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The computational problem of motor control

T. Poggio, B. L. Rossert
Max-Planck-Institut far Biologische Kybernetic
Tubingen, FRG

1. INTRODUCTION

Motor control systems are complex systems that process information. Orientation

behaviour, posture control, and the manipulation of objects are examples of

motor control systems which involve one or more sensory modality and various
central neural processes, as well as effector systems and their immediate neuronal

control mechanisms. Like all complex information processing systems, they

must be analysed and understood at several different levels (see, e.g., Marr &

Poggio 1977). At the lowest level there is the analysis of basic components and

circuits, the neurons, their synapses, etc. At the other extreme, there is the study

of the computations performed by the system — the problems it solves and the

ways that it solves them — and the analysis of its logical organization in terms
of its primary modules. Each of these levels of description, and those in-between,
has its place in the eventual understanding of motor control by the nervous
system. None is sufficient, nor is there any simple translation from one to
another. A purely biophysical investigation, however exhaustive, can say nothing
by itself about the information processing performed by the system, nor, on the
other hand, can an understanding of the computational problem which the
system solves lead directly to an understanding of the properties of the hardware.

Two examples of motor control theories belonging to different levels will
illustrate this point. The first one deals with the visual flight control system of
flies from a computational and phenomenological point of view. The second is
a theory of the cerebellum based almost exclusively on anatomical and physio-
logical data.

2. TWO EXAMPLES

2.1 The flight behaviour of the housefly requires an elaborate visuo-motor control
system. Houseflies stabilize their flight course visually. They locate and fly towards
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prominent objects; they are able to track moving targets and, in particular, other
flies; they can manoeuvre, take off, land, escape under visual control. Work in
the last few years (see Reichardt 1973; Reichardt & Poggio 1976, 1980, Land &
Collett 1974, Wehrhahn & Hausen 1980, Poggio & Reichardt 1980) has led to a
quantitative description of a specific system used by the fly to control its flight.
This can be characterized as a 'smooth' fixation and tracking system. The theory
is largely based on laboratory studies of the fly's behaviour in a controlled visual
environment. In free flight the fly produces a torque which determines, through
the laws of dynamics, its angular velocity. In the laboratory the fly is fixed but
flying. The horizontal component of the torque it generates is measured con-
tinuously by a servo-compensated torque meter, and the visual environment is
correspondingly rotated to simulate the free rotation of the fly. The problem
is to find out how the torque depends on the visual input.

A series of experiments (reviewed in Reichardt & Poggio 1976) leads to the
conclusion that the torque depends on the instantaneous values (about 30 ms
earlier) of position and speed of the target's image on the fly's eye. Thus, the
fly corrects its trajectory by controlling its torque as a function of the angle of
error, between the target and the direction of flight, and as a function of the
error velocity. The picture which emerges is the following. There are thousands
of small movement detectors distributed over the visual field of the fly's com-
pound eye which are weighted with respect to torque generation according to
their position in the field. Knowledge of these functional weights allows one to
set up a differential equation which quantitatively predicts the trajectory of the

fly for many relatively complex visual situations. Current work involving the
computer analysis of filmed free-flight episodes aims to extend this theory —
derived initially for the horizontal plane — to the six degrees of freedom of free
flight, including the control of torque, lift and thrust (13iilthoff etal. 1980, Poggio &

Reichardt 1980). At present, it has been applied successfully over short periods
of time (ca. 1.5 s) in free-flight situations in which the visual stimulus is relatively
simple, namely, in a chase between two individuals. From the equations and the
trajectory of the leading fly, the trajectory of the following fly can be recon-
structed in good agreement with its actual trajectory.

The theory provides a top-level description of one visuomotor control system
which is a distinguishable part of the fly's total flight behaviour. In effect, the
theory serves the dual function of defining the system in question and specifying
its modular organization. It is detailed and precise enough to allow one to build
an artificial fly — or to simulate one on a computer — with a tracking behaviour
quantitatively similar to that of a real fly, but leaves completely open the choice
of hardware or software for such an enterprise. It does not even specify an
algorithm for evaluating the error position and velocity.

