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PREFACE

One intelligent approach to prefaces — is to have the empty preface. The well
prepared reader will form a good idea of the technical programme just from
looking at the table of contents; together with the names of the authors, this
gives him a good idea of what happened at the symposium. I could try to assess
the tallcs and direct the reader's attention to the more interesting communi-
cations. But I fear this would be too subjective and unfair to the remaining
authors — all of them equally represented in this book.

However, recalling that Spring week in Repino, a resort 20 kilometres from
Leningrad on the Bay of Finland and unpopulated at that time of year, I have
come to the definite conclusion that the scientific meeting was in its own way
unique. What circumstances gave this symposium its special character?

First, it was not a regular IJCAI-type conference for which there is advance
preparation, taking into account previous conferences of the series and knowing
that others will follow. The technical programme was more spontaneous than
preplanned; there was neither selection of papers nor restrictions on the subjects.
This element of improvisation gave the meeting a more free and varied character.
The fresh audience and the absence of prehistory encouraged the authors not
to restrict themselves to presenting their results, but to pay more attention to
analysing the premises and motivation of their research. This gave some of the
presentations greater depth and scope, much to the satisfaction of the audience.

Of course, it was important that the conference was an occasion for a
"meeting of East and West". The mass media often play up such meetings, but I
must admit that this meeting did not provide an occasion for such dramati-
zations. At the same time, the direct and friendly contacts between scientists
with common interests, recognizing their common problems and diverse
approaches to their solution — all that made the conference a kind of "festival
of thought", greatly amplifying the creative motivation of the participants.

On the other hand, it did not turn out that the forum character made the
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symposium superficial. Not at all. It can be said that the theme of the con-
ference was "Al at work", and this is readily confirmed by the programme. At
the same time, this obvious desire to do "real work" in artificial intelligence
forced us to restate the question: Has there emerged a stable paradigm for
research and development in Al? Is there a single paradigm or are these several
of them — or is it possible to do successful work in Al without conscious use
of any particular paradigm? Even though many authorities in the field were
present, no-one tried to give a final answer to these questions. However, the
participants at the final panel discussion unanimously agreed that Al had got
its "second wind" in recent years and was again on the upswing.

It seems reasonable to conclude that the business-like programme combined
with the atmosphere of enthusiastic exchange of ideas thoroughly justifies
optimistic expectations.

ANDRE! ERSHOV
December 1978
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Relational Programming

R. J. Popplestone
Department of Artificial Intelligence
University of Edinburgh, UK

1. INTRODUCTION

A programming language needs simple and well defined semantics. The two
favoured theoretical bases for languages have been lambda calculus as advocated
by Landin and others, and predicate calculus as advocated by Kowalski (see
Landin (1966) and Kowalski (1973)). In this paper I adopt an approach based
on predicate calculus, but in a manner that differs from the existing PROLOG
language (Warren 1975 and Battani & Meloni 1973) in that I adopt a "forward
inference" approach — inferring conclusions from premises, rather than the
"backward inference" approach of PROLOG, which starts with a desired con-
clusion and tries to find ways of inferring it. This difference is reflected in the
internal structure of the associated implementations, that of PROLOG being
a "backtrack search" kind of implementation, while the most obvious imple-
mentation of the system proposed here involves a kind of mass operation on
tables of data, reminiscent of APL (Iverson 1962) but in fact identical in many
respects with the work of Codd (Codd 1970) on relational data bases. Indeed,
from one perspective this paper can be seen as an extension of Codd's work into
the realm of general purpose computing.

As in the case of PROLOG it is necessary for the user of the relational
programming system to make statements which are not associated with the
logical structure of the problem, but reflect the need to control the compu-
tation. In PROLOG these are effected by the use of extra-logical control
primitives, but in our system control is exercised by the introduction of predi-
cates for that purpose, which have exactly the same semantics as the predicates
relevant to the logical structure of the problem.

In later sections I deal with the problem of introducing equality into the
system, in a way that reflects the normal mathematical usage of equality. In
this I am attempting something that programming systems normally do not try,
although the ABSYS system (Elcock et. al. 1971) was built with equality as a

3
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central concept, and the unification algorithms of P ROLOG provide a limited

treatment.
When we come to consider the question of implementation, the relational

system seems to open a number of avenues of possibility, and it certainly raises

a number of problems. The most interesting developments compared with other

Artificial Intelligence languages are the possibility of making efficient use of the
address space of a modest size computer, or of handling much bigger problems

on a larger machine, and of exploiting parallelism. The major problem raised by
the system is that the most natural implementation involves repeating compu-
tations unnecessarily.

2. AN EXAMPLE

Figure lA shows a simple "blocks world" in which we have five blocks denoted
by the numbers 1, 2, 3, 4, 5. In this example we use numbers to denote the
entities in the world as a matter of convenience, since we are going to express

the relations holding between entities in the form of tables, and numbers are

the most convenient symbols to use. In later sections of the paper we shall use

the numbers "as numbers", that is as entities that can be operated on by the

normal functions of arithmetic, and will want to distinguish them from non-

numeric entities like blocks.

3

5

Fig. lA — A simple "blocks world".

ON

1 2
23
3 5

Fig. IB — The table for the ON relation.

Suppose that the state of this world is specified by stating which blocks

are on others. This relationship, which we shall call ON, can be expressed in

tabular form as in Fig. 1B. This can be regarded as an association of the name

ON, which we shall call a predicate name, or just a predicate, with a binary

relation, that is the set of pairs {(1,2) (2,3) (3,5)1. Now suppose we want to

4
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define a new relation, called ABOVE, in terms of ON. This can be done by
using the following two clauses

ON (X, Y) => ABOVE(X, Y)
ON (X, Y) & ABOVE(Y,Z) => ABOVE(X,Z)

(Cl)
(C2)

That is if X is ON Y, then Xis ABOVE Y, and if X is ON Y, and Y is ABOVE
Z, then Xis ABOVE Z.

It is possible to find a value for ABOVE, while keeping the same value for
ON, by applying a process illustrated in Fig. 2. In this process we cycle round
the clauses Cl and C2 and at each stage we form a table whose columns are
labelled with the names of the variables of the clause currently being examined,
and whose rows tabulate the possible values of the variables of the left side of
each clause. We then use this table to produce new rows to be added into the
table which is the current value of ABOVE. In this way we create a sequence
rl r4 of tables which specify possible approximations to the ABOVE
relationship. If we carry on with the process beyond r4 no new rows are added
to in producing r5 . . , and we say we have reached a fixed point. At this point
ON = -[(1,2) (2,3) (3,5)1 and ABOVE = -[(1,2) (1,3) (1,5) (2,3) (2,5) (3,5)1
and with these values (1) and (2) are satisfied according to the usual laws of
logic.

In a more general case, where the values of a number of predicates are being
built up, each step in the approximation will be represented by a sequence of
tables, each table specifying a possible value for one of the predicates, and in

ON ABOVE

1 2
23
3 5

ON ABOVE

1 2 1 2
2 3 1 3
3 5 23

2 5
3 5

V

Fig. 2 — Computing the ABOVE relation.

5

ON ABOVE

1 2 1 2
23 2 3
3 5 3 5

ON ABOVE

1 2 1 2
2 3 1 3
3 5 1 5

23
2 5
3 5
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the next two sections we shall give a formal definition of the process illustrated

by the example above, and prove that it gives rise to a sequence of relations

which form an interpretation of a given set of logic clauses.

3. A FORMAL SPECIFICATION OF THE SYSTEM

Let us now develop a precise mathematical specification of systems of the type
outlined above.

3.1 The basic sets

We need a set E of entities, which form the universe of discourse. Thus in the
above example E = {1,2,3 ,4, 5]..

We also need a set P of "predicate symbols" and a set Vof "variable symbols".
Thus in our example P = {"ON", "ABOVE"]., and V = -["X", "Y", "Z"}, where

the quotes denote that the symbol itself is being referred to. We insist that E
and V are disjoint sets.

3.2 Finite sequences

For many purposes we will need to make use of finite sequences of-elements,
usually of entities and variables. We shall use bold lower case letters to denote
sequences. If a is a sequence, then ak denotes the kth element of a. (ak) is
occasionally used to denote the sequence a. By la I we mean the set {ak} of
elements of the sequence a. The length of a sequence a, denoted by length (a)
is the number of elements in it (counting repetitions). It is convenient to use
a sequence without repetitions as a way of referring to the members of another
sequence of the same length. Let v be a sequence without repeated members,
and let a be a sequence. Let vk be a member of I v I. Then we use the.notation

vk of a wrt v = ak •

For example, let v = ("X", "Y") then

"Y" of (5,6) wrt ("X", "Y") = 6 ,
and

"Y" of (5,7) wrt ("Y", ̀!X") = 5 •

The empty sequence, which we shall denote by (), is a sequence of no elements.

If x is a sequence, and x is an element, then conseq(x,x) = t, where t1 = x,
and tk = xk_i. We shall use a form of structural induction (Burstall 1969) on
sequences, whereby to prove a result for all sequences, it is sufficient to prove
it for the empty sequence, and to prove that if a result holds for a sequence x,
then it holds for conseq(x,x).

We will often need to extend a mapping defined on elements to apply to a
sequence. If a is a mapping and x is a sequence then a(x) = (a (x j)).

6
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3.3 Horn clauses

The logical sentences which we shall use will consist of conjunctions of Horn

clauses. A Horn clause has the form L1 & L2 & 4 => L where the Li
and L are literals, that is they simply take the form of a predicate applied to

arguments. More formally, a clause is a pair (L,E) consisting of a sequence L
of literals which we shall call the negative literals of the clause, and a literal

L' which we shall call the positive literal of the clause. Each literal itself is a
pair (p,a) where p is a predicate in P, and a is a sequence of "arguments" drawn

from V U E.

3.3.1 A restriction on clauses

An additional constraint which we place on the clauses allowed in our system
is that if (L ,L') is a clause then all variables occurring in L' must occur in some
L in ILI.

Thus from our example, ("ON"("X", "X")), and ("ON",("X",1)) are
literals, as well as ("ON",("X", "Y")). In the sequel, we shall use the normal
notation (for example ON(X,Y) ) when referring to particular literals of the
object language. We are not of course restricted to binary predicates, for
example one might have BETWEEN, which is ternary, as in BETWEEN(X,Y,Z).
However, we suppose that with each predicate symbol p there is associated
a positive integer arity(p) which specifies the length of any argument sequence
which is associated with it in forming a literal.

3.4 Relations

Our clauses will be interpreted in terms of relations on E. By a k-ary relation on
E we mean a subset r of the cartesian product Ek. We denote the set of all k-ary
relations on E by Rel(E,k) which is of course the power set of Ek. Thus in our
example the tables, without column headings, represent relations, with the rows
being the "tuples" taken from Ek.

We will interpret a sequence of clauses C by associating a relation with each
predicate occurring in C. In fact, let p be a sequence, without repetitions of
the predicates of C. Then a sequence of relations r, with length (r) = length (p)
can be considered as a possible interpretation if arity (rk) = arity (Pk) 15 kS
length (p). We denote the set of all such relation sequences by 61 and call it the
domain of interpretation of C. 61 is then the cartesian product

61= Ilk Rel(E, arity (Pk)) (3.4.1)

In our example, C can be the sequence (Cl, C2) and p the sequence
("ON", "ABOVE").

61 is the product Rel(E,2) X Rel(E,2), so that if (rl,r2) in 63. then rl is a
possible value for ON, and r2 is a possible value for ABOVE.

Now, for any k, Rel(E,k) is a complete lattice under the normal set theory
operations of union and intersection. It follows that 61 is also a complete lattice,
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since it is the direct product of such lattices. We need to make use of the
following "fa point" theorem about completing lattices.

3.4.2 Theorem

If .0 is a complete lattice, and 0 : .C-4..0 has the property that 0(1) >1, for each 1
in C, then there is an element u in .0 with the property that 0(u) = u .

Proof

Let v = U{Iltheta(1) > 1}. Then either 0(v) = v, in which case the required
result holds, or 0(v) > v, (where U denotes the lattice operation). Let us suppose
that 0(v) > v. Then either 0(0 (v)) = (v), in which case 0(v) is the required
"fixed point" or 0( 0(v)) > (v). But v = U{110(1) > 11, and 0(v) > v, a
contradiction.

That 0(v) is in fact sometimes the fixed point can be shown by the following
example. Let .0 = [0,1] union -[2]-, with the standard ordering on the reals.
Let 0(x) = x + (1—x)2, x < 1, 0(x) = 2 otherwise. Then v = 1 in the above
proof, but 0(v) = 2 is the fixed point.

We shall also have need of a more constructive form of the fixed point
theorem.

3.4.3 Theorem

Let .0 be a complete lattice. Let 0 : have the properties (i) 0 (1)>1, and
(ii) If {lal CC is an ascending chain of members of C, then 0 (u{la}) = U{0(10)}.
Let la be any element of C. Then if la = VOi(la), 0(1,,) =

Proof

0(1,,) = 0(
la 
U
o 
0i(la)) = U 0(1a) = U

o 
01(1a) since 01(10)-00(1a) = .

i>o 
In the theory of computation, it is customary to refer to a function satis-

fying the preconditions of (3.4.3) as being continuous.

3.5 Labelled relations

To simplify some of the definitions we shall make later, and to clarify the
processes involved, we need to introduce the notion of a labelled relation, which
is a pair, (v,r) where v is a sequence of variables without repetition, and r is a
relation having the property that arity(r) = length (v). The main benefit of this
device is to be found in the definitions of attach, detach, and join, to be found
below. In Fig. 2, the labelled relations are represented by tables with column
labels, the row of column labels corresponding to the sequence of variables.
In the first development of the theory we used unlabelled relations, which
necessitated permuting columns in a way that was difficult to follow. It should
be noted that the relational data base work of Codd and others makes use of
labelled relations, but the necessity of attaching and detaching labels seems
not to be generally recognised.

8
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We shall*denote labelled relations by q, , q", etc. In particular, ch =
(13, {Ø}) will be called the null labelled relation.

If {q0,1 = {(v,ra)} is a family of labelled relations with the same label
sequence, then we write 1J0q a for (v,Ura). We will not require a union operation

over labelled relations having different v's.

3.6 The rho function

In this section we define a function p, which has the property that if C is a
sequence of clauses: p(C):61-41t, and p(C) satisfies the conditions specified
for 0 in (3.4.2) and (3.43). In Sec. 4 we shall show that any fixed point of
p(C) is an interpretation of C.

p is defined for clause sequences by building up a definition via predicates,

literals, and literal-sequences and clauses. The definition involves a number of
auxiliary functions which we shall define, namely inject, project, attach, detach,
and join (this last is written *). Let C be a clause sequence, C = (L, (p', )) be
a clause, where L is a literal sequence. Let L = (p,a) be a literal. Then

P ( (C)) = P (C) p1
p (consseq(C,C)) = p (C) op (C) p2

p( (L, (p' , a' ) ) (r) = r U inject (p' ,p) (detach (a, p'(L)(r))) P3

PV ))(r) = qo p4
Aconsseq((L ,L))(r) = p (L)(r) * p'(L)(r) p5
p((p,a))(r) = attach (a,p (p)(r)) p6

p(p)(r) = project (p ,p)(r) P7

where 0 is the functional composition operation defined by (fog)(x) = g(f(x)).
Before we go on to complete the formal details of the definition of p, let

us consider its meaning in our example. p (C1) is a function which takes a pair,
(rl,r2), where rl is a possible value for the ON relation, and r2 is a possible
value for the ABOVE relation, and produces (r ,r 2' ), which are again possible
values for ON, and ABOVE respectively, according to the procedure sketched
out in Sect. 2. Note that the value of ON will not in fact change, since it does
not occur positively in any clause, nevertheless it is convenient to include it in
the considerations.

3.7 The auxiliary functions

Returning to the definition of pl-p7, the inject and project mappings simply
serve to access components of members of the cartesian product, R. In fact

inject(p,p)(r) = (rk) where rk = r ifpk =p, and rk = 0 otherwise. p8
project(p,p)(r) =p of r wrt p P9
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Thus in our example,

project (ON, (ON,ABOVE))(4(1,2),(2,3),(3,5)1, 4 D =

and selects the value of the ON relation. Likewise,

inject (ABOVE, (ON, ABOVE) ({(1, 3),(2 , 5)1) = ({ ]., {(1, 3),(2 , 5)].)

and is used in the creation of a new value for the ABOVE relation.
While unlabelled relations are associated with predicates, labelled relations

are associated with literals, and sequences of literals. If L is a literal, with

associated labelled relation (v ,r) then v is the sequence of variables of L, without

repetitions. The same is true for literal sequences. The attach function is used to

go from unlabelled relations associated with predicates to labelled relations

associated with literals, and the detach function makes the opposite transition.

detach (a,(v,r)) takes an argument sequence a, la I CEU V and a labelled

relation (v,r), and produces an unlabelled relation r' for which arity(r') =

length(a). Our clauses are restricted by (3.3.1) so that the condition lain vc Iv'
is always satisfied.

detach (a(v,r)) =
13t e r
ake Iv = = ak oft wrt v
ake E=> tic = akb p10

In our example, for C2, when we are forming a new value of ABOVE, we use

detach with arguments ("X","Z") and (("X","Y","Z"), (1,2,3),(2,3,5)) to

obtain the relation 4(1,3),(2,5)]. to be added into ABOVE.
Suppose now that a is a sequence for which la ICEUV and r is a relation,

such that arity(r) = length(a). Then attach (a,r) is a labelled relation (v,),

where iv I = !al n V and

r' = -R113t e r
Vk,k've = ak => vie Of wrt v = tk

Vk akelE=> tk = akl. pll

In our example, if L = ABOVE(Y,Z), then we have to perform

attach(("Y","Z"), 4(1,2),(2,3),(3,5)1) =

(("Y","Z"), {(1,2),(2,3),(3,5)D

a trivial example in fact. If, however, we attach ("X","X") to the above relation,

10
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then we get the labelled relation (("X"), {}), since nothing is above itself. If we
attach ("X",5), we get (("X"), {(3)}).

The next operation we have to consider is the join operation. This is
involved in combining the labelled relations derived from two different literals.
Let (v , r) and (v1 , r') be two labelled relations, then

(v", r") = (v, r) * , ) <=>
Iv" I = Iv ).
r" = [t" 13 t ,t1

v c jv => v of t" wrt v" = v oft wrt v
v'e Iv' I => v' of t" wrt v" = v' oft' wrt v']..

For example, in processing C2 we have to compute the join

p12

(("X","Y"),4(1,2),(2,3),(3,5)1) * (("Y ","Z"), 4(1,2),(2,3),(3,5)1)

= (("X","Y","Z"),4(1,2,3),(2,3,5)D.

Note that q0 = (0, 401) is an identity for * , and that * is commutative and
associative.

3.8 Summary of section 3
We have now completed the definition of p. Note that p3 implies that p(C)(0> r
and so, from pl and p2, p(C)(r) r. Thus p(C) has at least one fixed point by
3.4.2, r1, say, and moreover, r1 must also be a fixed point for p(C) or all C in
ICI, by the definition of p(C). It follows that r1 is a fixed point for any clause
sequence C' st IC' I = IC I so that the fixed point depends only on the set of
clauses, not on their order. Before we investigate the properties of p further
in Sec. 4, let us work through an example of the application of ((C1,C2)).

Let us consider the initial state of our example, represented by ro =
p = ("ON", "ABOVE") so that "ON" is associated

with the first relation in the pair ro, and ABOVE with the second (null) relation.
Then by p1 & p2

X(C1,C2))(ro) = P (C2)(P(C1)(ro)) (3.8.1)
P(C1)(ro) =r0 U inject("ABOVE",13)(detach(("X","Y"),P1(L)(ro)
where L = ("ON",("X","Y"))) (3.8.2)

13' (1-) (ro) = qo * P VON",("X","Y")))(ro) (3.8.3)
P VON",("X","Y")))(ro) = attach (("X", "Y"), P ("ON") (ro))
= attach (("X", "Y"), project(("ON"("ON","ABOVE")))(r0))
= attach (("X","Y "), 4(1,2),(2,3),(3,5)1)
(("X","Y"),4(1,2),(2,3),(3,5)D = P'04(ro)

since qo is an identity for * .

11
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Thus, applying (3.8.2) we get that

P(C1)(r = ro U inject("ABOVE",p) (detach(("X","Y"),

(("X","Y"), 4(1,2),(2,3),(3,5)1)))
= 1.0 u inject ("ABOVE",P)(4(1,2),(2,3),(3,5)1)
= 1.0 U (41, 4(1,2),(2,3),(3,5)1
= (.[(1,2),(2,3),(3,5)},4(l,2),(2,3),(3,5)}).

We shall not compute p(C2)(r0) in detail, but note that the join operation

involved is the one given as an example after the definition of join.

4. FIXED POINTS ARE INTERPRETATIONS

In this section we prove two theorems. The first states that the fixed point of

p(C) gives rise to an interpretation of C, that is a correspondence between

predicates of C and relations in which the clauses of C are satisfied.

The second theorem shows that p(C) is continuous, and thus provides a

basis for fulding fixed points by repeated applications of p(C) to an initial

relation sequence.

4.1 Theorem

Let C be a sequence of clauses. Let r be a fixed point of p(C). Let Ce IC I.

Let a : VUE E be a function for which a(2) = Q for e E. Suppose that
for each literal (p,a) occurring negatively in C,a(a)e project (p,p)(r). Let (pcd)

be the positive literal of C. Then cr(a') e project (p',p)(r).
Comment on the meaning of this theorem.
With each predicate p occurring in C we associate a relation, project (p,p)(ro).

We can regard this association relation as an interpretation of the predicate. The
theorem states that however we substitute constants for variables in C, if we
regard p(ei, e2 ek) as being satisfied when (e1, e2  ) in r, where r is the
associated relation with p, then if all the literals on the left of a clause are

satisfied, then that on the right must be satisfied.

Thus in our example, let us consider C2, and let

= 2, a("Y") = 3 and a("Z") = 5
and let

r = (4(1,2),(2,3),(3,5)1, {(1,2),(2,3),(3,5),(1,3),(2,5),(1, 5)1).
Then

.= (2,3) e project ("ON", ("ON", "ABOVE"))

= 4(1,2),(2,3),(3,5)1

and likewise sigma(("Y","Z")) e project("ABOVE",("ON","ABOVE"))(ro)
thus the left-hand side of C2 is satisfied, and we find that the right-hand side
is satisfied, since

= (2,5) e project ("ABOVE",("ON","ABOVE"))(ro)

12
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Before we can prove (4.1) we need the following two lemmas.

4.2 Lemma

Let a be a sequence with lal CE U V. Let r be a relation. Let (v ,r') = attach(a,r).
Then for any a: VUE-+E for which eeE => a (e) = e

a (a)er => a(v) e

Proof

Suppose o(a)er
Let vk, = ak for some k,k'

re of a(v)wrt v = a(v)k, =a (vie) = a(ak) = a(a)k.

Moreover if ak eE then a(a)k = ak

Hence a(a) e r' from the definition of attach (pl 1).

4.3 Lemma

Let v,V, v" be sequences of variables, and let r,r' ,r" be relations for which

(v",r") = (v, r) * (v' , r')

then if a : VUE-+E

a (v) e r & (v') e r' => a (v") e r".

Proof

Let v e iv and let vi e Iv' I.

v of a (v") wrt v" = o(v) = v of a (v)wrt v
v' of a (v") wrt v" = o(vs) = of a (v1) wrt vi.

Thus a (v) & a(vs) satisfy the requirements to be the t & t' in the definition
of *, and so we conclude a (v") e r"

4.4 The proof of theorem 4.1
It follows from Sec. 3.8 that r must be a fixed point for p(C) for
each Ce IC I.

Now let (p,a) be a literal occurring negatively in C. Then from Lemma 4.2
and p7

a(a) e projecqp,PM) => a(a)e P(P)(ro)
=> a (v) e r' where (v,r')= p ((p,a))(ro)

13
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Thus if a satisfies the preconditions of our theorem (4.1), then for each literal
(p,a) occurring negatively in C

(v,r') = P aD(ro) => a(v) e (4.4.1)

Let L" be a sequence of these literals. We shall show, by structural induction
(Burstall, 1969), that if (v",r") = p'(L") then a(v) e r".

Suppose Ln = 0. Then (v",r") = qo = (0,{0}), by p4. Thus a(v") =
a(0) = a(0) = 0 e {0}, so founding our induction. Suppose L" =
consseq(L,C), and suppose that a(v') e r', where p(C)(co) = (V,e).

Now by p 5,

a' (I: )0' 0) = P (L) (r 0) * (1!) (1* = 07" , r"), say

Let p(L)(ro) = (v,r), so that o(v) e r by (4.4.1).
We can conclude from Lemma 4.3 that a(v") e r".
Thus if C = (L,E) and AL)(ro) = (v,r) then a(v) e r.
Now ro is a fixed point of p(C), and from p3 we see that this implies that

Thus

inject (p' , p) (detach (a' ,(v, r))) Cr0.

project (p',p)inject (p',p) detach (a` ,(v,r)))
= detach (af,(v,r)) C project (p', p) (r)) .

Consider a(a')
1f4 e E then a(a')k =ak
If 4 e V then 4 of a(v)wrt v = a(4) =

Hence, by the definition of detach with a(v) playing the part of t, and a(a')
playing the part of we conclude that a(a')e detach(as,(v,r)), and so a(a')e
project (p',p)(ro).

This concludes the proof.
Let us now return to the proof that p(C) is chain continuous. We begin

with lemmas showing that attach, detach and join are continuous, the latter
in both its arguments, and then prove the chain-continuity of p(C) by building
up the definitions p1-7.

4.5 Lemma

If {r2ctlis a set of relations, and a sequence for which tat CE U V, then

attach (a, U ra) = Lai (attach (a,ra)).

14



POPPLE STONE
Proof

Let (v,r') = attach(a,V, ra)

(v,r" ) = u attach(a ra)
a

Then r" = u r where (v ria) = attach (a ra)a
Lett e r' . Then

3 t,te Ura &ak = v => ak of t'wrt a = vk oft wrt va
&ak eE=>tk=ak .

Suppose t e ra, for some /3. Then t' e r;. and hence t' e U ra. The converse proof
is similar. a

4.6 Lemma
If {(v,ra)} is a set of labelled relations, with identical labels, and a is an argument
sequence, then

detach (a, U (v,ra)) = U detach (a, (v, ra)) .

The proof is straightforward, and is not included in this paper.

4.7 Lemma
If (v, r) is a labelled relation, and -[(v' , )1 is a set of labelled relations, then

(v, r) * U (v' , ra) = U(( v, r) * (v' , ra' )) .a

Proof

Let (v" , r") = (v',r) * (V(V, r,))

Then lel = Iv I U Iv' I
Let t" e r". Then

3t,e, te r & t' elcir&Vv e v,Vv' e v'
v of t" wrt v" = v of t wrt v
v' of t" wrt v" = v oft' wrt .

Suppose t' e rh for some (3. Then

t e (v, r) * (v', rh)
and sot e U ((v,r) * (v',ra' ))a

and similarly conversely.

15
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We also need the following two results, for which the proof is sufficiently

straightforward to be omitted.

4.8 Lemma

If -NI- is a set of relation sequences, and p is a predicate, then

project i(p,p)(U (Ur) = U (project (p,p)(r,)).
a a

4.9 Lemma

If {ral is a set of relations, and p is a predicate, then

inject (p, ra) = Vinject(p,p)(ra)).

We are now able to prove the following.

4.10 Theorem

p(x) is a chain-continuous, from 61 to tR, whether x be a predicate, literal,

clause or clause sequence, and if L is a literal sequence, then p'(L) is chain-

continuous.

Proof

Let Ta be an ascending chain of members of 61, indexed by a in some totally

ordered set A.

(i) Let p be a predicate. Then

p (p) (Lai ra) = project (p,p)(y ra)
= y project (p,p)(ra)
= td p(p)r.

(by 4.8)

(by p7)

(ii) Let (p,a) be a literal. Then

pl(p,a)(yra) = attach(a p(p)(y, rc,))

= attach (a,( p(p)(ra)) (by OD

= ld attach (a,p(p)(k)) (by 4.5)

= y, P ( P 0(ra). (by p6)

(iii) This section of the proof, which lifts continuity over the join operation,
is the root of the restriction to chain-continuity, which arises essentially from
the cross-terms generated by join. So, we shall prove, by structural induction,
that

p'(L)(lcira) =

16



To found the induction we observe that

Ps(0)(Vra) = qo =

Now suppose that for some L

ps(L)(Ura) = u p'(L)(ra) .

Then, by p 5

p'(consseq(L,L)(cyra) = p(L)(c)ra)

= cy p(L)(ra) * Wpi(L)(rft)

= wcy P M(ç«) *P1(000)

= U U(p(L)(rc,) * (L) (0)
R "

= cy(p'(consseq(L,L))(ra) )

POPPLE S TO NE

* p'(L)()ra)

(by (ii) and inductive hypothesis,
where p e A)

, (by 4.7)

(by 4.7 and commutativity of *)

(by p5, and the properties of U)

Since for any a and p in A, either a < 13 or 13< a and so

p (L);(r) * (L)(rp) < 14)00 * (WO
or

P(L)(ra) * P'(1-)(r,)<P(L)(0 * P'(1-)(ro) •

(iv) Let (L, (p',a')) be a clause

p(L(p', a'))(ld ra) =

IJ r y inject(p1,p)(detach(as,p'(L)(vra)))

= Vra U yjinject(p',p)(detach (a',p'(L)(ra)))

= 11(ra U inject (P:PXde tach (a' ,p (L) (OD •

(by 4.6,4.9)

(v) Finally we prove, by structural induction, that p (C) is chain-continuous
for the clause-sequence C.

p ((0)(U rot) = p(C)(Ure,)
= tc-2P(C)(ra)
= cY, P((C))(42)

(by pl)

(by (iv))

(by pl)

Suppose now for some C that p(C)(Uras) = U p(C)(ra' ) for any ascending
chain 4.

17
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Then

p(consseq(C,C))(y ra)

= p(C)(p(c)() (by p2)

= P(C)(Lee P(C)(ra)) (by (iv)

=La./ P(C)(P(C)(0)
by inductive hypothesis, since p(C)(r) is an ascending sequence

= cy p(consseq(C,C))(r,) (by p2)

which concludes the proof.

5. APPLICATION OF THE THEORY

The conclusion that we can draw from Secs. 3 and 4, is that given a sequence

of clauses, C and an initial sequence of relations ro, that there exists a relation

sequence r which is defined by

= un (C)(r0)

and which provides an interpretation of C in the sense that for any substitution
of constants for variables in a clause C of C if the left-hand side of C is satisfied

then the right-hand side must be.
Now if we are dealing only with finite relations, the sequence (pn(C)(ro))

must reach its least upper bound after a finite number of steps, so that, for
some n, r,. = pn(C)(ro) .

The interesting problems arise when some of the relations concerned are
infinite. We are not proposing a treatment of the general case, but shall restrict
ourselves to consideration of the case where infinite relations only occur
negatively in clauses, and where join only produces finite results.

In order to be able to perform arithmetic computations within our rela-
tional system, we need some representation specifying that the set E contains

the reals, and that the arithmetic operations, + — * /, are represented as relations
on E (there need be no confusion between the use of * at the meta-level for join,
and at the object-level for multiplication). It is also convenient to add the
distinguished set -[T,F1 for "true", "false", to E.

We shall use R to denote the set of real numbers.
The technical device used to incorporate the real number operations into

the relational system is based on the following definition.

5.1 Definition

Let E' CE. Let f : E -+ E'. Then p(f) is the relation

{t Itn+i f (t, • ..tn),t, .2.tn e .

18
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Thus it is possible to incorporate arithmetic into the system by insisting that
P contain the set {"+", "*", "/"]- and by associating with each an operator
applied to the corresponding function. It is also clear that the arithmetic
relations, <, >, ‹, ›, can be extended to apply to E.

5.2 Implementation of infinite relations

The introduction of infinite relations into the system can only be bought at a
cost. The representation of finite relations in a computer raises no problems
of principle, although there may be practical difficulties in handling large
relations economically. On the other hand there are difficulties involved in
representing infinite relations in a way that is effective computationally, and of
course there is no guarantee that any clause sequence will give rise to a fixed
point in a finite number of iterations. This second difficulty is unavoidable if
the system is to have full computational power — it is equivalent to the halting
problem.

There are conventionally two methods of representing infinite objects in
a computer — as a program or symbolically. (These two are not necessarily
distinct; LISP program can be treated as symbolic, although this is seldom done
in practice). We propose to restrict the system and to deal only with finite
relations, apart from the basic arithmetic ones defined above. This is possible
on account of the following.

5.2.1 Theorem

Let (v, r) be a finite labelled relation. Let f : E'n -> E', E' C E. Let a be an
argument sequence of length n + 1, for which

i<n +1=>ai CivjUE

then
(v,r) * attach (a, tt(f))

is finite.

Proof

Let (v',r')= attach(a,p(f))
Let (v",r")= (v,r) * (v',r')
Let 0 : r" -> r be defined by

•
If t" e r", choose 0 (tpers.t.
V e Iv' => v of t" wrt e = v of 0(0 wrt v

We shall show that 0 is 1-1.

19



ABSTRACT MODELS FOR COMPUTATION

Suppose 0(t") = 0(s") = t, say, for some s", t" e r"

There are two cases to consider.

Case
an+i e E U {a, Then Iv' I c Ivi
therefore v"e lv" I => v" e lvi since Iv" I = Iv I U Iv' I
therefore Vv"e Iv" I =>
v" oft" wrt v" = v" of 0 (t") wrt v = v" of 0(s") wrt v

= v" of s" wrt v"
therefore s" =t" .

Case 2

an+2 e a,,,+1 at n.
Let vk = an+1

Let to s° e p(f) for which

vie = ak => vie oft' wrt v` = 4

vie of s' wrt v' =

ak eE=>t ak = .

Then for k < n, let ak = vie . Then vie e Iv I.
= vie oft' wrt v' = vie of t" wrt v"

= vie of t, wrt v =k' of s wrt v

= vk. of s" wrt v" = vie of s' wrt v' = s.

Thus 4 =4 k < n.
But 4+1 = f(t;) = f(s1,— = sg+

therefore 4 of t" wrt v" = 4 of wrt v' = 4+1
= 4+1 = 4 of s' wrt v' = 4 of s" wrt v"

and, for v" * vk, v" e Iv
sop" of t" wrt v" = v" of 0(t") wrt v = v" of 0(s") wrt v

= v" of s" wrt v"
therefore t" = s"

Thus U is 1 — 1, hence r" is finite, since r is finite.

5.2.2 Theorem
Let (v, r) be a finite labelled relation. Let r' be relation. Let a be an argument

sequence, length(a) = arity(r'). Then

(v,r) * attach(a/)

is finite.
The proof is similar to the preceding theorem, and is omitted.
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The import of the above two theorems is that the relations involved in the
computation of p(C), for some clause C, will be finite if for every literal (p,a)
where p is associated with an infinite relation ti(f), a, ... a„ are either constants,
or are variables which have already occurred in earlier literals in the clause
(arity(p) = n+1). Moreover, every literal (p,a) for which p is associated with
a non-functional, infinite relation of arity n, then a, .... a,, must either be
constant, or have occurred earlier in the clause.

5.3 Free functions

In order to provide some equivalent facility to the data structures of conventional
programming languages, let us suppose that there is a set tf„,„} of functions,
fm, : Em —> E, for which

fmn (x, • • • xm) = Len' (x', • • • x
=>m = n =n',xj= x; .

The fmn are called free functions on E.
We can associate free functions with predicate symbols, as in the last

section. It should be noted that in addition to the uses of these permitted
by Theorems 5.2.1 and 5.2.2, it is possible to have a literal (p,a), for which p
is associated with fmn, where am4.1 is a variable which has occurred earlier
in the clause, while ai, i < n have not necessarily occurred earlier. This obser-
vation does not carry through to the quotient interpretations discussed in the
next section.

6. THE TREATMENT OF EQUALITY

Most mechanised logic systems have problems in their treatment of equality. The
basic intuitive notion that if entities are equal then they should behave identi-
cally when acted on by functions can be expressed by axioms of the sort

x =y => f(x) = f(y)

which have to be written out for every function named in the system. It is
possible to ensure that this substitutivity property of equality is automatically
provided by adding the predicate n=" to the set P of predicates, and by modi-
fying the definition of p(C), for some sequence of clauses C to

peq (C) = p(C) o n (r)

where n (r) is defined as follows:

Let req = =" of r wrt p
Let 4,7 be the reflexive symmetric and transitive closure of req.
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Then n (r) is r' where

(t) "=" of r' wrt p = r'eq
(ii) If p e jpi,p*"=" and let

r = p of r wrt p. Then
= p of r' wrt p is defined to be

r' = -[t' 13ter, Vi(t'bti)

The effect of the above definition can be stated simply by saying that
in each cycle of the interactive process of interpreting clauses, we take the
equalities that have been deduced, apply the rules of reflexivity, symmetry
and transitivity to produce an extended equality relation, and then use this to
infer that if two entities are equal, and one is related to some further, then
the other must also be related to these entities.

4.6.1 Introducing n is equivalent to introducing equality axioms
In this section we show that if C is a clause sequence, then
peq(C) is a fixed point of C' where C' is formed from C by
axioms.

Let r1 be a fixed point of peq(C), and let us note that
from the reflexivity of r;q in the definition of n.

We can easily see that r1 is a fixed point of p(C) for

P (C) < n(P(c)(0)
= P e q(C) (ri) =

But from the definition of p

p (C)(ri) >

Similarly, we can show that n (r1) = r1.

6.1.1 Theorem

If C is a clause sequence, and r is a fixed point of peq(C) then

(i) 1.1 is a fixed point of
p(x =y =>y =

(ii) r1 is a fixed point of
p(x=y&y=z=>x=z)

(iii) for any p e pJ, r1 is a fixed point of
p (x = y & p x p . . .

22
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We shall omit the proof of (i) and (ii) and only give the proof of
Since qo is an identity of *, we need to consider

t e detach((xl ...y ...xn), attach ((x,y),req)*attach((x 
where reel = "=" ofri wrt p and rp = p ofr1 wrt p .

We need to show that t e rp
Now from the definition of detach (p10),

3t' e attach((x,y),req) * attach ((x, x . ..x„)rp)

for which

v e Iv' I => v oft wrt (x1 ...y ...xn) = v oft' wrt v'

where v' is a sequence without repetitions and Iv'i= {x1 • • • xri,x,Yi-•
Now, form the definition of * and attach, pll & p12,

3t", t", t" e req & t'" e rp St.
e 4x,y} =>

v" oft' wrt = v" oft" wrt (x,y)
v' "
s " oft

,
v wrt vi = v" of t" wrt (xi ...x ...x).

Let v e {xi . .x„}.. Then

and

v of t wrt (x ...y...xn)= v of t' wrt v'
= v of t'" wrt (xi ...x ...xn)

y of t wrt (xi ...y ...x„)=y of t' wrt v'
=y of t" wrt (x,y).

from (I).
from (III).

from (I)
from (II)

Now n (r1) = 7.1 so that req is its own reflexive symmetric & transitive closure,
so that it is itself reflexive symmetric and transitive. Thus

v e {xi ...xn} => (v of t wrt(x, ...y ...x,),
v of t" wrt (xi ...x ;3)) e req

by the reflexivity of req and

(y.of t wrt (xi ...y ...xn),x of t" wrt (xi ...x, ...xn)) e req

since
(y of t wrt(xi ...y...xn),x of t'" wrt (xi . • • x • • • xn))
= (y of t" wrt(x,y),x oft' wrt v) = (y of t" wrt(x,y), x of t" wrt (x)
= (WO say, from the definition of *. (p12)

23



ABSTRACT MODELS FOR COMPUTATION

Now since req is symmetric and

t" =(x oft" wrt(x,y),y of t" wrt (x y))

it follows that (tc,tp) e req

But t" e ii,, and we have shown that for each i, ) e req .
Therefore, from the definition of n, and the fact that n = 1'1 it follows that

t e rp.

6.2 A discussion of equality

Theorem 6.1.1 shows that it is possible to make the interpretation system

behave as though the equality axioms were explicitly present.

From a practical point of view this method of treating equality suffers from

a major disadvantage in that the application of the equality rules results in a

large expansion of the relations. It seems likely that the obvious ploy of using

req to define equivalence classes of entities, and only recording relationships

between canonical members of these classes, would be theoretically sound, but

I have not completed a proof that this is so.

7. DISCUSSION

In this paper we have shown how it is possible to use certain combinators on

relations to produce an interpretation of a class of clauses (Horn Clauses) in

predicate logic. The work was inspired by a particular view of the task of writing

certain kinds of program, but has not yet given rise to a system implemented

on a digital computer, although some initial studies have been made. The mathe-

matical apparatus used is hardly novel — perhaps my most direct debt is to

D. Park (1969).
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The use of a graph representation in optimization of
variable replacement in LISP in the presence
of side effects

V. L. Stefanuk
Institute for Information Transmission Problems
USSR Academy of Sciences, Moscow, USSR

Abstract

A certain canonical representation for a directed graph is found to be useful in
reduction of search in some problems. In this report it is applied to the solution
of a problem of optimization of evaluation order in the arguments of LISP
recursive code in the light of recursion removal. The program, given the sequence
requiring the minimal number of intermediate precautionary measures, is des-
cribed. The main feature of the approach is an attempt to take side-effects into
account. For this reason, the problem of side-effects in a LISP system is also
looked into. The program is implemented in BNN-INTER LISP system.

1. THE CANONICAL REPRESENTATION OF DIRECTED GRAPHS

Let G be a directed graph without loops. The following couple of representations
of G are of interest for some applications. The TD (Top-Down) representation is
constructed by the following process, called Canon (G):

Set S', the set of all unsubordinated nodes of G. If S' is empty, set S' to be
the set of all unsubordinated pairs of nodes of G. If this S' is empty, set S' to be the
set of all unsubordinated triples of nodes, etc. (a group of nodes is called unsub-
ordinated if and only if there are no links pointing to the group from the rest of
the graph).

For non-empty .5' let G' be the remainder of the graph G, provided that all
of the links from S' are discarded,

Fig. 1.1.

Canon (G) = Append (54 Canon (0)
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The TD representation for the graph shown at Fig. 1.2 is shown below, at

Fig. 1.3.

Fig. 1.2.

((E) (B)) ((A)) ((G D))

Fig. 1.3.

Equivalently it is possible to build the BU (Bottom-Up) representation if

one sets S' to be nodes or groups of them, which do not influence the remainder

of the graph G. The BU for the same graph is

((E) (A)) ((CD)) ((B))
Fig. 1.4.

The TD representation is of interest when one would like to find first the

least dependable part of a system, then work on it, and afterwards proceed with

the rest of the system. In Stefanuk [1975] , the TD representation was actually

used to demonstrate that local control in systems without mutual interaction is

always stable.
The BU representation is of interest in the problem considered below of

the optimization of the order of evaluation of LISP functions, taking into

consideration possible side-effects.

However, these representations have the following properties:

1. For a given graph G the set-representations TD and BU are unique, as we are

not ordering elements within S' and within subgroups of S'.

2. TD (G) is identical with BU (G'), where G' is the reverse of G (all arrows

pointing in backward directions).
3. If G is a graph without cycles, then TD (G) is identical with the reverse of

BU (G).
4. Each subgroup of S' has at least one simple cycle of the order k, where k is

the number of its elements.
Property 2 shows that the algorithm for construction of BU and TD is

essentially the same.
Property 4 suggests a deeper sorting algorithm for the graph G, in which
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after the failure to find unsubordinated nodes, one tries to find a non-zero set
S' of nodes, each of which has not more than one link pointing to it. The LISP
function for such a process is given below:

(CANONC
[LAMBDA (G V)

(* "CANONC (Fl F2 F3) NIL" produces a representation
taking away elements with no links to the rest, with
one link, with two, etc.)

(COND
((NULL G)
NIL)

(T (CONS (SETQ V (CANONB G 0))
(CANONC (REMOVE V G] )

(CANONB
[LAMBDA (G S)
(COND
((NULL G)
NIL)
((CANONA G G S))
(T (CANONA G G (ADD I 5] )

(CANONA
[LAMBDA (G U S)
(COND
((NULL G)
NIL)
((EQ S (TEST (LIST (CAR G))

(REMOVE (CAR G)

(CAR G))
(T (CANONA (CDR G)

U S] )

In Fig. 1.5 we show another example of a graph, together with the represen-
tations TD, BU, TD*, BU*, the latter corresponding to "Top-Down" and "Bottom-
Up" in the last mentioned algorithm.

TD : [(F)] [(A B)] [(C)] [(ED)]
BU : [(ED)] [(F)(C)] [(A B)]

TD* [(F)] [(if) (B) [(C)MDA
BU* [(F) (E) (C)] PA [(A)] KBA
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We will not use this new algorithm here, because the BU representation is all
that we need: one can work on the elements of the representation (on subgroups
of S') one at a time, from left to right, and be sure that nothing wrong will
happen to the rest of the graph.

However, we are planning to have a full search within a group in the hope
that, in practice, these groups will not contain very many elements, so the total

time will be reasonable.

2. VARIABLE REPLACEMENT IN RECURSIVE CODES

The following problem was formulated by J. Urmi and A. Haraldson. Suppose
one is given the list of functions:

G: (F1(Xl, .„ XIV) F2(X1, „XIV) . . . F3(11, . . IND
Fig. 2.1.

and the corresponding list of "new variables":

(X1 12 . . . IN)
Fig. 2.2.

such that the value of X1 is to be set equal to the value of Fl , the value of X2 to
the value of F2, etc.

In the general case, these functions will interfere with each other in the
sense that if previous evaluation results are put in some of the variables, the
value of the next processed function might change (we assume that the functions
in G are always evaluated in the order left to right). One would therefore have
to introduce a number of temporaries to save intermediate results and the
corresponding number of intermediate operations of SETQ type.

The problem is to find an optimal order of evaluation of elements G to
minimize the numbers mentioned. In the following, by Fl, F2,... we will
assume any functional forms, though sometimes it is more convenient to refer
to them as functions, having certain lists of lambda-variables, etc.

This optimization problem shows up most clearly in the case of recursion
removal. Let us consider a rather artificial example of a recursive code:

(F00
[LAMBDA (X Y Z)

(COND
((NULL (AND X Y Z)) NIL)
(T (CONS(QUOTE *)

(F00 (CDR X)
(CONS(CAR X)

(CDR Y))
(CONS (CAR X)

(CONS(CAR Y)
Fig. 2.3. (CDR Z] )
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where

Fl is (CDR X)
F2 is (CONS (CAR X) (CDR Y))
E3 is (CONS(CAR X) (CONS (CAR Y) (CDR Z)))

Fig. 2.4.

STEFANUK

Now, trying to compute FOO iteratively, we will see that it would be wrong to
evaluate the arguments of a call of FOO in their natural order Fl F2 F3: in that
case, one would need to introduce two temporaries to save the results of evalua-
ting Fl F2, or "spoil" the original values of X1 X2 now needed for evaluation
of F3. The best order is, of course, F3 F2 F1, in which case no temporary is
needed.

This type of optimization is embedded in the program REMREC of T. Risch,
at least for the seven types of recursion which this program is able to handle,
provided that there are no additional side-effects, induced by the forms Fl, F2,
F3, themselves.

It is important to note here that today we do not have a recursion removal
which is in some sense universal, and existing programs might well be inefficient
when side-effects are allowed for because then they are bound to follow a
"worst possible case" approach (as REMREC does).

We feel that an optimization program (let us call it REMREM), being
separated from recursion removal, is an efficient tool for introducing into the
system some additional knowledge about the functions in question, particularly
about side-effects.

3. PROPOSED REMMEM ORGANIZATION AND ITS USE
The program REMMEM can be considered as an extra program to be applied
before a recursion removal (REMREC).

The program REMMEM has to provide for the following. For a given order
of evaluation of forms, it should be able to find the cost of the number of neces-
sary temporaries, find the optimal order and the optimal cost, and, if necessary,
rearrange the original evaluation order of recursive code. Below we will give a
brief description of those supporting REMMEM functions that were first written
for the simulated INTER LISP on the PDP-10 system in Stockholm and now are
transferred to the BBN-INTERLISP on the DEC-20 system of the Datalogy
Department, Iinkoeping University. A fuller description is given later.

The function (EXPRISI (Fl F2 . . . FN)) gives a list, the head being the
optimal cost, the tail being the optimal evaluation order. For example, for the
collection of functions

(F1 X) (F2 X Y) (F3 X Y Z)
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with (X YZ) as a list of the new variables, this function gives

(0 (F3 F2 F1)).

(We assume no side-effects in forms Fl F2 F3 in this example).

The function (SEMPROG '(F1 F2 . . . FN)) gives a so-called semantic

program of function evaluation, that in our example (SEMPROG '(F1 F2 F3))

will look as follows:

((SAVE Fl X) (SAVE F2 Y) F3 (RETURN X Fl X)

((SAVE Fl X) (SAVE F2 Y) F3 (RETURN X Fl X) (RETURN Y F2 Y))

This by REMMEM is to be converted to

((SETQ T _1 (F1 X)) (SETQ T2 (F2 X)) (SETQ Z F3)

(SETQ X T_)) (SETQ Y T_2))

4. TAKING SIDE-EFFECTS INTO ACCOUNT

To the best of our knowledge there is no attempt to incorporate knowledge of

side-effects in forms and optimize the evaluation order using it [Risch; Burstall

& Darlington] . On the other hand, we did not find a suitable classification of

side-effects in the INTERLISP system. In what follows we are trying, through a

discussion of different examples, to construct a definition of side-effect and

relative side-effect that can serve our purpose. Experienced LISP users are
advised to skip the following section.

