shown there is nothing to show what kind of "switch" there
may be across the retina; there is nothing to show that a member of either
stimulus class will influence an "1" source set more than a "0" source set.
So either kind of stimulus is capable of evoking either response. The
account of class C may therefore be extended to:-

S C = Si\/ S2 (R •-• 1 ̂  0) (1)
Since the system Is no more restricted than this, a number of logically

weaker proportions can be asserted. The one which interests me is this:-

3 ! C' S1 (R -. 1) S2 (R 0) (2)

That is to say that since the first kind of stimulus is capable
(expression 1) of evoking the unit response, then the cases of this happen-
ing can be collected as a sub-set. Similarly, since the second kind of
stimulus is capable of evoking the zero response, these too can be collected
as a sub-set. There is no reason why these two sub-sets should not be con-
sidered together as the class C' (expression 2).

These two classes, C and C', certainly exist in this system, although the
second could be empty, and although there are many others. What do we know
of them? For example, how much Information can they each transmit? Class C
transmits zero bits about a specific stimulus, because it may evoke either
response. Class C' transmits one bit about a specific stimulus, because
that stimulus can only evoke one of the responses.

Looking at the diagram, how can this happen? What mechanism must be
inferred at the retina to account for this information flow? If zero bits
are transmitted from either S1 or S2, the retina must be acting as a kind
of random switch. It is in fact uncoupling the stimulus system (S) from
the response system (R). If one bit is transmitted, on the other hand,
then in some sense S and R are coupled together. This coupling cannot be
asserted categorically on the evidence; we can however say that a tendency
must exist at the retina to couple (Sily and (S2R0), otherwise the system
would not transmit.

Now this inference can be quantified. The conditional probability of the
response given the stimulus must, for the class C, tend to 0.5; because

there is nothing controlling the "switch". But for the class CI, the condi-
tional probability of the response must tend to 1.0. That is:-

2 ! C : Pr (MS) -0.5
! C' : Pr (RIS) 1.0

The nature of the logical correspondence between S and R follows from
this. In the first case, C, it is strictly unknown. But is is Important to
recognize that It could be a "one-many" correspondence. In the second case,
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C', however, it must tend to be a "one-one" correspondence, because the

variety in the right-hand part of the system must now be limited by a

function of the input a.
What limitations do these inferences about logical correspondence pro-

duce in the A-set? In the first case, C, the variance of the value of v

can very well increase. Since, as was shown, the S-R correspondence could
be "one-many", or at least might include "one-many" transformations, this

variance can go on growing indefinitely. In the C' case, however, the

variance of the value of v must tend to a limit, because the variety is

limited as f(a).
So the chain of logical properties propagates from the existential pro-

positions with which we began. Now there is only one thing really going on

in this simple version of the perceptron. This is given by the transfer

function of the neuron ai at time t, which the author tells us is equal to

a.(t).v(t).What is Important about the system is the way it grows. The a

input is the same for both classes of events considered, and so the growth

function in which we are interested concerns the v (t) element, and is

expressed as dv/dt. In both the classes of events here considered, this

function will involve the a input and the totality of feedback information

and /00 from the response sets to the source sets: that is, aTp. Consider

class C of events. There is an assumption of equal likelihood in the res-

ponse alternative. Therefore the p feedbacks will frustrate each other in
the long run, and the growth function alp will permit the A-set v - value

system to increase indefinitely as prescribed by the inferences drawn

above. In the class C' case, however, this system tends to a limit, and

4p will not satisfy the conditions. If the v - value system is to be

limited while v grows, the growth function must include a decay function

arranged to Increase monotonically with 24 Thus the growth function for

class C' may be expressed as aEp -
This completes a possible description of the Rosenblatt system. I say

"a possible" because there are many more possible kinds of behaviour; I

say "description" because this Is nothing to do with proof - it is to do

with displaying the system as given. I think the whole contents of the

author's "theorems" are displayed by my description. A perceptron as

defined is simply going to behave like this. It is also going to behave in

other ways, because we could choose to define it in other ways. So the

paper does not actually demonstrate anything. And since other kinds of

behaviour are possible, no doubt the author has observed them. This may

explain why his written accounts of the perceptron seem to be about

different things, and why his verbal presentation today seemed to bear

no resemblance to the written paper.
What then Is the logical status of the two announcements which the

author labels "theorems"? His method seems to be this. He asserts a
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proposition about possible stochastic behaviour in the long run called a
theorem. He asserts that another proposition is a corollary of this, and
then has a discussion from which it emerges that the corollary class is
not empty. Therefore the theorem class is not empty. This, it seems to me,
tells us nothing more than that in the long run every configuration of
which the system is capable will occur, and that Rosenblatt finds two of
these configurations interesting. The "theorems" are, I would say, asser-
toric existential propositions about the system; and you neither prove nor
disprove such descriptions. They are simply there, and they may or may not
be interesting. What you can show about such propositions is that they are
internally consistent, and this is I think precisely what I have done.