2.2 Ten years ago, D. Marr proposed a detailed theory of the cerebellar cortex
which ascribes to it capacity to learn motor skills. The theory arose from, and is
quite consistent with, the known anatomy and physiology of the cerebellum.
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The cerebellar cortex has an extemely regular cellular organization. It may be
regarded as a collection of like units, each containing a single Purkinje cell. The
axons of the Purkinje cells carry the output from the cerebellar cortex. Input is
carried by the olivary cell axons and by the mossy fibres; the former are directly
connected to the Purkinje cell dendrites, the latter indirectly via the parallel
fibres.

Marr's theory (Marr 1969, Blomfield & Marr 1970) maintains that each cell
of the inferior olive responds to a cerebral instruction about a piece of movement,
or action. Any action has a defining representation in terms of such cerebral
instructions, and this representation has a neural expression as a sequence of
firing patterns in the inferior olive.

The olivary axons form the cerebellar climbing fibres. Each Purkinje cell
receives usually just one of these, and this exerts a powerful excitatory influence
over the whole dendritic tree. The theory proposes that the synapses from the
parallel fibres to the Purkinje cells can be facilitated by the conjunction of pre-
and post-synaptic activity, so that, in effect, an olivary cell can 'teach' a Purkinje
cell a particular pattern of parallel fibre activity. Marr calculates that, because of
the way the mossy fibres are wired up to the parallel fibres, each single Purkinje
cell (of which humans have 15 million) should be capable of learning at least
200 different mossy fibre input patterns. Once those patterns, or movement
'contexts', have been learned, the olivary cell input is no longer necessary; occur-
rence of the context alone suffices to fire the Purkinje cell. A particular action
or movement would then progress as it did during rehearsal, but without so
much cerebral intervention. If the output from the Purkinje cells determines, or
partly determines, subsequent mossy fibre contexts, whole movement sequences
could be learned and precisely carried out once triggered by the occurrence of a
particular stimulus configuration. This is reminiscent of the behaviourist's
concept of Fixed Action Patterns (see, e.g., Hinde 1966). Alternatively, the
mechanism could serve in the maintenance of posture and balance.

Ten years after its formulation, this theory is still neither proved nor dis-
proved, but it stands a good chance of being correct, at least as a partial account
of the functioning of the cerebellum. The idea, for instance, that the cerebellum
learns was quite novel ten years ago, but long-term adaptive changes there are
now well established by studies of the vestibulo-ocular reflex, and this has
become a very active research field.

In contrast to the first example, this theory of cerebellar function is a
description of a neuronal mechanism, a piece of neural architecture for per-
forming a learning task. It is extremely elegant and, in its entirety, carries con-
viction in its ability to account for so much of the known anatomy of the
cerebellum. Given the involvement of the cerebellum in motor control, on
evidence drawn from other sources and not intrinsic to the model, it allows us
to conclude, tentatively, that during the course of solving the computational
problems of the control of movement the brain has recourse to a large and
simple type of memory. But beyond this, the theory gives no insight into how
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these problems might be solved, or even formulated. It is not a computational
theory of motor control.

In terms of the development of our understanding of motor control systems,
Marr's theory represents a sort of anachronism. It is a section of the jigsaw which
has fallen together before its place in the puzzle has been determined. This has
happened because the cerebellum is relatively well known on account of its
simple, well differentiated, and regularly periodic structure. Such a combination
is rare in the brain and, when it is considered that the cerebellar model has
itself yet to be substantiated, the prospects for the effective use of such a hard-
ware-based approach elsewhere seem slight.

It will probably be easier to study neural circuitry in the light of knowledge
of its role in the system of which it is part. While there is no direct route from
understanding a system at one level to understanding it at another, there is,
nonetheless, a mutual dependence between levels. Mechanisms, for example,
must serve the purposes set out by the algorithms they embody, and must do
so with the hardware available. There is a sense in which higher level under-
standing has precedence, in that, by defining the sphere of interest, it provides
a key to investigation at the lower level. This is often crucial in a rich and
complex piece of hardware like the brain.

3. MOTOR CONTROL AT THE COMPUTATIONAL LEVEL

Just as the study of vision as a problem in information processing has, in recent
years, greatly stimulated progress in the development of a coherent theoretical
framework for that field (see Marr & Nishihara 1978, Crick etal. 1980), so, we
believe, a similar approach will be equally beneficial in the field of motor control.
Such an approach is beginning to emerge. At the computational level, it is
becoming possible to define the problems that all motor control systems must
solve and, in doing so, to put into perspective the problems of particular systems,
whether biological or artificial.