In "pure" LISP any legitimate expression is constructed from a number of

primitives: NIL, lists, atoms, and functions, among which are CAR, CDR,

CONS, COND, EQUAL. In Boyer and Moore [1975] one can find an example of

such a "pure" system. The interpreter has initial information consisting of num-

bers of atoms (names and their values, properties) as well as a number of lists.

The interpreter takes one expression at a time and returns its value. It is a prop-

erty of the "pure" system that after the evaluation the LISP system "restarts"

in its initial state. There is no obvious trace in the system showing that some

expression has been evaluated. (CONS does create a new list, but there will be

no pointer to it.) The only way to change the result of evaluation of a given

expression is to change the initially chosen sets of atoms (values, properties) and

lists. One might say that the system has no memory for such an expression.

However, for the sake of convenience, efficiency etc., a number of functions

of quite a different nature were introduced into the LISP system.

The most commonly used is an assignment, SETQ. For example

(SETQ V 'LISP)
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has a value, but it is not of primary interest. The most useful and essential
property is that in addition to this expression obtaining a value, a new atom, v,
with value lisp has been constructed. This expression will be remembered by the
system. And this is a side-effect.

The expression

(DE FOO(L) (MEMB 'L '(A B V C)))

also has a side-effect: now the system knows how to calculate a new function.
The functions (print (x, file)) and (read (file)) have both side-effects in this

sense — the LISP system will be changed as a result of their evaluation, if one
includes the input-output media into the system.

Last we will mention a group of structure destroying functions, like RPLACA.
This function may or may not produce a side-effect in the system, depending on
its use. For instance, if the function FEE is defined as follows:

(FEE
[LAMBDA (X)

(RPLACA X (QUOTE El)

then (FEE '(A B C) will have value (E B C). This is an example of a function
producing a side-effect on its lambda-variable: we will refer to it as "lambda
side-effect".

We say the a LISP expression produces a side-effect on the system if and
only if the evaluation of this expression will change the system state to the
extent that some other expressions being evaluated before and after this event
will get different values. (It is interesting to note that in more "ordinary" com-
puter languages it is only the side-effects that matter, when we enter with a
program. However, the complete program if it terminates normally and no errors
occur, should not have a side-effect on the system, as the computer system
restarts in its initial state.)

Now returning to our optimization problem, we need a definition of a rela-
tive side-effect, relevant to pairs of expressions, evaluated sequentially. These
are special cases of side-effects as defined above.

Definition. We say that the form Fl produces a relative side-effect on the
form F2 if and only if the evaluation of the form Fl might change the result of
evaluation of F2.

Note that the last definition includes, for example, the case of PRINT.
Indeed, if both Fl, F2 are PRINT, the user will normally be interested in
having the printing done in a specific order (otherwise a result will be lost). In
other words, the evaluation F2 will be "of value" only if Fl has been evaluated
(that is PRINT has been performed). So one can say that it is also a relative
side-effect when a certain order of evaluation is prescribed.
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In case of a recursion removal, one comes across two categories of side-
effect. Suppose that in a recursive call of function FOO (X1 X2 ... XN)) we

have FOO (Fl F2 . . . FN). Then in an iterative code we have to assign:

(SETQ X1 Fl)
(SETQ X2 F2)

(SETQ XN FN)

Thus the iterative pattern will introduce some side-effects, even if the forms

Fl . . . FN have no side-effects. We will call these side-effects negative (as one
does not normally want the value of some F3 to be changed by previous assign-
ments). It is this kind of side-effect that is taken care of in the program REMREC
[Risch (1973)1.

However, the forms Fl . . . FN themselves might produce side-effects. We
believe that both types of side-effects should be treated within the same
formalism, and we illustrate this approach below.

We have a file DIMA-P that takes care of restrictions on the order of evalua-
tion. This seems to be the most frequent type of relative side-effect in practice.

The file DIMANP concerns a somewhat wider type of relative side-effect,

namely a side-effect through a variable. In this program it is reasonably assumed
that this kind of side-effect can be desirable or undesirable (we refer to them
as "positive" or "negative" side-effects).

5. DESCRIPTION OF DIMA-P, DIMANP AND EXAMPLES

One should not be surprised to see that the use of an automatic program taking
side-effects into account, requests a certain number of declarative statements
to be made. Eventually we intend to work in the prompt mode, when these
declarations are not made before the system itself requests them.

Normally, these declarations are a source of additional inconvenience for

the user, and he will probably prefer "the worst case" approach, when no opti-
mization is allowed. However, if efficiency of computation is essential, then

these declarations become necessary (and they should not be a problem for the

user, because they exist in his brain at the time of function design, if he inten-
tionally introduced some kind of relative side-effect).

In the program DIMA-P the only declaration is a list PSEFLIST, which
contains pairs of forms, whose evaluation order must not be changed. Given
PSEFLIST, the program DIMA-P will fmd an optimal evaluation sequence

under this constraint.
In the program DIMANP the declarations may be of a more sophisticated

type. This program takes care of relative side-effects through a variable, and the

user is asked to declare for each of the forms in question, which variables are

influenced by side-effects (if any). This information is stored under the property

SIDEF for each form. Then the relative side-effects are treated separately
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whether the corresponding pair of forms is in the list PSEFLIST or not. Only
in the last case is the side-effect treated as a negative one, and the system will

introduce a temporary if necessary to save the corresponding function from
"harm".

We conclude this paragraph with an example, covering the questions dis-
cussed above. Before this we note that some authors (Burstall and Darlington)

have mentioned that the loss of efficiency in a recursive program is sometimes
due to the fact that the same forms are evaluated many times.

Suppose one has to give an iterative form for the computation of a recursive
given function:

(F00 X YZ
Fig. 5.1.

where in the recursive call to FOO we have to evaluate

[F00

Fig. 5.2.

(CDR X)
(CONS (CAR X)

(CDR Z))
(CONS (CAR X)

(CDR Z))
(CDR Y]

Here we have four forms Fl F2 F3 F4, and in a normal run, the form F2 will
be evaluated twice, because it constitutes a part of the form F3.

If the recursion is deep, then for the sake of speed of computation one may
replace the code Fig. 5.2 with the following:

[F00

Fig. 5.3.

(CDR X)
(SETQ T__1 (CONS (CAR X)

(CDR Z)))
(CONS (CAR X)

T__1)
(CDR Y]

and in the iterative form we will find assignments:

(SETQ X (CDR X))
(SETQ T _1 (CONS(CAR X) (CDR Z)))
(SETQ U(CDR Y))
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The forms F2 F3 now have been replaced with F2! F3!. The form F2! has a

relative side-effect on F3! through the variable T__1. This is a positive side-

effect, as we introduced it intentionally.
Given the code Fig. 5.3 and ((F2! F3!)) as the value of PSEDLIST, the

program DIMA-P will preserve the order, and at the same time it will save Y

for (CDR Y). (Actually, in this example DIMA-P will instead evaluate F4

before F2!).
Without the declaration of the PSEFLIST value the program might give

an error. There will be no error if we use the slightly different function FEE:

[FEE

Fig. 5.4.

(CDR X)
(SETQ T__1 (CONS (CAR Y)

(CDR Z)))

(CONS (CAR Y)
T_))

(CDR Y]

In this case DIMA-P will save Y for the form F3! (and for F4).

Returning back to codes for FOO, we see that there will be an error if one

takes instead of Fig. 5.3 the following:

[F00

Fig. 5.5.

(CDR X)
(SETQ Y (CONS(CAR X)

(CDR Z)))
(CONS (CAR X)

(CDR Y]

Here we have also a negative (undesirable) side-effect of form F2! to the form

F4.
Now let us consider the following iterative pattern:

(SETQ X (CDR X))
(SETQ Y (CAR X) (CDR Z))
(SETQ Z (CAR X) Y)
(SETQ U (CDR Y))

Fig. 5.6A.

This will give the same result if now the second assignment is considered to be

positive for the third form but negative for the fourth, and this information
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should be supplied. A user might wish to avoid this complication, by putting
the fourth form in front of the second. However, he would be better off
supplying the information; otherwise a correct optimization will be excluded.

[F00

Fig. 5.6B.

(CDR X)
(CONS (CAR X)

(CDR Z)))
(CONS (CAR Y)

(CDR Y]

In the case of Fig. 5.5 the program DIMANP, given the value of PSEFLIST
as ((F2! F3! Y)), will understand the difference between the two relative side-
effects and will either save the variable Y itself for use in F4, or will evaluate
F4 prior to F2!

Finally in the case of Fig. 5.6, the program DIMA-P will give a different
result from what we wanted: it will save the value of Y for the form F3! or
even reverse the order. Even declaring the value PSEFLIST as ((F2! F3!)) will
not help.

This side-effect will be treated by DIMANP correctly, even in the case of
Fig. 5.6 if supplied with the information ((F2! F3! Y)). Indeed this case looks
the most effective in gain of computation speed. If the value of PSEFLIST is
given here as ((F2! F30), the program will consider this "generalized" side-
effect as negative for all the forms involved and will save Y.

Thus, we would assert that previous programs like REMREC are able to
deal only with negative side-effects of a certain type with NIL as the value of
PSEFLIST.

We conclude with an example where nothing can be done to achieve the
goal as the use of side-effects there is inherently contradictory, as in the following
code for function FEE mentioned above:

[FEE
(CDR X)
(CONS (CAR Y)

(CDR Z)))
(CONS (CAR Y)

(CDR Y]
Fig. 5.7.

This expression will never give the same result as Fig. 5.4.
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In summary, we can see through our analysis that three cases can appear
while converting a recursive code into an iterative form in the presence of

side-effects:
(1) No side-effects in forms Fl F2 . . . FN themselves, then the side

effects that appear in the assignment process are to be considered as
negative.

(2) A relative side-effect, requiring a certain order of evaluation of the

forms, these side-effects (mentioned above) are to be considered as

negative.
(3) A "positive" side-effect through a variable such that some of these

assignment side-effects now are to be treated as desirable as in the

example of Fig. 5.7.
(4) A combination of these cases.

In the I NTERLISP compiler (Teitelman etal.) the basic frame for a function

changes the pointers to a new value of a variable after all the forms have been

evaluated. This arrangement takes care of cases (1) and (2), but not case (3). The

following adjustment will allow the possibility of full use of the side-effects

idea: in case (3) the result of evaluation of the form producing this "positive"

side-effect should be pointed as the new value of the corresponding variable

immediately upon the evaluation of the form. Then, provided that a certain

declaration is available, the code of Fig. 5.6 will produce the same result as the

code of Fig. 5.2, but more efficiently.
However, this reorganization will require an additional check in the com-

piler, and the overall efficiency might be reduced.

6. OUTLINE AND DETAILED DESCRIPTION OF PROGRAMS

Below we give a description of the program DIMANP. DIMA-P is a shorter

and simplified version of this. However, we would like to represent the main

file DIMANP because it can solve a wider class of problems, and it has certain

possibilities for extension.
The general approach in this program is based on search of optimal sequencing

of form evaluation starting with the pairwise description of relations among the

forms in question.
The following is the list of possible "conflicts" of Fl and F2 on the variable

X, provided that these forms are evaluated in the order Fl F2:

F1>X >F2 (Fl has s-e on X; X used by F2)

F1>X*>F2 (F1 has s-e on X; X used by F2, value F2 to X)

Fl>*X>F2 (F1 has s-e on X, value Fl to X; X used by F2)

F 1—*X<F2 (value Fl to X; F2 has s-e on X)

Fl<*X<F2 (X used by F 1, value Fl to X; F2 has s-e on X)

Fl>*X>F2 (F1 has s-e on X, value Fl to X; F2 has s-e on X)

Fl —*X>F2 (value Fl to X; X used by F2)

F1<*X>F2 (X used by F 1 , value Fl to X; X used by F2)

Fig. 6.1 — s-e means "side-effect".
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Here we have included only cases where the introduction of a temporary is
obligatory. We have not included cases where lambda side-effects in the forms
occur, because these cases are not studied completely yet.

Note that for the program DIMA-P, where no side-effects via variable of
negative nature are assumed, one need take into account only the two last
cases in Fig. 6.1. On the other hand this list can be extended, and we are planning
to do it to include the lambda-variable side-effects.

In DIMANP so-called semantic programs are heavily used to represent
programs of evaluation. This semantic program is a list containing four primitives:

Fl — formname
(SAVE X) — a temporary is introduced for X
(SAVE Fl X) — a temporary is used to store the result of evaluation of Fl
(RETURN X Fl X) — stored in a temporary value of Fl to be returned

back to X
Fig. 6.2A.

We have found this language rather convenient for use, as it makes the logic
of a program very transparent at the stage of design of DIMANP.

The marginal semantic subprograms for collisions of Fig. 6.1 are given below:

For the codes F1>X>F2,F1>X*>F2,F1<*X>F2:
((SAVE X) (F1) (F2)

For the codes F1—*X<F2,F1>*X<F2:
((SAVE Fl —) (F2) (RETURN X Fl —))

For the code Fl <*X<F2:
((SAVE Fl X) (F2) (RETURN X Fl X))

For the code Fl —*X>F2:
((SAVE X) (Fl) (F2))

or ((SAVE Fl —) (F2) (RETURN X Fl —))

For the code Fl <*X>F2:
((SAVE X) (F1) (F2))

or ((SAVE Fl A') (F2) (RETURN X Fl X))

Fig. 6.2B.

These are stored in the program and used by the function PEPROG to build a
semantic program for evaluation of forms Fl F2 ... in the given order for one
of the variables involved.
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The function SEMPROG5 gives the final semantic program of evaluation of
the forms in their order for all "conflict" variables. It is done step by step by

using PEPROG, taking care of the proper place of all the primitives, in particular,
trying to put a RETURN primitive as early as possible, that makes it possible
to arrange "the garbage collection of temporaries" at run time [Burstall and
Darlington] .

Finally, given a semantic program as an input, NORMPROG produces a list
representing a program in ordinary terms, using SETQ's and temporaries.

The function FCOST is used to estimate the number of temporaries needed
for a variable, that might be 0, 1 or 2. Afterwards the EXPRISI calculates the

total cost in the number of extra SETQ's needed to evaluate Fl F2 . . . FN in a
given order.

Finally, the optimal sequence is discovered with the help of a full search
process, which of course is not very efficient as the time of the search grows
very rapidly with the number of forms.

However, as in rather general cases treated by DIMANP, we do not see now
a more regular procedure to do it, and to save time we are heuristically applying
the canonical representation of a graph, described in the first part of the present
paper. The function CANONI gives a partition of the collection of forms into a
number of subgroups, having the property that the evaluation of a left group in
the list representing this partition has no effect on the result of evaluation of a
right group. This property lets the program of the order optimization and the
program construction run independently on these groups. Besides, it appears
that the same temporaries can be used several times. We believe that in practical
cases, even if the collection of forms is large, not all of them are heavily
interrelated.
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Modelling Distributed Systems

A. Yonezawat and C. Hewitt
Artificial Intelligence Laboratory
Massachusetts Institute of Technology. USA

1. INTRODUCTION

Distributed systems are multi-processor information processing systems which
do not rely on the central shared memory for communication. The importance
of distributed systems has been growing with the advent of "computer networks"
of a wide spectrum: networks of geographically distributed computers at one end,
and tightly coupled systems built with a large number of inexpensive physical
processors at the other end. Both kinds of distributed system are made available
by the rapid progress in the technology of large-scale integrated circuits. Yet
little has been done in the research on semantics and programming methodologies
for distributed information processing systems.

Our main research goal is to understand and describe the behaviour of such
distributed systems in seeking the maximum benefit of employing multi-processor
computation schemata.

The contribution of such research to Artificial Intelligence is manifold. We
advocate an approach to modelling intelligence in terms of cooperation and com-
munication among knowledge-based problem-solving experts. In this approach,
we present a coherent methodology for the distribution of active knowledge as
a knowledge representation theory. Also this methodology provides flexible
control structures which we believe are well suited to organizing distributed
active knowledge. Furthermore, we hope to make technical contributions to the
central issues of problem solving, such as parallel versus serial processing, centra-
lization versus decentralization of control and information storage, and the
"declarative-procedural" controversy.

This paper presents ideas and techniques in modelling distributed systems
and their application to Artificial Intelligence. In Secs. 2 and 3, we discuss a

tNow with the Department of Information Science, Tokyo Institute of Technology (Tokyo
Kogyo Diagaku), Oh-Okayama, Meguro, Tokyo, Japan.
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model of distributed systems and its specification and proof techniques. In
Sec. 4 we introduce the simple example of an air line reservation system and
illustrate our specification and proof techniques by this example in the subse-
quent sections. Then we discuss our further work.

2. A MODEL OF DISTRIBUTED SYSTEMS

The actor model of computation (Grief and Hewitt 1975, Grief 1975, Hewitt
and Baker 1977) has been developed as a model of communicating parallel
processes. The fundamental objects in the model of computation are actors.
An actor is a potentially active piece of knowledge (procedure) which becomes
active when it is sent a message which is also an actor. Actors interact by sending
messages to other actors. More than one transmission of messages may take place-
concurrently. Two events will be said to be concurrent if they can possibly
occur at the same time. Each actor decides how to respond to messages sent to it.
An actor is defined by its two parts, a script and a set of acquaintances. Its script
is a description of how it should behave when it is sent a message. Its acquain-
tances are a finite set of actors that it directly knows about. If an actor A
knows about another actor B, A can send a message to B directly. The concept
of an event is fundamental in the actor model of computation. An event is an
arrival of a message from actor M at a target actor T and is denoted by the
expression IrT <= Mt A computation is expressed as a partially ordered set of
events. We call this partial order the precedes ordering. Events which are un-
ordered in the computation are concurrent. Thus the partial order of events
naturally generalizes the notion of serial computation (which is a sequence of
events) to that of parallel computation.

A collection of actors which communicate and cooperate with each other in
a goal-oriented fashion can be implemented as a single actor. In essence, actors
are procedural objects which may or may not have local storage. Some may
behave like procedures, and some may behave like data structures. Modules in
distributed systems are modelled by actors and systems of actors. In this regard,
IC (integrated circuit) chips can be viewed as actors.

Knowledge and intelligence can be embedded as actors in a modular and
distributed fashion. For example, frames (Minsky 1975), (Kuipers 1975),
units (Bobrow, and Winograd 1976), beings (Lenat 1975), stereotypes (Hewitt
1975) etc. which represent modular knowledge with procedural attachments,
are modelled and implemented as actors. In the context of electronic mail
systems and business information systems, objects such as forms, documents,
customers, mail collecting stations, and mail distributing stations are easily
modelled and implemented as actors.

Messages which are sent to target actors usually contain continuation actors
to indicate where the replies to the messages should be sent. By virtue of con-
tinuations in messages, the message-passing in the actor model of computation
realizes a universal, yet flexible control structure without using implicit mechan-
isms such as push-down stacks. Various forms of control structure such as go-to's,
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procedure calls, and co-routines can be viewed as particular patterns of message

passing (Hewitt 1977).
This model of computation has been implemented as a programming lan-

guage, PLASMA (Hewitt 1977). The script of an actor can be written as a
PLASMA program. We believe that message-passing semantics provide a basis
for programming languages for distributed systems. In Sec. 5, an example of a
PLASMA program is given as a script of a flight-data actor in the model of
a simple air line reservation system.

3. TECHNIQUES FOR SPECIFICATION AND VERIFICATION

In designing and implementing a distributed (message-passing) system, it is
desirable to have a precise specification of the intended behaviour of the dis-
tributed system. Also we reed sound techniques for demonstrating that imple-
mentations of the system meet its specifications. Below, we give some of the
central ideas of our specification and proof techniques based on the model
introduced in the previous section. More detailed work will be found in Yonezawa
(1977).

In specifying the behaviour of a distributed system, it is not only practically
infeasible, but also irrelevant to use global states of the entire system or the
global time axis which governs the uniform time reference throughout the
system. We are concerned with states of modular components of a distributed
system which interact with each other by sending messages. Thus we are inter-
ested in the states of actors participating in an event at the instance at which the
message is received.

In our specification language, conceptual representations are used to express
local states of actors (modules). Conceptual representations were originally
developed to specify the behaviour of actors which behave like data structures
(Yonezawa and Hewitt 1976). We have found them very useful to express states
of modules in distributed systems at varying levels of abstraction and from
various view-points. The basic motivation of conceptual representations is as an
aid in the provision of a specification language which serves as a good interface
between programmers and the computer, and also between users and imple-
menters. Conceptual representations are intuitively clear and easy to understand,
yet their rigorous interpretations are provided. Instead of going into the details
of syntactic constructs of conceptual representations, we shall give a few examples.
Below !(exp) is the unpack operation on (exp), that is individually writing out
all the elements denoted by (exp).

(CELL (contents: A)) ;a cell containing A as its contents.
(QUEUE (elements: [A B CI)) ;a queue with elements A B C.
(NODE (car: A)(cdr: B)) ;a LISP node containing A and B.
(CUSTOMER (letters: {! m})(#-of-stamps-needed: n))

;a customer visiting a post office
;who carries letters !m and wants n stamps.

(POST-OFFICE (customers: {!c].) (collectors: PcID)
;a post office which contains customers lc and mail collectors lcl.
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It should be noted that a conceptual representation does not represent the

identity of an actor. It only provides a description of the local state of an actor.
Thus to say that an actor 0 is in the state expressed by a conceptual repre-

sentation (QUEUE (elements: [A B )), an assertion of the following form is
used:

(0 is-a (QUEUE (elements: [A B C])))

Some examples of specification using conceptual representation are given in the

later sections.
Symbolic evaluation is a process which interprets a module on abstract data

to demonstrate that the module satisfies its specification. Symbolic evaluation

differs from ordinary evaluation in that (1) the only properties of input that can

be used are the ones specified in the pre-requisites, and (2) if the symbolic

evaluation of a module M encounters an invocation of some module N, the

specification of N is used to continue the symbolic evaluation. The implementa-

tion of N is not used. The technique of symbolic evaluation has been studied by

a number of researchers, for example Boyer and Moore (1975), Burstall and

Darlington (1975), Hewitt and Smith (1975), Yonezawa (1975), King (1976).

Our method for symbolic evaluation of distributed systems is an extension

of the one developed for symbolic evaluation of programs written in SIMULA-like

languages (Yonezawa and Hewitt 1976). One of the main techniques we employ

in symbolic evaluation is the introduction of a notion of situations (McCarthy

and Hayes 1969). A situation is the local state of an actor system at a given
moment. The precise definition of locality in the actor model of computation

is found in Hewitt and Baker (1977). By relativizing assertions with situations,

relations and assertions about states of modules in different situations can be

expressed. Explicit uses of situational tags seems to be very powerful in symbolic

evaluation of distributed systems. A simple example is given in Sec. 7.

Another technique we employ in symbolic evaluation is the use of actor

induction to prove properties holding in a computation. Actor induction is a

computational induction based on the precedes ordering (cf. Sec. 2) among

events. It can be stated intuitively as follows:

"For each event E in a computation C, if preconditions for E imply pre-

conditions for each event E' which is immediately caused by E, then

the computation C is carried out according to the overall specification."

The precedes ordering has two kinds of suborderings, (1) the activation ordering,

"activates", which is the causal relation among events, and (2) the arrival ordering,

"arrives-before", which expresses ordering among events which have the same

target actor. Thus there are two kinds of actor induction according to these

suborderings. An example of the induction based on arrival ordering is used in

Sec. 7.
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4. MODELLING AN AIR-LINE RESERVATION SYSTEM

A specification of an air line reservation system

As an example of distributed systems, let us consider a very simple air-line

reservation system. Suppose we have just one flight which has a non-negative

number of seatst . A number of travel agencies (parallel processes) independently

try to reserve or cancel seats for this flight, possibly concurrently. We model the

air-line reservation system as a flight actor F which behaves as follows. The
flight actor F accepts two kinds of message, (reserve-a-seat:) and (cancel-a-seat:).

When F receives (reserve-a-seat:), if the number of free seats is zero, a message

(no-more-seats:) is returned. Otherwise a message (ok-its-reserved:) is returned
and the number of free seats is decreased by one.When F receives (cancel-a-seat:),
if the number of free seats is less than the maximum number of seats of the
flight, a message (ok-its-cancelled:) is returned and the number of free seats is
increased by one, otherwise (too-many-cancels:) is returned. Furthermore,
requests by (reserve-a-seat) and (cancel-a-seat) are served on a first-come-first-
served basis.

To write a formal specification of the air-line reservation system, we need
to describe the states of the flight actor. For this purpose, we use the following
conceptual representation:

(FLIGHT (seats-free: (m)) (size: (s)))

The number of free seats is (in), and (s) is the size of the flight in terms of the
total number of seats. The formal specification of the air-line reservation system
using this conceptual representation is depicted in Fig. 1.

The first (event.....)-clause states that a new flight actor F is created by an
event where the create-flight actor receives a positive number S. (Actor)* means
that (actor) is newly created. The second (event:...)-clause has two cases according
to the number of free seats at the moment when the flight actor F receives
(reserve-a-seat:). When the number of free seats is zero (Case-1), the state of F
does not change. When it is positive (Case-2), the number of free seats decreases
by one as stated by the assertion in the (next-cond:...)1-clause. The notation in
Fig. 1:

(event: [1" (=
(pre-cond: ...)
(next-cond: ... (assertion)...)
(return: (actor)))

means that when an event [1- (= M takes place, if the preconditions are satis-
fied, (assertion)s in the (next-cond: ...)-clause hold immediately after the event

t A model of air-line reservation systems which deal with more than one flight is discussed
in Yonezawa (1977).
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until the next message arrives at T. (Actor) in the (return: ...)-clause is returned as
a result of the event. A (next-cond:...)-clause differs from a (post-cond: ...)-clause
in that assertions in a (post-cond:...)-clause hold at the time (actor) is returned,
whereas assertions in a (next-cond: ...)-clause hold at the time the next message
arrives. The next message may arrive at T before or after a reply for the previous
message is returned. The third (event.....)-clause is for the cancelling event, which
is interpreted in a similar way.

(event: [create-flight (= Si
(pre-cond: '(S) 0))
(return: F*)
(post-cond: (F is-a (FLIGHT (seats-free: S) (size: S)))))

(event: [F (= (reserve-a-seat:)]]
(case-1:

'(pre-cond:. (F is-a (FLIGHT (seats-free: 0) (size: S))))
(next-cond: (F is-a (FLIGHT (seats-free: 0) (size: ,S))))
(return: (no-more-seats:)))

(case-2:
(pre-cond:
(F is-a (FLIGHT (seats-free: N) (size: S)))
(N ) 0))

(next-cond: (F is-a (FLIGHT (seats-free: N —1) (size: IS))))
(return: (ok-its-reserved:))))

(event: 1[F (= (cancel-a-seat:)]]
(case-1:

(pre-cond: (F is-a (FLIGHT (seats-free: S) (size: IS))))
(next-cond: (F is-a (FLIGHT (seats-free: S) (size: S))))
(return: (too-many-cancels:)))

(case-2:
!(pre-cond:
(F is-a (FLIGHT (seats-free: N) (size: S)))
(N (

(next-cond: (F is-a (FLIGHT (seats-free: N + 1)(size:IS))))
(return: (ok-its-cancelled:))))

Fig. 1 — A specification of the air line reservation system (a specification for the flight
actor).

5. IMPLEMENTING THE AIR LINE RESERVATION SYSTEM

Our strategy for implementing the air line reservation system (specified in the
previous section) is as follows. First, we implement a flight-data actor which

satisfies the specification in Fig. 1.
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In Fig. 2 we give an implementation of the flight-data actor in PLASMA.

(create-flight-data =s) Ea ;create-flight-data receives a size s of flight.

(create-serialised-actor (size initially s) ;a variable size is set to s.

(seats-free initially s) ;a variable seats-free is set to s.

then ;the following cases-clause is

;returned as an actor which behaves as a flight-data.
(receivers

(E) (reserve-a-seat) ;when a (reserve-...) message is received,

(rules seats-free
(E) 0
(no-more-seats:))

()(>O)
(seats-free (seats-free
(ok-its-reserved:))))

(E)(cancel-a-seat:)
(rules seats-free
(-7--) size

(too-many-cancels:))
(E) (< size)

(seats-free 4-- (seats-free
(ok-its-cancelled:))))))

;if seats-free is zero,
;(no-...) message is returned.

;otherwise
;seats-free is decreased by one.

;(ok-...) message is returned.
;when a (cancel-...) message is received,

Fig. 2 — An implementation of a flight actor.

;if seats-free is equal to size,
;(too-...) is returned,

;otherwise
;seats-free is increased by one.

;(ok-...) is returned.

It is fairly straightforward to write a specification for this flight F by using a
conceptual representation:

(FLIGHT (seats-free: (m)) (size: (s)))

which describes the state of a flight actor. The number of free seats is (m)
and (s) is the size of the flight in terms of the number of seats. Note that if F
were sent more than one message concurrently, anomalous results would be
caused unless we take precautions. For example, in the implementation in
Fig. 2 if (reserve-a-seat:) and (cancel-a-seat:) messages are sent concurrently, a
(no-more-seats:) message might be returned even if there are vacant seats. There-
fore in order to model the air line reservation system by using the above imple-
mentation of a flight-data actor, the way it is used must be restricted so that
inference between different activations may not take place. As suggested in the
beginning of this section, the restriction we impose is that F must be used
serially in the sense that F is not allowed to receive a message until the activation
by the previous message is completed. Now the flight actor can be used to
implement the air line reservation system under this restriction.
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7. SYMBOLIC EVALUATION OF THE AIR LINE RESERVATION
SYSTEM

Our implementation of the air line reservation system is expressed by the
following simple PLASMA code:

(create-a-flight S)

which creates a flight which initially has the following conceptual representation:

(FLIGHT (seats-free: S)(size: S))

This establishes the first clause of the specification of the air line reservation
system. The other clauses are established in the same way using symbolic
evaluation.

8. FURTHER WORK

We are currently working to establish a coherent methodology for demonstrating
that a distributed message-passing system will meet its task specifications. As an
example, an actor model of a simple post office is studied in Yonezawa (1977).
It is shown that the overall task specifications of the post office are implied by
specifications of the individual behaviour and mutual interaction of actors in
the model.

By using the technique of symbolic evaluation, we would like to analyse
the relationships and dependencies between modules in a distributed system.
This approach will be instrumental in assisting us with the evolutionary develop-
ment of distributed systems.

We are also working on the application of procedural objects (such as actors)
to the area of business automation. In order to replace paper forms and paper
documents, we use "active" forms and "active" documents which are displayed
on the TV terminal as images accompanied by procedures. Active forms and
documents are sent from one site to another whereby clerks are requested to
provide necessary information with the guidance of the accompanying pro-
cedures. Such procedures may also check the consistency of filled items and
point out errors and inconsistencies to persons who are processing forms. Thus
active forms and documents accompanied by procedures enormously increase
the flexibility and security of message and document systems. Furthermore, we
propose to use the "language" of forms and documents as the basis for the user
to communicate with the information processing system. One of the ultimate
objectives of our research is to develop a methodology for the construction of
real-time distributed systems which can be efficiently and effectively used by
non-programmers.

Note added in proof
Since this paper was written the message-passing semantics group has continued
to develop the preliminary ideas in this paper. Recent results are reported in
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Hewitt, C. (1978). Concurrent systems need both sequences and serialisers,
Working Paper 179, Cambridge, Mass: Artificial Intelligence Laboratory, Massa-
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Abstract

A procedure is described which gives values to set variables in automatic theorem
proving. The result is that a theorem is thereby reduced to first order logic,
which is often much easier to prove. This procedure handles a part of higher
order logic, a small but important part. It is not as general as the methods of
Huet, Andrews, Pietrzykowsld, and Haynes and Henschen, but it seems to be much
faster when it applies. It is more in the spirit of J. L. Darlington's F-matching.
This procedure is not domain specific: results have been obtained in intermediate
analysis (the intermediate value theorem), topology, logic, and program verifi-
cation (finding internal assertions).

This method is a "maximal method" in that a largest (or maximal) set is
usually produced if there is one.

A preliminary version has been programmed for the computer and run to
prove several theorems. Some completeness results are given.

1. INTRODUCTION

For many theorems the main difficulty in the proof is in defining a particular
set. Once that is done the proof often proceeds rather easily. For example, in

Theorem.1 3 A V x(x e A x <0),

if we let A = fx: x < 01, then we are left with the trivial subgoal:

(x<0-0x<0).

'Refer to Appendix I for the definition of such symbols as 3, V, {x: P(x)}.
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Or, if we are proving the intermediate value theorem,

Theorem. If f is continuous for a 6 x <b, f(a) 0, and f(b) › 0, then
f(x) = 0 for some x between a and b (See Fig. 1).

fix)

Fig. 1 — The intermediate value theorem.

Using the least upper bound axiom,

LUB Axiom. Each non-empty bounded set A of real numbers has a least
upper bound,

and if we let

A ={x:f(x) <0 Ax<b},

then again the proof is rather straightforward (but harder than the last example).
The question, of course, is how to select A?

There are several other theorems in analysis, such as the Heine-Borel Theorem
where the chief difficulty lies in defining a particular set. Also a similar situation
comes up again and again in other parts of mathematics, and in application areas
such as program verification and program synthesis.

The problem of fmding a value for a set variable A, is of course equivalent
to the problem of giving a value to a one place predicate variable P. For example,
in the threorem

Theorem. x>0Ay>0--* 3P[P(0,x) AV A(P(A,0)—+ A = xy)
AV AV K(P(A,K)AK>0--+ P(A+y,K-1))]
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(which arises from the field of program verification; see Ex. 15, Sec. 5), if we
give the predicate P the value

P(A,K)=- (A = (x —K).y)

then the theorem is reduced to a trivial subgoal.
Of course, this is a part of higher order logic, and as such can be attacked

by the systems and ideas of Huet [3] , Pieterzykowski [10], Haynes and Hens-
chen [7] , Andrews [11] , etc. But these are very slow for many simple proofs.
For example, Huet's beautiful system [3] is forced into double splitting on
the rather easy theorem given in Ex. 4 below. (Even a human has trouble applying
his procedure to this example.)

In this paper we describe a procedure which attempts to overcome this
difficulty. It is less general than those referenced above; it usually applies only
to a part of second order logic (but an important part); and it seems to be much
faster when it applies. Ours is more in the spirit of J. L. Darlington's "F-matching",
but different in method and scope.

Our methods are neither domain specific, nor just a collection of heuristics
for finding sets in a particular area like analysis. They can be used to prove
theorems (such as the intermediate value theorem) in analysis where the set A
is a set of real numbers, as well as theorems in topology where the set A is a
family of sets, and theorems from program verification, or from other areas
where set variables are to be instantiated.

In Sec. 2 we give some preliminary examples, and in Sec. 3 we describe our
rules for generating the desired set A. They consist of basic rules which apply to
simple formulas, and combining rules for combining the results from the basic
rules.

One of our goals in this work is to avoid indiscriminate matches (or attempts
at matches) between formulas such as (t e A) and P, (where P is first order), but
rather to allow such a match only when (t e A) and Pare somehow "connected".
In this way the search is drastically reduced. Our basic rules (see Fig. 2) are a
partial attainment of this goal.

Our methods are "maximal" in that they usually generate the largest set
with the desired properties (if there is one). Of course some theorems such as,

3A [A is dense in R) A ((R-A) is dense in R)]

have no maximal (or minimal) solution for A. Also in some cases there is more
than one maximal solution (see Ex. 5, Sec. 3), even infinitely many solutions.
However, we believe there is a wide class of interesting cases that have a unique
maximal solution, or at most one or two maximal solutions.

Our procedure utilizes the automatic prover described in [1] as a "control"
(see Sec. 4) for generating the desired sets. But one can follow this presentation
without full knowledge of that paper.
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In actual practice the prover makes two passes on a theorem: first to define
the set A; second to prove the resulting theorem, after the set A has been in-
stantiated. Thus the procedure is sound, that is, there is no danger of it producing
a false solution since the solution is always verified.

But the emphasis in this paper will be on the first pass, wherein the desired
sets are generated, and not on the second where the proof is completed.

In Sec. 5 we describe some major examples, in Sec. 6 we discuss the induc-
tion axiom and difficulties with it, and in Sec. 7 we make several comments.

In Appendix I we list a glossary of terms and symbols, and in Appendix II
we give some completeness proofs. Appendix III gives some further details of
examples from Sec. 5, and Appendix IV gives some example theorems about
general inequalities which might be of interest.

2. SOME PRELIMINARY EXAMPLES

We are concerned here only with cases of the form

3A P(A)
Or

(V A P(A)) —pC

where the variable A is to be found (that is, given a value). Since ((V A P(A))
C) is equivalent to 3A (P (A) --+ C), we will usually act as if our theorem is

already in the form 3A(P(A). Theorems where A is a constant can usually be
handled as first order logic.

We will treat only the case where there is but one such set variable A. How-
ever, our methods will often work for theorems with many such variables.

Once the set A has been found, the theorem becomes first order, and, we
hope, not too difficult. That will often be the case. However, it is well known
that automatic theorem proving for first order logic is a most challenging and
unresolved task.

But as was stated earlier, there are many theorems where the first order
part is only moderately difficult once a set variable has been properly defined
(instantiated).

It is our objective here to automatically define such variables.
Let us look at some examples before giving the rules. These fragments

help illuminate the procedure. More substantial theorems will be given later in
Sec. 5.

Example 1.3A V X (x e A —0. x <0).

Solution: A {x: x <O}.

This is the simple theorem which states that "there is a set A all of whose
members are non-positive". Clearly, one such A is the set of all non-positive
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reals, and that is exactly what is returned by our program. When this value is
substituted for A the theorem reduces to the trivial subgoal

< x <0)

which our program quickly verifies as true.

Example 2. 3G V A (A e G —3. 3B (B EFAA CB)).

Solution: GE-: {A: 3B (13 EF AA CB}.

This example is very much like the previous one, except that G plays the
role of A,A plays the role of x, and 3B (BeFAA C B) plays the role of x <0.
Notice that the variable G is a "family" variable rather than a "set" variable.
Thus we have (technically) proved a theorem in third order logic, although it is
for all practical purposes a theorem in second order. It is desirable, we believe,
to keep formulas like 3B(BEFAA C B) together during the processing, and
this is what our program usually does.

Next we consider a theorem of a little more substance.

Example 3. (P(a) —0. 3 AN x (x e A —3. P(x)) A 3y (y e A)])
ODD EVEN

Solution: A {x: P(x)}.

It is now time to note that A a 0 is a perfectly good solution to Ex. 1. How-
ever, A 0 will not work for Ex. 3; here we must include in A at least the point
a. We prefer to put all we can in A, thus getting a maximal solution.

In Ex. 3 there are two types of occurrences of A: the "EVEN" occurrence
y e A, and the "ODD" occurrence (x e A P(x))2. The ODD occurrences are
used to determine A, (according to the rules in Sec. 3), and the EVEN occur-
rences are just checked after A has been defined3. Accordingly when the solution
given is put in for A we get

(P(a) [V x P(x)) A 3 y (P(y))])

in which the ODD part is now trivial and the EVEN part is yet to be checked
(but can be).

The next example will illuminate that point.

Note that (x e A ----+ P(x)) is equivalent to (x A V P(x)). If A does not occur in B (except
possibly as a skolem argument — see footnote 4) then A is in an EVEN position of A A B,
A V B, (B A), B, and A itself; and A is in an ODD position of (A ----■ B), and B.
Also an EVEN position of an EVEN position is EVEN, ODD of ODD is EVEN, ODD of
EVEN is ODD, and EVEN of ODD is ODD.
3This is equivalent to putting the universal set U for A for the EVEN occurrence and inter-
secting it with the set fx: P(x)} gotten for the ODD occurrence.
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Example4.(a<b<c—o. 3A (a4,1AbeAAclA))
ODD EVEN ODD

Solution: {x:x#aAx#4.

The two ODD occurences give respectively {x: x * a} and fx: x cl, and

the EVEN occurrence gives U(using the rules of Sec. 3) which are combined (by
the "combining rules" of Sec. 3) into the given solution.

Notice that this is not the only solution. There are many others such as

fx: a < x <c},
{x: a <x b},

{b},

but none of these is maximal. Our method gives the maximal solution if there
is one.

We could have developed a minimal theory, getting the smallest sets, by
using the EVEN occurrences of A instead of the ODD, but we have a slight
preference for maximal. Intermediate sets would be difficult to produce auto-
matically. Only when we work against the extremes do we reduce the complexity
of the problem.

3. SET BUILDING RULES

3.1 Basic rules

Our rules for generating maximal sets are of two kinds: (i) basic rules and (ii)
combining rules. The basic rules give solutions to certain subformulas of the
form: (x c A), (x fi A), (x e A --0 P(x)), and the combining rules consolidate
these basic solutions into one general solution, depending on the placement

of these subformulas in the theorem. For instance, in Ex. 4 above, the sub-
formulas (a (i A), (b e A), and (c A) were connected by "A", (and in EVEN
positions) so the corresponding solutions {x: x a}, U, and {x: x 0 c} were
intersected to obtain the general solution {x:x*aAx*c}.

Fig. 2 gives our first set of basic rules. More are added later. In Fig. 2 the
subformulas shown are expected to be in an EVEN2 position of the theorem
being proved, and the theorem itself is to be in skolemized form's.

Also it should be noted that these rules cannot handle an expression in A
until it is reduced to the form (x c A). (This includes the cases x A and

e A --0 Co.) This reduction may require the use of hypotheses, definitions,
and lemmas.

The rules of Fig. 2 operate under the restrictions listed in Table 1. In
Rules B1 and B2, "x" is required to be a skolem4 function of A, and not appear
in the rest of the theorem. That is to say the subformula

V x (x c A -.--P(x))

'See [2], footnote 12, or [1], App. 1 for a complete description of skolemization. Here this
means, essentially, that V x (x e A P(x)) etc. occurs in an EVEN position of the theorem
within the scope of A.
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occurs in an EVEN position of the theorem within the scope of A. See Sec. 7
for a further discussion of this and some means of easing these restrictions on x.
Similarly for x and y in B2'.

Subformula
Bl. (x e A P(x))
B2. (f(x)e A P(x))
B2'. (f(x,y)e A —÷ P(x,y))
B3. (t e A
B4. (t ?A)
B5. P (does not contain A)

B6. (t eA)
87. E(tE A is even in E)
BQ If BI-B4 yield fz: P(z)},

and s is a variable in P(z)
BE ELSE

Fig. 2 — Basic rules.

Solution
-[z: P(z)}
{z: Vs (z = f(s)--0. P(s))}

Vr Vs (z = f(r,$) P(r,$))1
{z: z = t
{z: z t}
U (universal set) (IGNORED in case of

conjunctions)

1z: 3s P(z)}

Table 1
Restrictions on the basic rules of Fig. 2

0. The rules Bi-BE apply to subformulas in EVEN positions of the theorem.
A is a set variable to be instantiated. It is the only set variable (indeed the
only higher order variable) in the theorem. A occurs only in the form
(t A), or as a skolem function argument.

1. In B1 x is a skolem function4 of A, A does not occur otherwise in P(x), x
does not occur elsewhere in the theorem, and no other variable occurs in
x (that is, x is a skolem function of no other variable but A).

2. In B2, B2', x and y are skolem functions of A, A does not occur otherwise
in P(x) or P(x,y), x and y do not occur elsewhere in the theorem, and no
other variable occurs in x, y, f(x), or f(x,y).

3. In B3, A does not occur in t or P.
4. In B4, A does not occur in t.
5. In B5, A does not occur in P.
6. In B6, A does not occur in t.
7. In B7, every occurrence of an expression of the form (t e A) in E, is in an

EVEN position of E; A does not occur in t. A cannot occur in E except in
one of these subformulas (t A).

8. In BQ, s is a variable in P(z), but does not occur elsewhere in the theorem.
9. In BE, the subformulas have the form of BI-B7 or BQ, but the restrictions

1-8 are not satisfied.
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Note that when the term "t" is not quantified within the scope of the
quantification of A, as in

V b 3 A (t e A P(t))

then by Rule B3, we do not derive the solution {z: P(z)1 as was done in Rule

Bl, because it is not the maximal solution. Rather the maximal solution is

{z: z = t P(0} as given by Rule B3. Rule B4 acts similarly.

Rules B5-B7 give the universal set U as a solution for expressions of the

form (t e A) and for EVEN combinations of these. Since (u ('1 A0) = Ao, the

effect is to ignore expressions that give the solution U whenever they are con-

joined (connected by "A") to other expressions.
In BQ, s is allowed to appear only in P(z). (These rules might be changed

later so that we delay the quantification of s (in {z: 3i P(z)}) until the entire

solution of the whole theorem is obtained, and in that way be able to handle

the case when s occurs elsewhere in the theorem.)
These rules and those in Secs. 3.2-3.6 are supported to some degree by the

proofs in Appendix II. Our objective is to find maximal sets for a few basic
forms, and to give combining rules that retain that maximality.

3.2 Combining rules for conjunctions

We will first give, in Fig. 3, three combining rules for conjunctions before giving

others. These three rules, with the basic rules of Fig. 2, have been sufficient to

prove a number of interesting theorems. Even our extended list of combining

rules is by no means complete; we are now trying to validate and extend both

the basic and combining rules.

If
(i) A1 is the (only)5 maximal solution for P(A), and
(ii) A2 is the (only) maximal solution for Q(A), and
(iii) both A1 and A2 are obtained from the basic rules of Fig. 2, or

from combining rules CI-C3, or if
(iii') P(A) and Q(A) have the intermediate property (see below), then

Cl. (A1 n A2) is a maximal solution of (P (A) A Q(A)), if it has a
solution, and

C2. (A1 Cl A2) is a maximal solution of (H --+ P(A) A Q(A)), if it has
a solution, provided that "A" does not occur in H, and

C3. (A1 Cl A2) is a maximal solution of ((R V P(A)) A Q(A)) if it has
a solution, provided that "A" does not occur in R.

Fig. 3 — Three combining rules for conjunctions.

If P (A) or Q(A) has more than one maximal solution (see Ex. 5 and Fig. 5 below), this rule

still applies to at least one of the solutions A of P (A) and one of the solutions A , of Q(A).
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Definition. We say that a formula P has the subset property (superset property)
if for each B and C, if B is a solution of P, and Cis a subset (superset) of B, then
Cis a solution of P.

Definition. We say that a formula P has the intermediate property if for each
B, C, and D, if B and Dare solutions of P and B CC D, then Cis a solution of
P.

It is easily seen that if P has the subset property or the superset property,
then P has the intermediate property, because 0 is a solution of a formula with
the subset property (if it has any solution), and U is a solution of a formula with
the superset property (if it has any solution).

It is easily shown that the subformulas in Rules BI -B5, and BQ, have the
sub-set property, and those of Rules B5-B7 have the superset property. See
Theorems 7-11 and the accompanying Remark of Appendix II.

Also if P1 and Q1 have the subset property and if P2 and Q2 have the super-
set property, and if P3 and Q3 have the intermediate property, then

P1 A Q1 has the subset property

P2 A Q2 has the superset property
P3 A Q3 has the intermediate property
P1 A Q2 has the intermediate property.

This is shown graphically in Fig. 4. (See Appendix II.)

subset intermediate superset

subset subset intermediate intermediate

P intermediate intermediate intermediate intermediate

superset intermediate intermediate superset

Fig. 4 — The status of (P A Q) when P and Q individually have the subset, superset or
intermediate property.

Corresponding results hold for

(H --+ Pi A Qi)
(H P2 A Q2) ,
((R V Pi) A Q1) ,etc.,

where A does not occur in H or R, and hence the combining rules of Fig. 3 are
valid under condition (iii') as well as (iii), by Theorem 12-13 of Appendix II.
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(The reader might wish to skip to Sec. 4 and Exs. 8-12 of Sec. 5 which'

apply only the rules of Figs. 2 and 3, before continuing this section.)

3.3 Combining rules for disjunctions

Often there can be more than one maximal solution or even infinitely many6.
For example the theorem

3A[V x(x e A P(x))V V y (y e A —0. Q(y))]

has two maximal solutions

iz: P(z)} and {z: Q(z)}

(But

{z: P(z) V Q(z)}

is not a solution!)

When there is more than one maximal solution we will indicate the "maxi-

mal solution" as a family Yof sets. For example,

Example S. P(a)--0. 3 AUV (x e A P(x)) A 3y (y e A)]
V Dix(xeA--Q(x))A 3y (y e A)] ).

Solution: 5" f{z: P(z)}, {z: Q(z)}}.

Then we must verify that some member of Ydoes indeed satisfy the theorem.
In this example only fz: P(z)} satisfies.t

This brings us to combining rules C4-C6 in Fig. 5.
It should be noted that the basic Rule B3 is really a special case of rules

B4, B6, and C4, because (x e b P) is equivalent to (x b V P) which yield
the solution Y= {{z: z 14, U}, and the solution {z: z = b P} is also either
U or {z: z 0 b}, depending on whether P is, or is not, true.