It follows, in my opinion, that the elaborate mathematical edifice from
sections 5 to 8 in the paper is an array of tautologous remarks about the
existential description given in sections 1 to 4. But as it does not
actually say anything, there was no need to write it. What it does do is to
build up an ethos of potency around the perceptron. On this account, some-
one might unfortunately be mesmerized into believing that this device is
the ultimate unit of the brain that lies behind intelligence.

I feel sure that Dr. Rosenblatt would not want to make such an exagger-
ated claim as that; but I think that there are tendencies to exaggerated
claims to be found in the paper. For instance, one which ought really to be
mentioned is that, apart from the Homeostat, the perceptron is the first
machine "to show spontaneous improvement". This is not so. But perhaps
Dr. Rosenblatt rightly assumed that, after all, everyone here must certainly
have heard of Dr. Uttley's work.

To sum up, I an saying that what Rosenblatt has shown is not that the
perceptron is the necessary explanation of certain time trends observable
in the brain, nor that it is a sufficient explanation. He has shown that,
if we select various sub-sets of the stochastic behaviour of this worthwhile
device, we shall find them interesting. And for this I, for one, would like
to thank him.

Dr. W. K. TAYLOR: I think that a number of contributions to this Symposium
have some similarity to Dr. Uttley's work on the classification of signals
in the nervous system (re.f.1) and on probability computers (ref.2).
Dr. Rosenblatt has introduced a difference that I described in connection
with my work on the simulation of nervous systems (ref.3). This difference
can be illustrated by considering an Uttley type model neuron unit with n
binary inputs and a threshold m. The unit gives an output of "one" only if
the sum of the "one" inputs is greater than or equal to m, otherwise the
output is zero. Rosenblatt's unit, however, is equivalent to the one that I
described at the Third London Symposium. The input signals were effectively
continuous variables represented by pulse repetition rates and the output
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pulse repetition rate was proportional to the algebraic sum of the input
signals, inhibitory inputs being given a negative sign. It was shown that
a suitable network of the units could learn to classify shapes if the
transmission strength (Rosenblatt's "value") of the connections increased .
with use. There was no need to introduce a separate "growth rate control"
input. This latter postulate does not appear to have a physiological basis
whereas recent electron-microscope pictures of the brain (ref.4) tend to
support the hypothesis that the area of contact at each synapse, and hence
the transmission strength, is .controlled by the impulses arriving at the
synapse.

. One thing that seemed to be missing from Dr. Rosenblatt's paper was an
estimate of how many shapes a perception with a given number of units could

be expected to classify. How many A-units would be required to recognise a
typewritten alphabet, for example?

Finally, Dr. Rosenblatt suggests that if he could find suitable hardware
for constructing A-units, he could actually build a perceptron. I would
like to ask him why he considers this to be worth while when he has already

shown that he can simulate its operation on a digital computer.

DR. J. McCARTHY: I would like to raise an issue which concerns all of the

neural work on perception - that is the work on perception which is based

on nerve models, and I believe it applies also 'to: the pandemonium and some

of the work on speech recognition which was described this morning. The

problem of perception can be divided into parts, at least two of which are

discrimination and description. Now all of the work which has been described

has been on the problem of discrimination; that is, a finite number of

classes of stimuli are discriminated, and in the training process at least

one example from each class is presented. However, much of our own percep-

tion can be described as description, whereby we can perceive something and

generate a description of it, and we may be able to do this without ever

having seen the thing before. I would like to give an example from letter

recognition. All of us can tell A from B, and the previous speakers have

made it plausible that they can train various devices to tell A from B, but

we can also do the following. We can take this figure (the Russian letter

) and describe it by saying, for example, that the figure consists of

REFERENCES

1. UTTLEY, A.M.; The Classification of Signals in the Nervous System, R.R.Z.
Memorandun No. 1047, 1954.

2. UTTLEY, A. M.; Temporal and Spatial Patterns in a Conditional Probability
Machine, (Automata Studies, Edited by Shannon, C. E. and McCarthy, J.,
Princeton University Press, 1956.)