One problem which has engaged the attention of computer scientists,
especially, during the last ten or fifteen years is that of trajectory control in
multi-jointed limbs with several degrees of freedom. The problem is clearly
central to any motor system, biological or artificial, involving articulated limbs.
Interestingly, it has emerged, or re-emerged, rather late, and for a reason which
highlights one of the dangers of ignoring the computational approach. Artificial
arms of increasing mechanical sophistication exposed the inadequacies of the
servo control mechanisms which had hitherto been employed. Classical linear
feedback applied to individual degrees of freedom cannot, for fundamental
reasons which could have been foreseen, provide the required flexible, accurate
and rapid trajectory control in systems in which there is dynamic coupling
between degrees of freedom. Physiologists and psychophysicists, also, have
gathered data which speak against servo control and in favour of open-loop
pre-planning in animals. Thus, servo control proved to be a dead end, and the
problem has arisen afesh.
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Trajectory control is a problem at the computational level and will serve
to illustrate the current state of a computational approach and the potential
impact of a more biological perpective.

To begin with, we shall outline (in section 4) the most fundamental charac-
teristics of the problem of trajectory control, and then (section 4.1) consider
briefly one of the 'classical' approaches to it from the field of robotics. In section
4.2 we open the discussion of a more biological perspective on the problem
by reconsidering in a more general way the preceding account. Finally, in section
5, the implications of some recent findings concerning the way in which antag-
onistic muscle pairs may be used in the control of the equilibrium position are
discussed in detail.

4. TRAJECTORY CONTROL

The trajectory of a limb is determined by the motor torques at the joints. The
vector of actuator of muscle torques T(t) is given by an operator F, a system
acting on the vector OW of joint angles:

T(t)= F {OW} . (1)

F, of course, embeds the geometry and the dynamics of the limbs, including
hysteresis effects and so on.

The computation of movement can be thought of as taking place in two
stages. In the first, the trajectory is planned and the desired trajectory is given
through OW. In the second stage, equation (1) is solved to find the actuator
torques which will execute the planned trajectory. We consider here only this
second and conceptually simple step.

The problem it poses is how to represent the operator F. In general, the
equation implies that the instantaneous torque T depends through F on the
entire previous history OW of the trajectory — every trajectory being, therefore,
unique. Because of the constraints imposed by physics, the operator F usually
reduces to a function N of 8 and its first two derivatives (under conditions
which can be precisely specified by the so-called retardation theorems, see
Coleman 1971). This corresponds to the realm of validity of Newtonian mechanics,
in which hysteresis effects and other non-Newtonian properties are taken as
negligible. Equation (1) can then be represented as

T = N(8,8,8)= G(0) + B(0) + C(0,14) + J(0)4 (2)

where G, B and C are the vector functions for gravitational torque, frictional
torque, and Coriolis torque respectively, and J is the inertia tensor. Equation (2)
can also be written as

T = G(8) + •Ii(0)15i ,Cik(0)j& (3)

jk

where G, J, and Care polynomials in the sines and cosines of the joint angles, the
link lengths, and the masses (Horn & Raibert 1978).
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This Newtonian representation of the operator F is not the only one possible.
In fact, there are infinitely many possible approximations. The chosen repre-
sentation must have two properties. Firstly, it must adequately describe the
dynamical properties of the system, within the desired working range. Secondly,
it must not present insurmountable problems to the torque evaluation and
control system, again within the desired working range. It is apparent from this
that discussion at this level cannot be conducted in a completely general way,
but must take precise account of three factors which will be different for different
systems. These are,

(a) the range of tasks and the level of performance required of the system,
(b) the properties of the limb itself,
(c) the capabilities of the controlling hardware.

4.1 Artificial systems

In the field of robotics, the Newtonian decomposition is appropriate to existing
manipulators and their joint actuator mechanisms. These are, in fact, generally
designed to conform with Newtonian mechanics. As was earlier remarked, servo
control severely limits the performance of a manipulator. Over the past 15 years
discussion has centred, therefore, on the question of how to implement torque
evaluation by computer.