3.4 Further basic and combining rules

Each of the subformulas in the basic rules of Fig. 2, except Rule BE, have the
intermediate property (see above). This allowed us to use the rather simple
combining rules of Fig. 3 for conjunctions. We will now consider some cases
where the subformulas do not have the intermediate property, and we give
two rules in Fig. 6 which are combinations of basic and combining rules. 44 is
the set of non-negative integers.

6 See Sec. 3.5.

1. It is somewhat misleading to call a family like Y the "solution" of a theorem like Ex. 5,
because some members of .imay not satisfy the given theorem. A more appropriate term
might be "family of candidate solutions", in that this family must contain all maximal sets
A which can satisfy the given theorem.
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H(i), (iii') of Fig. 3, then

C4. .7= {A1,A2} is the maximal solution of (P(A) V Q(A)).

Also if

(iv) P(A) has a maximal solution 51, and

(v) Q(A) has a maximal solution .7-2, where

(vi) gi and 72 are gotten from C4, C5, or C6, or are gotten
from BI-BQ where the output there is treated as a singleton

then

C5. (51 U 52) is a maximal solution of (P(A) V Q(A), and

C6. (511 fin T2)7 includes a maximal solution of (P(A) A Q(A)).

Fig. 5 — Two combining rules for disjunctions.

1(Y, n n Y2) is the family of sets (D, n D,) with DI e Y, and D, e Y2.

If P(A) has the (only)5 maximal solution
{z: p(z)},

and P(A) has the subset property, and Q(A) is
(x e A A q(x)--0 f(x) e A)

where x is a skolem function of A, A does not occur otherwise in x,
q(x), or f(x), and x does not occur in P(A), and if

(P(A) A Q(A))
has a solution, then it has the maximal solution,
BC! 4z:p(z)A[Vn(new-->pfn(z))

V 3N (N e c,) A —q fN(z) A V n (n e w An <N---0 p fN(z)))]}.
The set
BC2 {z: p(z)AV n(ne Aq fn(z)--op r+1(z))1

is also a solution of (P(A) A Q(A)) provided it is a solution of Q(A),
but it may not be maximal.

Fig. 6 — Further combination rules.

The rule BC1 gives a set Ao which is maximal (see Theorems 14-15, App. II)
but often unwieldly. A suggested strategy is to try BC2 and if that fails (because
it may not be a solution)then try BC!. (See Exs. 13-15 in Sec. 5.)
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The rules of Fig. 6 can be extended to non-monadic cases where x is replaced
by (x,y), or (x,y,z), etc. (See, for example, Rules BC!' and BC2' of Fig. 7.)
Also the quantification Rule BQ can be applied here too.

If P(A) has the (only)5 maximal solution

{z: p(z)}

and P(A) has the subset property, and Q(A) is

((x,y)eAAq(x,y)--0. f(x,y)e A)

where x and y are skolem functions of A, A does not occur otherwise in
x, y, q(x,y) or f(x,y) and x andy do not occur in P(A), and if

(P(A) A Q(A))

has a solution, then it has the maximal solution

BC!' {z: p(z) A [V n (new P .fn (ni(z),n2(z))t
V 3N (N ew A—q fN1(111(41-12(z))
A V n (new An 4N —4 p fn (ni(z),n2(z)Dil

BC2' {z: p(z) A V n (n ewAq fr(111(z), 112(z)) P fn+1 OW), 112(z)))1

is also a solution of (P(A) A Q(A)) provided that it is a solution of Q(A), but it
may not be maximal.

t lIz is the ordered pair, (a,b) then 1 (z),= a, I and 112(z) = b.

Fig. 7 — Further combining rules.

3.5 Infinitely many maximal solutions

We saw in Sec. 3.3 an example which has two maximal solutions. Others have
more, even infinitely many. For example

Example SA. 3A VxVy (x EA Ay EA P(x,y)).
If P(x,y) can be "separated", the solution is easy. For example if P(x,y) p(x)
A q (y), then the maximal solution is {z: p(z) A q(z)}.

However, if P(x,y) =-- (0 4 4 y < 2x), then the maximal solutions consist
of the infinite family of sets of the form

tx: a <x < 24
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for a > 0. This is the family of bases of the squares shown in Fig. 8. Notice
that these maximal solutions may overlap.

Clearly one could not try all of these solutions in order, as could be done
in Ex. 5. However, as we shall see shortly, our rules can be very effective even
when there are infinitely many solutions.

Example 5B. 3A V L3y V z [(z E A --).p(z,y)) A q(L,y)]

This is equivalent to (successively):

3A 3g V LVz [(z e A --+ p(z,g(L))) A q(L,g(L))]
3g3A [V z (z EA --÷V L p(z,g(L)))AV L q(L,g(L))].

3g3 A [V z (z e A ---+ P(z,g)) A Q(g)].

Now if go is a solution for Q(g) then

1z: P(z,g0)1

is a maximal solution (1). At first blush this would seem of little value, since
finding such a go is itself a search problem in second order logic, (and since
indeed the complete maximal solution of (1) is the possibly infinite family
of all such {z: P(z,go)}). However, in many applications the family of maximal
solutions is reduced to a family of one by matches during the proof of other
parts of the theorem. This is exactly what happens in the use of the Least Upper
Bound Axiom, (LUB), to prove theorems like Ex. 11 of Sec. 5. In such cases we
are proving some conclusion C from LUB:

(LUB C).

This is equivalent to

C LUB)

which is equivalent to (see Ex. 11 for the statement of LUB)

(— C 3A (... A V /[ 3x (...) V 3y (V z(ze A --+ ...) A . . .)] )),

which has (partly) the form

3A V /3 y V z [ (z e A --).p(z,y)) A q(1,y)]

which is like Ex. SB above. In the proof of Ex. 11 below, we are able to
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instantiate the variable y (with, say, yo) and get the corresponding maximal

solution

P (z.V Oh

in a satisfying way.

Fig 8 — Infinitely many maximal solutions of 3A VxVy(xeAAyeA--oP(x,y))

3.6 Other monadic casest

In Sec. 3.5 we are given

{z: P(z,z)}

as the maximal solution of

Example 5A. 3A V x e A Ay eA P(x,y))

in the case when P(x,y) could be expressed as a conjunction of the two monadic

predicates p(x) and q(y).
We now give a few other such results.

t This work has a definite relation to that of Behmann. See Sec. 7.4.
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Example SC. 3A VxVy (x e A Ay e A —4. p(x) V q(y)).

Solution: 1-= {A1,A2}, where Al= P(x)}, A 2 = q(Y)1.

Example 5D. 3A V x Vy (x e A V y eA --0 p(x) A q(y)).

Solution: {z: V s (p(z) A q(s) A p(s) A q(z))}.

This is a special case of the following where P(x,y)is not necessarily monadic.

Example 5E. 3A VxVy(xeA V y eA P(x,y)).
Solution: V s (p(z,$) A p(s,z))}.

Example 5F. 3A VxVy Vz [(x e A V (y eA Az e A))--qp(x) A R(y))
V (q(x) A T(z))] .

Solution: .7" = {A1 n A2, A r) A 31, where
Al= {x: V y V z ((p(x) A R(y))V (q (x) A T(z))].
A2 = V x (p(x) A ROD} ,
A 3 = V x (q (x) A TOD} .

It appears that for the monadic case, maximal solutions of the kind given
for Ex. 5F can be determined by the pattern of occurrences of x e A, y eA,etc.,
p(x),q(y), etc. in the conjunctive normal form of the theorem. Such a procedure
if worked out and validated' may or may not contribute much to practical
automatic theorem proving, though it should have theoretical interest.

Obviously this is related to Behmann's decision procedure for monadic
second order logic [13] .

4. CONTROL

4.1 The prover as a control

As mentioned above, the set-building rules of Sec. 3 are used to propose a value
for a set variable A and then IMPLY, our automatic prover [1] is used to prove
the resulting theorem.

It turns out that the prover is also a convenient vehicle for controlling the
use of the set-building rules. In doing so it proceeds in its normal way to prove
the theorem, applying a list of production rules: to manipulate the theorem, to
propose subgoals, to manipulate the data base, to match, etc.8 The set building
rules are added to these production rules.

'The reader is referred to [1] for details and examples. For our purposes here the prover
described in [1] has been augmented by a data base for handling our set variables and
interval types (see Sec. 4.2). These data base manipulations are in the spirit of those men-
tioned in [9] and applied in [5,61 and [8].
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For example, in proving the theorem,

Example 6. 3A (P(a) A a b --+ V x (x e P(x)) A y (y e A) A b It A),
it first skolemizes and sets up the goal

(P(a)Aa0b----qxA EA --+P(xA))My eA)Ab , )

and then splits it up into subgoals (1), (2), (3).

(P(a)A a b --+(xA eA ---°P(xA))). (1)
Rule B1 is applied to this subgoal to yield the solution P(z)} for A. This

value of A is not substituted for A in the remainder of the theorem, but rather
is placed in the data base, to be combined with other values gotten later.

(P(a) A a 0 b e A). (2)
This subgoal is ignored by Rule B6. (Actually it yields the universal set U,

which will be intersected with other sets and therefore "ignored")

(P(a)Aa0b--0.b1A). (3)
Rule B4 is applied to this subgoal to yield the solution {z: z 0 b]. for A.

This too is placed in the data base, and combined with the earlier solution,
yielding

{z: P(z) A z bl

as the current solution for A.

(*)

Since (3) is the last subgoal, the final solution (*) is substituted for A in the
original theorem, getting the new goal:

(P(a)Aa0b--(P(x0)Axo0b--0.P(x0))A(PV)Ay0b)
A (P(b) A b b)). )

Now this, which is a first order theorem, is proved as a series of subgoals.
Our intention here is to emphasize the part of the process that builds the

set A using the set-building rules, and to de-emphasize the proof of the resulting
first order theorem.

4.2 Interval types and inequalities

Before describing other examples in Sec. 5 we will describe another part of our
data base which is called "Interval types" in [1] and "Typelists" in [5-6] which
plays a crucial part in proofs of theorems in real analysis. This is best illustrated
with examples.
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Example 7. (P(1)--0. 3x (0 <x <2 A P(x))).
The skolemized goal is

(P(1) --o• (0 < x < 2 A P(x))).

The prover handles the first subgoal

(P(1) 0 < x < 2)

BLED SOE

( )

(1)

not by giving some particular value to x, such as 0 or 2 or 1, but rather by
storing the entry {x: 0 2} in the data base, indicating that the variable x is now
restricted to the interval 0 <x < 2. The entry -[x: 0 2]. is called a restriction
interval for x. The prover then goes to the second subgoal.

(P(1)--0.P(x)) (2)

with x still a variable. When this goal is solved, with 1/x, then it must verify that
this substitution is consistent with its data base entry, that is, that

0 < 1 < 2.

Such data base mechanisms are used in the proof of the intermediate value
theorem in Ex. 11 below, and other like proofs in real analysis. These concepts
which were used in [2] , have literally made the undoable doable. Otherwise
one is involved in the use of the axioms for the real numbers and for inequalities
which tend to choke automatic provers not using special mechanisms like this.

5. SOME MAJOR EXAMPLES

We describe here the proof of some theorems,t following the steps taken by the
prover, but omitting much of the detail in order to emphasize the set-building
rules of Sec. 3. We will give examples from topology, real analysis (the inter-
mediate value theorem), logic, and program verification.

The non-mathematically-oriented reader can follow these examples to some
extent and get the main ideas without studying continuity and topology.

Example 8. If a set B contains an open neighbourhood of each of its points,
then B is open.9

Or symbolically

(Vx(xeB---0. 3D (Open D Ax eD AD CB )) —4 Open B).

See Sec. 7.6 for a discussion of what was actually proved by the computer on these examples.
9An open neighbourhood of a point x is just an open set containing x. We will use the capi-
talized OPEN to represent the family of all Open sets. (Union G) is defined to be the set of
points contained in some member of G.

69



REPRESENTATIONS FOR ABSTRACT REASONING

We shall use the following lemma:

L: The union of a family of open sets is Open. That is,

(3G (G C OPEN A D = (Union G))---). Open D).9

Our object will be to find this family G.

Using L as a hypothesis, our skolemized goal becomes

([G C OPEN AD = (Union G)--). Open D]

A [x e Bo--+ (Open D, A x e D, AD Bo] Open Bo).

Using the lemma L (first hypothesis) with Bo/D we obtain the subgoal,

(L A /3 G C OPEN A Bo = (Union G)) •

The first subgoal

(L A /3 G c. OPEN)

becomes, upon definition of C and OPEN, and skolemization,

(LAP--)•VA(A eG--OpenA)),

(LA /3 (AG EG Open AG)) •

Rule B1 is applied to obtain the solution {z: Open z]. for G. This is
stored in the data base and G remains a variable.

In the second subgoal

(L A a Bo= (Union G))

( )

( )

(ot

(1)

(2)

the program defines "=", and splits to get subgoals (2 1) and (2 2), in which
"C" and "union" are defined, and skolemized.

(L A a —4. Bo C (Union G))
(L A a --oVx(xeB0--).3D(DeGAxeD)))
(LA(3---qxoeB0—+(DEGAxoeD)))

IGNORED by Rule B7.

tSee footnote 12.
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(L A (3 (Union G) g Bo)
(LA13-0.VD(DeG--0.DCB0)
(L A P e G D G _c B o)).

Rule B1 is applied to obtain the solution z C Bob
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(2.2)

Combining Rules Cl-.C3 are applied to produce the general solution

Go = {z: open zAzC Bo}

for G. When Go is substituted for Gin the lemma L our goal ( ),p. 70, becomes

Or

(L A 13 —4. Go ç OPEN A Bo = (Union G0)),

(L A p ---+ Go C OPEN A Bo C (Union Go) A (Union Go) CB).

( )

The first and third subgoals are immediate consequences of the definition of
Go, and the second is a consequence of the hypothesis p. Indeed, we note the
general principle that usually the only subgoals that need to be verified are the
ones which are IGNORED earlier.

Example 9. If F is a family of open sets covering the regular topological space X,
then there exists a family G of open sets which covers X and for which CC C F.1°

Our object is to find this family G.

We will use the definitions

Regular: VA V x (Open A Ax eA --*3/3 (Open B Ax eB A C A)
OC F: FC OPEN A Cover F
Cover F: V x 3A(AeFAxeA).

Thus our theorem becomes

(Regular A OC F 3G (OCG ACCCF)),

(Regular A OC Fo (0C GACCC Fo)) ( )
in skolemized form. This is split into subgoals (1), (2), (11), (1 2), using the
definition above as appropriate.

(Regular A OC Fo OCG).

"We will denote by A the "closure" of a set A, and by 6. the family of closures of members
of G, that is, G = {A: A e G}. Furthermore (H g c F) means that H is a refinement of F,
that is, each member of H is a subset of a member off, or (V A (A e H 3 B (Be FA .B)).
Thus (d C F) meansV A (A e G 3B (B e F A A g.B)).
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The solution F0 for G would work for this subgoal but would eventually fail

for subgoal (2), and be rejected.

(Regular A OC F0 G OPEN A Cover G) .

(Regular A OC F0 G OPEN)

(Regular A OC Fo --0 V (A e G Open A)) .

After skolemizing, Rule B1 yields {z: Open z} for G.

(Regular A OC F0 Cover G) . (1 2)

This is IGNORED by Rule B7, using the definition of "Cover".

(Regular A OC F0 c Fo)
(Regular A OC Fo V A (A e G (B e Fo A C B)))
(Regular A OC Fo --+ (AG e G --+ (B e Fo A 71G cB))).

Rules B1 and BQ yield {z: 3B (B e Fo AZ CB)}

Combining Rules C1-C3, give the general solution

{Z: Open Z ABB ( B e F0 AZ CB)}

(2)

which satisfies the theorem.
The next (rather simple) example is given to show the effect of lemmas on

the maximal solution. Let R represent the real numbers and Q the rationals.

Example 10. 3A (A is dense in R A (R-A) is dense in R).
This of course has no maximal solution for A. However, if we employ the

lemma,

L: V B(QC B B is dense in R)

AVD(DCQ—(R-DisdenseinR

then we do get a maximal solution.

a
gB dense B) A (D Q dense (R-D))

--0 dense A A dense (R-A).

(a A p --+ dense A). Use a with AIB (1)

(aA13--Q.C.A)
(a A,8 AxA e eA).

IGNORE by Rule B5.
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(a A 13 dense (R-A)) Use 13 with AID. (2)

(a A (3 ---,AcQ) (2 BC)
(a A (xA e A x A e Q)) .

Rule B1 gives the solution {z: z e Q} for A.

Here a theorem with no maximal solution was given one by the use of the
lemma. In other theorems, the maximal solution is often changed (decreased)
by the use of lemmas. Indeed, that is the case in Ex. 11 below where a non-
maximal (but adequate) solution

{z: z <b A f(z)‹ 0}

is given instead of the actual maximal solution

1z: 3 x (z <x<b Af(x)<O)1.

Example 11. (Intermediate Value Theorem)
If f is continuous for a < x <b, a < b, f(a)< 0, and f(b)> 0, then f(x) = 0 for
some x between a and b. (See Fig. 1).

The proof of this will require the least upper bound axiom.

LUB. Each non-empty bounded set A has a least upper bound.

The object here is to find the set A required by the least upper bound
axiom. The definition of the set needed is not at all obvious (even for humans).
We believe that the use of a natural deduction prover, such as ours, as a
control, is the key to this kind of problem, whereby the prover explores its
various subgoals in a natural way and uses the basic set-building Rules B 1 -BQ
as they become applicable. Only combining Rules Cl -C3 are applicable in this
example, so the basic solutions are intersected to obtain the general solution

1z: z5b A f(z)<

for A.
The theorem and axiom (in symbols) are:

Th. V y(a<y<b--Contfy)Aa<b Af(a)<0 Af(b)>0
—* 3 x (f(x)= 0).

LUB. V A (3uV t(teA--*t<u)A3r(reA)---*
3 1 [Vx(xeA---).x<l)
AVy(Vz(zeA -4•z<y)--).1<y)]).
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Instead of the definition of continuity we use the two lemmas

Li. (Cont f --+
Va(a<f(x)---+3t(t<x AV s(t<s<x--a<f(s))))

L2. (Cont fx —+
V a (f(x)<a--4.3t(x<t A V s(x<s<t--41(s)<a)))).

Our skolemizedn goal is therefore

(L1 A L2 ALUB A Hi Aa<b A f(a) < 0 A 0 <f(b) f(x) = 0)

where (rearranged and skolemized)

Ll (Cont f z' A ((f(s) < a' As < s < ti) < ti)
f(x')<a').

L2 rz- (Cont f A < f(s) A x" <s t2 < s) --0 t2 < zu)
a' < file)).

LUB [(tAu e A ---+ tAu <u. )AreA --+
(x' e A < /0) A ((zA e A zA <Y)--'1o<Y)]

I-11E (a <y' <b Contfy').

We shall denote all of the hypotheses by H in the following.

(H f(x)= 0)

The conclusion is defined, getting

f(x)<OA0<f(x))

which is split into subgoals (1) and (2) below.

(H —f(x) <0).

( )

( )

(1)

Since f(a) < 0 is a hypothesis this goal is satisfied by the substitution a/x,
but this value for x will eventually fail on subgoal (2). So it instead uses Ll with
Ola',x/x', getting

(H--0. Coat fx A Ms) <0As<x----*s<ti)-4.x<ti)) (1L1)12

'In some cases here, to simplify the presentation, we have shortened the skolem expres-
sions, with 10 instead of 1,1, t1 instead of tix,, t2 instead of tut', etc.
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Cont f x). Use H1 with x/y'. (1 LI 1)

(H —> a <x <b). (1 LI 1 L1)

The entry fx: a bl is placed in the data (see Sec. 4.2);x remains a variable.

(H—).((f(s)<OAs<x----0.5<ti)--0.x<t1))
a

(H A (f(s)<0 As <x ---0.s<t1)--x<ti).

Use LUB with 101x, tily.

(1 Ll 2)

(HA a (tAu e A rAu <u)AreA A(zA eA--0.zA <t1)).
(1 LI 2 LUB)

Before the program can proceed with this subgoal it must check (see Sec.
4.2) that the value /0 just given x is consistent with the data base entry Ix: a 14,
which was placed there in goal (1 Ll 1 H1), that is, that a <10 <b. The prover
calls itself to do this

(H a <10< b) (CHECK)

(H a <l0). Use LUB with alx'. (CHECK 1)

(11—'(tAu € A 'tAu <u)AreAAaeA). (CHECK 1 LUB)

Again it must check that the substitution alx is consistent with the data
base, that is, that a <a <b. But this is immediate, so it proceeds.

(1Au € A —÷tAu<u) (CHECK 1 LUB 1)

IGNORED by Rule BE since the variable u is a skolem argument of tAti.
(See Restriction 8, Table I).

(H—*reA). IGNORED by Rule B6. (CHECK 1 LUB 2)

(H —pa e A). IGNORED by Rule B6. (CHECK 1 LUB 3)

(H 10< b). Use LUB with bly. (CHECK 2)

(11 '(tAu € A —4 tAu <u)AreA A(zAeA-42A<b))
(CHECK 2 LUB)

12 The parenthesized list in the right margin represents a "theorem label" or "goal label"
Which is used by the computer to let the reader know what part of the proof is being
attempted. If a goal (X) is split, its two subgoals are labelled (X 1) and (X 2). "Ll" means
backchaining on lemma Ll, etc.
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(H (t Au e A tAu <14))

IGNORED by Rule BE

(H--).r EA)
IGNORED by Rule B6.

(H --+ (z A e A --+ z A < b))

(CHECK 2 LUB 1)

(CHECK 2 LUB 2)

(CHECK 2 LUB 3)

Rule B1 gives {z: z<b} for A which is placed in the data base.
This finishes the subgoal (CHECK), that (a < /0 < b), so the program

returns to
(1 Ll 2 LUB)

(H A a --0•(tAu e A ---''tAu<u)AreA A (zA EA —÷zA <t1))

(H A a (t Au e A —÷ tAu <0. (1 Ll 2 LUB 1)
The current value z <b] of A satisfies this goal, with blu.

(HAa—+reA). IGNORED by Rule B6. (1 Ll 2 LUB 2)

(H A a (z A e A —4. z A < t 0)13 (1 Ll 2 LUB 3)
(HA a A zA e A --+ zA <1.1). Use a with zAls.

01=-7 (f(s)<0 As<x

(H Aa AzA EA --+ f(zA)60 AzA <x) (1 Ll 2 LUB 3 a)

(H Aa A zA e A —÷ f(zA)<O). (1 Ll 2 LUB 3 al)

Rule B1 gives the solution {z: f(z) < 01 for A. This is combined with the
current value to get z<b A f(z)< 01 which is placed in the data base.

(1 Ll 2 LUB 3 a 2)
(HA a A zA EA —± zA x). Use LUB, with zA/x1, /0/x.

(1 LI 2 LUB 3 a 2 LUB)
(H AaAzA EA --(tAu EA —4.tAu <u)AreA AZA EA).

These are verified as before.
This finishes subgoal (1). As we shall see, subgoal (2) will produce no more

solutions for A, so we will then only be left to check that

{z: z<b A f(z)< 0} is indeed a solution for A.

'Rule B1 cannot be used here because of condition 1, Table I: t, is really a skolem function
of x' x' is replaced by x, 10, is a skolem function of A, x is replaced by lo, so t, is a skolem
function of A and hence A occurs in t,. The program easily detects this because its current
representation of t, shows it as a skolem function of A.
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(2)

Note that the substitution /A /x gotten from subgoal (1) is used in subgoal

Use L2 with 10Ix"

(H Cont f /0 A ((0 <f(s) A /0 < s t2 < s) t2 lo)) (2 L2)

(H Cont f 10). Use Hi (2L2 1)

(H a <l<b). Proved as before. (2 L2 1 H1)

—÷ ((0 As) A 10 s t2 s) t2 4 /0)) (2 L22)
(H A (0 < f(s) A < s7' 12 s) —'t2<10).

Use LUB with t2/xi.

(H A7 —*(tAii eA —÷tAu<u)AreA At2eA). (2 L2 2 LUB)

Subgoals (2 BC 2 BC 1) and (2 BC 2 BC 2) are proved as before.

(HA 7 --+ t2 e A). IGNORED by Rule B6. (2 L2 2 LUB 3)

This completes subgoal (2). The solution {z: z <b A f(z) < 01 is now
substituted for A in LUB, and the whole theorem (which is now first order) is
proved again. See Appendix IV for this and othed related example theorems.

Example 12. V F ({x} e F —> {y} e V A (x e A y e A).

This example which was suggested by Peter Andrews14 is just the theorem

= iY1 x = Y)

where (a= 13) has been characterized by VD(aeD-7:0PeD), (with the proper
typing on D).

Here we need to find a maximal solution for F.

Mxole F e (xoeAo—*Yoe Ao)) )

(ax0l€F--*{Y0}eF)Ax0e440—*Y0EA0).
When attempting to backchain on the first hypothesis, the subgoal

({Yo} e F 'Yoe Ao)

is attempted which yield, by Rule B3, the solution {z: z = e Ad-
for F.

"Private communication.
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When this is substituted for F in the theorem it becomes first order,

([(Ixol= Iyol --*Y0 € A o) (13 = {vo} —+Yo e A o))] A xo e A o
—+YoeAo) ()

which is simplified to

([({x0}= iYd'Yo eAo)'.YoeAo] A xo eAo

because {Yol = TM is recognized as true.
Backchaining on the first hypothesis H1 gives the subgoal

(H1 A xo e --0 (Ix = {.Y 'Yo EA o)) (H1)
(Hi A xo e Ao A {xo} = 4y01 —*YoeAo).

By defining the set equality, "=" (that is, D = E is replaced by DC EA
E C 13)), and "C" (that is, D C E is replaced byVt(teD--0.teE)), and
reducing t e {x} to t = x, this is transformed to the goal

(Hi A xo EA° A (t =x0--+t=y0)--oyoeA0),

which is true with xo/t by backchaining and equality substitution.

Example 13. 3A [V x (x e A x> 0)AVx(xeA Ax00--x- 2 A)] .

(The reader might want to take a minute to obtain the maximal setA himself

before seeing the solution given by Rule BC!.)

()

The first subgoal

(xA eA -->x>0) (1)

yields by Rule B!,

A1 = {z: z 0}

Since subgoal (1) has the subset property", it follows that Rule BC! of Fig. 6

applies to the second subgoal

(xA e A A xjk - 2 e A) (2)

'5 See Sec. 3.2.
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to obtain the maximal solution,

A2 = lz:z>0A [Vn(neco--o•z-2n>0)
V3N(NewAz-2N= OA Vn (newAn<N —4 -2n>0))1].

Since V n (n e z -2n> 0) is false, this becomes

A2= {z:z>0 A 3N(Neco Az= 2NA Vn(new An<N--o•
z >2n))].

This description of A 2 is now simplified (by the author) to obtain

because

A2 = 1Z: Z 0 A 3N (N e (...) A z = 2N)1-
= the non-negative even integers,

Vn(newAnk<N—>z>2n)Az=2N
V n (n e co An N —0.2N> 2n) Az = 2N
TRUE A z = 2N
z — 2N.

Example 14
3A V x Vy [(g(x ,y) e A P(x ,y)) A ((x,y) eA Aq(x,y)--+
f(x,y) e A)]

[(g(xAY,A) e A P(x AY AD A ((xA,YA) e A A q4A,YA)
.axA,Y A)e A)] •

The first subgoal

(g(xA,YA) e A ---o• P(x A,Y

yields by Rule B2',

Al= VsVt (z = g(s, t)--+ P(s, 0)1 .

( )

(1)

Since goal (1) has the subset property", it follows that Rule BC2' applies
to the second subgoal (with p(z)=-- VsVt (z = g(s, t) --* P(s, t))),

c Aa A) eA Aq(x A,Y ) --' .f(x A,Y A) e A) (2)

to obtain the solution

A2 = 1Z: VS\it(Z = g(s, t) —0 P(s,
A V n [n eca A q(fn (111(z), 112(z))} VsVt n+ 1 (111(z), 112(z))
= g(s, t)--+ P(s, t))]]..
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To verify that this is a solution we note first that it clearly satisfies subgoal
(1) because A2 C A1 and goal (1) has the subset property. Thus we need only
verify the second subgoal (2) with A replaced by A2. This is done in Appendix
III. Also we show there that it may not be maximal, but that for the special
case of Ex. 14 given in Ex. 15 below, the solution A2 is maximal.

Example 15.
PVA VK [P(0,x) A (P(A ,0)
P(A + y,K-1))].

A= y)A(P(A,K)AK*0

This theorem arises from the field of program verification, in a case where
the internal assertion P isnot given but must be found by the prover. The theorem
represents the verification conditions for a simple program which multiplies in-
tegers x and y. (See Fig. 9). No attempt is made here to prove that the program
halts.

• P (A,K

K=O?
YES

A A +y

K K-1

HALT

Fig. 9. — Flow chart for a simple multiply program.

We will suppress the input assertions x > 0, y> 0, x,y integers, and will
(for consistency of notation only) replace the two-place predicate P by a set B
of ordered pairs. Our rules of Sec. 3 were not meant for sets of ordered pairs
but appear to work on this example, provided that several facts about ordered
pairs and integers are built into the program. This example is included here only
to show the kind of examples that might be handled with some more work.

The skolemized theorem is

[(0, xo) e B A ((AB, e B --+ AB = X0Y0) )
A ((AB,KB) e B A KB 00 (AB + YO,KB-1) e BA •
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(0, xo) e B
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(1)

is IGNORED by Rule B6.
The second and third subgoals are exactly in the form of Ex. 14 with

BIA, Alx,'Kly,Xst(s,0)1g,Xst(s = x0*.Yo)1P,Xst(t*0)1q,Xst(s + Yo, t-1)/f. Thus
we get, similarly to Ex. 14, a solution

{z: VsVt (z = (s,0) = xoYo)
A V n [n e co A 112 Otst(s + yo,t—l)n(111(z), 112(z)) 0 0
V si (Xst(s + yo; ii )n+ cyz, ) 112(z)) = (SIM "-+ SI = X0Y0)1 b

This solution will work but needs considerable simplification for clarity and
ease of use. Much of this simplification, but probably not all, which is done here
by the author, can be done by the program, by storing additional entries in the
REDUCE table and PAIRS table of the program (see [11).

The variable Z which represents an ordered pair is replaced by the variable
pair (z1,z2). The solution is then successively simplified as follows:

{(z 1,z2): = 0 z1 = xoYo)
AVn[necoAz2 —n00

Vs az; + (n+1)Y 0. z2 —n—i) = (s, 0) s = xoYo)] }

= {OA: = 0-4A = xoYo)
AVnVs [newAKOnAA+(n+1)yo=sAK=n+1)

s = xo•Y

= {OA: = 0 A = Y
AVnVs [necoAK=n+1--+A+(n+1)y0=xoYo]l

= {(A,K):(K= 0 A = xoYo)
AV n [necJAK=n+1---0.A=(x0 —K)-Y0]l

= {(A (K e A = 0-10Y o)}.

This corresponds to the predicate;

P (A ,K) (K e c --+ A = (x0—K)y 

which is the internal assertion usually given by humans for the program depicted
in Fig. 9.
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6. THE INDUCTION AXIOM

One of the most used concepts from higher order logic is the induction axiom:

IA: bA(OeAAbx(xeA—).x+1eA)--).by(yeA))16 .

For example in proving

Example 16

= n(n+1)12 ,

if we let

t=1

A = {n: E i = n(n+1)12}
i=1

then we can easily show that 0 e A and V x (x e A x+1 e A) and hence

conclude from IA that A contains all non-negative integers.

It was therefore a great disappointment to find that the procedure of this

paper would not "work" for the induction axiom. Nor is it possible to wait for

the instantiation of other variables, as we did so successfully with the Least

Upper Bound Axiom (see Sec. 3.5 and Ex. 11, Sec. 5), to unlock our procedures.

The following simple example serves to show why.

Example 17.
IA A P(0) A V x (P(x)---). P(x+1))---b y P(y).

When IA is defined we get

VA[0eAAVx(xeA—±x+leA)--+Vy(yeA)]

A P(0) A V x (P(x)----0P(x+1))-->b y P(y) ,

which, when skolemized, becomes

[0 e A A (xA e A --± xA+1 e A)--+ Y e A)]
P(0) A (p(x)-+P(x+1)) P(y0) 

The set variable A occurs only in IA, and no connection between IA and the rest

of the theorem can be made except by matching a term like (y e A) against a

term like P(y0). But this is exactly what we do not want (and our rules forbid

it); we do not want the indiscriminate matching of expressions of the form

(y e A) against arbitrary subformulas in the theorem, because this leads to a

greatly exploded search. In our rules we match only when there is. a "con-

160f course this could have been expressed in terms of a predicate P, with P(x) replacing
x e A.
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nection" between the things being matched. This causes us to fail here, but the
saving on other examples is our compensation.

This axiom or its equivalent16 has been used extensively in automatic
theorem proving [17-20] especially in cases where the theorem to be proved
can be used as the induction hypothesis. Boyer and Moore [17] have been able
in some cases to "generalize" the induction hypothesis and thereby prove
(automatically) some theorems not amenable to the simpler techniques.

We can of course add an additional induction-procedure to our prover and
use it for induction proofs without compromising the set-building rules of this
paper.

7. COMMENTS, QUESTIONS, AND FUTURE PLANS

7.1 Maximal method

We have set ourselves the task of finding a maximal set A0 satisfying a given
condition Q(A), and have given some rules for doing this in certain cases. These
have been applied to a number of theorems to obtain successful results, although
there are many we cannot handle. Of course there are cases such as Ex. 10 which
have no maximal solution. But some of these may become "maximizable"
during the proof when a particular lemma is used (as did Ex. 10).

7.2 Delaying

In our procedure we have employed a concept of delaying, whereby we delay
the final determination of a set A until all parts of the theorem have been
processed. Early subgoals place restrictions of the form P(z)1 on A, but leave
A itself as a variable to be further considered later. Later subgoals may further
restrict A, or may force A to take a particular value A0 (for example ,by matching).
In this last eventuality the program must check that A0 is consistent with the
earlier restriction {z: P(z)}. This kind of delaying has the marked advantage of
not closing off the determination of A by assuming early values for it; but rather
keeping it "as general as possible," putting on restrietions only as they are forced.
Thus we see that the notions of "maximality" and "delaying" are somewhat
analogous.

This concept of delaying is an important one in other parts of automatic
theorem proving. Huet's Constrained Resolution [3] is an example of it where
he delays the higher order unifications until resolution matches have been
made. The most general unifier [16] is another example, in that it lets resolution
(or whatever prover that uses it) delay as long as possible the assignment of
constant values to variables.

Also our use of delaying for set variables is entirely analogous to the concept
of interval types [2, 5, 6] explained in Sec. 4.2, when a variable x is restricted
to an interval [a <x <b] to satisfy an earlier subgoal, but left a variable to be
instantiated or further restricted later. This technique has greatly simplified our
proofs in analysis, and we expect other such "delaying" methods to be developed.
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7.3 Holding formulas together

As mentioned earlier, we try to avoid indiscriminate matching of formulas of
the form t e A (where A is a variable) against all other subformulas P in the
theorem. This prevents an "explosion" in the number of search paths.

Also we believe it important to hold formulas together during the proof,
and retain, as far as possible, the original quantification (see Ex. 2). Thus we try
to avoid procedures which convert the theorem into clausal form or other normal
forms.

7.4 Relation to the work of others

Darlington's program [12, 14] has proved Ex. 8 and other examples using his
F-matching. Our procedure has a similarity to F-matching and was partly inspired
by talks with Darlington. But it is different especially in its use of the maximality
concept which is an outgrowth of the ideas in [15, Sec. 10], and in other ways.

This work is of course related to Belunann's decision procedure for monadic
first and second order logic [13, 13a, 22] 17. A cursory look at [13] indicates
that our solutions are often the same as Belunann's. His methods might be
extended to also handle a number of non-monadic cases (as ours do). So it seems
that an extensive study of papers on monadic logic is very much in order.

The procedures of [3,4, 7, 10, 11] are more general than ours, and their
research provides a necessary base for this type of research; we only feel that our
work can be more effective on a limited, but important part, of higher order
logic.

7.5 Completeness

All of our rules are sound because no matter what value we get for the set
variable A, we always verify it with another pass through the prover. The only
question, then, is one of completeness.

There are three kinds of incompletness encountered here. First, there are
cases, as mentioned above, which have no maximal solutions. Secondly, there
are cases which have maximal solutions but for which we have as yet no rule.
And thirdly, there are cases where the rules we give are not complete. Our basic
rules Bl-B7 (Fig. 1 with restrictions in Table I), and BC1 (Fig. 4) are complete.
Proofs of this are given in Appendix II. And completeness is retained when we
combine the basic solution according to the combining rules Cl-CS (Figs. 2, 3).
However, we propose using these basic solutions and combining them even in
cases where the conditions of Table I, and Figs. 1-4, are not satisfied, and in
these cases the results will not always be maximal. Also in cases like Rule BC1
where the maximal set is rather complex we suggest trying first a simplified
version, which often gives the maximal solution but may not.

Maximal or not, they still offer in many cases a good (quick) guess for A,
a heuristic for generating a candidate for A.

"J. A. Robinson first pointed this out to me.
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We have used these rules to generate certain family variables (for instance
Exs. 2, 8, 9) instead of set variables. Much work needs to be done in extending

these rules and in investigating their completeness.
We propose using them in cases where several set variables are to be instantia-

ted instead of just one, and see no reason why good results cannot be obtained,

even though the process is probably not complete.
In many cases the restrictions in Table I will disappear during the proof of a

theorem, when a certain variable is instantiated. For example, in trying to prove

Vx (f(x,y)e A --> P(x,y))

where y is a variable (and therefore not a skolem function of A), Restriction 2

of Table I prevents us from applying Rule B2 (because the variable y appears in

f(x,y)). But once y is instantiated, by say ao, then Rule B2 applies and we obtain
the solution

1Z: Vt (Z =

Another way of overcoming these restrictions is by using an equivalent form
of an expression. For example, Rules B1 and B2 cannot be used on

Vx1(x EA --÷ P(x)) A (f(x)e A --* Q(x))]

because in each subgoal "x occurs elsewhere in the theorem," but this can be

(automatically) changed to the equivalent form

'Ix (x e A P(x)) A Vy(f(y)e A —0. Q(y))1

where that restriction has been eliminated. (This was implicitly assumed in
Exs. 13-15).

Also formulas of the form

Vx (q (x) V (x e A —*p (x)))

can be transformed to

Vx(x e A p(x) V q(x));

and Vx(q(x) A (x e A p (x)))

to Vy q(y) V Vx(x e A (x));

and Vx Vy (f(x) EA Vy EA p(x.y))

to Vx (f(x) e A p(x,y))
A Vy(y e A p(x,y));

etc.
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It should be noted that the "solution" U derived from Rule BE appears to
be useless. However, Rule BE has been placed there to prevent the program from
failing in some subformulas where the solution U (from those subformulas) can
be combined with solutions from other parts of the theorem.

7.6 Implementation

An augmented version of the prover described in [1] has been used to prove
some example theorems. This augmented version, which is called "the set variable
prover," is designed to proceed in the machine-alone mode (that is, not man-
machine), but not all of Exs. 1-15 of this paper were actually proved completely
by the computer. Some were proved outright; some could have been proved by
minor changes in the program which we are in the process of maldng; and some
require more extensive changes.

Recall, from Sec. 4, that two passes are made by the program in proving
a theorem: a first pass to determine a value for the set variable A; and a second
pass to prove the resulting theorem, after the new value is substituted for A.

Examples 1-4, 6-10, 12, were run completely by the computer (with no
human intervention). Exs. 5, 5C-5F, 11, 13-15, have been done by hand using
the procedures of this paper. Exs. 5A, 5B, 16, 17 are for illustrative purposes only.

The first pass of Ex. 11, in which the set

A = {z: z<b A f(z)<0}

is defined, using the Rules of Fig. 2, has been run by computer alone. This is
the crucial pass for satisfying the aims of this paper. However, after this value is
substituted for A in the least upper bound axiom, an interesting and truly
challenging theorem about general inequalities results:

Ex. 11: H1 ALIA L2 A LUB' x(f(x) < 0 A 0 < f(x)),

where Hi, Li, and L2 are given on page 74, and LUB' is

3u Vt(t <b Af(t)<0---0.t<u)A3r(r<1, A f(r)<O) —0
31[Vx(x<b Af(x)<0 --0 x 61)
A Vy(Vz(z6b A f(z)< 0 —± z <y)— <y)].

In theory, our program can prove Ex. 11, but in actual practice it cannot
now because of time and space limitations.

These proofs have utilized a newly installed, heuristically controlled, backup
mechanism (in the spirit of CONNIVER) which prevents trapping18. The remaining
difficulty with Ex. 11 might be eliminated by further changes to our backup
mechanism.

"Trapping occurs in proving a conjunction (P (x) A Q (x), when a value x0 given to satisfy
P (x) later fails on Q (x), and when another value x, would have satisfied both.
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7.7 Open questions

The rules here are given for only one set variable. What happens when we try to
use them for more than one set variable, or for a combination of set variables
and family variables (and/or higher order variables)? Hand proofs seem to
indicate that these rules can still be applied, with minor alterations, but much
needs to be done to determine their completeness. If more than one set variable
(or family variable) is present, how many passes are needed by the prover?

Can these methods be extended for instantiating simple function variables
(that is, sets of ordered pairs)? Ex. 15 is actually such a case. How about sequences?
If one uses the Bolzano-Weierstrass theorem instead of the (equivalent) least
upper bound axiom to prove theorems in intermediate analysis (like Ex 11),
then instead of instantiating a set variable A, we would be required to instantiate
a sequence variable. Is that just as easy?

7.8 Future plans

Try more examples.
Provide for a heuristic backup.
Heuristic control of the use of lemmas and hypotheses.
More basic and combining rules to handle other cases that we now know

and that may arise.
Procedures for instantiating simple function variables.
Procedures for handling many set and higher order variables at once.

(Obviously this can have only limited success because of theoretical limits on
completeness in higher order logic.)
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APPENDIX I

Glossary of terms

x e A

P(x)}
P Q
FAQ
P V Q
-P
3x f(x)
V x P(x)

x is a member or element of the set A
The set whose only member is a
The set of those x's for which P(x) is true
P Q; that is, if P then Q
P and Q
For Q
not P
for some x, P(x); that is, there exists an x such that P(x)
For all x P(x); that is, P(x) is true for each x
the set of all real numbers
the set of all rational numbers
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A is dense in R for each two numbers x and y in R there is a number z in A
with x < z <y

See a calculus book for the definition of "continuous".

See a topology book (for example, J. L. Kelly, General Topology, Van Nostrand),
for definitions of terms such as: topology, open, closed, neighbourhood, union,
regular topological space, cover, refinement.

APPENDIX II

Some completeness results

The purpose of this Appendix is to show that the rules of Sec. 3 do indeed
give the maximal solution for the cases considered.

Theorems 1-7 below establish this for the basic Rules Bl-B7 of Fig. 2, and
Theorems 12-13, for combining Rules CI-C3 of Fig. 3. Theorem 8Q relates to
Basic Rule BQ, Fig. 2, and Theorems 14-15 to Figs. 6 and 7.

In this Appendix we will consider formulas Q which contain only one set
variable A, and such that A occurs only in the form x e A, or as arguments of
skolem functions.

We will say that a subformula S of Q is in an EVEN position of Q if Q has
one of the forms:

(S AR),(R AS),(SV R),(RVS),(R--+S),V xS, 3x S,

and if A does not occur in R except as a skolem argument, and S is in an ODD
position of Q if Q has the one of the forms:

And we furthermore say that S is in an EVEN (ODD) position of Q if S is in
an EVEN (ODD) position of a subformula S' of Q which is in an EVEN position
of Q, or if S is in an ODD (EVEN) position of a subformula S' of Q which is in
an ODD position of Q.

We say that A occurs EVENLY in Q if each occurrence (x e A) in Q is an
EVEN occurrence. Similarly we say that A occurs ODDLY in Q if each occurrence
(x e A) in Q is an ODD occurrence.2 For example, if Q is

Vx(xeA-0.p(x))A3y(yeA)

then A occurs oddly in the first conjunct and EVENLY in the second.

'The only logical connectives are: A, V, —, V, and 3.
'Clearly, if A occurs EVENLY (ODDLY) in P, and P is an EVEN position of Q, then A
occurs EVENLY (ODDLY) in Q, and if P is in an ODD position of Q then A occurs ODDLY
(EVENLY) in Q.
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A set A0 is said to be a maximal solution for Q(A), if Q(A0) is a theorem,
and for any set B,

(Q(B) A Ao B).

That is, Ao is a "largest" set A which will satisfy the theorem 3A Q(A).
The symbol U will represent the universal set (or class). Here the only

properties of Uwe will need are: x e U, for all x; and D n U= D, for all D.
Recall the definitions of subset property, superset property, and intermediate

property from Sec. 3.2.

Theorem 1. If "A" does not occur in P(x), then Ao = {z: P(x)} is the maximal
solution for BA V x (x e A P(x)).

Proof. It is a solution because by substituting A0 for A we get

V x (P(x)-- P(x))

which is true.
To show that A0 is maximal we can show that B C A0 for any solution B,

that is, that

Vx(xeB--q'(x))--+BCA0,

or, successively,

V x (x e B P(x)) Az eB z eAo ,
Vx(xell---P(x))AzEB--P(z),

which follows by substituting z for x in the first hypothesis.

Theorem 2. If "A" does not occur in P(x) or f(x), then

A0 = {z: Vs (z = f(s) —P(s))}

is the maximal solution for 3A V x (f(x) E A P(x)).

Proof The proof of this is like that of Theorem 2' below.

Theorem 2'. If "A" does not occur in P(x,y) or f(x,y), then

A o = :V rV s (z = f(r,$) P(r,$))1

is the maximal solution of 3A V x V y (f(x,y) e A P(x,y)).
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Proof. It is a solution because by substituting A0 for A we get

Vx Vy (Vr Vs (f(x,y)= f(r,$) —0 P(r,$)) —0 P(x,y))

which is true (substitute x for r and y for s).
To show that A0 is maximal we can show that B C A0, for any solution

B, that is, that

VxVy (f(x,y) e B --0 P(x,y))--* B cAo

or, successively,

VxVy (f(x,y)e B --0 P(x,y)) A z B —0 z eA0
VxVy (f(x,y)e B P(x,y)) Az eB --0.VrVs (z = f(r,$) 
VxVy (f(x,y)e B Az eB Az = f(r,$) —0 P(r,$),
VxVy (f(x,y)e B --0 P(x,y)) A f(r,$) e B —0 P(r,$),

which follows by substituting r for x and s for y in the first hypothesis.

Theorem 3. If "A" does not occur in b or P then

A 0 = {z: z = b

is the maximal solution of (b e A P).

Proof It is a solution because by substituting A0 for A we get

((b = b P) P)

which is true.
To show that A0 is maximal we can show that B C A0 for any solution B,

that is, that

(beB-0.P)--0BCA0,

or, successively,

(beB--0P)AzeB--0(z=b-0.P),
(beB--0P)AzeBA z=b-0P,-
(beB-0P)AbeB---0.P,

which is true.
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Theorem 4. If "A" does not occur in b, then

A0= fi: z bl

is the maximal solution of (b A).

Proof. We must show that

b {z: z b}

which is immediate, and

b1B---+BCA0,

Or bBAzeB—÷z0b,,

which is immediate.

Theorem 5. If "A" does not occur in P then U is a maximal solution of P.

Proof. This is obvious.

Theorem 6. U is a maximal solution of (t e A).

Proof. U is a solution because (x e U) is true for any x. Also it is maximal since

B C U for any B.

Theorem 7. If every occurrence of an expression of the form (t e A) in E, is in

an EVEN position of E, and "A" does not occur in E except in one of these

(t e A), then U is a maximal solution for E.

Proof. Use structural induction, and Theorems 6 and 5.

Theorem 8. Each of the following has the subset property.

.1 Vx (x e A P(x))

.2 Vx (f(x)e A P(x))

.2' VxVy (f(x,y)e A --o• P(x,y))

.3 (beA --+P)

.4 (b 1A).

Proof In each case we must assume that B is a solution of the given formula and

that C C B, and show that C is also a solution of that formula. For example in

.1 we must show that

Vx(xeB--0P(x))--0V z(zeC--0.P(x)),
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but this is immediate since CC B. Similarly

Vx (f(x) e B P(x))--+ V z (f(z) e C --+
VxVy (f(x,y) e B —+ P(x,y)) ---0. Vs V t (f(s,t) e C P(s,t)) ,
(b e B (b e C F),

and (b?B---b1C). Q.E.D.

Theorem 9. Each of the following has the subset property.

.1 3 y Vx (x e A ---+ P(x,y))

.2 3 y Vx (f(x)e A P(x,y))

.2' 3 z VxVy (f(x,y)e A --+ P(x,y,z))

.3 3 ,y (b(y) e A P(y))

.4 3 y (b(y) I A).

Proof. Similar to the proof of Theorem 8. We must show that if CC B then

3y Vx (x e B P(x,y))--). 3y Vx (x e C P(x,y)) .

But this is equivalent to

(C B A 3y [V x (x e B P(x,y))--+ V x (x e C --+ P(x,y))]

which is true. Similarly for 9.2-9.4. Q.E.D.