3. TAYLOR, W. K.; Electrical Simulation of some Nervous System Functional
Activities, Third London Symposium on Information Theory, Edited by. Cherry, C.,
Butterworths, 1956.

4. GRAY, E. G.; Journal of Biophysical and Biochemical Cytology, In Press.

(94009) 464



four line segments, one of which is horizontal and the other three project
Up from it, one from each end and one from the middle. We can describe this
without ever having seen it before.

I have done some work on the question of generating descriptions of.
visual images, but this work has not had a neural basis; it was a proposal
for a programme which takes a digital representation of the picture, walks
around it, so to speak, and attempts to determine the line segments.

Some kinds of description can be obtained as sequences of discrimina-
tions. In particular, we can get descriptions of speech or writing in this
form, because of their sequential nature provided we can make discrimina-
tions for each letter. This constitutes a description, but I think it can
be shown that, in the case of two-dimensional data, it is not possible to
get a description system entirely out of discriminations.

DR. L. M. SPETNER: I would like to ask Dr. Rosenblatt if what he called
re, the correlation between the a inputs of the association cells and the
average of a, is really a good measure of similarity of stimuli. In some
special cases it may be all right, but it is not clear that it is suffi-
ciently general. The use of such a criterion, particularly in the Ct type
perceptron, means that the machine will tend to classify its environment
according to its own construction. For example, the experiment quoted on

Page 448 of Dr. Rosenblatt's paper, which showed that a class-Ct perceptron
correctly divided all squares into those which were on the left and those
which were on the right, seemed to be a direct result of the way the
sensory and association cells were connected. I suspect that this percep-
tron might do a much worse job if it were asked to distinguish on some
basis other than position. It seems to me that organisms do not operate
this way. That is, they do not really go off on their own and begin classi-
fying things in a vacuum; but rather they act more like a perceptron whose
response is being forced. I do not mean that all organisms always have a

formal teacher, but rather, I believe there is a continual reinforcing of
responses through some kind of feedback from the environment to the

organism.

I would like to think of the perceptron as a self-organizing transforma-
tion from a stimulus to a response. Each stimulus that may be applied to a
perceptron can be considered as a point in a multi-dimensidhal Stimulus
space. We might consider the response somewhat more generally than .

Dr. Rosenblatt does by saying that a response will consist of a set of
numbers in each of the various response cells. Then any particular response
can be considered as a point in a multi-dimensional Response space. (See

fig.1). The association cells then would provide a mapping of the Stimulus
space into the Response space. Now It may well be that stimuli which I wish
to consider similar may be very far apart from each other in Stimulus space,
but if the perceptron is to organize its environment into categories of
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similarity which I choose to designate, then I shall force similar stimuli

to have responses which are close together in Response space. I believe

similarity of stimuli is really a rather arbitrary concept; at one time, I

may wish to consider all triangles as similar and at another time I may want

to consider all objects on the left side of the field of view as similar,

whether they are triangles or not. Thus it is clear than arbitrary stimuli
which' I may wish to consider similar might well be very far apart from each

other in Stimulus space. This allows for the concept of similarity to be

imposed by an arbitrary experimenter rather than having it tied into the

construction of the machine. Viewing the perceptron as a transformation

from Stimulus to Response space also leads quite naturally to the concept

of generalization. Referring again to the figure, let ten stimuli be

represented by the ten points shown in the stimulus space. If I wish to

consider these stimuli as similar, then I force their responses to lie in

the restricted portion of Response space as shown, so that the perceptron

shall learn the responses that correspond to these particular stimuli; in

that it can reproduce each response for given each stimulus. Now we imagine

that .we present to the perceptron an eleventh stimulus that lies somewhere
in between two that we have already given it in stimulus space. If our

mapping has been sufficiently continuous, then it will appear as shown in

the correct portion of Response space, and hence, we have reduced the con—

cept of generalization to interpolation or extrapolation, provided one has

achieved a continuous type of mapping.
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DR. F. ROSENBLATT (in reply): I will try to touch very briefly on each -
of the points which have been raised.