Two extreme alternative approaches have been proposed,

(a) to compute the function N(0, it from equations representing the
terms in equation (2),

(b) to obtain the required torques from a look-up table indexed by the state
variables 0, it and 8.

The look-up table method (implemented by Albus 1975a, b) has the advantage
that it can represent arbitrary system properties, though not time-dependent
ones. The table may be built up either by pre-computation or in a non-explicit
manner by associative learning. The method has the drawback that it requires a
very large access memory; the number of cells in the table is a3m, where m is the
number of degrees of freedom of the limb and a is the number of cells per
dimension. Another drawback is its configuration sensitivity (Hollerbach 1980),
that is, a change in the system, e.g., an applied load, necessitates a completely
new table.

Until recently, the look-up table method was favoured because of the
' apparent impossibility of computing torques from the Newtonian equations for
a complex system in a reasonable time, without introducing simplifications
which limit performance. In 1977, Horn & Raibert proposed a mixture of the
two approaches which trades memory for computation time in an attempt to
bring both down to manageable proportions. In their scheme, only position-
dependent terms are tabulated. More recently, Luh etal. (1979) and Hollerbach
(1979) have described two separate recursive formulations which permit very
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rapid computation of torques — sufficiently rapid, it appears, to serve the next
generation of mechanical manipulators in conjunction with present-day mini-
computers.

A remaining difficulty with the analytical method is the problem of modelling
the system in terms of equations with sufficient accuracy. Even small errors could
be important where precision is required, or could have large cumulative effects
over time. Hollerbach (1980) has suggested the use of restricted look-up tables
of error terms for precise movements (though these would still suffer from
configuration sensitivity). Cumulative errors could be prevented by periodic
readjustments using feedback.

4.2 Biological systems

In the context of present-day digital computers and methods of high-level pro-
gramming the dichotomy of memory space versus computation time is a natural
one, and leads naturally to the dichotomy of the tabular versus the analytical
approach. In considering biological systems, however, it is necessary to take a
different perspective. This perspective must, perforce, be broader and more
computational in character because of our imperfect understanding of neural
hardware and its organization.

To begin with, two general points may be made. Firstly, any consideration
of a trade-off between memory and computation time applied to the brain is
unlikely to give the same result as when applied to computers. It can be envisaged
that, on the one hand, memory access may be a relatively slow process involving
several synaptic delays, while on the other, a large number of nerve cells acting in
parallel may be capable of performing a large amount of processing quite quickly.

The processing power of a single neuron is still largely unknown, but is probably
much greater than the traditional view maintains (see Poggio & Torre 1980).

Secondly, the idea of the tabular storage of state variables in the brain seems
unattractive, at least in its pure form, on the grounds that such a representation
fails to exploit the constraints inherent in the physics of motor control, the
structure of the limb, and the tasks required of the limb. In this idea the con-
straints of physics are brought to bear only in reducing the operator F to be a
function of 0, 0 and 0. A table indexed by these vector variables could be used
to synthesise any function of three vector variables, and would have no special
relationship to motor control.

In pursuance of this latter point, we consider the implications of the definition
of an operator as a mapping. Any mapping, such as 0 T, may be represented
by explicitly pairing each of the terms on one side with the corresponding terms
on the other — in effect, by a table — and this pairing may be synthesized through
associative learning (Kohonen 1977, Poggio 1975). Usually, however, extensive
re-coding of the input (and output) is possible because of redundancies intrinsic
to the particular mapping. Only in the case of a completely random one-to-one
mapping will no re-coding be possible. The search for the optimal decomposition
of the operator F can therefore be regarded as the question of how much input
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coding, and of what form, to use in representing F. Thus, for example, the

recursive formulations of Luh eta!, and Hollerbach minimize memory use at the
expense of extensive, highly structured re-coding.