Remark. Since V x 3y (x e A —÷ P(x,y)) is equivalent to Vx (x e A —*
3y P(x,y)), it follows from Theorem 8.1 that V x 3y (x e A P(x,y)) has the
subset property. A similar result holds for Vx 3y (f(x) e A ---+ P(x,y)), and
VxVy 3 z (f(x,y)e A P(x,y,z)).

Theorem 10. If "A" does not occur in t then (t e A) has the superset property.

Proof. Suppose that B is a solution of (t e A) and B C C, then t e B and hence
t e C. Q.E.D.

Theorem 11. If every occurrence of "A" in E is of the form (t e A) where
(t e A) is in an EVEN position of E, and "A" does not occur in t, then E has the
superset property.

Proof Use structural induction and Theorem 10.

Theorem 12. If P and Q each have the intermediate property and "A" does not
occur in H or R, then (P A Q), (H —÷ P A Q), and ((R V P) A Q), have the
intermediate property.
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Proof. This is immediate.

Theorem 13. If A1 is the (only) maximal solution of P, and A2 is the (only)
maximal solution of Q, and P and Q have the intermediate property, then
(A1 11 A2) is the (only) maximal solution of (I' A Q), and of (H P A Q), and
of ((R V P) A Q), provided that "A" does not occur in H or R, and provided
that (P A Q), (H --+ PA Q), and ((R VP) A Q) have any solution.

Proof. We will show that (A1 n A2) is the maximal solution of (P A Q). The
result for VI P A Q) and ((RV P) A Q) follows similarly.

Suppose that B is a solution of (P A Q). Then it is a solution of P and of
Q, and since A1 and A2 are maximal solutions of P and Q respectively, it follows
that B C A1, and B C A2, and hence that BCA2 fl A2. Thus we have that B and
Al are solutions of P and that

BCA2 n A2 C A .

Thus since P has the intermediate property, it follows that (A1 (1 A2) is a solu-
tion of P. Similarly (A1 n AD is a solution of Q, and hence (A1 n A2) is a
solution of (P A Q). It is also maximal since

BCAinA2.

Theorem 14. (See Fig. 6). If At P(A) has the (only)t maximal solution

Al= {z: p(z)},

and P(A) has the subset property, and Q(A) is

Vx (x e A A q(x)--+ f(x)e A)

and if

3A (P(A) A Q(A))

has a solution, then it has the maximal solution,

A2 = {z: p(z) A [Vn (n e w —÷ p fn(z))
V 3N (N e A:—q fN(z)AV n(n e (41V In <N--4.11 fn(z)))J1

(*)

Proof The proof that A2 is a solution is entirely similar to that given for
Theorem 15 below.

The proof that A2 is maximal will now be given.

t See footnote 5, p. 60.
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To show maximality, we must show that if Ao is any solution of (*) then
Ao CA2. That is,

(POO A NA 0) —0.AocA2),

or equivalently

H1 P(AO)
112 A V x(x e Ao A q(x)--, f(x)eAo)
H3 AX0EA0

--+

P(xo)
C2 A [V n (n e c —÷ P fnpo))

V 3N(NewA--qf (xo)AVn(newAn<N--+pfn(xo)))].
To prove C1, we first recall that Al = {z: p(z)} is a maximal solution of

P (A). So since Ao is also a solution of P(A) it follows that Ao C Al. Thus,
using H3,

xoe AogAi= {z: p(z)} ,

and hence xo e p (z)} , from which C1 follows.
To prove C2 let us suppose that V n (n f (x0)) is false, and let n2

be the first member of c..) for which

--p fn2 (xo).

If n2 = 0, then f "2(xo)1= f3(x0) = xo, and --p (x0) in contradiction to C2
(which was just proved). Thus we may assume that n2> 1, and let n1= n2 — 1.
So we have n1 e co and

115 V n (n e An<ni--+P (fn(xo))).

Now if it were true that

(A) V n (n e o.) A n <n2---+ (fn (x0)))

it would follow from H2, H3 and Hs (using induction) that

fni+1 (x0) eAo•

and hence, since Ao C Al C {z: p(z)}, that

1)(fn1+1 (x0))

Or P(fn8 (xo))
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in contradiction to H4. Thus (A) is false and there is a first N e w for which

N < n1 and fN (x0).
Since N < n1, it follows from H5 that

NewA —qfN(x0)AVn(newAn<N f (xo))

as required for C2.
This completes the proof of Theorem 14.

Theorem 15. (See Fig. 7). If 3A P(A) has the (only)t maximal solution

Ai={z:P(z)},

and P(A) has the subset property, and Q(A) is

VxVy ((x,y) e A A q(x,y)-0 f(x,y) e A)

and if

3A(P (A) A Q (A))

has a solution, then it has the maximal solution

A2= 1z: p (z) A [V n (n e w P (z))
V 3N (N e w A —q fN (z) A V n (n e w An <N p f (z)))11

Proof We show here that A2 is a solution. The proof that it is maximal is entirely

similar to the proof of maximality in Theorem 14.

We must show that P(A2) and Q(A2) are true. Since A1 is a solution of

BA AA), and A2 A1, and since P(A) has the subset property, it follows that

P(A2) is true. We must now show Q(A2) is also true, that is, that

qx,Y) e A2 A q(x,Y)--q(x,Y) e A2)

or equivalently,

(*) p(x,y) A [V n (n ew—op fn(x,y))

V 3N (N e w A—q fN(x,y)AV (newn An <N—op fn(x,y))1

A q(x,y)—op f(x,y)

A [V n (n e w
V 3N (New A 

qfN (f(x,y)) A V n (n ewAn <N —op fn(f(x,y))].

t See footnote 5 of the paper.
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This theorem (*) is true if we can prove the two subgoals (*I) and (*2)
below. (The disjunction in the hypothesis of (*) is split to help form the two sub-
goals (*1) and (*2).) Note also that fn (focty)) fn +1 c

P(x,Y) (*1)
H2 AVn(neo.)--).pfn(x,y))
Ho A q(x,y)

P.ax,Y)
C2 A V no (no e co --0 p fno+1(x,y))

P(x,Y) (*2)
14
14 q(x)

PAX,Y)
A fN /X+1 ,3N(Ne 6) y) A V no (no e co A no<N--

P

In proving Conclusion Cl of (*1) we use hypothesis H2 with n = 1. (Note
that fl(x,y) is the same as Ax,y).)

In proving Conclusion C2 of (*1) we use hypothesis H2 with n = no + 1.
In these two proofs we used the facts that 1 e co, and that no + 1 e

whenever no e
We now come to Conclusion Cl of (*2). Since by Ho,q (x) is true, it follows

from 14 that No 0 0, that is, that N0> 1. So we can taken = 1 in 14 to reach
the desired conclusion CI.

In proving Conclusion CI we again note that N0> 1. Also by 14 we have
that No e co. Thus No — 1 e co, and we can take N = No — 1 in C. With this
substitution for N, we are left to prove

C21

C22

p fno+t(xa)

A —q fNo,(x,y)

under the assumption that

114 noe co A no<N0-1.

C21 and C22 will both follow from 14 with n = no + 1, after we verify, with
the help of H4, that no + I e co and no <No — I .
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APPENDIX III

Further details of examples

Example 14. Verification of subgoal (2). (Continued from page 80)

We must show that

where

qx,Y)e A2 A q(x,y)---)1(x,y)e A2)

A2 = 1Z: VSVt g(s,t)--o.P(s,t))

AV n [new A q(fn(111(z),112(z))- —VsVt (fn+1(111(z), n2(z))

= g(s,t)---0-P(s,t)))1

= 1z: VsVt (z = g(s,t)--).P(s,t))

AV n VsVt [n e w A q(fn (111(z), 112(z)) A fn+1 (IVA 112(z))

= P(s,t)11

That, is we must show that

VsVt ((x,y)= g(s,t)---*• P(s,t))

112 AVnVsVt [n ewAq fn(x,y) A fn+1(x,y) = g(s,t) P(s,t)]

113 A q(x,y)

C1 VsVt (f(x,y)= g(s,t)--+ P(s,t))

C2 AVnVsVt [n ewAq fn+1(x,y) A fn+2(x,y) = g(s,t)--0.P(s,t)].

To prove C1 we assume

H4 f(x,y)= g(so,to)

and prove

Cu1 P(so, to).

Using H2 with s = so, t = to, and n = 0, we are left with the subgoal

Clew Aq(x,y)Af(x,y)=g(so,t0)

which follows from 113 and H4.

To prove C2 we assume

115 noew
H6 A q fno+1(x,y)
117 A fno+2(x,y)= g(so,to)

C21

and prove

P(so, to).
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Using H2 with s = so, t = to, and n = no + 1, we are left with the subgoal

no +1 ecoA q fno+1(x,y) A fno+2(x,y)= g(s0, to)

which follows from Hs, H6, H7, and the fact that (meco--m+le(.o). Q.E.D.

In this example, it was necessary to show that A2 was indeed a solution
because we used Rule BC2' of Fig. 7, which is not guaranteed to produce a solu-
tion, and certainly not guaranteed to produce a maximal solution. Indeed A2 is,
in general, not maximal for Ex. 14, as the following counterexample will show.
However, for the special case of Ex. 14 given in Ex. 15 we do have a maximal
solution, as is shown below. Of course, Rule BCI' of Fig. 7 would always give a
maximal solution of Ex. 14 as is proved in Appendix II.

Counterexample. To show that the A2 gotten here by using Rule BC2' of Fig. 7;
will not always give a maximal solution.

First recall that Ex. 14 is:

3A Vx V y [(g(x,y)e A --q)(x,y)) A ((x,y)eA Aq(x,y)
f(x,y)e A)] .

We saw above that Rule BC2' gives the solution

A2= 1Z: VSV t = g(s,t) P(s,0)
VnVsVt [n e ca A q(fn(z)) A fn+1(z)= g(s,t) P(s,t)] y.

To see that this is not always maximal let

g(x,y)=--i (x,y)
P(x,y).s.: x>
q(x,y)Ex 00
f(x,y) x — 2.

(This in essence is. Ex. 13.)

Then
A2= {z:VsVt(z=(s,t)—+s>0)
AVn V si V ti [necJA 1st term (X st(s — 2, t)"(z)) 0
A (X st(s — 2, t)2+i(z)) = (sb ti) > 0] }

= {(x,y): VsVt ((x,y)= (s,t) s > 0)
AVnbsi Vt1[newAx-2n00
A (x-2n-2,y) = (sli 1'1) > }

= {(x,y): x>0AVn (n e ca Ax 2n —*x-2n-2 >0)].
= {(x,y): x>0AVn (n e = 2n Vx>2n+ 2)1
= 0 (The empty set).
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While A3 = 0 is indeed a solution of this special case of Ex. 14, it is not a
maximal solution, because (exactly as in Ex. 13)

= {(x,y): x 2 A 3.1■1(Ne co A x = 2/V)}

is also a solution and A; 0 0-
Incidentally, Al is maximal because it is produced by Rule BC l', which

always gives maximal solutions. (See Theorem 15, Appendix II.)

APPENDIX IV

Some example theorems about general inequalities

We will list here some of the theorems which appear as subgoals in the proof
of Ex. 11. They are (except Gl) theorems about general inequalities (i.e., where
both existential and universal quantification is present).

The question we want to raise, is whether some of the methods of Pres-
burger Arithmetic and linear programming can be extended for use on these
kinds of theorems, and thereby avoid having to explicitly use the axioms for
inequalities and real numbers.

These example theorems will be given in terms of LUB, LUB1, LUB2, Ll
and L2, which are as follows:

LUB: ([3u Vt(t < b A f(t) <0 —0 t < u) A3r(r <b A f(r)‹ 0)]
—0.51 [Vx(x <b A f(x)<0 x <1)

A V y(Vz(z <b A f(z) 0 z < y) 1 < y)l)

LUB1: Vx(x <b A f(x)<0 --+ x <1)

LUB2:

Ll: Vx(a <x <b A 0 <f(x)---0 3t(t <x A Vs(t<s<x 0 <f(s))))

L2: Vx (a 6x <b A f(x)< 0 —t (x <t A Vs(x <s <t —f(s)< 0)))

EXAMPLE Theorems

G1 : (f(1)<OA0<f(b)Ab<1—+ b<l)
This is a ground theorem, so the ordinary Presburger methods, with equality

substitution, will suffice.

G2: (f(1)<O1A0<f(b)Al<t Ab<1--3.3y[(Vz(z<b Af(z)60
—z<y)Ay<1])

G3: (f(1) < 0 A0<f(b)AVs(0<f(s) Al<s ---*t<s) ALUB1ALUB2

G4: (a < b A f (a) <0A0<f(b)ALUBAL1 AL2---q) < f(1))

G5: (a <b A f(a) < 0 A 0 < f(b) A LUB A Ll A L2 ---4.3x(f(x) < 0 A 0
<f(x)).
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A Production System for Automatic Deduction

N. J. Nilsson
Artificial Intelligence Center
SRI International, USA

Abstract

A new predicate calculus deduction system based on production rules is pro-
posed. The system combines several developments in Artificial Intelligence and
Automatic Theorem Proving research including the use of domain-specific
inference rules and separate mechanisms for forward and backward reasoning.
It has a clean separation between the data base, the production rules, and the
control system. Goals and subgoals are maintained in an AND/OR tree structure.
We introduce here a structure that is the dual of the AND/OR tree to represent
assertions. The production rules modify these structures until they "connect"
in a fashion that proves the goal theorem. Unlike some previous systems that
used production rules, ours is not limited to rules in Horn Clause form. Unlike
previous PLANNER-like systems, ours can handle the full range of predicate
calculus expressions including those with quantified variables, disjunctions,
and negations.

1. BACKGROUND

Logical deduction is a basic activity in many artificial intelligence (Al) systems.
Specific applications in which deduction plays a major role include question-
answering, program verification, mathematical theorem-proving, and reasoning
about both mundane and esoteric domains.

Of the several different approaches to deduction pursued by Al research,
we might mention two extremes. In one (see for example, Hewitt, 1971),
deduction procedures are, based on more or less intuitive, ad hoc, and informal
considerations. Such an approach derives its main advantage, namely efficiency,
from the specialized, domain-dependent heuristics that can be tightly encoded
in the system. The approach sometimes suffers, however, from excessive rigidity
that frustrates the evolutionary development of systems. Most examples of
designs based on this approach also exhibit deficient logical competence.
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(See Moore, 1975, for a discussion of these deficiencies and some remedial
suggestions.)

At the other extreme, deduction is based on some formal logical system

such as the predicate calculus. (See for example, Chang and Lee, 1973.) This
approach confers the power of a well-developed logical formalism and is corn-

patible with the evolutionary development of systems. When deductions are

based on uniform (that is, domain-independent) inference rules, however, the

resulting systems are often too inefficient to be useful.
In this paper we shall propose a deduction system that enjoys most of the

logical power of the formal systems without embracing their inefficient uni-

formity. It uses specialized, domain-dependent inference rules that are encoded
as productions. As with most production systems, it can easily be modified

and extended by adding new production rules or by modifying old ones. The

system is based on a synthesis of several ideas from various authors in artificial
intelligence and automatic theorem-proving. (The most immediate intellectual
debts are to Bledsoe, 1977; Fikes and Hendrix, 1977; Hewitt, 1971; Kowalski,
1974a,b; Loveland and Stickel, 1973; Moore, 1975; and Sickel, 1976. Related

work has been done by Nevins, 1975; Reiter, 1976; and Wilkins, 1974.)
Before describing the system in detail, we shall briefly mention some of

the factors affecting its design. First we would like, in particular, to avoid the
inefficiencies of resolution-based theorem-proving systems. As has been
observed by several authors, the "clause form" used by resolution theorem-
provers contributes to inefficiencies in two major ways: common sub-
expressions in goals or axioms are "multiplied-out" into several different clauses,
each provoking its own separate but possibly redundant proof attempts; and
conversion to clause form destroys possibly valuable heuristic information
carried by the form of implicational statements among the axioms.

Second, we prefer a system in which the basic deduction steps have
"common-sense" intuitive appeal. The process of resolution is, for some,
difficult to relate to more familiar reasoning processes. This feature is especially
important in those systems whose reasoning must be easily understood by
users. Ease of understanding is also advantageous during system design and
debugging. The processes of "natural deduction" more closely realize this goal
than does resolution.

We want to be able to incorporate domain-specific knowledge into the
system. This knowledge might consist of special inference rules and how to use

them. In this regard, it is sometimes especially important, for efficiency, whether
a deduction step proceeds forward (from the assertions toward goal) or back-
ward (from the goal toward the assertions). The domain expert, who participates

in the design of the system, can often indicate the most efficient direction for
each inference.

We are sufficiently impressed with the advantages of production systems

(Davis and King, 1977) that we would like to model our design on that paradigm.

Previous production system designs for deduction systems, however, had some-
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what limited logical power. (An example is the restriction to Horn Clauses in
Kowalski, 1974b.) We want our system to be able to employ the full expressive
power of the first-order predicate calculus, including the ability to reason with
disjunctive assertions, negations, and quantification of variables. Certainly our
system should be sound (that is, it should not prove invalid expressions). With
regard to completeness (that is, being able to prove any theorem), we are less
doctrinaire. We insist only that it behave reasonably according to criteria specific
to the domain of application. Any incompletenesses that cannot be tolerated
must be repairable by evolutionary changes to the system.

We also note that the production system paradigm permits a convenient
separation between the "logical knowledge" embodied in the assertions and in
the production rules and the use of this knowledge by a control system. Changes
can be made to each component separately, depending on whether the logic or
its control is to be changed. In particular we envision a more domain-specific
control system than the simple, uniform interpreter used by most resolution
systems.

We want the methods used by our system to be easily extendable to repre-
sentations that are "richer" than the usual implementations of predicate calculus
data bases. We have in mind, specifically, semantic networks (Fikes and Hendrix,
1977) and "structured-object" representations (Bobrow and Winograd, 1977)
with built-in features for indexing, taxonomic reasoning, and sorting of argu-
ments according to type.

Lastly, we attach great importance to the "aesthetic appeal" of the system.
It should have a clean design, and it should itself be a clear statement of a useful
synthesis of some of the best ideas in automatic theorem proving. We will gladly
trade some efficiency for enhanced clarity.

2. OVERVIEW OF THE SYSTEM

The classical model of theorem-proving in the predicate calculus involves three
major components. First, there is a set of axioms or assertions that express
information about the domain of application. For geometry, for example, these
would be the fundamental postulates plus whatever other theorems we want to
start with. (It is neither necessary nor desirable to limit the assertions to some
primitive or minimal set.) Second, there are domain-independent, uniform rules
of inference (such as resolution, modus ponens) that can be used to derive new
assertions from existing ones. Finally, there is a conjectured theorem, or goal,
to be proved. A proof consists of a sequence of inference rule applications
ending with one that produces the goal.

AI research has produced an important deviation from this approach. The
assertions are divided into two distinct sets: facts and rules. Facts are specific
statements about the particular problem at hand. For example, "Triangle ABC
is a right triangle" would be expressed as a fact. Rules are general statements,
usually involving implications or quantified variables. For example, "The base
angles of an isoceles triangle are equal" would be expressed as a rule. Rules
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are used in combination with facts to produce derived facts. One could think
of them as specialized, domain-dependent inference rules.

This distinction can be further explained by a simple example. In the
classical approach, from the two assertions A and A => B we could derive the
assertion B by modus ponens. In the AI approach, from the fact A we could
derive the fact B by using the special rule A =-> B. The distinction between
facts and rules is an important part of our deduction system.

The rules will be used as production rules. They will be invoked by a pattern
matching process. Some will be used only in a forward direction for converting
facts to derived facts; others will be used only in a backward direction for con-
verting goals to subgoals. The developing sets of facts and goals will be repre-
sented by separate tree structures. Goals will be represented in an AND/OR
goal tree, and facts will be represented in a newly-proposed structure that we
shall call a fact tree. Rules are employed until the fact tree joins the goal tree
in an appropriate manner. The entire process will be under the supervision of
a control strategy that decides which applicable rule should be employed at any
stage. We shall not propose any specific control strategies in this paper but
shall merely point out that the designer has the freedom to use any domain-
specific information whatsoever in the control system.

Several designs of this general sort have been proposed (see, for example,
Kowalski, 1974b), but most of them have had restrictions on the kinds of
logical expressions that could be accommodated. Although AND/OR goal
trees have been used before, the notion of a fact tree, dual to the goal tree,
allows some interesting correspondences, such as that between "reasoning
by cases" and dealing with conjunctive goals, for example.

We shall first explain the system by means of the propositional calculus
and then indicate how we deal with quantification.

3. GOAL TREES AND FACT TREES

A. Conversion of facts and goals to standard form

In this section we shall introduce the tree structures used to represent collections
of facts and goals. Facts and goals can be any expressions of the predicate
calculus (propositional calculus for this section). We do convert them, though,
into a standard form. Implications are changed to disjunctions by using the
equivalence between (A => B) and (—A & B). Negations are "moved in" by using
the equivalences between — (A & B) and (—A V "B) and between "(A V B) and
(—A & —B). Repeated negations are eliminated by using the equivalence between
--A and A. Once a goal or fact expression has been converted to this standard
form, it will consist of a conjuctive/disjunctive combination of literals. For
example, the expression "If => [G & —(F & —B)1 would be converted to
HV [G &(—F V B)}.

Ordinarily the domain expert, who is providing us with facts and rules,
would not give us any facts containing implications. These would be given as
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rules. Also, goal statements would not ordinarily contain implications. (The
"hypotheses" of a theorem to be proved would ordinarily be represented as
facts, the conclusion as a goal.) We may have disjunctive facts, however. The
distinction between —A V B as a fact and A => B as a rule is simply this: as a
fact, the domain expert is simply saying that either —A or B is true and he doesn't
know which. As a rule, the domain expert is saying that A is useful for proving B.
The system makes quite different use of the two forms.

Also note that our conversion of facts and goals to standard form is not
the same as conversion to clause form in resolution. In general, clause form
involves more expressions. Our standard form is very close to the form of the
original expressions.

B. AND/OR goal trees

For a goal of the form (Al & & An) we must prove all of the goals Al and
... and An. For a goal of the form (Al V ...V An), it suffices to prove one of the
goals Al or ... or An. Structures called AND/OR goal trees (Nilsson, 1971) are
used in many AI systems to represent collections of subgoals and their relation
to the main goal.

Any goal expression that has been converted to our standard form can be
represented by an AND/OR goal tree having single literals at its tips. For
example, the expression H V [G & (-7 V B)] would be represented by the
AND/OR tree shown in Fig. 1.

Fig. I — An AND/OR tree.

In AND/OR goal trees, nodes (such as node G in Fig. 1) whose incoming
branches are connected together by an arc are called AND nodes. If their
incoming edges are not so connected, the nodes are called OR nodes.
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C. OR/AND fact trees

It is convenient to represent the facts to be used in a deduction by a structure
that is the dual of the AND/OR goal tree. We shall call this dual structure an
OR/AND fact tree. The notational conventions for the fact trec are the reverse
of those for the goal tree. We shall represent conjunctive facts by a structure
consisting of AND-nodes, thus:

Disjunctive facts will be represented by a structure consisting of OR-nodes,
thus:

Note that for fact trees the arc connecting the branches is used with disjunctions
rather than with conjunctions. Also, fact trees are drawn "upside down" com-
pared with goal trees.

Any fact expression that has been converted to our standard form can be
represented by an OR/AND fact tree having single literals at its tips. For
example, the expression A & [B V (C & & D would be represented by the
OR/AND tree shown in Fig. 2.

The reason that we use opposite conventions to denote disjunctions and
conjunctions in fact and in goal trees has to do with the nature of their duality.
We shall see later that these opposite conventions will simplify some definitions.

(For both goals and facts we will represent repeated instances of the same
literal by different nodes. This practice allows us to use trees instead of graphs.)

D. Connecting fact and goal trees: Proof termination

The problem of making a deduction is to "connect" the goal tree to the fact
tree. This will be done mainly by using rules to extend the trees. We will also
admit a process that allows a type of tree pruning. But before moving on to
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A&I.Bv(C&E)J&D

Fig. 2 — An OR/AND tree.

discuss these subjects, let us first define precisely what is meant by "connecting"
a goal tree to a fact tree.

The connections between fact and goal trees are at nodes labelled by the
same literal. In the original trees, such nodes must be tip nodes. After the trees
are extended by rule applications, the connections might occur at any node
labelled by a single literal. We shall call nodes labelled by a single literal literal
nodes. After all such connections are made, we still have the problem of deter-
mining whether or not the expression at the root of the goal tree logically
follows from the expression at the root of the fact tree. Our proof procedure
will terminate when this determination can be made (or when we can conclude
that it can never be made). The termination condition is a simple generalization
of the condition for determining whether the root node of an AND/OR tree
is "solved" (Nilsson, 1971, p. 89). The termination condition is based on a
simple symmetric relationship, called CANCEL, between a fact node and a
goal node. In the definition of CANCEL we use the phrase arced nodes to
refer both to AND nodes in goal trees and to OR nodes in fact trees. If CANCEL
holds for two nodes n and m, we shall say that n and m CANCEL each other.
CANCEL is defined recursively as follows:

Two nodes n and m CANCEL each other (that is, CANCEL(n, m) holds)
if one of (n, m) is a fact node and the other a goal node, and

0) if n and m are labelled by the sarn. e literal,
or 1) if n has arced successors, {sil, such that CANCEL(si, m) holds for

all of them,
or 2) if n has unarced successors, -[sil, such that CANCEL(si, m) holds

for at least one of them.
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Our definition of CANCEL supports a simple termination checking process
that starts at nodes labelled by the same literal and propagates the CANCEL
relation toward the roots. The proof procedure terminates successfully whenever
we can show that the root of the fact tree and the root of the goal tree CANCEL
each other.

Note, in particular, that our proof procedure treats conjunctive goal nodes
correctly. Each conjunct must be proved before the parent is proved. Disjunctive

fact nodes are treated in a dual manner. In order to use a disjunct in a proof,
we must be able to prove the same result, using each of the other disjuncts in
turn. This process is sometimes called "reasoning by cases".

The reader might like to establish termination for the goal-fact tree pairs
of Fig. 3.

(Av 13) &C

17 • • 18411I■

GOAL TREE 
15 • 14 • 16

A •1311
1 B •

1 C
I I

1

B

Fig. 3 — Example goal-fact tree pairs.
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E. Transferring between fact and goal trees: Checking for contradictory facts and
tautological goals

Being cancelled by the fact tree is only one of the ways that a goal can be
satisfied. We can also show that a goal is true by reducing it to a tautology.
Recognizing some tautologies in goals can be accomplished by a simple
extension of the termination process just described. We shall introduce our
discussion of this extension by describing how nodes could be transferred
between the goal and fact trees.

Suppose from a given set, F, of facts, we must prove a disjunctive expression
of the form GI V G2, where G1 and G2 can be any expressions. In logical
notation we can represent this problem by the expression:

FI— GI V G2.

(The expression "A I— B" means "B logically follows from A") Now we can
invoke what we shall call here the law of transfer to convert this problem into
either of the following ones:

(F & —G1)H G2
Or

(F& —G2) I— G1 .

That is, one of the goal disjuncts can be negated and transferred to the fact tree,
where it is conjunctively associated with the other facts. For example, the
tautological goal A V —4,1 can be represented as a goal A and a fact A. The termi-
nation check now reveals that the two root nodes CANCEL, so we have a proof.

In a dual fashion, we could recognize contradictory facts by transferring
one of the conjuncts of a fact conjunction over to the goal tree. To do so, we
negate the fact tree to be transferred and disjunctively append it to the goal
tree. In either case, when a tree is negated prior to transfer we need only negate
the literal nodes; the reversed conventions on arced and unarced nodes automati-
cally provide the correct interpretations when the tree is transferred.

But we really do not have to perform these transfer operations explicitly in
order to deal with tautological goals and contradictory facts. Instead, we can
allow oppositely signed literals of the same tree to CANCEL each other and then
use the rest of the definition of CANCEL to propagate CANCELled nodes
toward the roots. In this manner, the definition of CANCEL is extended to
apply to nodes in the same tree. In applying the definition, We need to label the
root of the goal tree and the root of the fact tree with the same identifier. Termi-
nation can now occur if the root of one tree CANCELS either itself or the root
of the other.

Note that proof strategies based on proof by contradiction (refutation)
involve transferring the entire negated goal tree to a conjunctive branch of
the fact tree. Also in some theorem-proving systems (for example, Fikes and
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Hendrix, 1977), disjunctive goals are split into alternative subproblems in
which the negation of the sibling goals can be locally added to the fact base
for each subproblem. This strategy corresponds to a local transfer process.
For our purposes, with our extended definition of CANCEL, it doesn't really
matter whether we leave the fact and goal trees as originally given or whether we
perform explicit transfer operations.

The reader will note that computing CANCEL relations within the same
tree corresponds to a type of resolution process. General resolution of facts
(or goals) is not so simply accomplished, however.

The transfer operation is one way of transforming a given problem into
a set of equivalent ones. Another type of transformation is used in some
systems (such as that of Fikes and Hendrix, 1977) for dealing with disjunctive
facts. Suppose our problem is to prove the expression G from the expression
F & (Fl V F2), where G, F, Fl, and F2 can be any expressions. We can convert
this problem into either of the following pairs of problems:

F I— —F1

F&F2I—G
Or

and

Fl— —F2

F&F1I—G.

That is, we first prove one disjunct false and then use the other to prove G.
But the subproblem F —F1 corresponds to a transfer operation that really
does not need to be performed by our system with its extended definition of
CANCEL. The other subproblem, F & F2 I— G, evolves naturally in our system
as a result of the recursive definition of CANCEL. There is a dual explanation
that can be given for dealing with conjunctive goals.

Now that we are well equipped to recognize when our proof process can be
terminated, we can begin discussing how rules are used to extend the fact and
goal trees. We first discuss the form of the rules.

and

A. Rule forms

We allow two. basic types of rules. One, called an OPERATOR, is used to
extend the fact tree. OPERATORS permit the system to reason in a forward
direction. The other type, called a REDUCER, is used to extend the goal tree.
REDUCERS permit the system to reason in a backward direction. OPERATORS
and REDUCERS are roughly analogous to the antecedent and consequent
theorems, respectively, used in the PLANNER language (Hewitt, 1971). As in
PLANNER, OPERATORS and REDUCERS are invoked by a pattern matching
process. Each has a distinguished literal, called the pattern, that is used to match
a corresponding literal in the fact or goal tree.

The basic form of an OPERATOR is

A => EXP
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where EXP is any predicate calculus expression, and where an underline beneath
a literal indicates that. this literal is the pattern. Thus OPERATORS are always
implications whose antecedent consists of a single literal that is the pattern. If
this pattern matches a literal in the fact tree, then the fact tree can be extended
at this node by sprouting a descendant OR/AND tree representation of EXP.

The basic form of a REDUCER is

EXP => A

where EXP can be any predicate calculus expression. Again, the pattern is
underlined. REDUCERS are always implications whose consequent consists
of a single literal that is the pattern. If this pattern matches a literal in the
goal tree, then the goal tree can be extended at this node by sprouting a
descendant AND/OR tree representation of EXP.

It is only for reasons of simplicity that we constrain our rules to have single-
literal patterns. Useful variants of our system can be devised in which tree
structures more complex than a literal node are used as patterns. Of course the
matching process for these more complex structures would be correspondingly
more tedious. Also, later, we shall discuss a technique for achieving the effect of
more complex OPERATOR antecedents by allowing OPERATOR consequents
to contain rules.

It has been argued by Moore (1975) that the contrapositive of a REDUCER
should be expressed as an OPERATOR and vice versa. Thus if A => EXP is
useful as an OPERATOR, its contrapositive form, namely —(EXP) => —A, would
also be useful as a REDUCER. Our system will automatically add these contra-
positive forms for every rule entered into the system. (Note that after negating
an expression, we must move the negation in.)

The existence of the contrapositive forms of rules means that it does not
make any difference to our system whether goals and facts are kept on their
own side of the line or transferred. If a goal invokes a given REDUCER, then
the fact resulting from transferring that goal would invoke the corresponding
OPERATOR. Thus, it is really unimportant whether we maintain goals and facts
as given or whether we negate all of the goals, for example, add them to the
fact base, and look for a refutation. We shall adopt the convention of main-
taining goals and facts as given, mainly to ease the process of explaining the
behaviour of the system to the user.

B. Use of rules

The basic cycle of operation of our deduction system can be informally
described by the following steps:

(1) Initialize the goal and fact trees to the given expressions.
(2) If the termination check succeeds, exit.
(3) Use the domain-specific control strategy to select one of the literal

nodes and an OPERATOR or REDUCER whose pattern matches this
literal node.

(4) Apply the selected rule, extend the goal or fact tree, and go to (2).
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Rule application, is thus a pattern-directed process having effects on data
bases (fact and goal trees). The system design can thus reasonably be described

as a "production system" in the sense in which that term is generally used in
AI research. In the next section we shall show how the system might work on

some propositional calculus examples.

5. PROPOSITIONAL CALCULUS EXAMPLES

As a first example of how the system works, suppose we want to prove
-[H V [G & (B V —F)]} from the expression {A & [B V (C& E)] & Dl. We are
given the REDUCERS

.R1: C&E=> —F
and

R2: D => G

From these, we construct the corresponding OPERATORS

01:
and,

02: —G => 1,

The fact and goal expressions are already in standard form. We show their tree
representations in Fig. 4.

CANCELLED PAIRS

(9,5)
(12,5)

A81[Bv(C&E)l&D

Fig. 4 — Example fact and goal trees.
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-F 10

E•8

D •15

CANCELLED PAIRS

(9.5)
(12,5)
(15,3)
(11,3)
(11,1)

FACT TREE It

•
2

8 5

Fig. 5 — An intermediate stage of a proof.

H 13

GOAL TREE

D•
ti 
15

CANCELLED PAIRS

1

(9,5) (16.6)
12,5) 117,6
15,3) (10,6)

(11,3) (I2,6)
(11,1) (12,4)
(16,7) (12,1)
(17,8) (14,1)

(1,1)

FACT TREE 0

A

Fig. 6 — The final stage of a proof.
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In Fig. 4, we use capital letters next to the tip nodes for literals, and we
use numerals to label the nodes themselves for later reference. We connect
matching nodes by dashed lines. From Fig. 4 we see that nodes 9 and 5
CANCEL. Using the definition of CANCEL, we note that nodes 12 and 5
CANCEL. It will be helpful to keep a list of the CANCELled pairs. This list is
also shown in Fig. 4.
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None of the OPERATORS is applicable, but both of the REDUCERS are.
Suppose we apply' R2 first, adding node 15 to the goal tree. After this cycle,
the situation is as depicted in Fig. 5. We have updated the list of CANCELled
pairs. At this stage we have essentially reasoned only about one case of the
disjunct B V (C& E).

Now we apply the only remaining applicable rule, RI. The resulting trees
are shown in Fig. 6. The list of CANCELled pairs includes (1,1), so we terminate
successfully.

For our second example, we will illustrate how CANCELling nodes in the
same tree can be used to obtain a proof. Suppose our goal is to prove B V C and
we are given the following OPERATORS:

01: —C=>D
and

02: D => B

We will assume we have no facts. The problem would be straightforward if we
were to split B V C into two disjunctive subgoals such that while working on
subgoal B we could assume (locally) the fact C. This fact would combine
with OPERATOR 01 to produce fact D, which in turn would combine with
02 to produce B.

Our system does not, make these local assumptions, but the use of contra-
positive rules and CANCELling nodes within a tree accomplishes the same
thing. The contrapositives of our OPERATORS are the REDUCERS

R1: "13 => C

R2: —EP => —D .

Now RI can be used on subgoal C to produce subgoal D. REDUCER R2
can be used on this subgoal to produce subgoal —B. This subgoal CANCELS the
earlier subgoal B, with the ultimate result that the root CANCELS itself. (The
reader may want to verify this with the help of a diagram.)

A case of special interest occurs when a rule application produces a literal
node that CANCELS one of its own literal node ancestors. This corresponds
to a special case of ancestor resolution. Propagation of the CANCEL relation
may then ultimately result in a node CANCELling itself. For purposes of
CANCEL propagation, any node that CANCELS itself can be regarded as being
CANCELled by the root node of the opposite tree. (Self-CANCELing goal
nodes correspond to tautologies, and self-CANCELling fact nodes correspond .to
contradictions.)

Another interesting case occurs when a pair of sibling nodes CANCEL
each other. If the siblings are unarced, then obviously their parent CANCELS
itself, and we have the previous case. If the siblings are arced, the parent node
cannot possibly appear in a proof, so it is eliminated from the tree. If this
parent node is itself arced, its parent is eliminated, and so on. If a root node
is ever eliminated, the entire proof attempt fails.
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There are some problems (even in propositional calculus) that our system
cannot solve. Our tolerant attitude towards this sort of incompetence is
explained as follows. We are relying on the domain expert to provide guidance
about which rules are useful and in which direction they should be used. We
must hope that his expertise enhances the efficiency of the system. But depen-
dence on the expert carries a price: gaps in his expertise decrease the com-
petence of the system. There are some simple examples that illustrate this point.

Suppose that the goal is B V Cand the OPERATORS area =>B and -A =>C.
Unfortunately, these rules work in the wrong direction; if they were REDUCERs
instead, the goal would be easy to prove. (The contrapositive REDUCERS of the
given OPERATORS are of no help.) One way round this difficulty is to use

the iiriplict fact A V "'A as if it were explicitly in the fact tree. The given
OPERATORS could then be used to obtain a proof. Obviously this strategy of
assuming all tautologies to be explicit facts would defeat our attempts at
efficient operation, because it would allow every OPERATOR to be used in
every problem. Another possible approach to this problem would be to analyse
the OPERATORS to look for pairs having oppositely signed patterns. The
disjunction of their consequents could then be added to the fact tree. (A dual
approach could be used with REDUCERS.) But this catches only first-level
difficulties. The main point is that to increase efficiency we are using the rules
only in a given direction, and we are not allowing the rules to interact among
themselves, therefore the domain expert must pose the problem in such a way
that the system can still find a solution even with these restrictions.

Another troublemaker involves the goal A => C (that is, -44 V C) and the
facts A => B (that is, -A V B) and B => C (that is, -13 V C). Suppose there are
no OPERATORS and no REDUCERS. Since facts cannot interact among them-
selves, we cannot produce a proof. Again the domain expert has failed us in
not structuring the problem correctly.

Our attitude toward these problems is to avoid the easy but inefficient
approach of allowing intrafact and intrarule inferences. That is precisely what
our system is trying to escape. Instead, we will exploit the inherent modularity
of the system to correct inadequacies in the rule and fact base as they are
discovered.

6. EXTENSION TO QUANTIFICATION

A. Overview

The system we have described for propositional calculus can be easily modified
to deal with quantified variables in expressions. The modifications involve: (1)
replacing certain variables by skolem functions, (2) using unification during
CANCEL operations, and (3) associating a substitution with each CANCEL
relation. In this section, we shall discuss these modifications and present some
examples.
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B. Skolemization

. Fact expressions receive the same initial preparation as for the propositional
calculus case; implications are eliminated, and negations are moved in. We use
the equivalences between

--(EXISTS x) F(x) and (FORALL x) [F(x)]

and between

--(FORALLx) F(x) and (EXISTS x)[—F(x)]

to move negations in through quantifiers. Next we replace all instances of
existentially quantified variables by skolem functions of those universally
quantified variables in whose scopes they reside. Next we drop all quantifiers
and henceforward adopt the convention (for facts) that all variables are uni-
versally quantified. When a fact expression is in this form, it can be represented
as an OR/AND fact tree. The literals at the tip nodes may contain variables, of
course.

Goal expressions also receive the same initial treatment. Skolemization,
however, is different. In goal expressions, we replace all instances of universally
quantified variables by skolem functions of those existentially quantified
variables in, whose scopes they reside. (Recall that goals can be regarded as
negated facts, and that negated existential quantifiers are equivalent to universal
ones. .Thus, .it shouldn't be surprising that skolemization of goal expressions
uses conventions dual to those of skolemization of facts. If we are able to
prove some expression F(a) where a is a constant different from those used
in the facts and rules — that-is, it is a skolem constant — then we can deduce
(FORALL x) F(x) by universal generalization. Skolemization of universally
quantified variables in goals can thus be regarded as using the rule of universal
generalization in reverse.)

After elimination of the universally quantified variables, we can drop all
of the quantifiers and adopt the convention that all variables (in goals) are
existentially quantified. When a goal expression has been thus prepared, it can
be represented as an AND/OR tree.

Skolemization of variables in rules is just slightly more complicated. (We
allow rules of the same general form as in the propositional calculus case,
however, they can have arbitrary quantification.) Quantifier scopes in rules can
be of three types: the scope can be the entire implication or limited to either the
antecedent or the consequent. We skolemize any existential whose scope is
either the entire implication or its consequent. We skolemize any universal
whose scope is limited to the antecedent of the implication.

After skolemization, we can drop the quantifiers, and the variables will
"behave correctly". That is, when an OPERATOR is used, those variables
occurring in the new fact nodes will have assumed universal quantification,
and similarly for REDUCERS.
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C. Use of rules

When a rule is used to extend the fact or goal tree, its pattern must be unifiable
with the literal at the node from which it extends. It will be convenient to repre-
sent this matching process by an explicit edge of the tree and associate the most
general unifier (mgu) with this edge. Thus, when the OPERATOR A (x, a) =>
B(z, x) is used to extend the fact node A(b, y), we produce the following

structure:

0 B(2x)

We represent "match edges" in trees by dashed lines and label them by the mgu
obtained in unification. (Note that we do not apply to the rule consequent the
substitution obtained by unifying with the antecedent. The equivalent of this
operation will be incorporated into our new definition of CANCEL.) When a

match edge is added to the tree, the node associated with the rule pattern is
always an "unarced" node.

The variables that occur in the fact and goal trees should be kept stan-
dardized apart. This means that any variables that are common across goal
disjuncts or fact conjuncts can be given different names. For example, the goal
expression A(x) V B(x) can be changed to A(x) V B(y). The fact expression
C(x)& D(x) can be changed to C(x) & D(y).

D. Extending the definition of CANCEL

We must extend the definition of CANCEL so that it takes into account the
substitutions obtained during matching. For example, in propagating CANCEL
relations involving arced nodes to the parent of the arced nodes, we must make
sure that the substitutions for variables at these nodes are "consistent". The
necessary elaboration involves associating a substitution with each CANCEL
relation and modifying the definition of CANCEL to check for substitution
consistency.

In the definition, we use the concept of a unifying composition (uc).
The unifying composition of two substitutions, u1 and u2, is a most general
substitution, u, satisfying

(Lui)u =(Lu)u1 = Lu = (Lu2)u = (Lu)u 2

for an arbitrary literal L. (The expression Lu denotes the result of applying
substitution u to literal L.) If no such u exists, then the uc is undefined. The
uc of a set of substitutions {/41, Lid- is the uc of any member, 141, of the set
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with the uc of the rest of the set {142, ... tin}, The substitutions in a set are
inconsistent if the set has no uc.

The following are examples of unifying compositions (Sickel, 1976):

Ui U2

{a/x} -[b/x} undefined

Tx/Y1 Ty /z} {x/y, x/z}
{f(z)/x} {f(a)/x} {f(a)/x, a/z}
-[x/y,x/z} {a/z} -[a/x, a/y, a/z}
{s} } {s}

The new definition of CANCEL is that nodes n and m CANCEL

(1.1) If n and m are literal nodes of different trees and if the corres-
ponding literals are unifiable. In this case, we associate the mgu
with CANCEL(n, m),

or (1.2) If n and m are literal nodes of the same tree and if one of the
corresponding literals unifies with the negation of the other. In this
case, we associate the mgu with CANCEL(n, m),

or (2) If n has arced successors, {sib such that CANCEL(si, m) holds for
all of them, and the uc of the set of substitutions associated with
the individual CANCELS exists. In this case, we associate the uc
with CANCEL(n, m).

or (3) If n has unarced successors, {sil, such that CANCEL holds for at
least one of them and the uc of the edge substitution and the
substitution associated with the individual CANCEL exists. In this
case, we associate the uc with CANCEL(n, m).

The consistency requirement on the individual substitutions in part 2 of our
definition for CANCEL ensures proper propagation of CANCEL through arced
nodes. The consistency requirement in part 3 of our definition ensures that the
proper instances of matched rules are used to extend the trees. (In using part 3
of the CANCEL definition, we assume that the empty substitution is associated
with nonmatch edges.)

E. An example

Several important mechanisms are implicit in our definition of CANCEL. These
can best be understood by detailed examination of an example. The example is
illustrated in graphical form in Fig. 7. The fact expression is shown at the
bottom of the figure in OR/AND tree form; the variable "s" is assumed to have
universal quantification. The goal expression is shown at the top in AND/OR
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tree form; the variable "x" is assumed to have existential quantification. The
rules are simply shown as unconnected pieces of graph near the tip nodes where
they ultimately will be used. All nodes in the graph are given a number. (In this
example, it happens that the rules will be used at most once, so we prenumber
their "nodes" for convenience.) Rule patterns are indicated by the usual con-
vention. Lower-case letters near the beginning of the alphabet (for example,
a, b, c, .) denote constants, and lower-case letters near the end of the alphabet
(for example, ... x, y, z) denote variables. All variables have been standardized
apart. We have not shown the contrapositive forms of the given rules since they
won't be used in this example.

At the outset we notice that there are several applicable rules. Since we have
not yet advocated any particular control strategy, we shall trace through this
example in an order that best illustrates the points we wish to make.

A(X) & B(X)

C(y)

C(a) 14

C 

1

a) 7

GOAL TREE

A ( y) 26

21 D(y) 22

D(a)Q15 G( b) 16

F(a) 8 1-11b) 9

A(x)S30 B(x) 31

A (b) 0 27 B()28 B(c)

G( z)0 23 1(a) 24 J(c)

I

I(a) 17 I(a) 18 I(a)

KW) 010 K(f) 11 L(d)

0

025

19

12

29

.1(t)020

1, (d)013

F(a)

2
E(a)

K(s)
L(s)

FACT TREE 
1

E(a)&F(a)&1K(s) v L(s))

Fig. 7 — An example with variables.
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First, let us match node 30 with the REDUCER node 26. The mgu is {y1x1.
(When a variable is substituted for another variable, we adopt the convention
of substituting the variable about to be added to the tree for the one already
in the tree.) The goal tree that results after this match is shown in Fig. 8. No

CANCEL relations are established yet, but we do associate .[y/x} with the match
edge between nodes 26 and 30. Let's next match goal nodes against REDUCER
nodes 27, 28, and 29. The goal tree will now be as shown in Fig. 9.

Atm& 8(x)
1

A(x 130 B(x) 
3 1

{y/x}

A(y) 26

Fig. 8 — The goal tree after applying a REDUCER.

{c/x}
i

.-

a/x}
1 biXI:

Ab) '927 B(a) 
28

/3-(c) 29
A of) 26

Cc)') W21 D(y)W22 G(z) 23 ha) 24 JcjLJ25

Fig. 9 — The goal tree after applying four REDUCERS.

120



NILSSON

We could continue to apply REDUCERS or OPERATORS until some nodes
could be CANCELled, but already at this stage it is possible to predict that
certain later attempts at CANCELling will fail. Notice in Fig. 9 that any attempt
to propagate a CANCEL relation up through node 27 to node 30 will involve the
substitution {b/x].. But this substitution is inconsistent with all of the substi-
tutions shown below node 31. If we have exhausted all possible matches to node
31, then we know that the substitution {b/x} at node 30 can never occur in a
proof because only a or c can be substituted for x. Such an occurrence would
correspond to a violation of horizontal consistency (Sickel, 1976). Thus, there
can be no unifying composition of a CANCEL relation propagated up through
node 27 with a substitution for any CANCEL relation in which node 31 par-
ticipates. At this stage, we can prune node 27 (and, with it, node 23) from the
goal tree and save ourselves the effort of attempts to prove G(z). (Fishman
and Minker, 1975, achieve a similar effect with their "r-representation".)

Quite analogous considerations would allow us to prune node 11 (and, with
it, node 18) from the fact tree after we have matched against the OPERATOR
nodes 10, 11, 12, and 13. After all of this, the fact tree is as shown in Fig. 10.
(Note that all possible matches below a set of AND nodes must be considered

before horizontal consistency violations can be detected. Practically, such con-
sistency violations may be difficult to detect because the set of possible matches
typically grows as the dual tree grows.)

/(a) 17 1(a) 19 J (t ) 20

L Id) 10 L (d) 12 L 13

Id Is}

Ls) •6

E(a) & F(a)& K(s) v L(s)

Fig. 10 — The fact tree after applying four OPERATORs.
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Now, we can do some CANCElling between the literal nodes of the fact

and goal trees. The following CANCElled pairs can be established:

(17, 24) -[ 1-
(19, 24) {

and
(20,25) -(c/t}.

By using the CANCEL definition we can, for example, determine next the

following CANCELled pairs:

(29, 20) -[c/t}
(31, 20) -[c/x, c/t}
(31, 13) -{c/x, c/t}
(31, 6) {c/x, clt, dls} .

The associated substitutions are merely unifying compositions between edge

substitutions and previous CANCEL substitutions. If a uc did not exist for a

proposed CANCEL relation, then we could not establish this relation. Such an

occurrence corresponds to a violation of vertical consistency (Sickel, 1976).