The system which Mr. Newman described does indeed seem to bear a con-
siderable resemblance to the perceptron, although the nature of the
reinforcement function is somewhat different. Several of the comments which
have been made here seem to reflect a common misimpression that a reinforce-
ment function which changes thresholds is equivalent to a reinforcement
function which changes the output of a neurone. This is not the case; by
reducing the threshold, we are making a cell responsive to a greater variety
of stimuli and thus changing the information transmitted by the cell, while
in changing the output, we are changing the weight of the transmission
channel of which the cell is a part, without in any way changing the
signification of the information transmitted. A difficulty in systems which
operate by changing thresholds is that as the threshold goes down, the cell
becomes responsive to a greater and greater variety of stimulus events, and
in the limit responds equally readily to any input, thus conveying no
information at all. While such effects may not have been the source of the
difficulty in Mr. Newman's device, they are apt to present an initial
handicap to any system operating by general threshold reduction, rather
than by the strengthening of specific transmission channels. I would predict
that Dr. Taylor will encounter the same difficulty when he goes to larger
models of his own system, if he continues to reduce the thresholds without
a lower bound.

With regard to Mr. Newman's problem of recognizing slowly changing shapes
as identical, I must say that the perceptron does indeed have such a ten-
dency. For example, if we change a triangle gradually into a square by a
series of progressive distortions, the perceptron will sometimes recognize
the two stimuli as members of different classes, and sometimes will place
them in the same class, depending on the frequency distribution of the
various possible intermediate states. If there is a bimodal distribution,
with more "good" triangles and "good" squares than distorted figures, then
we can design a perceptron which will spontaneously arrive at the desired
classification. If, on the other hand, all transformations (including those
which are halfway between triangle and square) are equally likely, there is
no logical basis for concluding that there are "two kinds of things" here,
except by an arbitrary convention. How far we have to broaden the cleft
between modes of the distribution in order to make the system discriminate
reliably is something which we are now beginning to investigate. We are
also examining the nature of the probability: transition which Dr. Shuey
asks about in his third question. In some cases, it seems possible to
design a perceptron which will break up a continuum (say between squares
on the extreme left and squares on the extreme right of the field, or •
between circles and ellipses) into a number of discrete domains, assigning
a separate response to each. We find that the domain over which the
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perceptron generalizes is governed in part by its design parameters, and in

part by the particular environment of stimuli in which it is located.

The problem of the serial order in which events occur does not seem, in

the perceptron, to present as serious a problem as Mr. Newman has suggested..

While there is a bias, in some systems, to associate consecutive events, a

perceptron which is designed so that the values of inactive A-units lose an

amount which just balances the gain of the active units (what we have called
the gamma-system) may actually exhibit interference between successive

stimuli, if they are sufficiently different from one another.
With regard to Mr. Newman's comments on the importance of boundary or

contour detection as a means of concentrating on the important input

information, I am in full agreement. In addition to the networks which

Dr. Taylor has described (ref. z), an approach to this problem has been
considered in the first report on the perceptron program (ref.2).

Dr. Shuey has asked about the philosophical necessity of randomness in

the perceptron. I do not believe randomness to be a philosophical necessity,

but rather a practical one. In analyzing a nerve net about which we have

complete information -- a knowledge of all of its connections, the state of

every unit, etc. -- it is clearly possible, in principle, to perform an

exact logical analysis of its response to every logically possible input

configuration, count those cases in which the response is the desired one

and those in which it is not, and thus determine exactly the "probability

of correct response" for the finite environment in question. In practice,

this can hardly be recommended. Biological brains and physical environments

being what they are, it is unlikely that we shall ever have the complete

information which is required for a procedure of complete enumeration, and,

moreover, this would still not enable us to talk about brains as a class of

systems, but only one particular brain having the particular connections

described. To talk about brains as a class we would further have to

enumerate every admissible system of connections. It seems to me that the

probabilistic approach is our only recourse at this point. It offers the

further advantage that the necessary conditions for a class of systems to

work in general (even though individual models may fail) can be stated in
terms of a simple set of rules of construction, or statistical parameters,

rather than in terms of a detailed and unmanageable wiring diagram. If we

grant that we can never, in practice, attain complete information about

such systems and their environments, then the question of whether probability

is philosophically essential becomes entirely academic: if we are to analyze

the systems at all, we really have no choice in the matter.