A good illustration of the theme of associative memory combined with

re-coding is provided by the Kolmogorov decomposition of a function of several

variables. A theorem proved by Kolmogorov in 1957, and later improved by several

authors (see Kahane 1975), states that a continuous function f(xi, x2, , xn)

can always be represented in terms of functions of a single variable, thus
2n+1 n

f(Xi, X2, . , Xn)= g(2 X pc bq p)) (4)
q p=1

where X and 0 do not depend on f but g does. This result shows that for a con-
tinuous function an n-dimensional table can be replaced by a 1-dimensional table

representing g and some imput coding representing Xp and 0q. This does not
necessarily reduce the memory requirement in all cases, i.e., for all continuous

functions (note that the Kolmogorov result is not valid for f, g and 0 being CI
functions). However, it may be conjectured that an appropriate choice of X and 0
for limbs of particular kinds may allow significant reductions in memory size.

Stating the problem in this, very general, way gives rise immediately to the

question of how the brain arrives at a particular decomposition. One alternative
is that the coding part (corresponding to X and 0 in equation (4) is determined
by evolution while the memory (corresponding to g) is acquired by a simple
associative learning process. The other alternative is that the brain is much more
'plastic'; that it abstracts at least part of the set of coding rules by some higher-
level processing of learned input. In either case, but especially in the second, it
would not be surprising to find more than one decomposition used in biological
systems, .either overlaid, e.g. for coarse and fine control, or serving different
ranges of motor activity, different tasks, etc.

5. TRAJECTORY CONTROL: A NEW FORMULATION

Recently Polit & Bizzi (1978) have given a dramatic demonstration that in a
biological arm joint torques are not likely to be primitive, directly controlled
variables. De-afferented monkeys trained to perform one joint movements can
achieve and maintain a desired equilibrium position in the presence of external
disturbances and in the absense of any sensory feedback. We summarize here the
main implications of these experiments, mainly following Polit & Bizzi (1978,
1979) and Hogan (1980).

Unlike torque motors, muscles behave like tunable springs. The 'elasticity'
of a muscle is directly controlled by its activation level. Since muscles are
arranged about the joints in antagonist pairs, a particular choice of their length-
extension curves, i.e. of their a, determines the equilibrium position of the joint
and the stiffness about the joint. The situation can be formally described in
terms of a potential function of the joint angle, the potential being to a first
approximation quadratic.
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The generalized force about the joint is simply the derivative (with the
negative sign) of this potential. Coactivation of antagonist muscles controls
independently the minimum of the potential (via the ratio of the two a) and its

curvature (via the sum of the a). Thus displacement of the limb from the position
corresponding to the minimum of the potential results in the generation of a
restoring torque which is independent of afferent feedback. Furthermore, appro-
priate activities of the antagonist muscles can program an infinite number of

potential functions with the same equilibrium position but different curvatures

(and 'depths). An entire movement could be controlled simply by specifying

one potential function, characterized by a final position and the stiffness about
it. It is clear, however, that a wide range of biological movements cannot be
programmed only in terms of a one-shot potential. One is led quite naturally,
therefore, to the notion of a time-dependent potential function providing at
any instant of time (or at discrete sequences of time points) a 'phantom' trajec-
tory (the time dependent equilibrium position) and the stiffness (or curvature)
about it.

The general question which immediately arises concerns the feasibility of a
potential based control system of the type described above for multiple-degree-of-
freedom limbs. In particular it is well known that whereas for any given one-
dimensional force there always exists a corresponding potential function, this is
no longer true for n degrees of freedom (n> 1). The problem may be more than
academic, because it bears on the way the controller 'plans' a trajectory. Let us
consider, for example, an arm with two degrees of freedom. The simplest possible
control system that admits a global 2D potential sets independently the potential
for each of the two joints. The resulting 2D potential can be factorized into the
sum of two 1-variable functions, one of each degree of freedom. Although the
equilibrium positions corresponding to this class of potentials are perfectly
general, the pattern of the 'valleys' leading to the minimum is strongly constrained,
too strongly, it seems, to be biologically acceptable. These constraints may be at

least partly overcome in the case of a time-dependent potential. Much greater
flexibility can be achieved if the potential — and therefore the generalized force —
at each joint depends on the position of the other joints. Notice that this would
require coupling between the joints at the level of their mechanics (see Ilogan
1980) or, with more flexibility, at the level of the controller, via sensory feedback.
In general, however, a global potential need not exist, unless the generalized force
field obeys the classical potential conditions. A global potential — at least for two
joint movements — offers a very attractive way to program trajectories in terms
of end-effector position, possibly in viewer centred Cartesian space.