We can also obtain another CANCEL relation between nodes (31, 6) by a

different route and thus with a different substitution, namely {Ws, alx}. We
represent both of these substitutions by repeated instances of CANCEL(31, 6).

The other CANCEL relation of interest that can be established at this

stage is between the node pair (5, 31) with associated substitution .[d/s, alx}.

To summarize, the CANCEL relations of interest (that is, those between nodes

closest to the roots of the trees) are now:

(6, 31) -{c/x, cils}
(6, 31) {d1s, alx}
(5,31) {d1s,alx} .

We note that the last two CANCEL relations can be combined to yield
CANCEL(4, 31) with associated substitution -[d/s, alx}. This in turn yields

CANCEL(1, 31), {d1s,alx}.
In a straightforward manner, we can next match against the OPERATOR

nodes 7 and 8 and perform matches between literal nodes to obtain:

CANCEL(2, 21) .[a/y}
CANCEL(3, 22) -[a/y].

These relations produce the sequence:

CANCEL(1, 21) .{a/y].
CANCEL(1, 22) {a/y}
CANCEL(1, 26) {aly} .

Proceeding through the match edge between nodes 26 and 30, we obtain:

CANCEL(1, 30) 4a/x} .
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Combining this relation with CANCEL(1, 31), {d1s,alx}, we obtain finally:

CANCEL(1, 1) -P/s, alx} .

Thus the goal is proved from the given facts. The relevant instance of
Fact 3- Goal, useful for many information retrieval applications, can be simply
obtained by applying the substitution associated with CANCEL(1, 1) to both
the fact and goal expressions. This operation yields:

E (a) & F(a)& [K(d) v L (d)] F [A(a) & B (a)] .

7. SOME EXTENSIONS

A. Embedding new rules in operators

One way of relaxing the single-literal restriction on rule patterns is to allow
rules to be embedded in the consequents of OPERATORs. Since (A &B) => C
is equivalent to A => (1=> C), we can get the effect of the conjunctive pattern
by adding the new OPERATOR B => C when A appears in the fact tree. One
cannot simply add the new rule to the global rule base, however. Suppose we
have the OPERATOR A => (a => C) and the fact A V D. When B => C is
added as a new OPERATOR, we must be careful not to use it on the disjunct D.
The rule B => C can only be used "in the context" of A.

A simple generalization of our rule-based system supports the correct use
of OPERATORs embedded in the consequents of OPERATORs. (Embedding
REDUCERS in OPERATORs appears to be much more complex. Thus, we will
not use REDUCER contrapositive forms of embedded OPERATORs.) The
generalization involves associating each OPERATOR with a node of the fact
tree. The initial set of conjunctive OPERATORs is associated with the root of
the fact tree. An OPERATOR added at node n is associated with node n. The
OPERATORs associated with node n can be used on facts associated with node
n or its descendants,.

This technique even generalizes nicely to permit "disjunctive" OPERATORs.
Suppose we have an OPERATOR of the form A => [(11 => C) V (/) =>E)].
Before such a rule disjunction is associated with the fact tree at literal node A,
we split node A into the disjunction A VA and represent the disjunction by two
OR node descendants of A. A different rule disjunct is then associated with each
of the OR nodes. If the initial OPERATORs are in some complex logical
relationship to each other, we represent this relationship by the appropriate
OR/AND tree and label each of the tip nodes of this tree by the initial fact
expression. This fact expression is then put in OR/AND tree form at each of
the tips.

If the embedded OPERATORs contain quantified variables, these can be
skolemized at the time the OPERATORs are associated with nodes in the fact
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tree. Care must be taken to ensure that the appropriate instance of an embedded
OPERATOR is added.

B. High complexity proofs

Our system, as we have described it so far, is not able to find proofs for which
any of the goal or fact expressions need to be rewritten with different variables
and used a multiple number of times. (We can, of course, use the same node any
number of times, but such usage does not rewrite any variables in the expression
at the node. Also, we can use rules any number of times, each with different
variables.) In analogy with a definition of proof complexity given by Sickel
(1976), we shall say that the complexity level of a proof is precisely the number
of times a fact or goal expression must be rewritten for multiple use. So far, then
our system can produce only proofs of complexity level zero.

As examples of problems requiring complexity-level-one proofs, we have:

1) Goal: A(x)
Fact: A(a) V A(b)

and its dual,

2) Goal: B (a) & B(b)
Fact: B(x) .

Straightforward attempts at proofs for these problems by our system are
frustrated by horizontal consistency violations. However, if in problem 1, for
example, we replace the goal by the equivalent one A(x) V A(y), then a proof
is easy to obtain.

Following Sickel, we might adopt the strategy of trying first to obtain a
complexity-level-zero proof. If that attempt fails, we can look for higher com-
plexity proofs in stages. The search for a complexity-level-one proof would
involve selecting each of the goal and fact variables (in turn) and rewriting as a
disjunction (for goals) or as a conjunction (for facts) the highest node in the
goal or fact tree that contains that variable. Substitution consistency violations
provide obvious clues about which variables should be rewritten.

To rewrite a goal node A(x), for example, we produce the following tree
structure:

A(Y)AA(Z)
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To rewrite a goal node A(x) & B(x), for example, we produce the following
tree structure:

A ( and B(y)

A(x) and B(x)

A(z)arid B(z)

A(y) B(Y) A(z) •B(z)

8. Conclusions

We have presented a design for a general system that uses production rules and a
data base of fact and goal trees to perform deductions. The system can be regar-
ded as a synthesis of many current and some new ideas in automatic deduction.
The major innovations presented in this paper are the OR/AND fact tree and
the CANCEL operation. These ideas bring a simplifying symmetry to several of
the standard techniques for reasoning about facts and goals.

Logical completeness of the general system has not been a design goal.
Instead, we assign responsibility for acceptable performance of any specific
system to the domain expert, who provides the rules, and to the designer of the
specific system, who can repair any unacceptable deficiencies in performance
by adding or modifying rules or facts.

An important topic that we have not yet addressed concerns the control
strategy for the system. Specialized control strategies for different domains
of application (for example, deductive retrieval, theorem-proving, common-
sense reasoning) will probably be necessary in order to achieve high performance.
The control system must ensure that appropriate rules are used sufficiently
often to prevent the usual combinatorial explosion. Separation of facts,
OPERATORS, and REDUCERS should, we believe, help contain this explosion.

It is also hoped that the proposed system will serve as the beginning of a
theoretical foundation for the various applications of "rule-based systems" now
being developed by AI research. Many of these systems are fundamentally
deduction systems even though some of them allow uncertain or probabilistic
facts and rules. Extending the present system so that it could also deal with
uncertain knowledge would be a valuable future project.
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First Order Theories of Individual Concepts and

Propositions

J. McCarthy
Computer Science Department
Stanford University, USA

Abstract

We discuss first order theories in which individual concepts are admitted as
mathematical objects along with the things that reify them. This allows very
straightforward formalizations of knowledge, belief, wanting, and necessity in
ordinary first order logic without modal operators. Applications are given in

philosophy and in artificial intelligence. We do not treat general concepts, and
we do not present any full wdomatizations but rather show how various facts
can be expressed.

INTRODUCTION

"... it seems that hardly anybody proposes to use different variables for propo-
sitions and for truth-values, or different variables for individuals and individual
concepts." — (Carnap 1956, p. 113).

Admitting individual concepts as objects — with concept-valued constants,
variables, functions and expressions — allows ordinary first order theories of
necessity, knowledge, belief and wanting without modal operators or quotation
marks and without the restrictions on substituting equals for equals that either
device makes necessary.

In this paper we will show how various individual concepts and propositions
can be expressed. We are not yet ready to present a full collection of axioms.
Moreover, our purpose is not to explicate what concepts are, in a philosophical
sense, but rather to develop a language of concepts for representing facts about
knowledge, belief, etc. in the memory of a computer.

Frege (1892) discussed the need to distinguish direct and indirect use of
words. According to one interpretation of Frege's ideas, the meaning of the
phrase 'Mike's telephone number" in the sentence 'Tat knows Mike's telephone
number" is the concept of Mike's telephone number, whereas its meaning in
the sentence Tat dialled Mike's telephone number" is the number itself. Thus if

129



REPRESENTATIONS FOR REAL-WORLD REASONING

we also have "Mary's telephone number = Mike's telephone number", then "Pat
dialled Mary's telephone number" follows, but Tat knows Mary's telephone
number" does not.

It was further proposed that a phrase has a sense which is a concept and is its
meaning in oblique contexts like knowing and wanting, and a denotation which
is its meaning in direct contexts like dialling. Denotations are the basis of the
semantics of first order logic and model theory and are well understood, but
sense has given more trouble, and the modal treatment of oblique contexts
avoids the idea. On the other hand, logicians such as Carnap (1947 and 1956),

Church (1951) and Montague (1974) see a need for concepts and have proposed
formalizations. All these formalizations involve modifying the logic used; ours
doesn't modify the logic and is more powerful, because it includes mappings
from objects to concepts. Robert Moore's forthcoming dissertation also uses
concepts in first order logic.

The problem identified by Frege — of suitably limiting the application of
the substitutivity of equals for equals — arises in artificial intelligence as well
as in philosophy and linguistics for any system that must represent information
about beliefs, knowledge, desires, or logical necessity — regardless of whether
the representation is declarative or procedural (as in PLANNER and other Al
formalisms).

Our approach involves treating concepts as one kind of object in an ordinary

first order theory. We shall have one term that denotes Mike's telephone number
and a different term denoting the concept of Mike's telephone number instead

of having a single term whose denotation is the number and whose sense is a
concept of it. The relations among concepts and between concepts and other
entities are expressed by formulas of first order logic. Ordinary model theory

can then be used to study what spaces of concepts satisfy various sets of axioms.
We treat primarily what Carnap calls individual concepts like Mike's tele-

phone number or Pegasus and not general concepts like telephone or unicorn.
Extension to general concepts seems feasible, but individual concepts provide
enough food for thought for the present.

This is a preliminary paper in that we don't give a comprehensive set of
axioms for concepts. Instead we merely translate some English sentences into
our formalism to give an idea of the possibilities.

KNOWING WHAT AND KNOWING THAT

To assert that Pat knows Mike's telephone number we write

true Know (Pat, Telephone Mike) (1)

with the following conventions:

1. Parentheses are often omitted for one argument functions and predicates.
This purely syntactic convention is not important. Another convention

is to capitalize the first letter of a constant, variable, or function name
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when its value is a concept. (We considered also capitalizing the last
letter when the arguments are concepts, but it made the formulas ugly.)

2. Mike is the concept of Mike; that is, it is the sense of the expression
"Mike". mike is Mike himself.

3. Telephone is a function that takes a concept of a person into a concept
of his telephone number. We will also use telephone which takes the
person himself into the telephone number itself. We do not propose to
identify the function Telephone with the general concept of a person's
telephone number.

4. If P is a person concept and X is another concept, then Know(P, X) is
an assertion concept or proposition meaning that P knows the value of
X. Thus in (1) Know(Pat, Telephone Mike) is a proposition and not a
truth value. Note that we are formalizing knowing what rather than
knowing that or knowing .how. For Al and for other practical purposes,
knowing what seems to be the most useful notion of the three. In
English, knowing what is written knowing whether when the "knowand"
is a proposition.

3. It is often convenient to write know(pat, Telephone Mike) instead of
true Know(Pat, Telephone Mike) when we don't intend to iterate
knowledge further. know is .a predicate in the logic, so we cannot apply
any knowledge operators to it. We will have

know (pat, Telephone Mike) true Know(Pat, Telephone Mike). (2)

6. We expect that the proposition Know(Pat, Telephone Mike) will be
useful accompanied by axioms that allow inferring that Pat will use this
knowledge under appropriate circumstances, that is, he will dial it or
retell it when appropriate. There will also be axioms asserting that he will
know it after being told it or looking it up in the telephone book.

7. While the sentence "Pat knows Mike" is in common use, it is harder to
see how Know (Pat, Mike) is to be used and axiomatized. I suspect that
new methods will be required to treat knowing a person.

8. true Q is the truth value, t or f, of the proposition Q, and we must
'write true Q in order to assert Q. Later we will consider formalisms in
which true has a another argument — a situation, a story, a possible
world, or even .a partial possible world (a notion we suspect will eventu-
ally be found necessary).

9. The formulas are in a sorted first order logic with functions and equality.
Knowledge, necessity, etc. will be discussed without extending the logic
in any way — solely by the introduction of predicate and function
symbols subject to suitable axioms. In the present informal treatment,
we will not be explicit about sorts, but we will use different letters for
variables of different sorts.
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The reader may be nervous about what is meant by concept. He will have to
remain nervous; no final commitment will be made in this paper. The formalism
is compatible with many possibilities, and these can be compared by using the
models of their first order theories. Actually, this paper isn't much motivated by
the philosophical question of what concepts really are. The goal is more to make
a formal structure that can be used to represent facts about knowledge and
belief so that a computer program can reason about who has what knowledge in
order to solve problems. From either the philosophical or the Al point of view,
however, if (1) is to be reasonable, it must not follow from (1) and the fact
that Mary's telephone number is the same as Mike's, that Pat knows Mary's
telephone number.

The proposition that Joe knows whether Pat knows Mike's telephone
number, is written

Know(Joe, Know(Pat, Telephone Mike)), (3)

and asserting it requires writing

true Know(Joe, Know (Pat, Telephone Mike)), (4)

while the proposition that Joe knows that Pat knows Mike's telephone number is
written

K (Joe, Know (Pat, Telephone Mike)), (5)

where K(P, Q) is the proposition that P knows that Q. English does not treat
knowing a proposition and knowing an individual concept uniformly: knowing
an individual concept means knowing its value, while knowing a proposition
means knowing that it has a particular value, namely t. There is no reason to
impose this infirmity on robots.

We first consider systems in which corresponding to each concept X, there is
a thing x of which X is a concept. Then there is a function denot such that

x = denot X. (6)

Functions like Telephone are then related to denot by equations like

VP1 P2.(denot P1 = denot P2 J denot Telephone P1 =
denot Telephone P2). (7)

We call denot X the denotation of the concept X, and (7) asserts that the deno-
tation of the concept of P's telephone number depends only on the denotation
of the concept P. The variables in (7) range over concepts of persons, and we
regard (7) as asserting that Telephone is extensional with respect to denot. Note
that our denot operates on concepts rather than on expressions; a theory of
expressions will also need a denotation function. From (7) and suitable logical
axioms follows the existence of a function telephone satisfying

VP.(denot Telephone P = telephone denot P). (8)
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Know is extensional with respect to denot in its first argument, and this is
expressed by

VP1 P2 X.(denot P1 = denot P2 D denot Know(P1, X) =
denot Know (P2, X)), (9)

but it is not extensional in its second argument. We can therefore define a predi-
cate know(p, X) satisfying

VP X.(true Know(P, X) know(denot P, X)). (10)

(Note that all these predicates and functions are entirely extensional in the
underlying logic, and the notion of extensionality presented here is relative to
denot.)

The predicate true and the function denot are related by

VQ.(true Q (denot Q = t)) (11)

provided that truth values are in the range of denot, and denot could also be
provided with a (partial) possible world argument.

When we don't assume that all concepts have denotations, we use a predi-
cate denotes (I, x) instead of a function. The extensionality of Telephone would
then be written

VP! P2 x u.(denotes(P1, x)Adenotes (P2 , x)A
denotes (Telephone Pl, u) D denotes (Telephone P2, u)). (12)

We now introduce the function Exists satisfying

VX.(true Exists X 3x .denotes (X, x)). (13)

Suppose we want to assert that Pegasus is a horse without asserting that Pegasus
exists. We can do this by introducing the predicate Ishorse and writing

true Ishorse Pegasus (14)

which is related to the predicate ishorse by

VX x.(denotes(X,x) 3 (ishorse x true Ishorse X)). (15)

In this way, we assert extensionality without assuming that all concepts have
denotations. Exists is extensional in this sense, but the corresponding predicate
exists is identically title and therefore dispensable.

To combine concepts propositionally, we need analogs of the propositional
operators such as And, which we shall write as an infix and axiomatize by

VQ1 Q2.(true(Q1 And Q2) true Q1 A true Q2). (16)

The corresponding formulas for Or, Not, Implies, and Equiv are

VQ1 Q2.(true(Q1 Or Q2) .=-• true Q1 V true Q2), (17)

VQ.(true(Not Q)E —I true Q), (18)
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VQ1 Q2.(true(Q1 Implies Q2) -=-= true Q1 D true Q2), (19)

and

VQ1 Q2.(true(Q1 Equiv Q2):=-(true Q1 Ei true Q2)). (20)

The equality symbol "=" is part of the logic so that X = Y asserts that X
and Y are the same concept. To write propositions expressing equality, we
introduce Equal(X, Y) which Is a proposition that X and Y denote the same
thing if anything. We shall want axioms

VX true Equal(X, X), (21)

(22)VX Y.(true Equal(X,Y) true Equal(Y, X)),

and

VX Y Z (true Equd (X, Y) A true Equal(Y, Z) J true Equal(X,Z) (23)

making true Equal(X, Y) an equivalence relation, and

VX Y x.(true Equal(X, Y) A denotes(X,x) J denotes(Y,x)) (24)

which relates it to equality in the logic. We can make the concept of equality
essentially symmetric by replacing (22) by

VX Y. Equal(X, Y)= Equal(Y, X), (25)

that is, making the two expressions denote the same concept.
The statement that Mary has the same telephone number as Mike is asserted

by

true Equal (Telephone Mary, Telephone Mike), (26)

and it obviously doesn't follow from this and (1) that

true Know(Pat, Telephone Mary). (27)

To draw this conclusion we need something like

true K(Pat,Equal(Telephone Mary, Telephone Mike)) (28)

and suitable axioms about knowledge.
If we were to adopt the convention that a proposition appearing at the

outer level Of a sentence is asserted and were to regard the denotation-valued
function as standing for the sense-valued function when it appears as the second
argument of Know, we would have a notation that resembles ordinary language
in handling obliquity entirely by context. There is no guarantee that general
statements could be expressed unambiguously without circumlocution; the fact
that the principles of intensional reasoning haven't yet been stated is evidence
against the suitability of ordinary language for stating them.
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FUNCTIONS FROM THINGS TO CONCEPTS OF THEM

While the relation denotes(X, x) between concepts and things is many-one,
functions going from things to certain concepts of them seem useful. Some
things such as numbers can be regarded as having standard concepts. Suppose
that Conceptl n gives a standard concept of the number n, so that

Vn. (denot Concept! n =n). (29)

We can then have simultaneously

true Not Knew (Kepler, Composite Number Planets) (30)

and

true Knew(Kepler, Composite Conceptl denot Number Planets). (31)

(We have used Knew instead of Know, because we are not now concerned with
formalizing tense.)

(31) can be condensed using Compositel which takes a number into the
proposition that it is composite, that is,

Compositel n = Composite Conceptl n (32)

getting

true Knew(Kepler,Compositel denot Number Planets). (33)

A further condensation can be achieved by using Composite2 defined by

Composite 2 N = Composite Conceptl denot N, (34)

letting us write

true Knew(Kepler,Composite2 Number Planets), (35)

which is true even though

true Knew (Kepler, Composite Number Planets) (36)

is false. (36) is our formal expression of "Kepler knew that the number of
planets is composite", while (31), (33), and (35) each expresses a proposition
that can only be stated awkwardly in English, foi example, as "Kepler knew
that a certain number is composite, where this number (perhaps unbeknownst
to Kepler) is the number of planets".

We may also want a map from things to concepts of them in order to
formalize a sentence like, "Lassie knows the location of all her puppies". We
write this

Vx .(ispuppy (x, lassie) D
true Knowd(Lassie, Locationd Conceptd x)). (37)

Here Conceptd takes a puppy into a dog's concept of it, and Locationd takes a
dog's concept of a puppy into a dog's concept of its location. The axioms
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satisfied by Knowd, Locationd and Conceptd can be tailored to our ideas of
what dogs know.

A suitable collection of functions from things to concepts might permit a
language that omitted some individual codcepts like Mike (replacing it with
Conceptx mike) and wrote many sentences with quantifiers over things rather
than over concepts. However, it is still premature to apply Occam's razor. It may
be possible to avoid concepts as objects in expressing particular facts but
impossible to avoid them in stating general principles.

RELATIONS BETWEEN KNOWING WHAT AND KNOWING THAT

As mentioned before, "Pat knows Mike's telephone number" is written

true Know (Pat, Telephone Mike). (38)

We can write "Pat knows Mike's telephone number is 333-3333"

true K(Pat, Equal (Telephone Mike, Conceptl "333-3333")) (39)

where K(P, Q) is the proposition that denot(P) knows the proposition Q and
Conceptl ("333-3333") is some standard concept of that telephone number.

The two ways of expressing knowledge are somewhat interdefinable, since
we can write

K(P, Q) = (Q And Know (P, Q)), (40)
and

true Know(P,X)=- 3A.(constant A A true K(P,Equal(X,A))). (41)

Here constant A asserts that A is a constant, that is, a concept such that we are
willing to say that P knows X if he knows it equals A. This is clear enough for
some domains like integers, but it is not obvious how to treat knowing a person.

Using the standard concept function Conceptl, we might replace (41) by

true Know(P, X) Es 3a.true K(P, Equal (I, Conceptl a)) (42)

with similar meaning.
(41) and (42) expresses a denotational definition of Know in terms of K. A

conceptual definition seems to require something like

VP X.(Know(P, X) =
Exists X And K(P,Equal(X,Concept2 denot X))), (43)

where Concept2 is a suitable function from things to concepts and may not be
available for all sorts of objects.

REPLACING MODAL OPERATORS BY MODAL FUNCTIONS

Using concepts we can translate the content of modal logic into ordinary logic.
We need only replace the modal operators by modal functions. The axioms of
modal logic then translate into ordinary first order axioms. In this section we
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will treat only unquantified modal logic. The arguments of the modal functions
will not involve quantification, although quantification occurs in the outer logic.

Nec Q is the proposition that the proposition Q is necessary, and Foss Q is
the proposition that it is possible. To assert necessity or possibility we must
write true Nec Q or true Foss Q. This can be abbreviated by defining nec Q
true

-
true Nec Q and poss Q correspondingly. However, since nec is a predicate in the
logic with t and f as values, nec Q cannot be an argument of nec or Nec. •

Before we even get to modal logic proper we have a decision to make —
shall Not Not Q be considered the same proposition as Q, or is it merely exten-
sionally equivalent? The first is written

VQ. Not Not Q = Q. (44)

and the second

VQ.true Not Not Q =.-• true Q. (45)

The second follows from the first by substitution of equals for equals.
In Meaning and Necessity, Carnap takes what amounts to the first alterna-

tive, regarding concepts as L-equivalence classes of expressions. This works
nicely for discussing necessity, but when he wants to discuss knowledge without
assuming that everyone knows Fermat's last theorem if it is true, he introduces
the notion of intensional isomorphism and has knowledge operate on the equiv-
alence classes of this relation.

If we choose the first alternative, then we may go on to identify any two
propositions that can be transformed into each other by Boolean identities.
This can be assured by a small collection of propositional identities like (44)
including associative and distributive laws for conjunction and disjunction,
De Morgan's law, and the laws governing the propositions T and F. In the second
alternative we will want the extensional forms of the same laws. When we get to
quantification a similar choice will arise, but if we choose the first alternative, it
will be undecidable whether two expressions denote the same concept. I doubt
that considerations of linguistic usage or usefulness in AI will unequivocally
recommend one alternative, so both will have to be studied.

Actually there are more than two alternatives. Let M be the free algebra
built up from the "atomic" concepts by the concept forming function symbols.
If m is an equivalence relation on M such that

VX1 X2 e MAXI X2) (true X1 true X2)), (46)

then the set of equivalence classes under may be taken as the set of concepts.
Similar possibilities arise in modal logic. We can choose between the con-

ceptual identity

VQ.(Poss Q = Not Nec Not Q), (47)

and the weaker extensional axiom

VQ.(true Foss Q true Not Nec Not 0. (48)
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We will write the rest of our modal axioms in extensional form.

We have

VQ.(true Nec Q D true Q),
and

(49)

VQ1 Q2. (50)

(true Nec Q1 A true Nec(Q1 Implies Q2)J true Nec Q2).

yielding a system equivalent to von Wright's T.

S4 is given by

VQ.(true Nec Q true Nec Nec Q), (51)

and S5 by

VQ.(true Foss Q true Nec Foss Q). (52)

Actually, there may be no need to commit ourselves to a particular modal

system. We can simultaneously have the functions NecT, Nec 4 and Nec 5, related

by axioms such as

VQ.(true Nec4 Q D true Nec5 Q) (53)

which would seem plausible if we regard S4 as corresponding to provability in

some system and S5 as truth in the intended model of the system.
Presumably we shall want to relate necessity and equality by the axiom

VX.true Nec Equal(X, X). (54)

Certain of Carnap's proposals translate to the stronger relation

VX Y.(X=Y === true Nec Equal(X,Y)) (55)

which asserts that two concepts are the same if and only if the equality of what

they may denote is necessary.

MORE PHILOSOPHICAL EXAMPLES - MOSTLY WELL KNOWN

Some sentences that recur as examples in the philosophical literature will be

expressed in our notation, so the treatments can be compared.
First we have "The number of planets = 9" and "Necessarily 9 = 9" from

which one doesn't want to deduce "Necessarily the number of planets = 9".
This example is discussed by Quine (1961) and (Kaplan 1969). Consider the
sentences

—inec Equal (Number Planets, Conceptl 9) (56)

and
nec Equal (Concept! number planets, Conceptl 9). (57)

Both are true. (56) asserts that it is not necessary that the number of planets be

9, and (57) asserts that the number of planets, once determined, is the number
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that is necessarily equal to 9. It is a major virtue of our formalism that both
meanings can be expressed and are readily distinguished. Substitutivity of equals
holds in the logic but causes no trouble, because "The number of planets = 9"
may be written

number(planets)= 9 (58)

or, using concepts as

true Equal (Number Planets, Conceptsl 9), (59)

and "Necessarily 9=9" is written

nec Equal (Concept! 9, Conceptl 9), (60)

and these don't yield the unwanted conclusion.
Ryle used the sentences "Baldwin is a statesman" and "Pickwick is a

fiction" to illustrate that parallel sentence construction does not always give
parallel sense. The first can be rendered in four ways, namely true Statesman
Baldwin or statesman denot Baldwin or statesman baldwin or statesman!
Baldwin where the last asserts that the concept of Baldwin is one of a statesman.
The second can be rendered only as true Fiction Pickwick or fiction! Pickwick.

Quine (1961) considers illegitimate the sentence

(3x)(Philip is unaware that x denounced Catiline) (61)

obtained from "Philip is unaware that Tully denounced Catiline" by existential
generalization. In the example, we are also supposing the truth of Philip is aware
that Cicero denounced Cataline". These sentences are related to (perhaps even
explicated by) several sentences in our system. Tully and Cicero are taken as
distinct concepts. The person is called Wily or cicero in our language, and we
have

and

tully = cicero, (62)

denot Tully = cicero (63)

denot Cicero = cicero. (64)

We can discuss Philip's concept of the person Tully by introducing a
function Concept2(pl, p2) giving for some persons pl and p 2, p l's concept of
p2. Such a function need not be unique or always defined, but in the present
case, some of our information may be conveniently expressed by

Concept2(philip, wily) = Cicero, (65)

asserting that Philip's concept of the person Cicero is Cicero. The basic assump-
tions of Quine's example also include

true K(Philip,Denounced(Cicero,Catiline)) (66)
and

—i true K(Philip,Denounced(Tully,Catiline)). (67)
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From (63), ... (67) we can deduce "

3P. true Denounced(P,Catiline) And Not
K(Philip,Denounced(P,Catiline)), (68)

from (67) and others, and

—13p.(denounced(p,catiline) A
-i true K(Philip,Denounced(Concept2(philip,p),Catiline))) (69)

using the additional hypotheses

Vp.(denounced(p,catiline) Jp = cicero), (70)

denot Catiline = catiline, (71)
and

VP1 P2.(denot Denounced(P1,P2)E
denounced (denot Pl, denot P2)). (72)

Presumably (68) is always true, because we can always construct a concept
whose denotation is Cicero unbeknownst to Philip. The truth of (69) depends
on Philip's knowing that someone denounced Catiline, and on the map
Concept2(pl, p2) that gives one person's concept of another. If we refrain from
using a silly map that gives something like Denouncer(Catiline) as its value,
we can get results that correspond to intuition.

The following sentence attributed to Russell is discussed by Kaplan: "I

thought that your yacht was longer than it is".We can write it

true Believed(I,Greater(Length Youryacht,
Conceptl denot Length Youryacht)) (73)

where we are not analysing the pronouns or the tense, but are using denot to get
the actual length of the yacht and Conceptl to get back a concept of this true
length so as to end up with a proposition that the length of the yacht is greater
than that number. This looks problematical, but if it is consistent, it is probably
useful.

To express "Your yacht is longer than Peter thinks it is." we need the
expression Denot(Peter, X) giving a concept of what Peter thinks the value of X
is. We now write

longer(youryacht, denot Denot(Peter, Length Youryacht)), (74)

but I am not certain this is a correct translation.
Quine (1956) discusses an example in which Ralph sees Bernard J. Ortcutt

skulking about and concludes that he is a spy, and also sees him on the beach,
but doesn't recognize him as the same person. The facts can be expressed in our
formalism by equations

true Believe(Ralph,Isspy P1) (75)

true Believe(Ralph,Not Isspy P2) (76)
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where P1 and P2 are concepts satisfying denot P1 = ortcutt and denot P2 =
ortcutt. P1 and P2 are further described by sentences relating them to the
circumstances under which Ralph formed them.

We can still consider a simple sentence involving the persons as things —
write it believ espy (ralph, or tcu tt), where we define

Vp 1 p 2. (believ espy (p 1, p 2) a
true Believe(Conceptl pl, Isspy Concept7 p2) (77)

using suitable mappings Conceptl and Concept7 from persons to concepts of
persons. We might also choose to define believespy in such a way that it requires
true Believe(Conceptl p1, Isspy P) for several concepts P of p2, for example,
the concepts arising from all pl's encounters with p2 or his name. In this
case believespy(ralph, ortcutt) will be false and so would a corresponding
notbelievespy(ralph, ortcutt). However, the simple-minded predicate believespy,
suitably defined, may be quite useful for expressing the facts necessary to
predict someone's behaviour in simpler circumstances.

Regarded as an attempt to explicate the sentence "Ralph believes Ortcutt is
a spy", the above may be considered rather tenuous. However, we are proposing
it as a notation for expressing Ralph's beliefs about Ortcutt so that correct
conclusions may be drawn about Ralph's future actions. For this it seems
to be adequate.

PROPOSITIONS EXPRESSING QUANTIFICATION

As the examples of the previous sections have shown, admitting concepts as
objects and introducing standard concept functions makes "quantifying in"
rather easy. However, forming propositions and individual concepts by quanti-
fication requires new ideas and additional formalism. We are not very confident •
of the approach presented here.

We want to continue describing concepts within first order logic with no
logical extentions. Therefore, in order to form new concepts by quantification
and description, we introduce functions All, Exist, and The such that All(V, P)
is (approximately) the proposition that for all values of VP is true,Exist(V,P)
is the corresponding existential proposition, and The(V, P) is the concept of
the V such that P.

Since All is to be a function, V and P must be objects in the logic. However,
V is semantically a variable in the formation of All(V, P), etc., and we will
call such objects inner variables so as to distinguish them from variables in
the logic. We will use V, sometimes with subscripts, for a logical variable ranging
over inner variables. We also need some constant symbols for inner variables
(got that?), and we will use doubled letters, sometimes with subscripts, for
these. XX will be used for individual concepts, PP for persons, and QQ for
propositions.

The second argument of All and friends is a "proposition with variables
in it", but remember that these variables are inner variables which are constants
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in the logic. Got that? We won't introduce a special term for them, but will
generally allow concepts to include inner variables. Thus concepts now include
inner variables like XX and PP, and concept-forming functions like Telephone
and Know take the generalized concepts as arguments.

Thus

Child(Mike,PP) Implies Equal(Telephone PP, Telephone Mike) (78)

is a proposition with the inner variable PP in it to the effect that if PP is a child

of Mike, then his telephone number is the same as Mike's, and

All(PP, Child (Mike, PP)
Implies Equal(Telephone PP. Telephone Mike)) (79)

is the proposition that all Mike's children have the same telephone number as
Mike. Existential propositions are formed similarly to universal ones, but the
function Exist introduced here should not be confused with the function Exists
applied to individual concepts introduced earlier.

In forming individual concepts by the description function The, it doesn't
matter whether the object described exists. Thus

The(PP, Child(Mike, PP)) (80)

is the concept of Mike's only child. Exists The(PP, Child(Mike, PP)) is the
proposition that the described child exists. We have

true Exists The(PP, Child(Mike, PP))
true(Exist(PP,Child (Mike, PP)
And All(PP1, Child(Mike, PP1) Implies Equal(PP,PP1)))), (81)

, but we may want the equality of the two propositions, that is,

Exists The(PP, Child(Mike, PP)) =
Exist(PP, Child (Mike, PP)
And A11(PP1, Child(Mike, PPI) Implies Equal(PP, P PO)). (82)

This is part of general problem of when two logically equivalent concepts are
to be regarded as the same.

In order to discuss the truth of propositions and the denotation of des-
criptions, we introduce possible worlds reluctantly and with an important
difference from the usual treatment. We need them to give values to the inner
variables, and we can also use them for axiomatizing the modal opesators, know-
ledge, belief and tense. However, for axiomatizing quantification, we also need
a function a such that

le = a(V,x,v) (83)

is the possible world that is the same as the world ff except that the inner
variable V has the value x instead of the value it has in ir. In this respect our
possible worlds resemble the state vectors or environments of computer science
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more than the possible worlds of the Kripke treatment of modal logic. This
Cartesian product structure on the space of possible worlds can also be used
to treat conterfactual conditional sentences.

Let 7r0 be the actual world. Let true(P, 7) mean that the proposition P is
true in the possible world 7r. Then

VP.(true P E true(P, 7r0)). (84)

Let denotes(X, x, 7) mean that X denotes x in 7r, and let denot(X, 7r) mean the
denotation of X in 7r when that is defined.

The truth condition for A//( V, P) is then given by

Vir V P.(true (All (V, P), E Vx. true(P, a(V, x, 7r)). (85)

Here V ranges over inner variables, P ranges over propositions, and x ranges over
things. There seems to be no harm in making the domain of x depend on 7r.
Similarly

Vir V P.(true (Exist (V, P), 7r):7=- 3x. true (P, a(V,x, 7)). (86)

The meaning of The(V,P) is given by

Vrr V P x.(true(P, a(V, x, a)) A Vy.(true(P, a(V, y, 7r)) Dy =x) D
denotes (The(V,P),x, 7r)) (87)

Vrr VF.(-13 x.true(P, a(V, x, 7)) D —1 true Exists The(V,P)). (88)

We also have the following "syntactic" rules governing propositions
involving quantification:

Vrr Q1 Q2 V.(absent(V, Q1) A true(All(V, Q1 Implies Q2), 7) D
true(Q1 Implies All(V,Q2),7)) (89)

and
V7T V Q X.(true(All(V, Q), rr) D true (Subst (X , V, Q), 7r)). (90)

where absent(V, X) means that the variable V is not present in the concept X,
and Subst(X, V, Y) is the concept that results from substituting the concept
X for the variable V in the concept Y. absent and Subst are characterized by
the following axioms:

VV1 V2.(absent(V1,V2)E- V1 0 V2), (91)

VV P X.(absent (V, Know (P, X)) Es absent (V, P) A absent( V. X)),

axioms similar to (92) for other conceptual functions,

V V Q.absent (V, All(V, Q)),

(92)

(93)

V V Q.absent (V, Exist(V, Q)), (94)

VV Q.absent(V,The(V,Q)), (95)

VV X.Subst (V, V, X) = X, (96)
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VX Y:Subst(X, V, V)I= X, (97)

VX VP Y.(Subst(X, V. Know(P, Y))=
Know(Subst(X, V,P),Subst(X, V, Y))), (98)

axioms similar to (98) for other functions,

VX V Q.(absent(V, Y) D Subst(X, V, Y)= Y), (99)

VX V1 V2 Q.(V1 0 V2 A absent(V2, X) D
Subst (X, V1, All (V2 , Q)) = All (V2 , Subst(X, V1, Q))), (100)

and corresponding axioms to (100) for Exist and The.
Along with these comes the axiom that binding kills variables, that is,

VV1 V2 Q.(All (V1, Q) = All(V2,Subst(V2, VI, Q))). (101)

The functions absent and Subst play a "syntactic" role in describing the
rules of reasoning and don't appear in the concepts themselves. It seems likely
that this is harmless until we want to form concepts of the laws of reasoning.

We used the Greek letter IT for possible worlds, because we did not want to
consider a possible world as a thing and introduce concepts of possible worlds.
Reasoning about reasoning may require such concepts or else a formulation
that doesn't use possible worlds.

Martin Davis (in conversation) pointed out the advantages of an alternative
treatment avoiding possible worlds in case there is a single domain of individuals
each of which has a standard concept. Then we can write

VV Q.(true All(V, Q) -=- Vx.true Subst(Conceptl x, V, Q)). (102)

POSSIBLE APPLICATIONS TO ARTIFICIAL INTELLIGENCE

The foregoing discussion of concepts has been mainly concerned with how to
translate into a suitable formal language certain sentences of ordinary language.
The sucess of the formalization is measured by the extent to which the logical
consequences of these sentences in the formal system agree with our intuitions
of what these consequences should be. Another goal of the formalization is to
develop an idea of what concepts really are, but the possible formalizations
have not been explored enough to draw even tentative conclusions about that.

For artificial intelligence, the study of concepts has yet a different moti-
vation. Our success in making computer programs with general intelligence has
been extremely limited, and one source of the limitation is our inability to
formalize what the world is like in general. We can try to separate the problem
of describing the general aspects of the world from the problem of using such
a description and the facts of a situation to discover a strategy for achieving a
goal. This is called separating the epistemological and the heuristic parts of the
artificial intelligence problem and is discussed in McCarthy and Hayes (1969).

We see the following potential uses for facts about knowledge:

1. A computer program that wants to telephone someone must reason
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about who knows the number. More generally, it must reason about
what actions will obtain needed knowledge. Knowledge in books and
computer files must be treated in a parallel way to knowledge held by
persons.

2. A program must often determine that it does not know something or
that someone else doesn't. This has been neglected in the usual formali-
zations of knowledge, and methods of proving possibility have been
neglected in modal logic. Christopher Goad (to be published) has shown
how to prove ignorance by proving the existence of possible worlds in
which the sentence to be proved unknown is false. Presumably proving
one's own ignorance is a stimulus to looking outside for the information.
In competitive situations, it may be important to show that a certain
course of action will leave competitors ignorant.

3 Prediction of the behaviour of others depends on determining what they
believe and what they want.

It seems to me that AI applications will especially benefit from first order
formalisms of the kind described above. First, many of the present problem
solvers are based on first order logic. Morgan (1976) in discussing theorem
proving in modal logic also translates modal logic into first order logic. Second,
our formalisms leaves the syntax and semantics of statements not involving
concepts entirely unchanged, so that if knowledge or wanting is only a small
part of a problem, its presence doesn't affect the formalization of the other
parts.

ABSTRACT LANGUAGES

The way we have treated concepts in this paper, especially when we put variables
in them, suggests trying to indentify them with terms in some language. It seems
to me that this can be done provided that we use a suitable notion of abstract
language.

Ordinarily a language is identified with a set of strings of symbols taken
from some alphabet. McCarthy (1963) introduces the idea of abstract syntax,
the idea being that it doesn't matter whether sums are represented a+b or
+ab or ab+ or by the integer 2a3b or by the LISP S-expression (PLUS A B),
so long as there are predicates for deciding whether an expression is a sum and
functions for forming sums from summands and functions for extracting the
summands from the sum. In particular, abstract syntax facilitates defining the
semantics of programming languages, and proving the properties of interpreters
and compilers. From that point of view, one can refrain from specifying any
concrete representation of the "expressions" of the language and consider it
merely a collection of abstract synthetic and analytic functions and predicates
for forming, discriminating and taking apart abstract expressions. However,
the languages considered at that time always admitted representations as strings
of symbols.
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If we consider concepts as a free algebra on basic concepts, then we can
regard them as strings of symbols on some alphabet if we want to, assuming that
we don't object to a non-denumerable alphabet or infinitely long expressions if
we want standard concepts for all the real numbers. However, if we want to

regard Equal(X, Y) and Equal(Y, X) as the same concept, and hence as the
same "expression" in our language, and we want to regard expressions related
by renaming bound variables as denoting the same concept, then the algebra is

no longer free, and regarding concepts as strings of symbols becomes awkward

even if possible.
It seems better to accept the notion of abstract language defined by the

collection of functions and predicates that form, discriminate, and extract
the parts of its "expressions". In that case it would seem that concepts can be
identified with expressions in an abstract language.

ACKNOWLEDGEMENTS AND BIBLIOGRAPHY

The treatment given here should be compared with that in Church (1951b) and

in Morgan (1976). Church introduces what might be called a two-dimensional
type structure. One dimension permits higher order functions and predicates

as in the usual higher order logics. The second dimension permits concepts of
concepts, etc. No examples of applications are given. It seems to me that

concepts of concepts will be eventually required, but this can still be done

within first order logic.
Morgan's motivation is to use first order logic theorem-proving programs to

treat modal logic. He gives two approaches. The syntactic approach — which

he applies only to systems without quantifiers — uses operations like our And
to form compound propositions from elementary ones. Provability is then
axiomatized in the outer logic. His semantic approach uses axiomatizations of

the Kripke accessibility relation between possible worlds. It seems to me that

our treatment can be used to combine both of Morgan's methods, and has two
further advantages. First, concepts and individuals can be separately quantified.
Second, functions from things to concepts of them permit relations between
concepts of things that could not otherwise be expressed.

Although the formalism leads in almost the opposite direction, the present

paper is much in the spirit of Camap (1956). We appeal to his ontological

tolerance in introducing concepts as objects, and his section on intentions for

robots expresses just the attitude required for artificial intelligence applications.

We have not yet investigated the matter, but plausible axioms for necessity
or knowledge expressed in terms of concepts may lead to the paradoxes dis-

cussed in Kaplan and Montague (1960) and Montague (1963). Our intention is
that the paradoxes can be avoided by restricting the axioms concerning know-
ledge, and necessity of statements about necessity. The restrictions will be
somewhat unintuitive as are the restrictions necessary to avoid the paradoxes of

naive set theory.
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Chee K. Yap (1977) proposes Virtual Semantics for intensional logics as a
generalization of Camap's individual concepts. Apart from the fact that Yap
does not stay within conventional first order logic, we don't know the relation
between his work and that described here.

I am indebted to Lewis Creary, Patrick Hayes, Donald Michie, Barbara
Partee and Peter Suzman for discussion of a draft of this paper. Creary in

particular has shown the inadequacy of the formalism for expressing all readings
of the ambiguous sentence "Pat knows that Mike knows what Joan last
asserted". There has not been time to modify the formalism to fix this inade-

quacy, but it seems likely that concepts of concepts are required for an adequate

treatment.
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A Theory of Approximate Reasoning

L. A. Zadeh
Computer Science Division
University of California at Berkeley, USA

Summary

The theory of approximate reasoning outlined in this paper is concerned with
the deduction of possibly imprecise conclusions from a set of imprecise premises.

The theory is based on a fuzzy logic, FL, in which the truth-values are
linguistic, that is of the form true, not true, very true, more or less true, false,
not very false, etc.,. and the rules of inference are approximate rather than
exact. Furthermore; the premises are assumed to have the form of fuzzy propo-

sitions, for example, "(X is much smaller than Y) is quite true," "If X is small
is possible then Y is very large is very likely," etc. By using the concept of a
possibility — rather than probability — distribution, such propositions are
translated into expressions in PRUF (Possibilistic Relational Universal Fuzzy),
which is a meaning representation language for natural languages.

An expression in PRUF is a procedure for computing the possibility distri-
bution which is induced by a proposition in a natural language. By applying
the rules of inference in PRUF to such distributions, other distributions are
obtained which upon retranslation and linguistic approximation yield the
conclusions deduced from the fuzzy premises.

The principal rules of inference in fuzzy logic are the projection principle,
the particularization/conjunction principle, and the entailment principle. The
application of these rules to approximate reasoning is described and illustrated
by examples.

1. INTRODUCTION

Informally, by approximate or, equivalently, fuzzy reasoning we mean the
process or processes by which a possibly imprecise conclusion is deduced from

• a collection of imprecise premises. Such reasoning is, for the most part, quali-
tative rather than quantitative in nature, and almost all of it falls outside of the
domain of applicability of classical logic. A thorough exposition of the foun-
dations of fuzzy reasoning may be found in Gaines (1976a,b,c).
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Approximate reasoning underlies the remarkable human :ability to under-

stand natural language, decipher sloppy handwriting, play ,games requiring

mental and/or physical slcill and, more generally, make rational tdecisions in

complex and/or uncertain environments. In fact, it is the ability to season in

qualitative, imprecise terms that distinguishes human intelligence frciminachine

intelligence. And yet,, approximate reasoning has received little if any attention

within psychology, philosophy, logic, artificial intelligence and other branches

of cognitive sciences, largely because it is not consonant with the deeply

entrenched tradition of precise reasoning in science and contravenes the widely

held belief that precise, quantitative reasoning has the ability to solve the

extremely complex and ill-defined problems which pervade the analysis of

humanistic systems.
In earlier papers (Zadeh 1973 1975 a,b,c, 1976, 19772,15), we have outlined

a conceptual framework for approximate reasoning based on the notions of

linguistic variable and fuzzy logic, in the present paper, a novel direction

involving the concept of a possibility distribution will be described (see also

Zadeh 1977). As will be seen in the sequel, the concept of a possibility distri-

bution provides a natural basis for the representation of the meaning of

propositions expressed in a natural language, and thereby serves as a convenient

point of departure for the translation of imprecise premises into expressions

in a language PRUF to which the rules of inference associated with this language

can be applied.
Our exposition of approximate reasoning begins with a brief discussion

of the concept of a possibility distribution and its role in the translation of

fuzzy propositions expressed in a natural language. In Sec. 3, the concept

of a linguistic variable is introduced as a device for an approximate characteri-

zation of the values of variables and their interrelations. In Secs. 4 and 5, we

shall discuss some of the basic aspects of fuzzy logic — the logic that serves as

a foundation for approximate reasoning — and introduce the concepts of

semantic equivalence and semantic entailment. Finally, in Sec. 6, we formulate

the basic rules of inference in fuzzy logic and illustrate their application to
approximate reasoning by a number of simple examples.

2. THE CONCEPT OF A POSSIBILITY DISTRIBUTION

A basic assumption which underlies our approach to approximate reasoning is

that the imprecision which is instrinsic in natural languages is, in the main,

possibilistic rather than probabilistic in nature. The term possibilistic was coined

by B. R. Gaines and L. J. Kohout in their paper on possible automata (1975).

To illustrate the point, consider the proposition p A- X is an integer in the
interval [0,8]. The symbol A stands for "is defined to be", or "denotes". Clearly,
such a proposition does not associate a unique integer with X; rather, it indicates
that any integer in the interval [0,8] could possibly be a value of X, and that
any integer not in the interval could not be a value of X.

This obvious observation suggests the following interpretation of p. The
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proposition "X is an integer in the interval [0,81" induces a possibility distri-
bution fix which associates with each integer n the possibility that n could be a
value of X. Thus, for the proposition in question

and
Poss{X = n} = 1 for 0 n < 8

Poss{X = n} = 0 for n < 0 or n > 8

where Foss-[X = n]. is an abbreviation for "The possibility that X may assume
the value n". Note that the possibility distribution induced by p is uniform
in the sense that the possibility values are equal to unity for n in [0,8] and
zero elsewhere.

Next, consider the fuzzy proposition q A X is a small integer, in which
small integer is a fuzzy set defined by, say,

small integer= 1/0 +1/1+ 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5' (2.1)

in which + denotes the union rather than the arithmetic sum, and a singleton
of the form 0.8/2 signifies that the grade of membership of the integer 2 in the
fuzzy set small integer is 0.8 (see A. Kaufmann (1975), C. V. Negoita and D.
Ralescu (1975), and L. A. Zadeh, K. S. Fu, K. Tanaka and M. Shimura (1975)).

As an extension of our interpretation of the nonfuzzy proposition p, we
shall interpret q as follows. The proposition q X is a small integer induces a
possibility distribution Hx which equates the possibility of X taking a value n
to the grade of membership of n in the fuzzy set small integer. Thus

Poss{X =
Foss{X =

0}
2}
=
=

1
0.8

Poss{X =5}=0.2
and Poss {X =6}=0 .