Concerning the relationship of perceptron discrimination to human dis-

crimination (Dr. Shuey's fourth question), I think it is premature to

expect any close correspondence between the "psychology" of any of our brain

models and that of human subjects; too many ingredients are still missing

in the perceptron. One important difference between the learning curves
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observed for spontaneously organizing perceptrons and those of humans,
however, is worth noting: The learning curves for the perceptron are convex,
whereas those for a human subject under similar circumstances would certainly
be concave. That is, if a perceptron is required to distinguish horizontal
from vertical bars, in a spontaneous learning experiment, it quickly learns
to classify the first sixty or seventy percent of the cases, and takes
longer and longer to establish the correct response for the few stimuli
still unclassified. A human subject, in such a problem, once he has achieved
an "Insight" would undoubtedly jump to 100% accuracy immediately thereafter.

I am sure I will not be able to do full justice to Mr. Beer's entrancing
remarks concerning my paper. I find that I am almost mesmerized into believ—
ing them. Perhaps, however, I can arrive at a Possible description of what
Mr. Beer says that I am trying to say. I say "a possible" because I may have
missed some subtlety in his analysis which makes it more relevant than it
appears; I say "description" because this has nothing to do with a disproof,
but with a set of fundamental misunderstandings of my paper evidenced by his
remarks.

First of all, let me express my complete agreement with Mr. Beer about
the lack of rigor in the paper. Had a more rigorous analysis been possible
at the outset, I would have been spared the necessity of pointing to
mistakes in my own work in order to defend its logical status, as I am
about to do. Mr. Beer would, perhaps, have been happier with his whole
analysts had the "corollaries" been labelled "lemmas" and placed before the
theorems instead of after. This would actually have been preferable, as the
"corollaries" are actually independent of the "theorems", although the
reverse is not true -- the corollaries were used to establish a case in
point, on the basis of which the more general existence theorems might be
asserted. Mr. Beer suggests that this analysis is a rationalization of
behavior which I must have "observed" previously in the perceptron. This Is
not true. Neither of the types of behavior described in the paper were
observed until after the analysis was completed, at which time a new simula—
tion program was written. It then turned out that while we did indeed obtain
the predicted behavior most of the time, it was by no means infallible.
Therefore, the analysis, far from being tautologous, must actually be wrong
if Interpreted rigorously. This led to the revised analysis which I outlined
this morning, and which does not represent a completely new set of chimeri—
cal perceptrons, as Mr. Beer suggests, but rather a new way of looking at
the same kinds of systems that we have been discussing all along.

Now what is the substance of Mr. Beer's argument? First of all, it should
be noted that Mr. Beer mistakenly takes the terms "Class CI' and "Class C'"
to refer to classes of stimuli, whereas they were intended to refer to
Classes of Perceptrons. Secondly it seems to me that he has systematically
inverted the roles of premises and conclusions, from the original paper --
an error for which the admittedly peculiar relationship Of "theorems" and
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"corollaries“ is probably responsible. He then proceeds to try to deduce a
set of characteristics for the A—system, and particularly a system of value—
dynamics, which is consistent with one of the two assumptions that (1) the
perceptron, in the Class C case, effectively "uncouples" the responses from
the stimuli, so that the probability of the response R=1 is 0.5, regardless
of the stimulus, or (2) the perceptron, in the Class C' case, has a switch—
ing mechanism (unspecified in Beer's description) located, of all places,
in the retina, which is specifically designed to evoke the response R=1
for one class of stimuli, and R=0 for the other class. It should be noted,
first of all, that Mr. Beer's "Class C" perceptron does not in any way
correspond to our own "Class CI' system. The Class C perceptron, in the
original paper, is one which tends towards a terminal condition in which
either (a) every stimulus evokes the response R=1 or (b) every stimulus
evokes the response R=0. The reason there is no information transmitted in
this case is not that the responses are random, but rather that they are
inevitably the same, whatever the stimulus happens to be. Actually, as our
analysis shows, increasing the variance of the values to infinity does not
lead to random responses, as Mr. Beer infers, but rather to the perfectly
consistent responses characterizing our Class C case, Provided the indicated
rules of reinforcement are observed.