In any case, the properties and anatomy of muscles suggest a type of trajec-
tory control which is quite different from the 'force' control mode discussed in
the previous section. Position and stiffness are the primitive, controlled variables.
The problem of inverting the equations of motion (from the phantom trajectory
to the torques) essentially disappears. In a large measure, the musculature itself
seems capable of performing the 'computation' of torques, provided high stiff-
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nesses are achievable. The task of the nervous system is then to transform a desired
trajectory into a sequence of equilibrium positions and stiffness such that the
trajectory will result. At its most rigorous, i.e. for a trajectory precisely deter-
mined in respect of position and force, and in the absence of a global potential
function, the task is at least as difficult as the original torque control problem
(and is, in fact, identical to it). On the other hand, the possibility of programming
equilibrium positions and stiffness of each joint via a global (time dependent)
potential may greatly simplify the problem of trajectory planning. On the whole
the concept of mechanical impedance and equilibrium position control as
suggested by Bizzi (see also Hogan 1980) from the study of biological movement
may well become an important contribution towards a comprehensive compu-
tational theory of motor control.

6. CONCLUSIONS: A BIOLOGICAL PERSPECTIVE

Results in the computational theory of motor control will have, and are already
having, a deep inpact on the working hypotheses guiding physiological research
in the subject. At the centre of motor control theory at the moment is the
question of how torques are determined from the vector of joint angles. We have
considered this question as a matter of finding the optimal decomposition of the
operator F in equation (1). As a step towards a biological perspective on motor
control — in order to free the discussion from the context of any particular
methodology — we have first blurred somewhat the distinction between the
tabular and analytical representations of a functional operator, then reformu-
lated it in the more general terms of associative memory and input coding. The
optimal decomposition will, we suggest, have an optimal representation in two
distinct (though not necessarily sequentially distinct) parts.

(1) A part corresponding to our notion of input coding. This will embed the
useful physical and biological constraints and will be relatively inflexible.

(2) A part corresponding to an associative memory. This will take care of
those system properties which are more variable and less constrained
by the nature of the control problem.

With this formulation we were free to consider the control problem as a
problem for the system as a whole, not just for an isolable control unit of
nervous (issue or computer hardware.

A number of lines of investigation of immediate importance suggest them-
selves.

(1) To what extent may time be usefully applied as a variable in the evalu-
ation of torques or activity of antagonist muscles? In principle, trajec-
tories need not be planned in regular time slices, nor need the required
torques be calculated sequentially in real time. A possibly related
question concerns interpolation. In brains, just as in computers, it is
impossible to evaluate torques or motoneuron activities for every instant
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of time. The example of human vision, in which is found 'hyperacuity'
an order of magnitude better than would be expected on the basis of the
spacing of the photoreceptors in the fovea (see Barlow 1979, Crick etal.
1980); suggests the possibility of a comparable phenomenon in motor
control.

(2) Examining the strategies used in particular systems is a problem for
experimental and comparative physiology. This work will depend
heavily upon exact quantitative studies of trajectories (cf: Hollerbach
1980). Of immediate interest are studies of the modular organiszation
of trajectory control. For example, are there distinguishable modules
dealing with Coriolis forces, gravity, etc?

(3) It is also important to establish the role of associative memory in
specific systems. It would be expected, according to our analysis, that
systems controlling highly varied motor activities would rely more
heavily upon an associative memory component than more specialized
ones, independently of the complexity of the tasks performed.

(4) Another question for comparative studies is that of the design of limbs.
To what extent is the evolution of limbs influenced by the capabilities
and limitations of the control systems? Are there, for example, specific
anatomical features of vertebrate limbs which simplify their dynamics
(a good example is provided by two joint muscles, see Hogan 1980)?

In conclusion, the main point we wish to make is that the computational
level of motor control, so important for the brain sciences, has until now been
largely neglected. We believe that this is no longer a necessary state of affairs
and that with the appropriate combination of analytical, physiological and
'motor psychophysical' experiments, supported closely by computer experi-
ments on the control of manipulators, we may soon possess some deep insights
into the basic principles of motor control.
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