More generally, we shall say that a fuzzy proposition of the form p X
is F, where X is a variable taking values in a universe of discourse U, and F is
a fuzzy subset of U, induces a possibility distribution fix which is equal to F,
that is,

= fixF. (2.2)

Thus, in essence, the possibility distribution of X is a fuzzy set which serves
to define the possibility that X could assume any specified value in U. Stated
more concretely, if u E U and /IF: U -+ [0,1] is the membership function of F,
then the possibility that X = u given "Xis F" is

Poss{X = ulX is Fl = #F(u) , u E U . (2.3)

Since the concept of a possibility distribution coincides with that of a
fuzzy set, possibility distributions may be manipulated by the rules governing
the manipulation of• fuzzy sets and, more particularly, fuzzy restrictions. A
fuzzy restriction is a fuzzy set which serves as an elastic constraint on the.
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values that may be assigned to a variable. A variable which is associated with a

fuzzy restriction or, equivalently, with a possibility distribution, is a fuzzy
variable. In what follows, we shall focus our attention only on those aspects

of possibility distributions which are of relevance to approximate reasoning:

Possibility versus probability

What is the difference between possibility and probability? Intuitively, possi-
bility relates to our perception of the degree of feasibility or ease of attainment,
whereas probability is associated with the degree of belief, likelihood, frequency,
or proportion. Thus, what is possible may not be probable, and what is im-
probable need not be impossible. A more concrete statement of this relation is
embodied in the possibility 'probability consistency principle (Zadeh, 1977a).
More importantly, however, the distinction between possibility and probability
manifests itself in the different rules which govern their combinations, especially
under the union. More specifically, if A is a nonfuzzy subset of U, and 1Ix is
the possibility distribution induced by the proposition "X is F", then the
possibility measure, 11(A), of A is defined as

11(A) A- Foss -PC EA} A. SupueA 1.1F(u) . (2.4)

The possibility measure defined by (2.4) is a special case of the more general

concept of a fuzzy measure defined by Sugeno (1974) and Terano and Sugeno

(1975). More generally, if A is a fuzzy subset of U, then

11(A) Foss {X isA}L Supt,[pF(u) A AA (u )1 (2.5)

where 1-IA is the membership function of A and A min.

From the definition of possibility measure, it follows at once that, for
arbitrary subsets A and B of U, the possibility measure of the union of A and B

is given by

11(A UB) = II(A) V 11(B) (2.6)

where V max. Thus, the possibility measure does not have the basic additivity
property of probability measure, namely,

P(AUB)= P(A)+ P(B) if A and B are disjoint (2.7)

where P(A) and P(B) denote the probability measures of A and B, respectively.
Unlike probability, the concept of possibility in no way involves the notion

of repeated experimentation. Thus, the concept of possibility is nonstatistical
in character and, as such, is a natural concept to use when the imprecision or
uncertainty in the phenomena under study are not susceptible of statistical
analysis or characterization.

Possibility assignment equations

The reason why the concept of a possibility distribution plays such an important

role in approximate reasoning relates to our assumption that a proposition in
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a natural language may be interpreted as an assignment of a fuzzy set to a
possibility distribution. More specifically, if p is a proposition in a natural
language, we shall say that p translates into a possibility assignment equation:

•+ H(x1,...xn) F (2.8)

where X1, ...Xn are variables which are explicit or implicit in p; - (X1, ... .xn) is
the possibility distribution of the n-ary variable X ...Xn); and F is a fuzzy
relation, that is, a fuzzy subset of the cartesian product U1 X ... X Un, where

i = 1, n, is the universe of discourse associated with Xi. In this context, the
possibility assignment equation

xn) F (2.9)

will be referred to as the translation of p and, conversely, p will be said to be a
retranslation of (2.9), in which case its relation to (2.9) will be represented as

P 4- II pc1,...xn) = F (2.10)

In general, a proposition of the form p A X is F, where X is the name of
an object or a proposition, translates not into

P Ilx = F (2.11)
but into

P Ilmx)=

where A(X) is an implied attribute of X. For example,

Joe is young -4. 
11

--Age(Joe)= young

Maria is blond -* rr,--L,olour(Hair(Moria))= blond

Max is about as tall as Jim -+
11(Height(Max),Ileight(Jim))= approximately-equal

(2.12)

(2.13)

(2.14)

(2.15)

where young, blond, and approximately equal are specified fuzzy relations
(unary and binary) in their respective universes of discourse. More concretely,
if u is a numerical value of the age of Joe, then (2.13) implies that

Foss {Age (Joe) = u} = ityoung(u) . (2.16)

Similarly, if u is an identifying label for the colour of hair, then (2.14) implies
that

Foss {Colour (Hair(Matia)) = u} = 11 btona(u) (2.17)

while (2.15) signifies that

Foss {Height (Max) = u, Height (Jim) = v} =

Papproximately equal(14,V) (2.18)

where u and v are the generic values of the variables Height(Max) and
Height (Jim), respectively.
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Projection and particularization

Among the operations that may be performed on a possibility distribution,
there are two that are of particular relevance to approximate reasoning: pro-
jection and particularization.

Let 11(4 x) denote an n-ary possibility distribution which is a fuzzy
realtion in Ui X ... X Um with the possibility distribution function of xn)

(that is, the membership function of 11(4 xn)) denoted by 1T(4 xn) or,
more simply, as lrx.

Let s 4 (lb _0 be a subsequence of the index sequence (1, ...n) and let
s' denote the complementary subsequence s' j„,) (for example, for
n = 5, s = (1,3,4) and s' = (2,5)). In terms of such sequences, a k-tuple of the
form (A11,... Alk) may be expressed in an abbreviated form as A0). In particular,
the variable X(5) = (X11, ...J4k) will be referred to as a k-ary subvariable of
X A Xn), with Xv) = (41, Xim) being a subvariable complementary to

Ar(g).
The projection of 11(4 xn) on US ) x x Uik is a k-ary possibility

distribution denoted by

Ilx(3)4 Pro/u(s) n xn)

and defined by

irx(s) (u(s)) 4 Supuo,) ffx(ui, ...un) (2.20)

where irx(s) is the possibility distribution function of Hx(s). For example, for
n = 2,

(2.19)

irx, (Li') A supu2 7T(x1,x2)(ui,u2)

is the expression for the possibility distribution function of the projection of
Il(y1,x2) on U1. By analogy with the concept of a marginal probability distri-
bution, 11x() will be referred to as a marginal possibility distribution. Note
that our use of Ilx(s) in (2.19) to denote the projection of Tlx on t.1(3) anticipates
(2.21).

The importance of the concept of a marginal possibility distribution derives
from the fact that Ilx(s) may be regarded as the possibility distribution of the
subvariable X(3). Thus, stated as the projection principle (in Sec. 6), the relation
between X() and 1Ix(s) may be expressed as follows.

From the possibility distribution,11(4 xn), of the variable XAt (X1, 
the possibility distribution 11x  of the subvariable X0) Xik) may be
inferred by projecting nuci, xn) on U4), that is,

Itic(s)= Prokr(5) (2.21)

As a simple illustration, assume that n = 3, U1 = U2 = U3 = a+ b or, more
conventionally, {a,b]. and II(x1,x2,x3) is expressed as a linear form

11(x1,x2,x3) = 0.8aaa + laab + 0.6 baa + 0.2 bab + 0.5 bbb (2.22)
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in which a term of the form 0.6 baa signifies that

Poss{X1= b, X2 = a, X3 = a} = 0.6 . (2.23)

To derive 11(x1,x2) from (2.22) it is sufficient to replace the value of X3 in
each term in (2.22) by the null string A. This yields

11(x1,x2) = 0 .8 aa + laa + 0.6ba + 0.2ba + 0.5bb (2.24)
= laa + 0.6ba + 0.5bb

and similarly

= la + 0.6b + 0.5b
= la + 0.6b .

(2.25)

Turning to the operation of particularization, let 11(x1, xn) = F denote
the possibility distribution of X = (X1, ...X„), and let Ilx(s) = G denote a
specified possibility distribution (not necessarily the marginal distribution)
of the subvariable X = k)

Informally, by the particularization of 11(4 xn) is meant the modifi-
cation of xn) resulting from the stipulation that the possibility distri-
bution of lIx() is G. More specifically,

11(4 xn) [11x(s) = G]-4,1 Fri .0 (2.26)

where the left-hand member places in evidence the Xi (that is, the attributes)
which are particularized in ...x ), while the right-hand member defines
the effect of particularization, with denoting the cylindrical extension of
G, that is, the cylindrical fuzzy set in U1 X ... X U„ whose projection on 11(3)

is G. Thus,

, (2.27)
un) E Ul X ... X 4, .

As a simple illustration, consider the possibility distribution defined by
(2.22) and assume that

11(xi, x2) = 0.4aa + 0.9ba + 0.1 bb . (2.28)

In this case,

G= 0 .4 aaa + 0 .4 aab + 0 .9 baa + 0 .9 bab + 0 .1bba + 0 ibbb
F n -C = 0 .4aaa + 0 .4 aab + 0 .6baa + 0 .2bab + 0 .1bbb

and hence

11(x1,x2,x3) [11(x1,x2) = Gl = (2.29)

0 .4 aaa + 0 .4 aab + 0.6 baa + 0 .2bab + 0 ibbb

In general, some of the variables in a particularized possibility distribution
(or a fuzzy relation) are assigned fixed values in their respective universes of
discourse, while others are associated with possibility distributions. For example,
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in the case of a fuzzy relation which characterizes the fuzzy set of men who are
tall, blond, and named Smith, the particularlized relation has the form

MAN [Name = Smith; Height= TALL; IT--colourviato = BLOND]
(2.30)

(Note that the label of a relation is capitalized when it is desired to stress that

it denotes a relation.) Similarly, the fuzzy set of men who have the above

characteristics and, in addition, are approximately 30 years old, would be

represented as

MAN[Name = Smith;l1Height= TALL;11coimrwaio= BLOND;

"Age = APPROXIMATELY EQUAL [Age = 30]] . (231)

In this case, the possibility distribution which is associated with the variable

Age is in itself a particularized possibility distribution.
It should be noted that the representations exemplified by (2.30) and

(2.31) are somewhat similar in appearance to those that are commonly em-

ployed in semantic network and higher order predicate calculi representations

of propositions in a natural language. Expositions of such representations

may be found in Newell and Simon (1972), Miller and Johnson-Laird (1976),

Bobrow and Collins (1975), Minsky (1975), and other books and papers listed

in the bibliography. An essential difference, however, lies in the use of possibility

distributions in (230) and (231) for the characterization of values of fuzzy

variables, and in the concrete specification of the manner in which a possibility
distribution is modified by particularization.

Meaning and information

Particularization as defined by (2.26) plays a particularly important role in
PRUF — a language intended for the representation of the meaning of fuzzy
propositions. A brief description of PRUF appears in Zadeh (1977b). A more
detailed exposition of PRUF will be provided in a forthcoming paper.

Briefly, an expression, P, in PRUF is, in general, a procedure for computing
a possibility distribution. More specifically, let U be a universe of discourse and
let 61 be a set of relations in U. Then, the pair

D (U,61) (2.32)

constitutes a database, with P defined on a subset of relations in R. As defined
here, the concept of a database is related to that of a possible world in modal
logic (Hughes and Cresswell, 1968; Miller and Johnson-Laird, 1976).

If p is an expression in a natural language and P is its translation in PRUF,
that is,

11—>13,

then the procedure P may be viewed as defining the meaning, M(p), of p, with
the possibility distribution computed by P constituting the information, 1(p),
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conveyed by p. (The procedure defined by an expression in PRUF and the
possibility distribution which it yields are analogous to the intension and
extension of a predicate in two-valued logic. (Cresswell, 1975.) When meaning
is used loosely, no differentiation between M(p) and 1(p) is made.)

As a simple illustration, consider the proposition

p -A- John resides near Berkeley (2.33)

which in PRUF translates into

RESIDENCE[Subject = John;

IlLocationi = PMIAL X CY1Y 1 NEAR [City 2 = Berkeley]] (2.34)

where NEAR is a fuzzy relation with the frame NEARIICityliCity2 fp I and the
expression Pram x my 1 NEAR[City2 = Berkeley] represents the fuzzy set of
cities which are near Berkeley. The frame of a fuzzy relation exhibits its name
together with the names of its variables (that is, attributes) and j.i — the grade of
membership of each tuple in the relation.

The expression in PRUF represented by (2.34) ) is, in effect, a procedure
for computing the possibility distribution of the location of residence of John.
Thus, given a relation NEAR, it will return a possibility distribution of the form
Or A possibility-value)

RESIDENCE Subject Location ir

John
John
John
John

Oakland
Palo Alto
San Jose
Orinda

1
0.6
0.2
0.8

which may be regarded as the information conveyed by the proposition "John
resides near Berkeley".

PRUF plays an essential role in approximate reasoning because it serves as
a basis for translating the fuzzy premises expressed in a natural language into
possibility assignment equations to which the rules of inference in approximate
reasoning can be applied in a systematic fashion. In Sec. 4, we shall discuss in
greater detail some of the basic translation rules in fuzzy logic which constitute
a small subset of the translation rules in PRUF. This brief exposition of PRUF
will suffice for our purposes in the present paper.

We turn next to the concept of a linguistic variable — a concept that plays
a basic role in approximate reasoning, fuzzy logic, and the linguistic approach
to systems analysis.
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3. THE CONCEPT OF A LINGUISTIC VARIABLE

In describing the behaviour of humanistic — that is, human-centered — systems,
we generally use words rather than numbers to characterize the values of
variables as well as the relations between them. For example, the age of a person
may be described as very young, intelligence as quite high, the relation with
another person as not very friendly, and appearance as quite attractive.

Clearly, the use of words in place of numbers implies a lower degree of
precision in the characterization of the values of .a variable. In some instances,
we elect to be imprecise because there is no need for a higher degree of precision.
In most cases, however, the imprecision is forced upon by the fact that there
are no units of measurement for the attributes of an object and no quantitative
criteria for representing the values of such attributes as points on an anchored
scale.

Viewed in this perspective, the concept of a linguistic variable may be
regarded as a device for systematizing the use of words or sentences in a natural
or synthetic language for the purpose of characterizing the values of variables
and describing their interrelations. In this role, the concept of a linguistic
variable serves a basic function in approximate reasoning both in the repre-
sentation of values of variables and in the characterization of truth-values,
probability-values, and possibility-values of fuzzy propositions.

In this section, we shall focus our attention only on those aspects of the
concept of a linguistic variable which have a direct bearing on approximate
reasoning. More detailed discussions of the concept of a linguistic variable
and its applications may be found in Zadeh (1973, 1975c), Wenstop (1975,

1976), Mamdani and Assilian (1975), Procyk (1976), and other papers listed
in the bibliography.

As a starting point for our discussion, it is convenient to consider a variable
such as Age, which may be viewed both as a numerical variable ranging over,
say, the interval [0,150] , and as a linguistic variable which can take the values
young, not young, very young, not very young, quite young, old, not very young
and not very old, etc. Each of these values may be interpreted as a label of a
fuzzy subset of the universe of discourse U = [0,150], whose base variable, u, is
the generic numerical value of Age.

Typically, the values of a linguistic variable such as Age are built up of one
or more primary terms (the labels of primary fuzzy sets which play a role
somewhat analogous to that of physical units in mechanistic systems), together
with a collection of modifiers and connectives which allow a composite linguistic
value to be generated from the primary terms. Usually, the number of such terms
is two, with one being an antonym of the other. For example, in the case of Age,
the primary terms are young and old.

A basic assumption underlying the concept of a linguistic variable is that the
meaning of the primary terms is context-dependent, whereas the meaning of the
modifiers and connectives is not. Furthermore, once the meaning of the primary
terms is specified (or "calibrated") in a given context, the meaning of composite
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terms such as not very young, not very young and not very old, etc., may be
computed by the application of a semantic rule.

Typically, the term-set, that is, the set of linguistic values of a linguistic
variable, comprises the values generated from each of the primary terms together
with the values generated from various combinations of the primary terms. For
example, in the case of Age, a partial list of the linguistic values of Age is the
following:

young
not young
very young
not very young
quite young
more or less young
extremely young
etc.

old
not old
very old
not very old
quite old
more or less old
extremely old
etc.

not young nor old
not very young and not very old
young or old
not young or not old
etc.

What is important to observe is that most linguistic variables have the
same basic structure as Age. For example, on replacing young with tall and
old with short, we obtain the list of linguistic values of the linguistic variable
Height. The same applies to the linguistic variables Weight (heavy and light),
Appearance (beautiful and ugly), Speed (fast and slow), Truth (true and false),
etc., with the words in parentheses representing the primary terms.

As is shown in Zadeh (1973, 1975c), a linguistic variable may be charac-

terized by an attributed grammar (see Knuth 1968; Lewis et al 1974) which
generates the term-set of the variable and provides a simple procedure for
computing the meaning of a composite linguistic value in terms of the primary
fuzzy sets which appear in its constituents.

As an illustration, consider the attributed grammar shown in which S, B,
C, D, and E are nonterminals; not, and, a and b are terminals; a and b are the
primary terms (and also the primary fuzzy sets); subscripted symbols are the
fuzzy sets which are labelled by the corresponding nonterminals, with L -4 left
(that is, pertaining to the antecedent), R A right (that is, pertaining to the
consequent); and a production of the form

S -*Sand B : st=sR nBR (3.1)

signifies that the fuzzy set which is the meaning of the antecedent, S, is the
intersection of SR, the fuzzy set which is the meaning of the consequent S.
and BR, the fuzzy set which is the meaning of the consequent B.

S B : SL=BR
S -+SandB : SL =sR nBR
B C : AL, CR
B --0 not C : BL, = C GA complement of CR)
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C -+ S : CL=SR
C D : CL=DR

C E : c = E R
D -+ very D : DL, = (Z1- square of DR)
E -0 very E : = (-4 square of ER)
D a • : DL,= a

E b : EL, = b

The grammar in question generates the linguistic values exemplified by

the list:

a b a and b
nota not b not a and b
very a very b not a and not b
not very a not very b not very a and not very b
not very very a not very very b etc.
etc. etc.

In general, to compute the meaning of a linguistic value, 52, generated by
the grammar, the meaning of each node of the syntax tree of it is computed --
by the use of equations (3.2) — in terms of the meanings of its immediate
descendants. In most cases, however, this can be done by inspection — which

involves a straightforward application of the translation rules which will be
formulated in Sec. 4. Thus, we readily obtain, for example:

not very a -* (a2)' (3.3)
not very a and not very b (a2)' n (b2)'

where a' is the complement of a and a2 is defined by

pa2(u) = (Iia(u))2, u E U. (3.4)

To characterize the primary fuzzy sets a and b, it is frequently convenient
to employ standardized membership functions with adjustable parameters. One
such function is the S-function,S(u;a,ri,7), defined by

S(u;a,f3,7)= 0 foru<a (3.5)

2 (14 —a)2
7—a 

for a<u<13

= 1 — 2(1-1-)2 fori3u
7—a 

<67

= 1 for u> 7

where the parameter A is the crossover point, that is, the value of u at

which Au ;a,l3,7) = 0.5.1For example, if a A young and b A. old, we may have
(see Fig. 1)

uyoung = 1 — S(20,30,40) (3.6)

Loki = S(40,55,70) (3.7)
and
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in which the argument u is suppressed for simplicity. Thus, in terms of (3.6),
the translation of the proposition p Joe is young (see (2.13)), may be
expressed more concretely as

Joe is young -± irAge(j„) =1 —S(20,30,40) (3.8)

where irAv(;„) is the possibility distribution function of the linguistic variable
Age(Joe). Similarly,

Joe is not very young -0. ITAge (Joe) = 1 — [1 — S(20 ,30,40)]2 . (3.9)

An important aspect of the concept of a linguistic variable relates to the
fact that, in general, the term-set of such a variable is not closed under the
various operations that may be performed on fuzzy sets, for example, union,
intersection, product, etc. For example, if J2 is a linguistic value of a variable
X, then, in general, Q2 is not in the term-set of X.

The problem of finding a linguistic value of X whose meaning approximates
to a given fuzzy subset of U is called the problem of linguistic approximation
(Zadeh, 1975c; Wenstop, 1975; Procyk, 1976). We shall not discuss in the
present paper the ways in which this nontrivial problem can be approached, but
will assume that linguistic approximation is implicit in the retranslation of a
possibility distribution (see (2.10)) into a proposition expressed in a natural
language.

young very young
not young

05

30

old

more or less young

Fig. I — Graphical representation of linguistic values of Age.

age

4. FUZZY LOGIC (FL)

In a broad sense, fuzzy logic is the logic of approximate reasoning; that is, it
bears the same relation to approximate reasoning that two-valued logic does to
precise reasoning.

In this section, we shall focus our attention on a particular fuzzy logic,
FL, whose truth-values are linguistic, that is, are expressible as the values of a
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linguistic variable Truth whose base variable takes values in the unit interval.
In this sense, the base logic for FL is Lukasiewicz's LAlephi logic whose truth-
value set is the interval [0,1].

The principal constituents of FL are the following: (i) Translation rules,
(ii) Valuation rules, and (iii) Inference rules.

By translation rules is meant a set of rules which yield the translation of
a modified or composite proposition from the translations of its constituents.
For example, if p and q are fuzzy propositions which translate into (see (2.8))

and
n(xi, xn)= F

q —0 r(yi, ym) G

(4.1)

(4.2)

respectively, then the rule of conjunctive composition — which will be stated
at a later point in this section — yields the translation of the composite propo-
sition "p and q".

By valuation rules is meant the set of rules which yield the truth-value (or
the probability-value or the possibility-value) of the modified or composite
proposition from the specification of the truth-values (or probability-values
or possibility-values) of its constituents. A typical example of the valuation
rule is the conjunctive valuation rule which expresses the truth-value of the
composite proposition "p and q" as a function of the truth-values of p and q
— for example, not very true and quite true, respectively.

The principal rules of inference in FL are: (a) The projection principle,
(b) The particularization/conjunction principle; and (c) The entailment principle.
In combination, these rules lead to the compositional rule of inference which
may be viewed as a generalization of the modus ponens.

In what follows, we shall discuss briefly only those aspects of fuzzy logic
which are of direct relevance to approximate reasoning. A more detailed dis-
cussion of FL may be found in Zadeh (1975a) and Bellman and Zadeh (1976).

Translation rules

The translation rules in FL may be divided into several basic categories. Among
these are:

Type I. Rules pertaining to modification.
Type II. Rules pertaining to composition.
Type III. Rules pertaining to quantification.
Type IV. Rules pertaining to qualification.

Simple examples of propositions to which the rules in question apply are
the following:

Type I. X is very small.
Therese is highly intelligent.

Type II. Xis small and Y is large.
If X is small then Y is large .
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Type III. Most Swedes are tall.
Many men are taller than most men.

Type IV. John is tall is very true.
John is tall is not very likely.
John is tall is quite possible.

In combination, the rules in question may be applied to the translation of
more complex propositions exemplified by:

If ((X is small and Y is large) is very likely) then (Z is very large is not
very likely).

((Many men are taller than most men) is very true) is quite possible.

Rules of Type I

A basic rule of Type I is the modifier rule, which may be stated as follows.
Let X be a variable taking values in U = {u}, let F be a fuzzy subset of

U, and let p be a proposition of the form "X is F". If the translation of p is
expressed by

XisF-41Ix=F (4.3)

then the translation of the modified proposition "X is mF", where m is a
modifier such as not, very, more or less, etc., is given by

X is mF = (4.4)

where F+ is a modification of F induced by m. (More detailed discussions of
various types of modifiers may be found in Zadeh (1972a, 1975c), Lakoff
(1973a,b), Wenstop (1975), McVicar-Whelan (1975), Hersh and Caramazza
(1976), and other papers listed in the bibliography.) More specifically,

If m = not, then F* = F' complement of F (4.5)

If m = very, then f". =F2 (4.6)
where

F2 = f 4(u)lu (4.7)

The "integral" representation of a fuzzy set in the form F = uF(u)lu signifies
U

that F is a union of the fuzzy singletons PF(u)/u, u E U, where I./F. is the mem-
bership function of F. Thus, (4.7) means that the membership function of F2
is the square of that of F.

If m = more or less, then F* =Nr-F (4.8)
where

Nrfi
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F4* =f PF(u)K(u) (4.10)
JU

where K(u) is the kernel of more or less (Zadeh, 1972).
As a simple illustration, consider the proposition "X is small", where small

is defined by

small = 1/0+1/1+0.8/2+0.6/3+0.4/4+0.2/5. (4.11)
Then

Xis very small -4. Ilx = F+ (4.12)
where

F= F2 = 1/0+1/l+0.64/2+036/3+0.16/4+0.04/5. (4.13)

It is important to note that (4.6) and (4.8) should be regarded merely as
standardized default definitions which may be replaced by other definitions
whenever they do not fit the desired sense of the modifier m. Another point
that should be noted is that X in (4.3) need not be a unary variable. Thus,
(43) subsumes propositions of the form "X and Y are F", as in "X and Y
are close", where CLOSE is a fuzzy binary relation in U X U. Thus, if

then
X and Y are close -* n = CLOSE (4.14)

X and Y are very close -0 IV, = CLOSE 2 . (4.15)

Rules of Type II

Compositional rules of Type II pertain to the translation of a proposition p

which is a composite of propositions q and r. The most commonly employed
modes of compositions are: conjunction, disjunction, and conditional compo-

sition (or implication). The translation rules for these modes of composition
are as follows. (We are tacitly assuming that the compositions in question are
noninteractive in the sense defined in Zadeh (1975c).)-

Let X and Y be variables taking values in U and V, respectively, and let F
and G be fuzzy subsets of U and V. If

X is F -o Ilx = F (4.16)

Y is G -o Ely = G
then

(a) Xis F and Y is G li(xy) = Fr) .a

(4.17)

(4.18)
=FXG

(b) Xis F or Y is G 11(xx) = F+ G (4.19)

and (c1) If X is F then Y is G 11(xy) = F' e (4.20)

or (c2) If Xis F then Y is G -o li(x,y) =FXG+F'XV (4.21)
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where Ilf(xx) is the possibility distribution of the binary variable (X,Y), P and V
are the cylindrical extensions of F and G, respectively, that is,

F=FXV (4.22)

U X G ; (4.23)

F X G is the Cartesian product of F and G, which may be expressed as F fl
and is defined by

PFxG(14,v)=1.1F(u)A1.1G(v) , uEU, vEV, (4.24)

+ is the union, and is the bounded sum, that is,

PP'e5(u,v)= 1 A [1 —11F(u) PG(v)] (4.25)

where + and — denote the arithmetic sum and difference. Note that there are
two interpretations of the conditional composition, (c1) and (c2). Of these,
(ci) is consistent with the definition of implication in Lmephi logic, while (c2)
corresponds to the table

X

V

As a very simple illustration, assume that U = V = 1 + 2 + 3. (To be con-
sistent with our notation for fuzzy sets, a finite nonfuzzy set U =
may be expressed as U= u1+ • • •+ un)

FL small A 1/1+0.6/2+0.1/3 (4.26)
G -4 large A 0.1/1+0.6/2+1/3

Then (4.18), (4.19), (4.20) and (4.21) yield

Xis small and Y is large -> ri(x,y) = 0.1/(1,1)+ 0.6/(1,2)+ 1/(1,3)
+ 0.1/(2,1)+ 0.6/(2,2)+ 0.6/(2,3)
+ 0.1/(3,1)+ 0.1/(3,2)+ 0.1/(3,3)

Xis small or Y is large -> rimy) = 1/(1,1) + 1/(1,2) + 1/(1,3)
+ 0.6/(2,1) + 0.6/(2,2) + 1/(2,3)
+ 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)

If X is small then Y is large -> = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3)
+ 0.5/(2,1) + 1/(2,2) + 1/(2,3)
+ 1/(3,1) + 1/(3,2) + 1/(3,3)

If X is small then Y is large -* ri(xy) = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3)
+ 0.4/(2,1) + 0.6/(2,2) + 0.6/(2,3)
+ 09/(3,1) + 0.9/(3,2) + 0.9/(3.3).
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Rules of Type Ill

Quantificational rules of Type III apply to propositions of the general form

p QX are F (4.27)

where Q is a fuzzy quantifier (most, many, few, some, almost all, etc.), X is a

variable taking values in U, and F is a fuzzy subset of U. Simple examples of

(4.27) are: "Most X's are small", "Some X's are small", "Many X's are very

small". A somewhat less simple example is: "Most large X's are much smaller

than a", where a is a specified number.
In general, a fuzzy quantifier is a fuzzy subset of the real line. However,

when Q relates to a proportion, as is true of most, it may be represented as a
fuzzy subset of the unit interval. Thus, the membership function of Q most
may be represented as, say,

p„,„t = S(0.5,0.7, 0.9) (4.28)

where the S-function is defined by (3.5).
To be able to translate propositions of the form (4.27), it is necessary to

define the cardinality of a fuzzy set, that is, the number (or the proportion)
of elements of U which are in F. When U is a finite set 4u1,...uNl, a possible
extension of the concept of cardinality of a nonfuzzy set — to which we shall
refer as fuzzy cardinality — is the following. Let

F = E aFa (4.29)
a

be the resolution (Zadeh, 1971) of F into its level-sets, that is

{ultiF(u)› a} (430)

where a Fa is a fuzzy set defined by

Fa = attFa (4.31)

and E denotes the union of the aFa over a E [0,1]. Let IF6,1 denote the
a

cardinality of the nonfuzzy set Fa. Then, the fuzzy cardinality of F is denoted

by 1F11 and is defined to be the fuzzy subset of {0,1,2, expressed by

1F11= E aVal. (4.32)

As a simple example, consider the fuzzy subset small defined by (2.1). In
this case,

and

= + 1 Vil=2
F08=0+1+2 
F06=0+1+2+3 IF0.6I=4
F0.4=0+ 1 +2+3 +4 , IF0.41=5
F02=0 +1 +2 +3 +4 +5 , IF0.21=6

1F11= 1/2 + 0.8/3 + 0.6/4 + 0.4/5 + 0.2/6. (4.33)
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Frequently, it is convenient or necessary to express the cardinality of a
fuzzy set as a nonfuzzy real number (or an integer) rather than as a fuzzy
number. In such cases, the concept of the power of a fuzzy set (DeLuca and
Termini, 1972) may be used as a numerical summary of the fuzzy cardinality
of a fuzzy set. Thus, the power of a fuzzy subset, F, of U = {145, ...uN} is
defined by

Fl (4.34)

where pF(ui) is the grade of membership of ui in F, and E denotes the
arithmetic sum. For example, for the fuzzy set small defined by (2.1) we have

F I = 1 + 1 + 0.8 + 0 .6 + 0.4 + 0.2 = 4 .

For some applications, it is necessary to eliminate from the count those
elements of F whose grade of membership falls below a specified threshold.
This is equivalent to replacing F in (434) with F where r is a fuzzy or
nonfuzzy set which induces the desired threshold.

As N increases and U becomes a continuum, the concept of the power
of F gives way to that of a measure of F (Zadeh, 1968; Sugeno, 1974), which
may be regarded as a limiting form of the expression for the proportion of
the elements of U which are in F. More specifically, if p is a density function
defined on U, the measure in question is defined by

IIF p(u)pF(u)du (4.35)

where /IF is the membership function of F. For example, if p(u)du is the pro-
portion of men whose height lies in the interval [u,u+du], then the proportion
of men who are tall is given by

00

Ilta1111=f p(u)p(u)du. (4.36)
0

Making use of the above definitions, the quantifier rule for propositions of
the form "QX are F" may be stated as follows.

If U= {u1, ...UN} and

XisF-+Tlx=F (437)
then

QX are F HIFI= Q

and, if U is continuum,

QX are F LEHR =Q

which implies the more explicit rule

QX are F 7r(p)= pg[f p(u)pF(u)duj
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where p(u)du is the proportion of X's whose value lies in the interval [u,u + dub
n(p) is the possibility of p, and uQ and 1.1F are the membership functions of
Q and F, respectively.

As a simple illustration, if most and tall are defined by (4.28) and ptafi =

S(160,170,180), respectively, then

Most men are tall .4 rr(p)=

[
f200

S p(u)S(u;160,170,180)du ;0.5,0.7,0.9]
0

(4.41)

where p(u)du is the proportion of men whose height (in cm) is in the interval
[u,u +du]. Thus, the proposition "Most men are tall" induces a possibility
distribution of the height density function p which is expressed by the right-
hand member óf(4.41).

Rules of Type IV

Among the many ways in which a proposition, p, may be qualified there are
three that are of particular relevance to approximate reasoning. These are: (a)
by a linguistic truth-value, as in "p is very true", (b) by a linguistic probability.
value, as in "p is highly probable"; and (c) by a linguistic possibility-value,
as in "p is quite possible". Of these, we shall discuss only (a) in the sequel.
Discussions of (b) and (c) may be found in Zadeh (1977).

As a preliminary to the formulation of translation rules pertaining to truth
qualification, it is necessary to understand the role which a truth-value plays in
modifying the meaning of proposition. Thus, in FL, the truth-value of a
proposition, p, is defined as the compatibility of a reference proposition, r,
with p. More specifically, let

p Xis F

where F is a subset of U, and let r be a reference proposition of the special form

r-4-Xisu (4.42)

where u is an element of U. Then, the compatibility of r with p is defined as

Comp (X is ul X is F) 14. (u)

or, equivalently (in view of (23)),

Comp(X is u I X is F) Foss -{X = u IX is F} .

(4.43)

(4.44)

To extend (4.43) to the case where r is a fuzzy proposition of the form

r-4-XisG , GCU (4.45)
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we apply the extension principlet to the evaluation of the expression uF(G),
yielding

Comp {X is GIX is Fl (4.46)

f[ PG (u)/1A1u)
0,1]

in which the right-hand member is the union over the unit interval of the fuzzy
singletons pau)h.iF(u). Thus, the compatibility of "Xis G" with "Xis F" is a
fuzzy subset of [0,1] defined by (4.46).

In FL, the truth-value, 7., of the proposition p A X is F relative to the
reference proposition r A. X is G is defined as the compatibility of r with p.
Thus, by definition,

r A Tr -[X is FIX is G } -4 Comp {X is GIX is F}
= IIF(G)

(4.47)

Pc(u)/PF.(u)
[0,1]

which implies that the truth-value, r, of the proposition "X is F" relative to
"Xis G" is a fuzzy subset of the unit interval defined by (4.47). In this sense,
then, a linguistic truth-value may be regarded as a linguistic approximation to
the fuzzy subset, r, represented by (4.47). (See Fig. 2.)

0

Fig. 2 — Graphical illustration of the concept of relative truth.

t The extension principle (Zadeh 1975c) serves to extend the definition of a mapping

f: U V to the set of fuzzy subsets of U. Thus, f (F) f ;.IF(u)I f(u), where j(F) and
f(u) are, respectively, the images of F and u in V.
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A more explicit expression for r which follows at once from (4.47) is the

following. Let 11. denote the membership function of r and let v E [0,1]. Then

gr(v) = Maxu PG(1) (4.48)

subject to

PF(u) = v . (4.49)

In particular, if 1.1F is 1-1, then (4.48) and (4.49) yield

Pr(v)= lic(11-AvD , v E [0,1] . (4.50)

As a simple illustration, consider the propositions (see Fig. 3)

p A Xis F
r X is G where G = [a,b] .

In this case, it follows from (4.50) that r is the interval given by

7 = [PF(b),AF(a)1 •

(4.51)

lab tua 1

Fig. 3 — Interval-valued truth-value for an interval-valued reference proposition.
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The definition of the truth-value of p as the compatibility of a reference
proposition r with p provides us with a basis for the translation of truth-
qualified propositions of the form "p is r" when r is a fuzzy subset of [0,1].
Specifically, from the relation

7 = ilF(G) (4.52)

which defines r as the image of G under the mapping 1.4.: U [0,1], it follows
that the membership function of G may be expressed in terms of those of 7 and
1./F by (see Fig. 4)

PG (u) PAPF(u)) • (4.53)

Fig. 4 — Effect of truth qualification on F. is mapped into p'.)

Now, if r X is G is the reference proposition for p Xis F, we interpret
the truth-qualified proposition

q -A-XisFisr (4.45)

as the reference proposition r X is O. This leads us, then, to the following
rule for truth qualification:

If

then

where

XisF-+Ilx=F

Xis F is r -÷11x = F+

PF(u) = PAPF(u)) •
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In particular, if r is the unitary truth-value, that is

T A u-true (4.58)
where

pu.t,„,(v) vE [0,11 (4.59)
then

Xis Fis u-true (4.60)

As an illustration of (4.56), consider the proposition

p A Lucia is young is very true (4.60

in which

ilyoung = I S(25;35 ;45) (4.62)

Arnie = 5(0.6,0.8,1.0)
and

;Avery true= S2(0.6,0.8,1.0)

On applying (4.56) top, we obtain

P vAge(tuda)(u)= S2[1— S(u;25,35,45);0.6,0.8,1.0] (4.63)

which may be roughly approximated by the proposition

p* A Lucia is very young . (4.64)

Similarly, for the proposition

q A Lucia is not young is very false (4.65)

where false A ant true, that is,

ilfazse(v) Fitme(1— , v E [0,1] (4.66)
= 1 — S(v ;0,0.2,0 .4)

we obtain

q Age(Lucia) D-s[Au;25,35,45),0,0.2,0.4]]2 'Ir (4.67)

which, as can readily be verified, defines the same possibility distribution as
(4.63).

The translation rules described above provide us with the necessary basis
for the formulation of the rules of inference in FL and the related notions
of semantic equivalence and semantic entailment. We turn to these issues in the
following section.

5. SEMANTIC EQUIVALENCE AND SEMANTIC ENTAILMENT

In this section, we shall consider two related concepts in fuzzy logic that play

an important role in approximate reasoning. These are the concepts of semantic
equivalence and semantic entailment.

Informally, two propositions p and q are semantically equivalent if and
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only if the possibility distributions induced by p and q are equal. More
specifically, if

P x) F
and

q xo= G

where IIP and IV are the possibility distributions induced by p and q, respec-
tively, and X1, ...X, are the variables that are implicit or explicit in p and q,
then

P +'4 iff 11(xl, Xn) =11(Xi, Xn)
(5.1)

where .4+ denotes semantic equivalence.
When (5.1) holds for all fuzzy sets in p and q that have a context-dependent

meaning, the semantic equivalence will be said to be strong.t For example, the
semantic equivalence

Adrienne is intelligent is true .4+ Adrienne is not intelligent is false (5.2)

holds for all definitions of intelligent and true (false antonym of true) and
hence is a strong equivalence. On the other hand, the semantic equivalence

Lucia is young is very true .4+ Lucia is very young (5.3)

is not a strong equivalence because it holds only for some particular definitions
of young and true. (See (4.64) and (4.65) et seq.) Usually, a semantic equivalence
which is not strong is approximate in nature, as is true of (5.3).

Generally, it is clear from the context whether a semantic equivalence is
or is not strong. Where it is necessary to place in evidence that a semantic
equivalence is strong, it will be denoted by s4+, while approximate semantic
equivalence will be denoted by co.

The concept of semantic entailment is weaker than that of semantic
equivalence in that p semantically entails q (or q is semantically entailed by p)
if and only if 11P(xi, xn) C ii1 xn). Thus, in symbols,

P" iff x„) (5.4)

where 1-+ denotes semantic entailment and 1111xl, xn) and 1174 xn) are the
possibility distributions induced by p and q, respectively.

As in the case of semantic equivalence, semantic entailment is strong if
(5.4) holds for all fuzzy sets in p and q that have a context-dependent meaning.
As an illustration, the semantic entailment expressed by

Xis very Xis small (5.5)

t The concept of strong semantic equivalence as defined here reduces to that of semantic
equivalence in predicate logic (Lyndon, 1966) when p and q are nonfuzzy propositions.
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is strong since it holds for all definitions of small. On the other hand, the validity
of the semantic entailment expressed by

Xis large I.+ Xis not small (5.6)

depends on the way in which large and small are defined, and hence (5.6) is
not an instance of strong semantic entailment.

In the case of propositions of the form p A X is F and q A X is G, it is
evident that

XisF.-*XisGiffFCG. (5.7)

From this and the definition of conditional composition (4.20), it follows
at once that

Xis F I-+ Xis G iff If X is F then X is G —> fix. = U (5.8)

or equivalently

Xis FI-+Xis G if IfXisFthen Xis G4+Xis U (59)

where ix is the possibility distribution of X and U is the universe of discourse
associated with X. Similarly, from the definition of conjunctive composition, it
follows that

XisF,-+XisG if XisFandXisG-411x=F (5.10)

or equivalently

Xis FI-+Xis G iff X isFandXisG **XisF (5.11)

An intuitively appealing interpretation of (5.11) is that p semantically entails q
if the information conveyed by "p and q" is the same as the information con-
veyed by p alone.

As a preliminary to applying the concepts of semantic equivalence and
semantic entailment to approximate reasoning — which we shall do in Sec. 6 — it
will be helpful to formulate several rules pertaining to the transformation of
a given proposition, p, into other propositions that have the same meaning as
p, that is, are strongly semantically equivalent top.

A general rule governing such transformations may be stated informally as
follows.

If m is a modifier and p is a proposition, than mp is semantically equivalent
to the proposition which results from applying m to the possibility distribution
which is induced by p.

Thus, on applying this rule to the case where m A not and making use of
the translation rules (4.5), (4.56) and (4.40), we arrive at the following specific
rules governing the negation of a proposition:

(a) not(X is F)<-0. X is not F (5.12)

for example,

not(X is small) 4+ Xis not small; (5.13)
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(b) not(X is F is r) 4+ X is F is not r

for example,

not (X is small is very true) +o Xis small is not very true ;

(c) not(QX are F)+, (not Q)X are F

for example,

not(many men are tall) 4+ (not many)men are tall.

Similarly, for m -A very, we obtain

(a) very (X is F) +0. Xis very F

(b) vet), (X is F is r) 4+ X is F is very r

(c) vet), (QX are F) +0(very Q)X are F

ZADEH

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

In addition, from the translation formulas (4.5), (4.40), and (4.56), it
follows at once that

Xis Fis r +oXis not Fis ant r (5.21)
and

QX are F (ant Q)X are not F (5.22)

where ant r and ant Q denote the antonyms of r and Q, respectively. (See
(4.66).) Similarly, for m = very, we have

XisFisr+oXisveryFis 2r (5.23)

where the "left-square" operation on r is defined by

Cl
2. pr

o/
v2

0

or equivalently

=146.5)

v E [0,1] (5.24)

(5.25)

where p, is the membership function of r. However, as will be seen later, when
F is modified to very F in "QX are F", we can assert only the semantic entail-
ment — rather than the semantic equivalence — expressed by

QX are F (2Q)F are very F (5.26)

where

2Q =f pQ(v)Iv2

or equivalently

P2Q (V) = RAVI) •
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It should be noted in closing that the negation rule expressed by (5.16)
appears to differ in form from the familiar negation rule in predicate calculus
(Lyndon 1966), which, when F is interpreted as a nonfuzzy predicate, may be
expressed as

not(all X are F) 4+ some X are not F. (5.29)

However, by the use of (5.22) it is easy to show that the right-hand member of
(5.29) is semantically equivalent to that of (5.16). Specifically, from (5.22) it
follows that

(not all)X are F 4+ (ant (not all)X)are not F

and if some is defined as

some ant(not all)

then

(5.30)

(not all )X are F4+ some X are not F (5.31)

in agreement with (5.29).

Remark

It should be observed that most of the definitions made in this and the preceding
sections — especially in regard to the semantic equivalence and semantic entail-
ment of fuzzy propositions — are nonfuzzy and, for the most part, quite precise.
What should be understood, however, is that all such definitions may be fuzzi-
fied, if necessary, by the use of the following general convention.

Let U be a universe of discourse, with u denoting a generic element of U.
A concept, C, in U is a subset, A, of U (or Un, n> 1) which is defined by a
predicate P such that P(u) is true if u E A, that 'is, u is an instance of C, and
false otherwise. Assume that P(u) is of the form P(f (u)), where P(f (u)) is true
if f (u) = 0 and false if f (u)> 0. Then A — and hence the concept C which is
associated with it — may be fuzzified by defining the grade of membership of u
in A as a monotone function of f(u) which assumes the value unity when
f (u) = 0. (The definition of such a function is, in general, application-dependent
rather than universal in nature.) In this sense, any definition which has the
format stated above may be viewed as providing a mechanism for a fuzzification
of the concept which it serves to define.

As an illustration of this convention, consider the concept of semantic
equivalence as defined by (5.1). In this case, the concept of semantic equivalence
may be fuzzified by defining the degree to which p and q are semantically
equivalent as a monotone function of the "distance" between IV/ and Hq, with
the distance function defined in a way that reflects the specific nature of the
domain of application. It should be understood, of course, that the concept
in question may also be fuzzified in other ways which do not stem directly
from its nonfuzzy definition.
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6. RULES OF INFERENCE AND APPROXIMATE REASONING
As in any other logic, the rules of inference in FL govern the deduction of a
proposition, q, from a set of premises _pd.. However, in FL both the
premises and the conclusion are allowed to be fuzzy propositions. Furthermore,
because of the use of linguistic approximation in the process of retranslation,
the final conclusion drawn from the premises ps,...pn is, in general, an
approximate ratheithan exact consequence of p1,.

The principal rules of inference in FL are the following.

1. Projection principle

Let p be a fuzzy proposition whose translation is expressed as

P F •

Let X() denote a subvariable of the variable X (X1,. .X), that is,

X(s) = (6.1)

where the index sequence s A . .1k) is a subsequence of the sequence (1, ...n).
Let 11x0) denote the marginal possibility distribution of X(s); that is,

rix(5) = Pro/U(S) F (6.2)

where Lib i = 1, . . .n is the universe of discourse associated with Xi;

(6.3)

and the projection of F on Uco is defined by the possibility distribution function

7iX(3) (u,1, = Stipu 14/m14.(lb . tin) (6.4)

where s' jrn) is the index subsequence which is complementary to s, and
PF is the membership function of F.

Let q be a retranslation of the possibility assignment equation

flx(s) = Prolu(S)F F. (6.5)

Then, the projection principle asserts that q may be inferred from p. In a
schematic form, this assertion may be expressed more transparently as

P Hpci, F

ci fix(s) = Prolu(5)F F.

The statement of the projection principle assumes a particularly simple form
for n = 2. In this case, writing X, U, V for X1, X2, 1/1, U2 respectively, we have

(6.6)

P -+ 11(X, Y ) = F

q 4- fix = Prolu F

and likewise for the projection on V.
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A special case of (6.6) obtains when 11(x, n is the Cartesian product of
normal fuzzy sets. Thus, if

13 y) G X H (6.9)

then from p we can infer q and r, where

q 4-11=G (6.10)
and

r+-1Iy=H. (6.11)

As a simple illustration, if

p John is tall and fat

then from p we can infer

q John is tall
and

r -4 John is fat.

2. Particularization/conjunction principle

Let p be a fuzzy proposition whose translation is expressed as

ll(xi, x„)= F F c Ui X ...X Un . (6.12)

Then from p we can infer r, where r is a retranslation of a particularization of

11(4 x.n), that is,

r 4-11(xi, ...xo[nx(s)= G]=FnC (6.13)

where X(3) is a subvariable of X, d is a cylindrical extension of G, G C U, and

11(x1, xn) [11x(s) = G] denotes an n-ary possibility distribution which results
from particularizing X(5) to G. Equivalently, the particularization principle may
be expressed in the schematic form

P "n(xi, xn) = F (6.14)

q = G

For the special case of n = 2, the particularization principle may be stated
more simply as:

From

p (X,Y) is F (6.15)

q -4 Xis G

we can infer

rk.- an is Fn . (6.16)

and
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Thus, for example, from

pL X and Y are approximately equal (6.17)
and

q A Xis small

we can infer (without the application of linguistic approximation)

r A X and Y are (approximately equal n (small X V)) . (6.18)

As stated above, the particularization principle may be viewed as a special
case of a somewhat more general principle which will be referred to as the
conjunction principle. Specifically, assume that

T-FP
P "(11, • • • Yx,xx+t• • • • xn)= F 

(6.19)

q —'117Y1, Y104-1-1, ZnI)= G (6.20)

where Y1, ...Yk are variables which appear in both Tr and H, and Vi and
WQ are the universes of discourse associated with A, Yi and Zg; let S be the
smallest Cartesian product of the //i, VI, and We which contains the Cartesian
products V1 X ... X Vk X Uk+1 X ...X Un and V1 X ... X Vk X Wk+i X ... X Wm;
and let F and O be, respectively, the cylindrical extensions of F and G in S.
Then, from p and q we can infer r, where (in schematic form)

-4• 1111,,x) = F

(1 "4 117Y ,z) = G

r '11(x,r,z)= r)0

(6.21)

and Y (1, • • • Yx), X A- (X+1,...x,) and Z (4+1, Zin)-
A particular but important case of (6.21) which we shall use at a later point

results when n = 3, and k = 1. For this case, (6.21) may be expressed as

F (6.22)

q 117y,z) = G

r r(X,y,z)=(Fx w)n(ux G).

Although the particularization principle is subsumed by the conjunction
principle, it is simpler that the latter, is employed more frequently, and has
a somewhat greater intuitive appeal. For this reason, we use the designation
"particularization/conjunction principle" to refer to the principle which, in
most applications, is the particularization principle and, in some, the con-
junction principle. It should be noted that, in predicate logic (Lyndon 1966),
this principle implies the generalization rule.
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3. Entailment principle

Stated informally, the entailment principle asserts that from any fuzzy propo-

sition p we can infer a fuzzy proposition q if the possibility distribution induced

by p is contained in the possibility distribution induced by q. Thus, schemati-

cally, we have

= F (6.23)

q 4-11(4 xo= G D F

For example, from p 4 Xis very large we can infer q A Xis large.