I find myself unable to recognize the source of Mr. Beer's difficulty in

understanding the nature of the v—set. Each A—unit, al, is characterized by
a value, Vi, which is assumed to be initially zero, and which changes through
time in accordance with some clearly specified rules. Again, the id;e fixe
that these rules are a consequence of some preexisting classification system,
rather than the cause for the stochastic development of a classification

system in an initially random machine, must be responsible for the confusion.
I think Mr. Beer's assertion that the classification scheme must somehow

be built into the retina suggests that he has missed the principle point of
my paper. Let me repeat, therefore, that the C' perceptron arrives at a

classification scheme independently of any scheme which previously exists
in the mind of the experimenter. The classification arrived at by the C
type of perceptron does not depend on the experimenter, nor is it built into
the retina; the experimenter is forbidden to intervene in any way which
might help this machine to arrive at the "right" decisions. Uttley's models

do seem to represent a possible first step in this direction, and should not
have been omitted from my original review of the field. Actually, I think

Taylor's system comes at least as close to being a sponaneous classification

device, in this case, as Uttley's, although in Taylor's model, as I under—

stand It, the system is actually forced to learn the "proper" associations

by presenting an "unconditioned stimulus" together with the "conditioned

stimulus" during learning -- a procedure which is logically analogous to our

"forced learning" procedures with the perceptron (ke.f.2).
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With regard to Dr. Taylor's remarks, I don't believe either of us can
claim to have invented the threshold, but I agree that in setting his
threshold equal to the number of input connections to a cell, Dr. Uttley
is somewhat straining the biological credibility of his system. Clearly,
our neuron models are very similar, as they are both based on the same fund
of established physiological knowledge. The one important difference which
I see In our neuron models is in the choice of a suitable memory variable
-- in Dr. Taylor's case the threshold, and in my own case, the strength or
"value" of the output signal, I have already indicated my reasons for this
choice of variable. I would like to refer Dr. Taylor to Appendix V of my
original paper (ref.2), in which it is shown that a reinforcement of the
cell as a whole is logically equivalent to a reinforcement of particular

connections, for an optimally designed perceptron. I agree, however, that
at present the reinforcement of specific connections seems more plausible
than the reinforcement of the cell as a whole, and I am particularly grate-
flu l for the reference to the electron-microscope work on synaptic areas,
which I look forward to reading.

The "vocabulary size" of a perceptron, which Dr. Taylor asks about, is
in part a function of the level of reliability required in the perceptron's
responses. To give some idea, however, a system of 1000 A-units should be
able to distinguish all letters of the alphabet with a better-than-chance

probability of being correct in each case (say, somewhere between 0.6 and
0.9, depending partly upon whether or not the letters always appear in the
same position, whether they may be rotated, etc.). The reasons for building
a hardware model of the perceptron are (1) the simulation program is slow
and inflexible, particularly with respect to the variety of stimulus
material which can be presented; (2) while it is easy to change parameters
in the simulation program it is much harder to introduce new qualitative
constraints, which we are now interested in studying. The hardware model,
with patch boards to permit flexible interconnections of the units, will
make this considerably easier. A third point Is that we are interested in
gaining some experience in the design of components which might ultimately
be used in a practical system, rather than a purely research model.

I think Dr. McCarthy may have an important point in his distinction
between description and discrimination. As he is using the term, description
implies the statement of relations among parts, and this is something that
the perceptron is quite incapable of doing, in its present form. I think
Dr. McCarthy might be interested in the work of Grimsdale and associates
at the University of Manchester (re.f.3), who have also attempted to develop
a digital computer program for the description of visual forms.

Dr. Spetner raises the question of whether r da is actually the best
measure of similarity to use in the perceptron. I am sure that better

measures of similarity could be constructed, if this were actually what we
had in mind. However, we are not trying to construct a system which will
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embody some predetermined similarity function, or equation. Rather, we are
constructing a system which must (1) be composed of simple, neuron-type
units, and (2) be connected in a relatively free, unconstrained fashion.
I do not know whether such a 'system will really do what we would like it
to, but this is precisely what we are trying to find out. rds, therefore,
is not a measure of similarity which we have deliberately set out to use,
but rather an analytic property of this type of system. The concept of a
response space which maps the "similarity relations', of the stimulus space
is an interesting one, which is clearly basic to the whole field. It seems
to me that this describes a desirable end result, towards which the percep-
tron is a tentative first step.
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