The compositional rule of inference. In general, the inference principles stated
above are used in sequence or in combination. A combination that is particularly

effective involves an application of the particularization/conjunction principle
followed by that of the projection principle. This combination will be referred

to as the compositional rule of inference (Zadeh 1973). As will be seen later,

the compositional rule of inference includes as a special case a generalization of

the modus ponens.
For our purposes, it will be convenient to state the compositional rule of

inference in the following schematic form

P -÷11(x,y) = F

q = G

(6.24)

r ÷-11(x,y)= FoG

where X, Y and Z take values in U, V and W, respectively; F is a fuzzy subset

of U X V, G is a fuzzy subset of VX W, and FoG is the composition of F and G

defined by

i/FoG (u,w) = Supv DIF(u,v) A 11G(v,w)] (6.25)

where u E U, v E V, w E W and ALF and PG are the membership functions of

F and G, respectively; and the dashed line signifies that, because of the use

of linguistic approximation in retranslation, r is, in general, an approximate

rather than exact consequence of p and q. It should be noted that the com-

positional rule of inference is analogous to the rule which yields the probability

distribution of Y from the probability distribution of X and the conditional

probability distribution of Y given X.

It is easy to demonstrate that the compositional rule of inference may be

regarded as a result of applying the particularization/conjunction principle

followed by the application of the projection principle. Specifically, on applying

(6.21) to (6.24), we obtain
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'11(x,n= F

--• 

> fl(Yz) = G

S 4- r(x,y,z)-= (F X W) n (u x G)
where

ii(F X W) fl (UX G)(1)V,W) = 1.1F(U,V) A pG(v,w) .

ZADEH

(6.26)

(6.27)

Next, on applying the projection principle to s and projecting 1-1(xy,z) on
UX W, we have

Proiux w RF X W) n (U X GA =f SuPv[ligu,v) A pG(v,w)]1(u,w)
U X W (6.28)

which upon comparison with (6.25) shows that the resulting proposition may be
expressed — in agreement with (6.24) — as

T 4- = FOG. (6.29)

An important special case of the compositional rule of inference obtains
when p and q are of the form p A Xis F, q If X is G then Y is H. For this
case, (4.20) and (6.24) yield the compositional modus ponens:

• 

= F (6.30)

q ll(X,Y)= 

G- 

EBH

✓ F.(0' e

which may be regarded as a generalization of the classical modus ponens, with
the latter corresponding to the special case of (6.30) in which F, G and H are
nonfuzzy and F = G. For this case, (6.30) reduces to

'11(x F (631)

• 

r(x,Y) = 

F- 

'6117

r 4lly=Fo

and since

Fo(P'erf) = H

it follows that

4÷ Y is H

which means that from p A X is F and q A If X is F then Y is H we can infer
r -4 Y is H, in agreement with the statement of the modus ponens.

The rules of inference presented in the foregoing discussion provide us
with a basis for employing approximate reasoning for the purpose of question.
answering and inference from fuzzy propositions. We shall illustrate the use of
the methods based on these rules by applying them to several typical problems.
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Semantic equivalence. As a simple example, assume that from the premise

p A Ellen is not very tall

we wish to deduce the answer to the question "Is Ellen tall ?r", where the

symbol ?r signifies that the answer to the question is expected to be of the

form
qà Ellen is tall is r

where r is a linguistic truth-value.

To obtain the answer to the question, we shall require that p and q be

semantically equivalent, implying that the possibility distribution induced by

p is equal to that induced by q.
Thus, by using the translation rules (4.5), (4.6) and (4.56), we obtain

Ellen is not very tall -+ Hetitt(Ellen)(U) = 1 —illaiKu) (632)

Ellen is tall is r Height(Eaen)(u) = P1[iltaigu)] (6.33)

where pta, the membership function of tall, is assumed to be given. From

(632) and (633), then, it follows that the desired membership function pi.

satisfies the identity

1—p(u) p, [uta(u)] , u E [0,200] (6.34)

from which we can conclude at once that ur is given by (see Fig. 5)

1—v2 (6.35)

to which a rough linguistic approximation may be expressed as

not very true.

not very tall tall

(636)

very tall

1

Fig. 5 — Extraction of an answer by the use of semantic equivalence.
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It is instructive to obtain the same result by a succesive use of the rules
governing the application of negation, truth qualification, and modification (by
very). Thus, we can assert that

John is not very tall
4+ John is not very tall is u-true (by (4.60))

John is not very tall is u-true
4+ John is very tall is ant(u-true) (by (5.21))

John is very tall is ant(u-true)
4+ John is tall is 112(ant(u-true)) (by (5.23))

which implies that

T = 1I2(ant(u-true)) (6.37)

that is, r is the "left-square root" of (ant(u-true)), and since

liu-true(v) = v (6.38)

we have
= 1 _ v 2

in agreement with (635).

Semantic entailment. Assume that we wish to deduce from the premise

p Most Swedes are tall

the answer to the question "How many Swedes are very tall?"
Translating p by the use of (4.40), we have

(6.39)

f
200

Most Swedes are tall —> irp(p)= i.t,,,,t  p(u)u(u)du] (6.40)
0

where p(u)du is the proportion of Swedes whose height is in the interval
[u,u +du] and 7rp is the possibility distribution function of p. (Note that height
is expressed in centimetres.)

Now, by (430) the proportion of Swedes who are very tall is given by

200
7 =.1 p(u)4,,11(u)du . (6.41)

0

Thus, our problem is to find the possibility distribution of 7 from the knowledge
of the possibility distribution of p — which is given by the right-hand member
of (6.40). In a variational formulation (which follows from (4.48)), this problem
may be expressed as

200
ir (7) = Maxp [. p(u)uta(u)du] (6.42)

0
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subject to

7 =f
200

p(u)41/(u)du
0

(6.43)

The maximizing p for this problem is of the form (Bellman and Zadeh
1976).

p (u) = 6(u — a) (6.44)

where 8 is a 8-function and a is a point in the interval [0,200]. The 8-function
density implies that all elements of the population have the same value of the
attribute in question. Thus, from (6.43) we have

=p(a) (6.45)

and hence

747) = Amost(litau(0) (6.47)

= limost("f)

or equivalently (see (530))

ff(7) = t12most(7) (6.47)

and hence the desired answer to the question "How many Swedes are very tall?"
is (see Fig. 6)

q A 2most Swedes are very tall. (6.48)

To verify that p semantically entails q, we note that

E

f200

q –> IVO= thmost
o 

P (u)Plu(u)du]

1t

0 

200 
p (u)plall(u)du] .

But, by Schwarz's inequality

• j
- 200 200

gu)titaa(u)du gu)Wan(u)du ,
0 0

and since Amos/ is a monotone function, it follows that

irp(p)< rq(p) for all p and than

which implies that p semantically entails q, strongly.
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Fig. 6 — Representation of most, tall and their modifications.

Particularization and projection principles. An illustration of the application
of the particularlization and projection principles is provided by the solution
to the following simple problem.

Suppose that the premises are

p A John is very big
q A John is very tall

where big is a given fuzzy subset of U X V (that is, values of Height (in cms) X
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values of Weight (in kg)) and tall is a given fuzzy subset of U. The question is:
"What is John's weight?"

Let us assume that the answer to the question is to be of the form r -4 John
is w, where w is a linguistic value of the weight of John (heavy, very heavy, not
very heavy, etc.). Then, by employing the translation rule (4.6), the particu-
larization principle, and the projection principle, we arrive at the retranslation
relation

r 4— Proji, x weightBIG2 [ITHeight= TALL] (6.51)

which expresses the answer to the posed question.
In more concrete terms, assume that the (incompletely tabulated) tables

defining the fuzzy sets BIG, TALL, and HEAVY are of the form

BIG Height Weight p TALL Height p HEAVY Weight II

165 60 0.5 165 0.7 60 0.7
170 60 0.6 170 0.8 65 0.8
175 60 0.7 175 0.9 70 0.9
170 65 0.75 180 1 75 0.95
175 65 0.8 185 1 80 1
180 65 0.85 85 1
170 70 0.8
175 70 0.85
180 70 0.9
170 75 0.85
175 75 0.9
180 75 0.95
180 80 1

On substituting these tables in (6.51) we obtain for the attribute Weight a
possibility distribution of the (approximate) form

ilweight = 0.5/60+0.7/65+0.8/70+0.9/75+1/80 (6.52)

which upon retranslation (and linguistic approximation) yields the answer

rL John is very heavy.

As an additional illustration, consider the following premises

p Romy lives near a small city
q -A Arnold lives near Romy

from which we wish to deduce an answer to the question "Where does Arnold
live?"
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Assume that the relations entering in p and q have the frames shown below.

NEARp II aty1 lary2 I g I NEARq II aty 1 'City 2 IiiI

SMALL CITY II City I tz

in which NEARp and NEARq refer to the relations NEAR in p and q, respec-
tively. In terms of these relations, the translations of p and q may be expressed
as

P II Location (Residence (Romy)) (6.53)

= Pro/1,x cityiNEARp [ncyty2 = SMALL CITY]

"(Location (Residence (Romy)),Locadon (Residence (Arnold))

= NEARq .

On substituting (6.53) in (6.54) and projecting on the attribute Location
(Residence(Amold)), we obtain

(6.54)

r 4— Projuxaty2NEARq[lIcifyi= ProlA X City INEARp[lIcity2 = (6.55)

SMALL CITY]]

as an expression for the answer to the posed question.

Compositional rule of inference. The compositional rule of inference is particu-
larly convenient to use when the variables involved in the premises range over
finite sets or can be approximated by variables ranging over such sets.

As a simple illustration, consider the premises

p 4 Xis small
q 4 X and Y are approximately equal

in which X and Y range over the set U = 1+ 2 + 3 + 4, and small and approxi-
mately equal are defined by

small = 1/1 + 0.6/2 + 0.2/3
approximately equal = 11[(1,1) + (2,2) + (3,3) + (4,4)]

+ 0.5/[(1,2) + (2,1) + (2,3) + (3,2)
+ (3,4) + (4,3)] .

In terms of these sets, the translations of p and q may be expressed as

p llx = small (6.56)

q '11(x,1')= approximately equal

and thus from p and q we may infer r, where

r 4— x 011(x ,y) = small o approximately equal. (6.57)
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The composition of small and approximately equal can readily be per-
formed by computing the max-min product of the relation matrices corres-

ponding to small and approximately equal. Thus, we obtain

1 0.5 0 0
0.5 .5 0 _

[1 0.6 0.2 0]
0 

01
.5 
0 
1 0.5 —

[1 0.6 0.5 0.2]

0 0 0.5 1

which implies that

= X 011(x,y) = 1/1 -I- 0.6/2 + 0.5/3 + 0.2/4

and which upon retranslation yields the linguistic approximation

r A Y is more or less small 4-11y =1 1/1 + 0.6/2 + 0.5/3 + 0.2/4.

Thus, from p A X is small and q A X and Y are approximately equal, we can

infer, approximately, that r Y is more or less small.
As a simple illustration of the compositional modus ponens, assume that,

as in Bellman and Zadeh (1976),

with

and

U= V=1+2+3+4
F =0.2/2+ 0.6/3+ 1/4
G =0.6/2+ 1/3+ 0.5/4
H= 1/2+ 0.6/3+ 0.2/4

p-4 XisF-+.1.1x=F (6.58)
q If Xis G then YisH-4.11(x,n= 611.74' 

r <-1Iy = F0(G' 17) .

In this case,

1 1 1 1
— — [34 1 1 0.6]
G'. II=

0 1 0.6 0.61
L 1 1 0.7

and

Po(Cie 17) = [0 0.2 0.6 1]0

=[0.5 1 1 0.7] .

014 11 11 016
0 1 0.6 0.6
0.5 1 1 0.7

Thus, from p and q we can infer that

r A Y is 0.5/1 +1/2 + 1/3 + 0.7/4 .
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The above example is intended merely to illustrate the computations
involved in the application of the compositional modus ponens when X and
Y range over finite sets. Detailed discussions of practical applications of the
compositional rule of inference in the design of so-called fuzzy logic controllers
may be found in the papers by Mamdani and Assilian (1975), Mamdani
(1976a,b), Kickert and van Nauta Lemke (1976), Rutherford and Bloore (1975),
and others given in the References and Bibliography.

7. CONCLUDING REMARK

The theory of approximate reasoning outlined in this paper may be viewed as
an attempt at an accommodation with the pervasive imprecision of the real
world.

Based as it is on fuzzy logic, approximate reasoning lacks the depth and
universality of precise reasoning. And yet it may well prove to be more effective
than precise reasoning in coming to grips with the complexity and ill-definedness
of humanistic systems, and thus may contribute to the conception and develop-
ment of intelligent systems which could approach the remarkable ability of
the human mind to make rational decisions in the face of uncertainty and
imprecision.
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Application of Heuristic Problem-solving Methods

in Computer Communcation Networks

S. I. Samoylenko
Council of Cybernetics
USSR Academy of Sciences, Moscow, USSR

Abstract

This paper considers heuristic procedures for deriving suboptimal solutions of
complex discrete optimization problems for which no workable methods of
obtaining optimal solutions are available.

The main emphasis is focused on methods for modifying heuristic search
procedures in order to improve their problem solving performance in terms
of selecting solutions closer to optimal ones.

The techniques discussed include fuzzy heuristics, adaptive compositions of
heuristics, and suboptimal algorithms based on dynamic programming concepts.
These techniques are illustrated by examples and experimental computer imple-
mentation results.

The results obtained demonstrate that the application of the above methods
produces solutions superior to those derived by means of conventional heuristic
procedures and brings them sufficiently close to optimal solutions.

INTRODUCTION

It is generally known that a number of complex problems of high dimensionality,
especially problems with discrete variables, are not amenable to mathematical
programming methods. They either fall outside the categories of problems which
can be handled by conventional methods or else do not meet practical restric-
tions arising from the limited speed or memory of the computers used for this
purpose.

Such problems are handled by the use of suboptimal solution search
techniques.

The purpose of this paper is to examine methods of search for suboptimal
solutions. Section 1 discusses an heuristic search method which employs several
heuristics whose performance vis-a-vis a problem of a particular class is unknown.
In this situation it may be an advantage to make use of a search procedure where
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the contributions of individual heuristics to the solution process vary in accor-
dance with their performance at the preceding search steps.

A possible approach to handling such problems is to build the search pro-

cedure around an adaptive composition of heuristics. Sec. 1 describes this

approach and pertinent experimental results in detail.

Sec. 2 deals with the concept of fuzzy heuristics. Conventional heuristic

techniques usually yield one of a range of feasible solutions, and the solution

thus generated cannot be improved although it may be significantly inferior to

the optimal one. Fuzzy heuristics enable the researcher to derive a class of

suboptimal solutions and progressively to approach a solution that may be

viewed as optimal.
The idea of using fuzzy heuristics was stimulated by the general concepts

of the theory of fuzzy sets and algorithms evolved by L. A. Zadeh CA theory
of approximate reasoning', pp. 149-194 of the present volume).

Sec. 3 is concerned with the techniques for generating suboptimal
algorithms which are based on the ideas of dynamic programming. It has been

found that dynamic programming may serve for a broad class of problems as a
workable tool of optimal solution search. However, dynamic programming is

often associated with a prohibitively large memory requirement for storage of

intermediate results and with excessive computation time.
This paper also examines methods that may be employed to simplify

dynamic programming procedures by generating a class of successively improved

suboptimal solutions.

1. ADAPTIVE HEURISTIC SEARCH

In the general case the search for a feasible solution g = gn) may be
performed in M steps.

Denote the set of coordinate numbers computed at the jth step as

S/ lib /2) • • •1 /mil) = 112) • • • M

and assume that

ki).SIt= {1, 2, ri)Sj =

The subset of coordinates determined at the 
/c step will be defined as

= gj2, • • •9 g/rnii

and called the ith local solution.
Step-by-step solution search may be illustrated by successive computation

of the coordinates of the vector g when

Mn, m,1, j=1,2,...,M.
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For the sake of simplicity the discussion that follows will be restricted to the
above situation, although the method is extendable to a more general case.

It will be assumed that at each search step the value of gi may be selected
from a finite set G1 which contains NI distinct solutions

= 1.

The set G1 will be defined as the set of local solutions at the jth step.
In the general case the set G1 may depend on the selection of solutions at

the preceding steps; that is, on

g 11 g2, • • • 4-1.

The entire set of all possible solutions G = = {gi,g2, . will be
called a generalized set of local solutions. When selecting the next local solution
the current state of the system is determined by the results of the solution pro-
cess at the previous steps. At the first step the system is in its initial state. At
the second step the number of possible states becomes equal to N1, as from its
initial state the system may have passed into any one of the N1 new states,
associated with the set of feasible solutions GI. At the third step the number
of possible states grows to N1N2, and in the general case at the jth step the
number of possible states is defined as

/-1
= 171 .

Thus the state of the system at the jth step is the product of the entire history
of the solution search process. However, the number of possible states to be
examined may become excessively large, and must therefore be reduced to a
certain maneagable limit.

This is achieved by using the method most appropriate for the problem to
be dealt with.

Thus for the travelling salesman problem the number of possible states may
be restricted to the number of the salesman's possible locations. The history of
his progress to a given point is disregarded. If a more detailed description of a
particular state is required the past performance of the system at one or more
steps may also be reviewed.

In the general case it will be assumed that at any search step the system
may be in any one of the Lo possible states.

It will also be assumed that if the system is in the kth state, local solutions
are selected by using an ensemble of hypotheses (heuristics) defined by vectors
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The values of components CA indicate whether the choice of the solution
gi as suggested by this hypothesis has been appropriate, provided the system is
in the kth state.

We shall suppose that the computation procedure for Ck is such that
> ct, if in accordance with I's the solution gil for the kth state has some

advantage over g12.
The components d will be termed local criteria.
The impact of specific hypotheses rs may vary from problem to problem

depending on specific problem parameters, or from one system state to another.
The adaptive procedure is intended for generating efficient compositions of
heuristics for different system states, that are likely to yield suboptimal solu-
tions. Typically, the adaptive procedure described above may be set up by
varying the contributions of specific hypotheses as the procedure learns from its
experience at the previous search steps.

This method may be implemented in the following manner. We shall com-
pute local criteria d associated with the Sth hypothesis such that

O<CA.41 ,

if the Sth hypothesis suggests that the ith solution in the kth state of the system
is appropriate;

CA <0 ,

if the Sth hypothesis does not suggest the i solution;

if the problem as formulated rules out the ith solution in the kth state.

Assume that in examining feasible local solutions, the recommendations of
heuristic hypotheses at the jth search step when the system is in the kth state are
presented as positive numbers ey which satisfy CI <C' 2 if in the km state
gil is preferable to g12. Then particular local criteria related to the Sth hypothesis

can be computed by using the relationship di -  - eslif the ith solution is
1 „

feasible, cm = cs if the ith solution is not feasible where ely = ---2, cN`
Nik r= 1

is the mean value of the Sth local criterion at the ith step in the km state and
Nfic is the number of feasible solutions at the jth search step. Then the generalized

local criterion CP can be computed as the weighted sum of Z local criteria with
weighting coefficients Wk

1 k
=— Ws • Lsgi if cy, C* for no S

s=1

CP = C* if for at least one S Cfsgi = C'.
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Weighting coefficients may vary from +1 to —1 except zero. The selection at the
Ph is made in accordance with generalized local criteria with preference given
to solutions for which CP is large. The selection procedure can be conveniently
organized by using fuzzy heuristics which are discussed in Sec. 2. The solution
derived after M steps is compared with the best of those obtained earlier, and the
weighting coefficients are adjusted.

If the solution generated after M steps is an improvement on the record,
the weighting vector is adjusted positively, that is, the weighting coefficients
144 are increased by A W1 for those S and k which produced positive el for
the i associated with a good result, or conversely are reduced by A W2 if CM
was found to be negative.

The weighting coefficients may be adjusted in a similar manner but with the
opposite sign if the procedure repeatedly yields results inferior in the sense that
they do not improve the record. Such adjustment will be called negative. It
enables the procedure to pass to another search area that fits the new composi-
tion of heuristic hypotheses.

This procedure was implemented in FORTRAN (TS program) and applied
to the travelling salesman problem.t

The program was developed around two heuristic hypotheses for search
path selection. Under one of the hypotheses the local criteria were the larger the
smaller the distance between the travelling salesman's position and the ith point
of his itinerary. The other hypothesis was selected such that its value CM was the
greater the smaller the sum of all distances not covered by the travelling sales-
man when he passed from a given location to point i.

When these hypotheses were examined individually the first was found to
be more effective, and it tended to bring the solution closer to its optimum in
less time.

Figure 1 illustrates the variation of weighting coefficients averaged over all
search steps for a 25-point travelling salesman problem treated by Held and
Karp (1962) [1] . This example demonstrates that the adaptation procedure
enhanced the impact of the first, more effective hypothesis. Though the initial
values of the mean weighting coefficients were all equal to 0.1, after several
search steps they became significantly different from one another. Moreover,
a more detailed examination revealed that for a number of points the coeffi-
cients of the second hypothesis were invariably larger than those for the first.
It may therefore be concluded that the most efficient search procedure can best
be set up by using a composition of rationally selected hypotheses.

2. FUZZY HEURISTICS

This section discusses a solution search procedure for discrete problems which
relies on the use of less rigid, or fuzzy, heuristic rules [2] .

The procedure is implemented through controlled expansion of the search

tThe author acknowledges the assistance of E. I. Tretyakova in debugging the program and
In its experimental study.
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Fig. 1 — Adjustment of weighting coefficients in adaptive search: k — number of steps;
— mean values of weighting coefficients.

area circumscribed by heuristics, while the extent of the fuzziness of the area
may be varied to meet the search time limit or other constraints.

For further discussion we shall make use of a measure of proximity or
separation between local solutions. This distance may be measured in different
ways, and we shall be concerned with such separation estimates which include
an assessment of the fit between local solutions derived in accordance with
some heuristic.

Suppose that the local solutions at the th step of the search procedure are
defined by the generalized vector of local criteria

Then the distance between two feasible local solutions gi and gk for which
CI, Ct0 C* may be written as

d gk) = 1C1 — Ck

The solution IN is said to be closest if for every / for which Cfi 0 C* the relation

o> CI holds.

The entire ensemble of local solutions Sp will be referred to as a A neighbour-
hood if for all feasible local solutions ga e Sp the condition d(gio, g4)< A
remains valid.

We shall now proceed to discuss conventional and fuzzy solution search
procedures.
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Unambiguous selection of local solutions

Unambiguous selection is achieved by choosing at each search step a solution
gio viewed as a local solution.

If some steps are associated with several closest local solutions one of these
is selected. The above procedure is employed for conventional heuristic search.
Thus when applied to the travelling salesman problem, using the heuristic

hypothesis of passage to the nearest point, the procedure will produce a single
solution suggested by the heuristic.

The section below discusses techniques for search area expansion.

Deterministic expansion

In this case the A neighbourhood at each search step is selected so that it con-

tains a specified number of points. Search of feasible suboptimal solutions
reduces to an examination of all possible alternatives, local solutions being
taken from the A neighbourhood.

Given more time for solution search, the A neighbourhood may be
successively expanded.

Solution search based on deterministic expansion requires an orderly pro-

cedure for examining feasible solutions and storing information about examined

solutions in the computer memory. In certain situations these conditions may
become unacceptable because of the prohibitively large computer memory
requirement. They may be eased by using a random procedure for selecting

local solutions contained in the A neighbourhood.

Probabilistic expansion

To select a local solution at the jth step the vector of local criteria
= (CI, C, cyo is transformed into a discrete local distribution.

PI = (Ptg )

whose components satisfy

0(p/ < 1,i= 1, 2,...N

Er pi 1

r=i *

A procedure for transforming Ci into pi must meet the following conditions:

1. The closest point gio must be associated with the largest pio.
2. If d(gio,gk)< Ogio, pik> pl.
3. If ci(gio,gk)= d(gio, gi) then pi k=
4. If gm is not a feasible solution at the jth step, that is, Cm = C*,

then pi, = 0.
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With the vector of local criteria transformed into a local distribution a local
solution is selected at random such that the probability of selecting gk is pc,.

Several procedures for transforming d into pi meet the above conditions.
By way of example we may consider the transformation procedure in accordance
with the following algorithm:

B k if Cik* C*
1.

"'"
0 if Cik = C*

2.
k=i

3. Pik = NciPE

where B is the transformation base, B> 1.
If we take B = 1, all non-zero components of the local distribution will have

the same value, which implies equiprobable selection of a local solution out of all
feasible ones. As B grows, the neighbourhood where the selection is made con-
tracts progressively because increasingly greater preference is accorded to solu-
tions close to the nearest point gio.

There may be other ways of modifying the A neighbourhood.
Let the local probability distribution at a certain search step have the form

P (Pi, P2, • • • PN).

Then the A neighbourhood may be changed by transforming distribution p into
distribution p' =

A.

piN) by either of the following algorithms:

if Pk> Po
Pk =

(Pk

0 if pk <po

2. PE =E
1,1

3. Pik = -15 kIPE

where pois a threshold value which restricts the A neighbourhood, 0 <p0 <Pmax,
Pmax = max Ipa
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B.

1. Pk=P

2. PE E Trk
k=i

3. Pic = FIcIPL

where L is the contraction factor of the A neighbourhood.
If the first transformation is applied, the A neighbourhood becomes pro-

gressively smaller with the growth of po, and converges to a single solution when

Po =Pmax.
In the second case the A neighbourhood shrinks as L grows, and expands as

L decreases. When L = 0 all feasible local solutions become equiprobable.
The search procedure may be performed by successively reducing L, that is,

by progressively expanding the A neighbourhood.
It will be noted that search efficiency, that is, the rate of approaching an

optimal solution, is largely dependent on the choice of heuristics. However, even
for the worst possible choice this procedure is bound to yield an optimal solution
in a finite number of steps. No such guarantee is provided by conventional
heuristic search procedures applied to a rightly limited search area.

Several examples are considered below.

Example 1. Construction of a ring network.
The problem of setting up the shortest ring communication line running through
all points of a network is identical with the classic travelling salesman problem.
We shall now discuss experimental results obtained by applying the method of
fuzzy heuristics to this problem.

The degree of fuzziness in the heuristic search procedure was controlled by
means of probabilistic expansion of the second type with a variable parameter L.

Figure 2 illustrates the performance of the TS program for a 25-point
travelling salesman problem [1] . The diagram shows search time, or the number
of search steps, versus variations of the efficiency criteria, that is, path length.

The upper wavy line shows the results obtained by equiprobable random
choice of paths, while the lower shaded area sets the lower limit which corresponds
to the expected optimal result [1] .

The broken lines demonstrate the rate of approaching the optimal result for
different degrees of fuzziness defined by the parameter L.

Given large L, the heuristics significantly limit the search area, and the
procedure repeatedly generates similar results (marked by little crosses).

For smaller L, that is, greater fuzziness, the initial portion of the curve
slopes more slowly. However, after some time the program can yield results
superior to the ones obtained for large L.

205



500

SEARCH AND PROBLEM SOLVING

Route length RANDOM CHOICE LEVELS (5115,5838,5626)

01■Ir

•••■••

300

200

L-1
L=21

T.

L=3

1763

1

▪ 

0 CD 

rs▪ 

) co f%) C.3 A cn co -.1 co co 8 8 Ca A 
S 8 8 88g3 o o

10 5. 100 200 1000 R. Search time
steps

Fig. 2 — IS program performance for heuristics of variable fuzziness (L — factor
of fuzziness), CD — suboptimal dynamic programming, x — repeating results.

It appears that for each period T there exists an optimal value of L which
yields the best results. Thus for the example under discussion the best result for a
search period of one minute is obtained by using slightly fuzzy heuristics
(L = 31). For T = 10 min. and T = 60 min the best results are given by L =21
and L = 3 respectively.

Example 2. Design of a computer network with multi-point communication
lines.
As another example of the application of fuzzy heuristics we may consider
solution search in problems associated with structural design of computer net-
works with multi-point communication lines and specified constraints on the
number of points that may be connected to any one line.

The problem is formulated as follows.
We have the coordinates of terminal sites and of the location of a terminal

concentrator. The terminals are connected to the concentrator via communica-
tion lines, and any line may pass through not more than a preassigned number of
terminal sites. The designer should configure the communication lines in a way
that would minimize the total length of the links which connect the terminals
with the concentrator.

206



SAMOYLENKO

This problem is usually handled by means of an heuristic algorithm, for
example, Prim's algorithm [5] . The connection network is successively expanded
by coupling the nearest points to the initial configuration. If no constraints are
placed on the number of points connected to any one line the algorithm pro-
duces a minimal length connection pattern. Conversely, in the presence of such
constraints the solution may be inferior to an optimal one.

To bring the solution closer to the optimum the designer may use fuzzy
heuristics for search in the neighbourhood of the solution suggested by the
heuristic employed at the preceding steps.

Example 3. Heuristic routing in packet-switching networks.
In a packet-switching network node the transmission route is selected by using
information on the current state of the network, and the packet is sent via the
route for which the expected transmission delay is minimal at the time the
routing decision is made.

If the network remained unchanged this procedure would indeed guarantee
the least transmission time. However the state of the network changes con-
tinuously, and transmission via the route for which the transmission delay has
been estimated to be minimal is not always the best possible choice.

In a variety of situations it is useful to have several alternative routes
available for transmission of packets addressed to a particular destination.

A set of such alternative routes may be organized by means of procedures
based on fuzzy heuristics, provided that the initial information on the status
of the system and route distribution in terms of expected transmission delays is
viewed as heuristic recommendations.

A comprehensive heuristic recommendation may be based on a composition
of several specific recommendations.

1. Preference should be given to routes with the least transmission delay (a
priori information).

2. Preference should be given to routes with least traffic (current information
on the state of the network).

These recommendations, when combined, make it possible to identify the
shortest routes with the lowest traffic loads.

3. SUBOPTIMAL DYNAMIC PROGRAMMING

Dynamic programming developed by R. Bellman is essentially based on partial
successive optimization in progressively expanded solution search areas. A search
area is presented as a sequence of expanded areas embedded in one another.

Although dynamic programming concepts are straightforward its practical
application is associated with appreciable difficulties. Such difficulties are due
not only to the absence of sufficiently general algorithms applicable to a broad
spectrum of problems but also to a very rapid growth of the computer time
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requirement for problems of high dimensionality. The complexity of the pro-
cedure is significantly dependent on the number of problem variables and the

range of the values they can assume.
Moreover, the possibilities of dynamic programming when applied to

practical problems are further restricted by the high memory requirement for
storing intermediate computations [3, 4] .

This section discusses a method for reducing computer time and memory
requirements by giving up optimal solution search in favour of a procedure that
yields suboptimal solutions which may be progressively optimized as more
computer time is made avialable for the search.

The procedure will be presented with the travelling salesman problem used
as an illustration.

The problem is stated as follows. Consider n + 1 towns with the distances
between them defined by the matrix

c= II Cif 111) =0.

The solution of the problem is the shortest closed route which passes through
each town once.

We shall now consider ways of reducing computer time and memory
requirements by generating a series of suboptimal solutions rather than seeking
to derive an optimal one.

Assume that before the Oh step we know the set of points io,f1,. ik_i and
a suboptimal route of travel from the starting point io to point ik_1 such that

Sk-1 009119 i29 • • •

Let us further suppose that we can make use of a procedure for selecting the

kth point included in the route at the kth step.
Then the procedure for generating the suboptimal route Sk may be defined

in the following manner.

Compute

Mio, it • • • ik)= min { Ecioik + cikr, + Z(11
[Z(10,i)+ C1k12 Z(12, 41-1)] 9 • • • [Z(109ik-1)+ Cik_lik]l

where Z(ii, 11) ii the length of the suboptimal route Sk_i i 1, . . ik_i) from
point i/ to 1bi <1.

Let the minimum value of fk (io, ii,. ik) be associated with the permuta-
tion

(i09 49 • • • ip ik ij+19 • • • ik-1)•

It is this permutation that is the result of suboptimal route selection at the kth

step.
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The procedure enables us to retain "good" route links found at the previous
search steps, specifically between the points io and if and the points 11+1 and
k _1. The route thus derived may be viewed as suboptimal.

It may be further shortened by means of local optimization through per-

mutation of some route points.
We shall estimate the computer time and memory requirements for the above

procedure.
The amount of computation at the kth step required for estimating fk for

different ik is proportional to k, that is, equal to Crk, while the number of
steps is n. The amount of computation necessary for selecting a new point of the
route is taken to be proportional to the number of points not yet included at a
given step in the sequence of points. Thus at the kth step

C2 (n — k + 1).

The total amount of computation is given by

= E [ci . k + C2 • (n — k + 1)] = CO2 +k= 1

+ C2
where C= is a constant.

2

Thus the amount of computation grows approximately as n2 + n, and increases
with n not nearly as fast as in optimal solution search.

Practically no additional memory is required for storing intermediate
results.

The procedure of search for a new suboptimal solution can be formulated
as follows. If a sequence Sk_1(io, 11, ik_i) is considered to be suboptimal
and therefore "good", it can be assumed that either of the two parts obtained
by dividing Sk_i is also "good". If a new point ik is included in the sequence

local optimization is achieved by selecting the position of ik between the
two subsequences of Sk_i such as to make the total route length minimal.

We shall now examine some procedures for selecting new points. Suppose
that we have at our disposal heuristics that select "good" new points for the
sequence by taking advantage of an assessment of certain local criteria. One such
criterion for the travelling salesman problem may be the distance between the
terminal point of the route that has been travelled and each point that has not yet
been passed. Here we can use as a heuristic the recommendation to pass to the
nearest point. Selection of points to be included in the sequence at each step will
then involve the amount of computation proportional to the number of points
not yet passed.
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Another illustration is the heuristic for selecting the point ik which satisfies
the relationship

fk(io• it, • • • ik) = mm
tkeA

min { Z (io, -F. + Cik 9+1 + z(ipfi, ik_i )1,
ik

where A is the set of all points not yet passed, and is the position in the derived
sequence which precedes the point ik, 0 j S k —1, under examination.

The amount of computation is then proportional to the number of positions
which may be occupied by the point ik times the number of all such possible
points; that is, the number of points not yet passed.

The amount of computation at the kth step is given by Ck(n —k + 1).
The total amount of computation in this case is defined as

= C(nk—k2 + k) = —(n3 + 3n2 + 2n).
k= 6

In summary, fuzzy heuristics may be used to generate a class of suboptimal
solutions and successively approach an optimal solution. The method does not
require any additional memory for intermediate computations, which is its
principle advantage.

The suboptimal dynamic programming procedure described in Sec. 3 was
implemented in a version of the TS program.

Each successive point of the route was selected by using fuzzy heuristics and
specifically the heuristic hypotheses discussed above. Once such a point hal been
selected the local optimum for its position on the suboptimal route was computed.

The performance of the program is shown in Figure 2 by the dotted line.
Otherwise the program was identical to the algorithm discussed in Sec. 2. It
demonstrates that suboptimal dynamic programming may serve as an effective
tool for handling combinatorial optimization problems.
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Abstract

A program is discussed which is capable of solving complex computational
problems. The general idea of the program is to reduce the search needed in
problem solving. For this purpose the following techniques are used: (1)
semantic models tailored in a special way to fit the problems to be solved, (2)
procedural representation of relations in the semantic models; (3) synthesizing
a particular solving algorithm for any problem to be solved. The ability of the
program to solve problems is illustrated by a number of examples.

INTRODUCTION

Beginning with the early problem solvers, poor efficiency has continually restricted
their useful application. Methods based on general deduction principles cease to
work on practical problems because of the great amount of search needed. To
reduce the search, one must either restrict the class of problems considered, or
use special techniques applicable to specific problems only.

We have restricted the class of problems to computational problems, each
of which can be represented by a statement of the following form: "calculate
X2 , ... x„, from Yi y2, ... yn, when given (problem conditions)". We assume
that problem conditions must always be presented in a natural-like language.
It is the task of the solver to understand and translate the problem conditions
into more formal language.

The given form of the problem statement is not as restrictive as it may
look at first. Indeed, it is possible to explain in the problem conditions what
is meant by any xi and Yj. For instance, one can present a problem "calculate
PROOF-OF-T from T, A1, A2, ... AK when given (T is a theorem, A1, A2,
... AK are axioms)".

Though the understanding of a language is an important feature of the
solver, our main interest lies in solving problems and not in understanding
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a language. So the linguistic part of the solver will be described in this paper
only very briefly.

The implementational basis of the solver is a compiler for the problem
description language UTOPIST. The compiler has been implemented on the
"Minsk" and "Ryad" computers [1]. An early version of the solver was used
in several computer aided design projects [2 and 3].

GENERAL DESCRIPTION

A problem can be presented to the solver in a textual form quite informally.
The following is an example of an input text.

HERE ARE TANGENTIAL STRAIGHT-LINE T, CIRCLE Q AT-POINT
P. LET US DENOTE K SQUARE WHICH HAS A SIDE EQUAL X-CO-
ORDINATE OF P AND AREA S. GIVEN CENTER OF Q=(O,0), A POINT
OF T=(1,0), THE SLOPE OF T=2. CALCULATE S.

A linguistic preprocessor translates the input text into a formal problem
description language, called UTOPIST. The preprocessor translates every sen-

tence separately, first searching for delimiters and names of known notions
(TANGENTIAL, STRAIGHT-UNE, etc.). These are further used as keywords
for parsing and translating the sentence.

After preprocessing, the text of the given example will be as follows in

UTOPIST:

T STRAIGHT-LINE;
Q CIRCLE;
P POINT;
TANGENTIAL

STRAIGHT-LINE = T,
CIRCLE = Q,
AT-POINT = P;

K SQUARE
SIDE = X-COORDINATE OF P,
AREA = S;

GIVEN
CENTER OF Q = (0,0),
POINT OF T = (1.0),
SLOPE OF T = 2;

CALCULATE S;
STOP;

The text in UTOPIST language is an input for a semantic processor which

converts it into a semantic network and into a reduced problem statement.
The semantic network is an internal representation of problem conditions

which were initially given rather informally in the input text. The semantic
processor uses semantic memory where the meaning of every notion such as

TANGENTIAL, STRAIGHT-LINE, CIRCLES, etc. must be given.
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The semantic processor builds as another output a reduced problem state-
ment. The reduced problem statement does not contain problem conditions,
as they are now represented by a semantic network. For the given example the
reduced statement is:

CALCULATE S FROM CENTER OF Q, POINT OF T, SLOPE OF T.

A principal part of the solver is the planner that synthesizes an algorithm
for solving the problem. At the last step the synthesized algorithm is used for
calculating the results; that is, the value of the area S of the square K in the
present example. The general scheme of the solver as described here is shown
in Fig. 1.

Fig. I.

(Input text

LINGUISTIC
PREPROCESSOR

/ text of /
problem

prreto ecmed
statement 

Results
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The ability of the solver to solve problems depends significantly on the

contents of its semantic memory. The semantic memory is extendable, and

new notions can be described to the solver in the UTOPIST language. The

semantic processor is used for processing a description of a notion as shown

in Fig. 2. The notion of a square that we have already used in the example can

be described to the solver as follows:

LET SQUARE
(SIDE, DIAGONAL, PERIMETER, AREA REAL;
EQUATION DIAGONAL ** 2=2 * SIDE ** 2;
EQUATION AREA = SIDE ** 2;
EQUATION PERIMETER = 4 * SIDE),

INSERT SQUARE INTO GEOMETRY:
STOP;

(Text of
extensions

SEMANTIC
PROCESSOR

Semantic network
of new notions

MEMORY
HANDLER

Semantic
memory

Fig. 2.

UTOPIST language

Though the solver accepts informal problem descriptions, these are immediately

translated into the UTOPIST language. This language enables us to describe

problem conditions as a set of objects interconnected by relations.

The main structure of UTOPIST is a declaration.

(declaration)::= (id) [ ,(id)] ... (type-description)

(primary-object)(
(notion)

type-description ((declaration) ((declaration)) „
(relation) 1 [; t(relation) 

j ...))
::=
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The primary objects are variables of primitive types: REAL, INTEGER,
LOGICAL, STRING, BINARY. So it is possible to declare:

I, J, K INTEGER,

and, using parentheses:

SQUARE (SIDE, DIAGONAL, AREA, PERIMETER REAL).

The latter is a declaration of a compound object SQUARE that consists

of several components listed in parentheses.
Any declaration of a compound object contains an implicit description of

a relation between the object and its components. In the present example it

is the relation between SQUARE, SIDE, DIAGONAL, AREA and PERIMETER

shown in Fig. 3.

SQUARE

SQUARE = (a,d, p s)

PERIMETER SIDE AREA DIAGONAL

Fig. 3.

Relations may be described explicitly by using equations, as was done in
the declaration of a square in the previous paragraph:

EQUATION DIAGONAL ** 2=2 * SIDE ** 2;

EQUATION AREA = SIDE ** 2;

EQUATION PERIMETER = 4 * SIDE.

Finally, a relation may be described by a reference to a program. For
instance, the following sentence:

PROG P ARG X RES Y

means that a relation between the objects X and Y is represented by the program
P, and the relation can be used for calculation so that X is an argument and Y a
result of the calculations.
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If an object has been declared and the declaration of the object is inserted
into the semantic memory, then the object becomes a notion that is known to

the solver. The notion can be used as a type-declaration. When a notion is
used as a type-declaration, values, identifiers, or objects can be bound with

components of the notion. So we have used the notion of a square to declare
a new object K in our example of a problem:

K SQUARE
SIDE = X—COORDINATE OF P,
AREA = S;

Here a compound name X-COORDINATE OF P denotes an object that has been
defined earlier and which is bound now with the side of the square K by an
equality-relation. S is a new identifier which is bound with the area of the
square K and will denote the area.

There are several other statements in UTOPIST, such as the statements

GIVEN ...
CALCULATE ...
STOP;

that have been used in the example in the previous paragraph. These statements
provide the means for completing the problem description.

Semantic network

As a rule, a semantic network consists of objects and relations. The semantic
network of the SQUARE described in the previous paragraph is shown in Fig. 3.
It contains a structural relation between the objects SQUARE, PERIMETER,
SIDE, AREA, DIAGONAL. It contains three equations as well, which were
given explicitly in the declaration of SQUARE. We regard all the objects as
variables which may have values of some type. The main difference from other
semantic networks is in the interpretation of the relations and in their repre-
sentation. Often only a few types of axiomatically-described primary relations
are used. Here, an extensible set of primary relation types is allowed. Never-
theless, only such relations are used which are efficiently applicable for calcu-
lations. Any relation is considered as a set of operators. For instance,

EQUATION AREA=SIDE ** 2

is regarded as a set of the operators

AREA: = SIDE ** 2
and

SIDE: = SQRT(AREA).

These operators are automatically derived by the solver from the equation.
As we have seen already, the most general way to declare a new relation is

to program separately every operator that must be inserted into the relation.
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This technique is analogous to declaring a procedure P(t,$) and using it in a
procedure statement P(X,Y). The only significant difference is that the pro-
cedure statement P(X,Y) is an imperative prescription for calculations where
the relation PROG P ARG X RES Y means that a possibility exists for calcu-
lating Y from X.

Another way of expressing a relation is to use a semantic network of a
notion for this purpose. One can regard such a relation as an abbreviation for
the semantic network of a notion. The semantic network of our sample problem
is shown in Fig. 4. Relations of the network correspond to semantic networks
of notions TANGENTIAL, CIRCLE, STRAIGHT-LINE, POINT and SQUARE.

HERE

STRAIGHT-LINE CIRCLE POINT

POINT=(1,0) SLOPE:2 CENTER (0,0) X

Fig. 4.

SQUARE

I \
SIDE S

We can presume now that problem conditions which are given informally
in an input text are translated into a semantic network, consisting of variables
and relations which are directly applicable for calculations. Let us note once
more that any relation is regarded as a set of operators. Indeed, more infor-
mation than we have described is included in the semantic network in order
to determine operators of any relation. This information is presented in the
solver by marking the edges of the semantic network.

Solution planning

Now let us define a formal approach to the semantics of problems. We define
a problem as a triple (M,U,V) of

M — problem conditions presented by a semantic network,
U — a set of input variables,
V — a set of output variables.
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A semantic network M is a pair (X,A)

X — finite set of variables,
A — finite set of partial relations.

A partial relation is a finite set of operators which are not contradictoryt.
An operator 0 is a set of assignments with a set of input variables and a set

of output variables. In (0) = {xi ,x2, xj. Out (0) = lab Y21 • • • Ymb

:= (x 1, x2, ... xn),i = 1, 2, ... m.

If the operator is applied, all the assignments are fulfilled. We assume

that In (0) n out (0) is always an empty set. An operator is complete if it is
applicable for any values of its input variables.

Let us call a semantic network M = (X,A) simple if the set A of its relations
contains only partial relations with complete operators.

Transitive closure T(U,M) of a set of variables U on a network M is the
largest set Wk for which the following sequence exists:

= WO 01W1 • • •Wk-10k Wic) (*)

where In() ç W, 1, Wj = W 1 LI Out(0) for i = 1,2,.. .k, and each is an
operator of a relation of the network. T(U,M) is the set of all these variables,
values of which can be calculated from k on M.

A lot of methods exist for building transitive closure T(U,M) and the
corresponding sequence of operators 01, 02, ... 4. The straightforward way of
doing it is to check the operators of the network one by one and to search
any operator oi for which In(0i) Nvi...4 and Out(4) Wi_.1 on the ith step. If
no such operator is available, then T(U,M) = W1_1. The process may be broken
earlier — as soon as V C Wi_1 — because then the obtained sequence of operators
01, 02, will already be a solving algorithm for the problem (M,U,V). Such
straightforward solution planning is not too expensive, because the network M
does not change during the solution planning (there is no need for backtracking),
and the network M contains only information essential for the particular
problem. Nevertheless, checking the applicability of relations instead of checking
that of operators enables us to reduce the amount of search by a factor equal to
the average number of operators in a relation.

The sequence of operators 01, 02, ... may contain superficial operators
which do not perform any calculation that helps to solve the particular problem.
Therefore a backward pass must be made on the sequence of operators, and
for any 0i, I = k, ... 1 it must be checked if Needed(). The predicate
Needed(0v) is defined in terms of sets W1_1 of known variables (see the sequence
(*)) and sets W; of needed variables:

t The set of operators is not contradictory if it can be extended to a category of mappings.
For instance, such is the set x := y, y := z, but not the set x := y, y := 2 +x.
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Needed (Øi) <=> (Out() \ n w; 0
w/s, = v,

1 
W;, if 1 Needed (4)

W1-1 = (w; \ Out (4)) U In (00, if Needed().

This technique gives a minimal solving algorithm for any solvable problem
(M,U,V).

It is essential that no useless calculations are made in the solver. The
solution planning preceeds the calculations, and the applicability of a relation
is checked by using only the structure of the semantic network that represents
problem conditions.

Having some knowledge of physics, and using only the technique described
above, the solver was able to solve the following problems:

IN ACCORDANCE WITH THE LAWS OF MECHANICS A

LOCOMOTIVE WITH THE MASS M1 STOPPED DUE TO FRICTION

FORCE F1, IN TIME-INTERVAL T1, THE VELOCITY-

DIFFERENCE 33 METERS-PER-SECOND. Fl FORCE IN

NEWTONS. M1 MASS IN TONS. T1 TIME IN MINUTES. GIVEN

Ml = 500, T1 = 1 . CALCULATE F 1 .

ACCORDING TO THE LAWS OF ROTATION A PILOT WHO HAS

WEIGHT P FLIES WITH SPEED V AND MAKES VERTICAL LOOP

WITH RADIUS R, THEREBY HE IS INFLUENCED BY

CENTRIFUGAL-FORCE F. IT IS KNOWN THAT: V SPEED

KM-PER-HOUR. R LENGTH METERS. P WEIGHT NEWTONS.

GIVEN V = 144, R = 100, P = 800. THE FORCES ON THE PILOTS

SEAT AT THE UPPER AND LOWER POINT OF THE LOOP ARE

DETERMINED BY THE EQUATION XB = F — P AND THE

EQUATION XII = F + P. CALCULATE F, XB, XII.

For the first problem the solver built the semantic network from the
MECHANICS, MASS, TIME, VELOCITY-GAIN, and FORCE. The latter
four were needed for transformation of units of physical entities. All the
relations in the networks of physical phenomena were given in SI units. When
other units were used, automatic transformation was needed from one measuring
system into another. This was performed by using notions of physical entities.

The detailed semantic network of the first problem is shown in Fig. 5.
Operators 01 02 03 04 of the solving algorithm are shown there instead of these
relations of the network, from which the operators were derived.

Application of theorems

The solver as described above has no automatic facilities for applying theorems,
or any other assumptions containing general knowledge in the problem area.
To apply a theorem for solving a problem, an explicit reference must be made
to the theorem. The theorem can be included in the semantics of a notion
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t=500

MASS

force

kg ;2(0

FORCE

Fig. 5.

MECHANICS

acceleration

distance

energy average- speed

km/sec

velocity gain

VELOCITY

km/ h=33

cm/sec

days

hours

TIME

mi nutes=1

as a relation, and the notion can be explicitly mentioned in the text of a
problem. Student problems are usually given without explicit references to
theorems. The solver itself has to find applicable theorems and use them
properly; that is, the solver must have some deductive abilities. Let us consider
the example illustrated in Fig. 6:

AC INTERVAL. APB ARC WHICH HAS LENGTH 5 AND RADIUS 3.

THERE ARE TANGENTIALLY APB, AC. ROTATION OF THE

INTERVAL AC AROUND THE POINT A GENERATES CAB

SECTOR. CALCULATE AREA OF CAB.

To solve it, one must use the theorem: "Angle between tangent and chord
from the tangential point is half of the angle of the arc". This theorem may be
included in the semantics of the segment, and a segment AB may be described
in the text of the problem by the sentence: APB SEGMENT OF THE CIRCLE
WITH THE CENTER 0 AND TANGENT AC AT THE POINT A. We are
interested in a more general use of theorems, as it occurs in deductive programs.

In. the solver we have implemented theorems as follows. A theorem is a
notion with a set of rules determining possible renaming of variables when its
semantic network is copied. A theorem is applicable if and only if its variables
can be renamed, so that at least two of them will have the same names as some
variables in the semantic network of the problem. A set of theorems is stored
in the semantic memory of the solver. When the solution planning on the
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semantic network of the problem fails, the solver searches for applicable
theorems and adds them to the semantics. Then the solution planning is
repeated on the extended network.

We have used some theorems of geometry in this way, particularly the
theorems mentioned above. The following theorem also appeared useful to the
solver: "If two objects are equal, then all their corresponding components are
equal". The model of the theorem is the equality relation x =y, where x andy
are the variables which can be renamed with the names of corresponding parts
of equal objects. In particular, this theorem was needed for solving the geo-
metrical problem described at the beginning of the paper.

Fig. 6.

In the last sample problem we applied some well known conventions about
notations for geometric objects. One letter is used for denoting a point, and the
letters of characteristic points of geometric objects (arcs, triangles, etc.) are
used in a fixed order for denoting these objects. We mostly implemented these
conventions in the preprocessor. This is another way for using general knowledge
in a problem area. The conventions on notation are used for extending the text
of a problem before the problem model is built. These conventions may also be
regarded as theorems. In the problem described the following deductions must
be made on the basis of notations:

— interval AC has a common point A with the arc APB,
— side CA of the sector CAB is the same as the interval AC.

Improved solution planning

If the planner was able to build only linear sequences of operators, only a few
of the student problems could be solved. Therefore the planner was extended,
and facilities for recursive solution planning were added.
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Let us consider a notion of a maximum of a function which could be
expressed by the following expressions

m = max W
xE D

W = f (x).

When building the semantic network for the notation of a maximum, we can
insert the following variables into the network: D — domain of the function,

m — value of the maximum, x — argument of the function, w — value of the

function. We have two relations as well:R1: m: = max w and R2: w: = f(x).
xED

Variables w and x are neither input nor output variables of the operator of

the relation R1 . Nevertheless, they must be used when m is calculated, and
therefore we shall bind the variables with the relation RI, using the special
kinds of arc shown in Fig. 7a. The function f itself can be expressed implicitly
by a semantic network on which the problem "calculate w from x" is solvable,
as in Fig. 7b. Now we can see that the relation R1 can be applied only if a

subproblem "calculate w from x" is solvable. The solver can tackle any sub-

problem as an independent problem, and can perform hierarchical solution

Al

R1

Fig. 7.

(a)

R2

(b)
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planning. Even recursion is allowed, so that the original problem itself may again
appear as a subproblem in some solution planning stage. For the hierarchical
solution planning and-or trees of subproblems must be used, and backtracking
is needed. In the recursive solution planning a difficulty arises when termination
of a solution process must be determined. It is worth mentioning that for
any general recursive function f it is possible to build such a simple semantic
network M that the problem "calculate (value of f) from (values of the argu-
ments of f )" is solvable on M.

Another improvement was made in the planner to enable it to solve the
systems of equations which may appear when a semantic network of a problem
is built from semantic networks of notions. In this case some systems of
equations must be handled as new relations. But then (1) the planner must be
able to find these systems, and (2) a program must be available for solving the
systems numerically. Determining minimal solvable systems of equations in a
large semantic network is a rather difficult problem. Some theoretical results in
this direction have been presented by ICarzanov and Faradjev [4]. We use a
simple algorithm which can find some systems of equations and can solve them
by iterating one bound variable of a system.

Using improved solution planning, the solver was able to solve the problem
illustrated in Fig. 8 — probably the most complex problem solved by this solver.

A SPECTATOR IS SITTING IN THE CINEMA ON A SIDE SEAT SO

THAT THE POINT P WHERE HE IS SITTING, THE NEAREST

POINT B OF THE SCREEN, AND THE NEAREST POINT C OF THE

PLANE OF THE SCREEN CONSTITUTE THE RIGHT-ANGLED

TRIANGLE PBC. TRIANGLE ABP IS FORMED BY THE SCREEN

AB AND THE POINT P. POINT B BELONGS TO THE INTERVAL

AC. APB IS THE ANGLE UNDER WHICH THE SCREEN IS

VISIBLE FOR THE SPECTATOR. GIVEN AB = 12, BC = I. LET

X BE MAXIMUM FOR ANGLE APB WHEN CP CHANGES.

CALCULATE X.

A SCREEN

Fig. 8.
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The model of the sixth statement of the problem description contains a
relation for computing maximum ABP depending on CP. For determining the

maximum it is necessary to compute in a cycle values of APB depending on CP.

The algorithm for this computation is obtained as a result of solution planning

for a subproblem, where AB, BC and CP are given and APB is requested.

SUMMARY

We have described a solver for computational problems where the algorithm for

solving a problem is synthesized before computation begins. The solver described

can cope with problems for senior students of secondary schools. Problems in
physics and geometry have been solved as well as combined problems in these
fields. Dimensions of physical entities have been taken into consideration; some
theorems have been used, and simple systems of linear and nonlinear equations
have been solved.

The knowledge of the solver as well as the semantics of the problems are
presented by means of semantic networks, where relations are presented in a

procedural way. A special semantic network is built for every problem to be

solved. Only knowledge related to the particular problem is included in it.

Owing to this, a large semantic memory is not used during the solution planning.
This significantly reduces the amount of search.

We are not satisfied with our technique of using theorems. It seems to be
restricted. We can only conclude that using theorems may significantly increase

the abilities of the solver. Further investigations are needed to combine our

solution planning with more advanced deductive theorem application.
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Inference of Functions with an Interactive System

J. P. Jouannaud and G. Guiho
Institute de Programmation
Paris, France

Abstract

The problem envisioned is the automatic build up of LISP functions from a
finite set of examples -[xi F(xi)].,x1 being a list of LISP atoms. From primitive
functions and the composition rule, our system SISP is able to construct non-
recursive functions from a single example x F(x). On the other hand, SISP
tries to find linear recursive functions, each with its stop condition. If it fails,
new examples are requested. Then using a technique of generating new partial
sub-problems, SISP may build up the recursive function by parts.

1. INTRODUCTION
In this paper, we describe the system SISP, the goal of which is the automatic
inference of LISP functions from a finite set of examples -[(xi F(;)}, where
; is a list belonging to the domain of the function F we want to infer.

The problem originates from a more general one: how to build a "Learning-
Question-Answering-System" (L.Q.A.S.) using a functional method to provide
an answer to any given question. The method we propose in SISP is well adapted
to the L.Q.A.S. we are developing (Treuil, Jouannaud and Guiho 1976 and
1977).

Three kinds of research have dealt with the problem of "Automatic Pro-
gramming from Examples". Blum and Blum (1973) using recursive function
theory, developed a theoretical point of view which does not seem to open any
practical result. Bierman (1972, 1973), Hardy (1975), and Green et al. (1974)
developed a practical point of view, which does not seem to open any theoretical
result. Recently, Summers (1977) mixed both theoretical and practical
approaches which led to a very important basic work, the frame of which
is summarized below:

Given a small number of well-chosen examples -[(NIL F(NIL)),
(x1-+ F(xi)), (xk F(xk))1 and a complete set of primitive functions:
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1. Compute the predicates pi on the inputs xi.

2. Look for a recurrence relation between the predicates:

Pi-Fn(x) = Pi(bi(x)) >

where b1 is computed using the primitivelunctions and the composition
rule.

3. Compute the functions ft which map xi into F(xi), using the primitive
functions and the composition rule.

4. Look for a recurrence relation between the functions fi:

fi+,i(x) = a [fi(b2(x)),x] i>/

where b2 and a are computed using the primitive functions and the com-
position rule.

5. Define the linear approximation Fk of F as

Fk [po(x)-o f 0(x)

p(x) -0 fk(x) (McCarthy conditional)
T -*c,].

6. Use an inference step by extending the domain of Flo using the recur-
rence relations as follows:

— Domain: .[x/p1(x) = T, • • • Pi+n—i(x) = T, Pi+n(x) = Pi(bi (x)) = T
Vi/}

— Function: V k >0, if pk(x) = T then F(x) = fk(x)

7. Using the basic synthesis theorem of Summers or one of the corollaries
(1977) use the recursion rule and define F as the recursive program
equivalent to the limit of Sup (F k) when k becomes infinite.

Although the Summers method is very powerful, the way chosen to
compute the functions fi and the recurrence relations between the fi and
between the pi brings out four important drawbacks.

1. The constructed expression F is necessarily recursive:
For instance the identity function will be inferred by

F(x)4-[(ATOM x)-* NIL
T -+(CONS (CAR x) (F (CD R x)))1.

2. THESYS, the Summers system, needs well-chosen examples: in
particular, they must contain the stop condition of the recursive
function F. For instance, the synthesis of the function REVERSE
requires the following set of examples:

-[(NIL -+ NIL);((A)-> (A));((A B) -0 (B A)),((A B C) -o (CBA))}.
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3. The function to be constructed has to present only one "iterative
level". For instance, THESYS fails to construct a correct function
corresponding to the example

((PQRS)->(PPQPQRPQRS)).

4. When THESYS has to solve a difficult problem, it operates as if it
were a simple one, and does not try to generate a partial simpler
problem for which it could either find a correct solution or perhaps
use knowledge previously stored in a data base by the system itself.
Thus, THESYS cannot be efficently used in an L.Q.A.S. without
important modifications.

The method we propose in this paper uses the frame of Summers, but is
based on another way to compute the functions ft and the recurrence relations
between the f. It allows us to solve some of the previous drawbacks, though
new ones appear:

I. Recursivity is not automatically inferred by the synthesis algorithm;
for instance, using the example ((A B C) -> (A B C)), SISP infers the
function F: F(x) = x, for any x.

2. For some "simple" functions, SISP needs only one example (x -0 F(x)).
If a recursive expression is inferred, the stop condition is found by SISP
itself. However, the list x must be long enough to be representative of
the function F. For instance, REVERSE is obtained with ((A B CD) ->
(D C B A)) but is not obtained with ((A B C)-> (C B A)).

3. When the function F is "more complex" SISP fails to construct a correct
function with a single example (x F(x)) and has to ask for a second
one (x' -> F(x')). Then SISP generates a new partial simpler problem
(y G(y)), where y is defined in terms of x and G(y) is defined in
terms of F(x). To solve this new problem, SISP sometimes needs a new
example (x" F(x")) which is used to deduce an example (y'-± G(y')):
SISP is extensible and can use a self-contained knowledge data-base.

4. At present SISP works on monadic functions. The method that we use
may be extended to polyadic functions without great effort. It seems to
be more difficult with the method of Summers.

In a sense SISP is more powerful than THESYS, but now only works on
lists which are built with atoms, whereas THESYS is theoretically able to con-
struct functions defined on the whole set of LISP S-expressions (in practice, it
often cannot find the recurrence realtions, even if they exist).

2. FUNCTIONS, EXAMPLES, PREDICATES
2.1 The language
SISP infers LISP functions defined on character strings "A B CD. . ." which are
represented by the list (A B C D . . .). SISP uses the following set of six primitive
functions:
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LCAR: (A B C D)-> (A) CDR: (A B C D) (B C D)
LRAC: (A B C D) (D) RDC: (A B C D) -> (A B C)
CONC: (ABC),(DEFG)->(ABCDEFG)
CONCT: (A B C),(D E),(F G H)-> (A BCDEFG H)

and a control structure with COND and NULL.
Let Lo be the set of functions which can be obtained by the previous set

of six primitive functions and the composition rule (no recursion).
Our goal is to synthesize any function in Lo and also functions, not in Lo,

the synthesis of which requires the use of the recursion rule.

2.2 Examples

Let A be an alphabet of atoms and A* the set of finite character chains con-
structed on A, with the null chain. Let *A be the set A* tlical where o.) is the
undeterminate chain.

Definition 1:
The couple (x ->y) where x EA*

and y = F(x) is an example of F.
An example (x ->y) is said to be self-contained iff:
y 0 6)
Any atom in y is present in x.
An example (x -÷ y) is said to be non-ambiguous iff any atom of A has

at most one occurrence in x.

Definition 2: Let a be a map from A into A. We call alpha-substitution of *A
the applications a* such that:

a*(w) = w
EA*,x =a1 a2 . • •ap,atEA,i = 1, • • •P:
*(x) = a(a1) a (a2) . . . a (ap).

A function F from A* to *A is said to be s-stable iff when a* is an alpha-
substitution of *A: 0*

A* A*

F

*A )*A

F(a *(x)) = a*(F (x))

cr*

It is easy to show that any E-stable function has only self-contained examples.
We undertake only the synthesis of E-stable functions using non-ambiguous
examples.

2.3 The predicates

It is easy to show that if the examples (x y) and (x' ->1) may swap through
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alpha-substitutions, the entries x and x' have the same length. From this result
it follows:

Proposition 1: Given the predicate pi which takes the value T iff the list x has
the length lxi = i and given a non-ambiguous example (x0 -0 F(x0)) so that
p1(x0) = T, then the program:

[Pi(x) fi(x)
T -0c..)]

coincides with F on the domain of the chains of length i, iff fi(x0) = F(x0).

Definition 3: We call Type any set X = x E A*1 such that for a given i
and for any x in X, pi(x)= T.

— If X is a Type and F a function defined on X, the image F(x) is also
a Type. In the same way, if G is a function of the image which
contains X, the opposite image of X by G is also a Type.

From one example (x0 -0 F(x0)), the proposition 1 defines a relation
between the types X = .[x/IxJ = Ixoll and Y = -fy/ 3 x E X, y = F(x)}. Our
method is based on this important remark.

We still have to find the predicate pi: using the primitive functions CDR
and RDC, there are several ways to express pi, as it is shown by the following
relation between pi.fi and pi:

pi+1(x)= pi(CDR(x)) = (RDC (x)) for i> 0.

In practice, only that relation between pi+k and pi is needed to infer the
function F. Later we shall see that this relation is found naturally by our
method, without having to express the predicate themselves.

3. SYNTHESIS USING ONE EXAMPLE

3.1 Segmentation pattern and approximation

Definition 4: We call a Segmentation pattern of the example (x -0 y) the
following structure.

Fig. 1 — Segmentation pattern of (x y).
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—c is the common chain to x and y, of maximum length, called the
pgcd of x and y (in the case of several pgcd, a systematic choice is
made: for example the nearest to an extremity)

— px (resp.py) is the prefix of c in x (resp. y)
— sx (resp. sy) is the suffix of c in x (resp. y)
— the functions u, v, v', f, f', belong to Lo. They are chosen to be of
the least possible complexity.

This definition is coherent: the segmentation patterns associated with two
non-ambiguous examples (x —> y) and (x' —> y') of the same E-stable function F
are identical (the two pgcd c and c' swap through an alpha-substitution the same
as that for x and x').

In some cases the segmentation pattern is simpler according to the following
rules: when one or several chains are empty, the associated types are suppressed
from the pattern; when two strings are identical, the associated types are joined
together. For instance, if x and y are identical the segmentation pattern is
reduced to a single type x.

Definition 5: We call approximation of order one associated to the example
(x y) of F, the following type of structure, extracted from the segmentation
pattern of (x,y):

Fig. 2 — Approximation of order one associated to (x —•y).

In many practical cases, one of the two chains sy and py is NIL. The approxi-
mation of order one becomes:

Fig. 3a — Simple case of approximation of order one associated to (x —oy).

For simplicity we consider only these "simpler" cases in the following text.
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Definition 6: The type Y1 which cannot be reached from the input type X is
said to be unsatisfied.

We call the antecedent of the unsatisfied type Y1, the type X1 taken in the
set {X, PX, C, SX} such that the example (x1 -÷yi) is self-contained, with the
chain x1 of minimal length.

Definition 7: Let us define recursively the approximation of order n or n
approximation from the n-1 approximation and the difference of approxi-
mation of order n-1 or n-1 difference.

The n-1 difference is defined as the 1 approximation of the example

yn_4), Xn_i being the antecedent of the only unsatisfied type of
the n-1 approximation.

• Fig. 3b difference.

The n approximation is obtained by linking the n-1 approximation and
the n—I difference by the schema of Fig. 4.

n-1

CONC0

411
fi 
•CONC1

ff7-1 411) cow •
The symbol symbol CONCi denotes a concentration of chains;
the entries order depends on, the index i:

either CONCi CONCt+.
or CONCi CONCA.,

Fig. 4 — n approximation associated to (x y).
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Remarks: The approximation of order one associated to (x --o y) can be con-
sidered as the approximation difference of order zero associated to (x y)

some ui or fi can be the identity function.

Proposition 2: There exists an integer n such that the n approximation of the

example (x -o y) contains no unsatisfied type. It is called the approximation
associated to the example (x -oy).

Proof: At each new level of approximation there are two possibilities: either
the type Yi exists in the already constructed part of the approximation and

Yi is satisfied, or Yi is unsatisfied and the length of the chain y, decreases strictly

as i increases. As the antecedent of the unsatisfied type Yi exists at each level,
it is always possible to go further until yi = NIL in the worst case, namely

is satisfied.
Definition 7 and Proposition 2 provide a constructive algorithm for the

approximation associated to the example (x y). The approximation is
nothing but the function fi of Proposition 1, associated to the predicate pi,

with Ix I = i.

3.2 Synthesis

Proposition 3: If the function F belongs to Lo and if the length of x is great

enough, the approximation associated to one example (x -0 F(x)) is a correct
expression of F on the set of examples.

The proof may be obtained by using two steps: first, transform the

expression of f such that CAR, RAC, CDR, and RDC are never applied before

CONC or CONCT; second, prove that the general form of the transformed
expresssion and the approximation associated to the example (x -0 F(x)) are
similar, provided that the length of the chain x is great enough. These functions
may differ only by side effects.

For this simple case the inference lies in the fact that the function fi which
maps the imput xi into the output yi does not depend on the index i, if Ix' is
large enough. The only problem, simple to solve, is to compute the index/ such
that if Ix' >/, the approximation associated to (x --oy) is correct.

Now we study the functions F which do not belong to Lo: The recursion
rule is necessary.

Definition 8a: Let us call the (1,j) structure of approximation denoted by
84, i 4/, the structure of types obtained by linking together the approximation
differences of order 1,1+1, .1. (cf. Fig. 4).

The (i,j) and (k,l) structures of approximation are said to be identical
iff Vh E :

= k —1

Uh+I

CONCh CONCh lc
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It is clear that if F does not belong to Lo, then necessarily F is a recursive
expression. When F(x) is computed, an identical sequence of operations will.

be called many times: The approximation associated with the non-ambiguous
example (x F(x)) has to contain a repetitive structure of approximation.

Detecting such a structure is the goal of the following algorithm:

Algorithm 1:
1. j 4- 1
2. if/ = n then go to step 8

else i 0 and go to step 4
3. if i = j —1 then/ 4- /+l and go to step 2

else i + 1 and go to step 4
4. if the approximation differences of order i and j are identical,

then go to step 5
else go to step 3

5. if 2 j—i —1> n then go to step 3
else go to step 6

6. if the approximation structures SA1_I and Si11  are not
identical then go to step 3
else go to step 7

7. compute the greatest integer q such that the approximation
structures and SAZ-13V+7i)1+1 are identical.
Preserve i, j and q
and go to step 3.

8. if no i, j and q has been preserved, then let F(x) = An(x) and stop
else select (i,j) with maximal q.

Definition 8b: The repetitive approximation structure SAlfri is called the
recursive pattern of F. If i is not equal to zero, the i approximation Ai associated
to (x -+ y) is called the head of F. The approximation structure SAV—n+iis
called the tail of F.

In practice Algorithm 1 often finds j = i + 1 = 1. In this case, recursivity
is found readily and the function F has no head. We shall also present more
complex cases.

The structures of types Ai (j <n) and SA1(0 < I </ <n) symbolize well
defined diadic functions. Also An and SA4(0 < j <n) symbolize well defined
monadic functions. If j <n, the order of the entries of Al and SA1 is the same
as that of the function CONCi. For simplicity we will now suppose that
CONC/ COND.*, (Fig. 4).

Proposition 4: if a(x) = ui(ui_1(...(u14.1(x)...)) is the identity function, then
the recursive expression given in 1 belongs to F, else the recursive expression
given in 2 belongs to F.
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1. If i = 0 then the recursive expression given in la belongs to F
else the recursive expression given in lb belongs to F.

Ia. F(x) = if x E Xig.Foi then SALq+1)/(x)
k else Ai_i (x, F (a(x))).

lb. F(x) = A i(x , G (a(x)))

G(t) = (if t EXqu_041 then sAg(1-0+ / (0
else SAI _ i(t, G (a(t))).

2. there exist two functions v and w in Lo such that if i = 0,
then the recursive expression given in 2a belongs to F.
else the recursive expression given in 2b belongs to F.

2a. F(x) = H(x, v (x))
H(x,$)= lif p(q+ i(s) then SAq +1) (x)

telse A 1_1(x ,h (x,w(s))).
2b. F(x) = A i (x , G(13(x)))

G(t) = H(t, v (t))
H(t,$) = 1 if pq(/-1)÷i (s) then S4(1-1)41(t)

else SA 1 (t, w (s)).

The second part of Proposition 4 applies if the output y is built with a
head, a tail, and a recursive pattern, which is the repetition r times of the same
character chain. The problem is that r can be a constant, a linear function of
Ix' or a non-linear one. SISP has to ask for new examples in order to solve
this problem, namely compute the functions v and w: for instance, if r = lx
then v (x) = x and w (x) = CDR (x).

Proposition 4 can be proved by using the basic synthesis theorem of
Summers or, when F has a head, by another theorem, which can be easily
deducted from Summer's.

The inference step can be exhibited in the following way: given the approxi-
mation associated to the example (x F(x)) F being recursive, it is always
possible to take the discovered recursive pattern out of the approximation,
as many times as possible. We obtain new approximations, namely new functions
fi. But it is also possible to add, as many times as wanted, the recursive pattern
in the approximation. Again we obtain new approximations. The Summers
theorem is then used to obtain the least fixpoint of the set of functions.

In part 2 of Proposition 4 a fixpoint cannot be obtained on this set. The
existence of a fixpoint requires the use of what Summers calls the variable
addition heuristic. A second variable may be necessary for the function H.
This supplementary variable is used to control the recursivity.

3.3 Detailing the stop condition

Proposition 4 does not always provide a good stop-condition: side effects
often perturb the bottom of the approximation associated to the example

236



JOUANNAUD AND GUIHO

(x y) giving a "bad" tail. For such cases, it is possible to substitute for the
"bad" tail one or more recursive patterns with a new tail in the following way:

Assume that we have found the following stop-condition:

if tE X q(j.-04./ then G(t) = SAV—i)+/(t).

Assume that a(t) exists. It is possible to compute G(t) by using the recursive
pattern:

G(t) = SA (t, G (a(t))) = NO.

Because of the structure of overlapped CONC of the diadic function Sitifri,
a simple identification always allows us to compute G(a(t)). Let now
X(0.1)(i_o_Fi be the type a(Xqu_o÷i) and S4,q+1)(/-1) +I be the approxi-
mation associated to the example (a(t)—> G(o(t))). The new stop condition is:

if t EX(0.1)(i_i)+1, then G(t) = SAr 1W-1)N°

As long as it may compute a(t), SISP goes on using the same method,
until it gets the final stop condition after r steps. Then SISP computes the
predicate which express that a chain t belongs to the type X(q+0(1-1)+J. The
synthesis of the function F is finished.

3.4 Examples of synthesized functions

ROTATE: (A B C D)-÷ (B C D A)
The segmentation pattern associated with (x —>y) is:

CDR RDC

(B C

LCAR

Thus, we get the following approximation associated to (x -+y):
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No recursivity is found: ROTATE (x) 4- (CONC (CDR x)(LCAR x))

(With his technique Summers finds a recursive function.)

REVERSE: (A B C D)-+ (D C B A)
The segmentation pattern associated to (x -).y) is:

CDR

LCAR LRAC

COW 

CONC

(A) 

CONC

(BCD) (DC B)

The antecedent of 11 is Xi. Thus, we get the following approximation associ-

ated to the example (x -+y):

Using Algorithm 1 we find the recursivity according to I = 0, = 1 and q = 1.
Proposition 4 then provides the following function F:

F(x) = (if x E X2 then SA 3(x)
else CONC(F(CDR(x), LCAR(x)).

SISP now has to detail the stop condition:

For this apply F to the chain x2 = (CD):
F (x) = SA(x) = CONC (LRAC(x), LCAR(x)) = (D C).
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Using now the recursive form of F:

F((CD))= CONC(F((D)),(C)).

It follows that F((D)) = (D).
The stop condition is:

if x E CDR (X2) then x.

Then SISP tries once more:

F ((D)) = CONC(F(NIL), (D)) .

It follows that F(NIL) = NIL.
SISP cannot try once more. The following LISP function REVERSE is

generated:

REVERSE(x) 4— [(NULL x) NIL
T (CONC(REVERSE(CDR x))(LCAR x))]

THE FUNCTION: (PQRS)--,(PPQPQRPQRS)

The segmentation pattern associated to (x .-0y) is:

CDR. CDR. CDR. CDR. CDR. CDR.

The antecedent of Y1 is X. The segmentation pattern associated to (x -*yi) is:

04410011DC olidwiCDDDR

CONC

(PQR) 

CONC
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The antecedent of Y2 is now C1. Thus, we get the following approximation
associated to (x -+y):

Using Algorithm 1, we find the recursivity with i = O,/ = 1 and q =1. Proposition
4 then gives the following function F:

F(x) =cif x E c2 then SA3(x)
telse CONC(F(RDC(x)),x).

SISP has to detail the stop condition:
It applies F to the chain C2 = (P Q)

F(x) = SA(x) = CONC(LCAR(x), x) = (PP Q)

Using now the recursive form of F:

F((P Q)) = CONC(F((P)),(P Q)).

It follows that F((P)) = (P).
The stop condition is:

if x E RDC(C2) then x

SISP tries once more:

F((P)) = CONC(F(NIL), (P)).

It follows that F(NIL) = NIL.
SISP fails in the next step. Finally, it generates the following LISP function:

F(x) 4- [(NULL x) NIL
T (CONC(F(RDC x)) x)]
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THE FUNCTION: (A B C (A A A A)
The segmentation pattern associated to (x -0.y) is:

LCAR LCAR4csia■Bow4
C

(A) 

DCtONC CONC

R 

CO
(BCD) (AAA)

The antecedent of Y1 is C. We get the following approximation associated to
the example (x ->y):

Using Algorithm 1, we find the recursivity with i = 0, j =1 and q = 1. Proposition
4 provides the following function F:

F(x) = H(x, v (x))
H(x,y)= if P2(Y) then SA(x)

telse CONC(LCAR(x), H(x, w(y)))

SISP has now to compute the functions v and w: it asks for a new example. Let
us suppose that the professor gives the following one:

(A B C)-* (A A A).

SISP generates the approximation structure associated to this new example and
verifies that this last approximation is obtained from the previous one by
removing one recursive pattern. It deduces that w(y) = RDC(y) and then
finds v(x) =x. The expression for F becomes;

F(x)= H(x,x)
H(x,y)= Id P2 (Y) then SA(x)

else CONC(LCAR(x), H(x, RDC(y))).

SISP has now to detail the stop condition. So it applies H to the couple of
chains x =(A B C D) and y = (C D)

H(x,y)= SA3(x)= CONC(LCAR(x), LCAR(x)) = (A A),
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using now the recursive form of H:

H(x,y) = CONC((A), H(x, (D))).

It follows that H(x, (D))= (A). SISP tries once more:

H(x, (A)) = CONC ((A), H(x, NIL)).

And H(x, NIL) = NIL. SISP cannot try once more. So it generates the following

LISP function:

F(x)*- H(x,x)
H(x,y) [(NULLy) NIL

T (CONC (LCAR x) (H x (CDRy)))]

THE FUNCTION: (ABCDEFG)-*(AAGBFCED)

Associated with this example, we get the following approximation:

CDR

RDC

CDR

RDC

CDR

LCAR

LRAC

(A)

LCAR

CONC

CONC

LRAC

•
CONC

(

LCAR

•
CONC

11511

LRAC

•
CONC

CDR
LCAR

RDC

es
CONC

•

•

474)

242

CONC•



JOUANNAUD AND GUIHO

With Algorithm 1 we find the recursivity with i = 1,1 = 3, q = 1. Now, SISP
finds a head, a recursive pattern, and a tail. Proposition 4 provides the following
function F:

F(x) = CONC(LRAC(x), G (x))
G(t) = Jift E X5 then SA(t)

t else CONC(LCAR(t), CONC(LRAC(t), G(CDR(RDC(t))))).

SISP has to detail the stop condition and after two steps finds the following
one:

if CDR(x) = NIL then x.

The synthesized function F is:

F(x) 4- (CONC(LRAC x) (G x))
G(t) [(NULL(CDRt)) t

T (CONC(LCAR t) (CONC(LRAC t) (G(CDR(RDC t)))))]

We see that F works on the odd length lists, but does not work on the
even length ones.. This follows from the fact that (j — i) is greater than one.
The inference on the domain does not cover all the atomic lists.

4. SYNTHESIS USING SEVERAL EXAMPLES

The previous method is able to synthesize any function in Lo. In this section we
are interested in recursive functions only: our goal with the following second
method is to make use of a mechanism able to directly compute the recurrence
relations between the functions fi. The method lies in the comparison of two
consecutive examples (x y) and (x' -* y'), that is, it extracts the differences
between the two examples, thus providing simpler sub-problems.

4.1 Segmentation pattern and approximation

When SISP has completed the synthesis, using one example (x y), it asks for
a second one (x' -* y') to verify the correctness of the function. When the
result is not correct, SISP tries to work on both examples.

Definition 9: Two examples (x F(x)) and (x' F(x')) of a function F are
said to be consecutive iff there exists no chain x" belonging to the domain of
the function F and such that Ix I < ix"I < lxil

Definition 10: We call segmentation pattern associated with the couple of
consecutive examples -[(x -*y),(x'-*y')]. the following type of structure, where
F is the function to be synthesized:
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Segmentation pattern
associated to (x x')

Segmentation pattern
associated to (y' y)

Fig. 5 — Segmentation pattern associated to 4(x —■y), (x'

From this segmentation pattern, it is possible to extract a path from X to Y.
This path uses the following types:

X, X', Y', C, PY, SY, Y.

Sometimes, the chain y' is a part of the chain y: the types Y' and C are the

same. Y' is obtained from X' by the function F. Some times Y' and C are not .

the same: the path X' -4. Y' C is often more complicated than the direct

path X' -4 C. Moreover the function from Y' to C may be recursive and is much

more complicated than the function from X' to C.

Definition 11: We call approximation of order one associated to the couple of
consecutive example -[(x -+ y), (x' -4 y')} of the same function F, one of the

two following structures of types:

If Y' and Care identical. If Y' and Care not identical.

a, j3 and G are new functions to be built by SISP using the examples:

(x sy) for a, (x py) for 13 and (x' -+ c) for G.
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This definition introduces the concept of the sub-problem. The functions
a, a and G have to be synthesized by SISP each from one example. Thus it is
able to use knowledge previously stored in a data base. If the system has no
data base (such as SISP) or if it does not find the problem to be solved in the
data base, then it uses the first method: it asks for a new example (x"-y") of
the function F and uses it to deduce the examples of the functions a, a, G.
Thus it may verify these functions and, if one of them gives bad results, it may
try to use the second method. This possibility of using the recursion rule many
times leads to a powerful technique. When all the problems are solved, each
built-up function is associated with a type of structure, its approximation.
Some of these approximations may present regularities which may be detected
by Algorithm 1. Proposition 4 allows us to use again the recursion rule. The
following is an example:

(A BCDE)-o(EDCBA EDCBA EDCBA EDCBA EDC
BA DCBADCBA DCBADCBA CBACB
A CBA BA BA A)

We shall describe a shorter, simpler, but instructive example.

4.2 Practical use of the second technique with the following example

(A BCDEFGH)-o(DCBAHGFE)

First, SISP infers a function F from this single example, then asks for a second
example (B CD E FG) -o (D CB G FE) in order to control the inferred function
F and finds that it is not correct. Then SISP tries to work from both examples
and builds up the following approximation:

SISP now infers G and a, using the first method, asks for a third example
(CD E F) (D CFE) in order to control the inferred functions G and a:

By computing the pqcd of (DCFE) and (DCBGFE)SISP deduces a
second example of G, that is: (CD E F) -o (D C) and by computing the suffix of
(D C) in (D CB G FE) SISP deduces a second example of a: (BCD E FG)-0
(BG FE). SISP notices that the inferred expressions of both G and a are not
correct.
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SISP now builds up the approximation associated to the couple of
examples of G: {(BCDEF G) -0 (D C B) and (C D E F) -0 (D C)]..

The following expression of G is obtained:

G(x) = fifx EX" then c'
telse CONC(G(CDR(RDC(x))), LCAR(x)).

SISP may now detail the stop condition of G:

G((C D E F))= (D C) = CONC(G(D E)), (C))
thus G((D E))= (D)= CONC(G(NIL), (D))
thus G(NIL) = NIL

SISP may now infer the following function G:

G(x) <- [(NULL x) NIL -
T (CONC (G (CDR (RDC x))) (LCAR x))]

SISP builds up the approximation associated with the two examples of a:
(ABCDEFGH)--0(AHGFE)and(BCDEFGH)-*(BGFE):

a:

Now SISP infers 13 and y, using the first method, and finds:

7(x) 4- (CONC (LCAR x) (LRAC x))

SISP asks for a fourth example (D E) (D E) in order to control the
inferred functions 13 and •y. SISP computes first a third example of a: (CD E F)

246



JOUANNAUD AND GUIHO

(C F E) which leads to a second example of p: (C D E F) (FE) and also to
a second example of 7: (B CD EF G)-* (B G).

SISP notices that the inferred expression of g is not correct whereas the
inferred expression of 7 is correct.

SISP builds up the approximation associated to the two examples of /3
-[(B CDE F G)-+ (G FE) and (CDEF)--0(FE)]..

This leads to the following expression of 13:

/3(x) = Jifx Ex" then z"
telse CONC(LRAC(x), CDR(RDC(x)) ).

Now SISP may detail the stop condition of (3:

[3 ((C D E F))= E)= CONC((F),(p E)))
thus )3 ((D E))= (E)= CONC ((E), (3(NIL))
thus (3(NIL) = NIL.

SISP infers the following function

13(x) <— [(NULLx) NIL
T (CONC (LRAC x) (CDR(RDC x))))]

SISP now puts together the approximations of F and a, achieving the final
approximation of F:
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Using Algorithm 1, SISP now finds no recursivity in this approximation. The

inferred expression of F is thus:

F(x) = Jifx EX' then y'
telse CONC(G (CDR(RDC (x))), CONC (x), a (CDR(RDC (x))))).

SISP details the stop of F until it finds F(NIL) = NIL. Finally SISP infers the

following expression of F:

F(x) 4- [(NULL x) -+ NIL
T -+(CONC(G(CDR(RDCx)))(CONC(yx)(a(CDR(RDC x)))))]

5. LIMITS AND PROSPECTS OF THE METHOD
SISP is already able to synthesize all the functions given in Summers (1977),
Hedricks (1976), Hardy (1975), and Green (1974), provided that these functions
work on atomic lists. But SISP is also able to synthesize more complex
functions, as shown by the last example. For instance, SISP is able to synthesize

functions on the following examples:

(ABCD)-+(DABC)
(A B C D)-> (D C B A)
(ABCD)->(ABCDCBA)
(ABCD)-->(AABBCCDD)
(ABCDEFG)->(AGBFCED)
(ABCDEFG)->(AAGBFCED)
(ABCDEF)-->(AAFBECD)
(ABCDEFGHIJK)-+(KBIDGFEHCJA)

(given by Professor Minker)

This is done by the first technique, provided that the input list is long enough

it has to be as long as the sum of the length of the head, the length of the tail,

and twice the length of recursive pattern). SISP is also able to synthesize
functions on the following examples:

(A BCDE F)-÷(A BC) (HALF)
(ABCD)->(ABBCCCDDDD)
(ABCD)->(DCBADCBDCD)
(ABCD)->(DCBADCBDCDDCBDCDDCDD)
(ABCDEF)-0(CBAFED)
(ABCD)->(DCBADCBADCBADCBACBACBACBABABAA).

This is done by the second technique, provided that the first input list is long

enough and provided that the consecutive examples are the good ones, such as

the following set of consecutive examples:

(ABCDEFGH)-->(DCBAHGFE),(BCDEFG)-÷(DCBGFE),

(CDEF)->(DCFE),(DE)-*(DE).
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Another set, for instance:

(ABCDEFGH)--).(DCBAHGFE),(ABCDEF)-*(CBAFED)...

would not have led to a correct result. This remark shows the essential impor-
tance of a clever professor. However, we hope that it would be possible to use
a bad professor together with a "unification process", whose goal would be to
improve the given bad examples. For instance, from the set of two examples
(ABCDEFGH)->(DCBAHGFE) and (U V WX YZ) (W VUZ YX) it is
possible to deduce three possible matched sets:

(ABCDEFGH)->.(DCBAHGFE)and (ABCDEF)-+(CBAFED)
(ABCDEFGH)-÷(DCBAHGFE)and(BCDEFG)->.(DCBGFE)
(ABCDEFGH)-*(DCBAHGFE)and(CDEFGH)-(EDCHGF).

Only one of them leads to a correct solution. But we replaced one problem by
three others which have to be performed simultaneously. This method looks
good, but is not yet a part of SISP.

Future developments will tend to make SISP able to:

— define and store s-stable problems in its memory
— recognize that a partial sub-problem has already been encountered
and solved

— improve the professor's bad examples in order to be able to solve
partial problems, never met before

— infer polyadic functions using the first of the second method
— infer functions defined on the set of S-expressions.

6. CONCLUSION
If Lo is the set of functions defined in Sec. 2.1, let us call LI, L2, the set of
functions deduced from Lo and necessarily using recursion once and twice
respectively. We may assume that SISP is able to synthesize functions belonging
to L1 and L2. Roughly, it seems that all functions of L1 and some functions
of L2 may be found readily. A higher order of recursion entails a formidable
complexity. On the other hand the set of primitive functions given in Sec. 2.1 is
not complete; EQ is not in the set. Not all computable functions can be attained
from this set.

These restrictions have restrained the complexity of computations.
It seems that the synthesized functions are often close to the functions that

a LISP programmer would build up on the proposed examples. The heuristics
of SISP are in fact similar to human behavior, like, for example, finding the
common chains between input and output. Clearly our approach does not
treat the impossible problem of synthesizing undetermined functions on a
finite set of examples. Restrictions on the functions and the sequence of the
techniques are essential for success.
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On Automated Scientific Theory Formation:

A Case Study using the AM Program

D. B. Lenatt
Carnegie-Mellon University
Pittsburgh, USA

Abstract

A program called "AM" is described which carries on simple mathematics research,
defining and studying new concepts under the guidance of a large body of
heuristic rules. The 250 heuristics communicate via an agenda mechanism, a
global priority queue of small tasks for the program to perform, and reasons why
each task is plausible (for example, "Find generalizations of 'primes', because
'primes' turned out to be so useful a concept"). Each concept is represented as
an active, structured knowledge module. One hundred very incomplete modules
are initially supplied, each one corresponding to an elementary set-theoretic
concept (for example, union). This provides a definite but immense space which
AM begins to explore. In one hour, AM rediscovers hundreds of common concepts
(including singleton sets, natural numbers, arithmetic) and theorems (for example,
unique factorization). As AM defines concepts, and fills in their facets, it does
not synthesize new heuristics for dealing effectively with those new concepts.
This inability turns out to be its main limitation.

1. INTRODUCTION

1.1 Historical motivation

Scientists often face the difficult task of formulating nontrivial research problems
which are soluble. In most branches of science, it is usually easier to tackle a
specific given problem than to propose interesting yet manageable new questions
to investigate. For example, contrast solving the Missionaries and Cannibals
problem with the more ill-defined reasoning which led to inventing it. The first
type of activity is formalizable and admits a deductive solution; the second is
inductive and judgmental. As another example, contrast proving a given theorem
and proposing it in the first place.

t Now at the Department of Computer Science, Stanford University, USA.
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A wealth of Al research has been focused upon the former type of activity:
deductive problem solving (see, for example, Bledsoe 1971, Nilsson 1971, Newell

and Simon 1972). Approaches to inductive inference have also been made. Some
researchers have tried to attack the problem in a completely domain-independent

way (see, for example, Winston 1970). Other Al researchers believe that "expert

knowledge" must be present if inductive reasoning is to be kept within the

abilities of the human mind. Indeed, a few recent Al programs have incorporated

such knowledge (in the form of judgmental rules gleaned from human experts)

and successfully carried out quite complex inductive tasks: medical diagnosis
(Shortliffe 1974), mass spectra identification (Feigenbaum 1971), clinical
dialogue (Davis 1976), discovery of new mass spectroscopy rules (Buchanan
1975).

The next step in this progression of tasks would be that of fully automatic
theory formation in some scientific field. This includes two activities: (i) discover-
ing relationships among known concepts (for example, by formal manipulations,
or by noticing regularities in empirical data), and (ii) defining new concepts for
investigation. Meta-Dendral (Buchanan 1975) performs only the first of these (it
doesn't develop new concepts); most domain-independent concept learning
programs (Winston 1970) perform only the latter of these (while they do create
new concepts, the initiative is not theirs but rather is that of a human "teacher"
who already has the concepts in mind).

We are describing a computer program which defines new concepts,

investigates them, notices regularities in the data about them, and conjectures
relationships between them. This new information is used by the program to

• evaluate the newly-defined concepts, to concentrate upon the most interesting
ones, and to iterate the entire process. This paper describes such a program: AM.

1.2 Choice of domain

Research in distinct fields of science and mathematics often proceeds slightly
differently. Not only are the concepts different; so are most of the powerful
heuristics. So it was reasonable that this first attempt should be limited to one
narrow domain. Elementary mathematics was chosen, because:

1. There are no uncertainties in the raw data (arising, for example, from
faulty measuring devices).

2. Reliance on experts' introspection is a powerful technique for codifying
the judgmental rules needed to work effectively in a field. By choosing a
familiar field, it was possible for the author to rely primarily on personal
introspection for such heuristics.

3. The more formal a science is, the easier it is to automate (for example,
the less one needs to use natural language to communicate information).

4. A mathematician has the freedom to explore - or to abandon - whatever
he wants to. There is no specific problem to solve, no fixed "goal".

5. Unlike some fields (for example, propositional logic), elementary mathe-
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matical research has an abundance (many hundreds) of powerful heuristic
rules available.

6. One point of agreement between Weizenbaum and Lederberg (Buchanan
et al., 1976) is that Al can succeed in automating only those activities
for which there exists a "strong theory" of how that activity is performed

by human experts. AM is built on this kind of detailed model of
mathematical research (see Sec. 1.3).

The limitations of mathematics as a domain are closely intertwined with its

advantages. Having no ties to real-world data can be viewed as a liability, as can
having no clear "right" or "wrong" behaviour. Since mathematics has been

worked on for millenia by some of each culture's greatest minds, it is unlikely
that a small effort like AM would make many startling new discoveries. Never-

theless, it was decided that the advantages outweighed the limitations, and the
task domain of the program was settled.

1.3 Initial assumptions and hypotheses

The AM program got off the ground only because a number of sweeping
assumptions were made about how mathematical research could be perfomed by
a computer program:

1. Very little natural language processing capabilities are required. As it

runs, AM is monitored by a human "user". AM keeps the user informed

by instantiating English sentence templates. The user's input is rare and

can be successfully stereotyped.
2. Formal reasoning (including proof) is not indispensable when doing

theory formation in elementary mathematics. In the same spirit, we need

not worry in advance about the occurence of contradictions.
3. Each mathematical concept can be represented as a list of facets (aspects,

slots, parts, property/value pairs). For each new piece of knowledge
gained, there will be no trouble in finding which facet of which concept
it should be stored in.

4. The basic activity is to choose some facet of some concept, and then try
to fill in new entries to store there; this will occasionally cause new
concepts to be defined. The high-level decision about which facet of
which concept to work on next can be handled by maintaining an ordered
agenda of such mini-research tasks. The techniques for actually carrying
out a task are contained within a large collection of heuristics.

5. Each heuristic has a well-defined domain of applicability, which coincides

perfectly with one of AM's concepts. We can thus say the heuristic

"belongs to" that concept.
6. Heuristics superimpose; they never interact strongly with each other. If

one concept Cl is a specialization of concept C2, then C l's heuristics are
more specific and more powerful, hence they should be tried first.

7. Each task (on the agenda of facet/concept tasks to be carried out) is
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supported by a list of symbolic reasons, from which its priority is
computed. We assume that the reasons always superimpose perfectly.
They never change with time, and it makes no difference in what order
they were noticed. It suffices to have a single, positive number for each
reason, which characterizes its overall value.

8. The tasks on the agenda are completely independent. No task "wakes up"
another. Only the general position (near the top, near the bottom) is of
any significance (not the precise numeric value of its priority rating).

9. The set of heuristics need not grow, as new concepts are discovered. All
commonsense knowledge required is assumed to be already present
within the initially-given body of heuristic rules.

It is worth repeating that all the above points are merely convenient false-
hoods. Their combined presence made AM do-able (by one person, in one year).

Point (4) above is a claim that a clean, simple model exists for mathematical
research: a search process governed by a large collection of heuristic rules. Here
is a simplified summary of that model:

1. The order in which a mathematics textbook presents a theory is almost
the exact opposite of the order in which it was actually developed. In a
text, definitions and lemmas are given with no motivation, and they
turn out to be just the ones required for the next big theorem, whose
proof magically follows. But in real life, a mathematician would (i) begin
by examining some already-known concepts, (ii) try to find some
regularity involving them, (iii) formulate those as conjectures to investigate
further, and (iv) use them to motivate some simplifying new definitions.

2. Each of these four steps that thb researcher takes involves choosing from
a huge set of alternatives - that is, searching. He uses judgmental criteria
(heuristics) to choose the "best" alternative. This saves his search from
the combinatorial explosion.

3. Non-formal criteria (aesthetic interest, empirical induction, analogy,
utility estimates) are much more important than formal methods, in the
search for fruitful new definitions.

4. All such heuristics can be cast as situation/action (IF/THEN) rules. There
is a common core of (a few hundred) heuristics, basic to all fields of
mathematics at all levels. In addition to these, each field has several of its
own rules; those are usually much more powerful than the general-
purpose heuristics.

5. Nature is metaphysically pleasant: It is fair, uniform, regular. Statistical
considerations are valid and valuable when trying to find regularity in
mathematical data. Simplicity and synergy and symmetry abound.

1.4 Discovery in mathematics

By presenting a few examples, the preceding assumptions can, we hope, be made
more plausible. We shall cite some scenarios of mathematical discoveries being
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made. But before discussing how to synthesize a new mathematical theory,
consider briefly how to analyse one, how to construct a plausible chain of
reasoning which stretches from a given discovery all the way back to well-known
concepts.

1.4.1 Analysis of a discovery

One can rationalize a given discovery by working backwards, by reducing the
creative act to simpler and simpler creative acts. For example, consider the
concept of prime numbers. How might one be led to define such a notion, if one
had never heard of it before? Notice the following plausible strategy:

If f is a function which transforms elements of A into elements of B, and
B is ordered, then consider just those members of A which are transformed
into extremal elements of B. This set is an interesting subset of A. Name it
and study it.

When f(x) means "divisors of x", and the ordering is "by length", this heuristic
says "Consider those numbers which have a minimal number of factors - that is,
the primes". So this rule actually reduces our task from "how in the world did
somebody first think of the concept of 'prime numbers'?" to two more elementary
problems: (i) "How might 'ordering-by-length' have been discovered?" and
(ii) "How in the world did anybody first think of the concept of 'divisors of a
number'?". The reduction was accomplished by citing the above heuristic. Bear
in mind that it's just a rule of thumb, not a rule of inference. It can't guarantee
anything, the way that Modus Ponens can guarantee to preserve validity. And
yet, it is cost-effective for researchers to know and apply that heuristic rule,
because (as in the above case) it frequently leads to valuable new discoveries.

Now suppose we know this general rule: "If f is an interesting relation,
consider its inverse f"1". It reduces the task of discovering divisors-of to the
simpler task of discovering multiplication. Eventually, this task reduces to the
discovery of very basic notions, like substitution, set-union, and equality. To
explain how a given researcher might have made a given discovery, such an analysis
could be continued until that inductive task had been reduced to "discovering"
notions which the researcher already knew, which were his conceptual primitives.

1.4.2 Syntheses of discoveries

Suppose a large collection of these heuristic strategies has been assembled (for
example, by analysing a great many discoveries, and writing down new heuristic
rules whenever necessary). Instead of using them to explain how a given idea
might have evolved, one can imagine starting from a basic core of knowledge and
"running" the heuristics to generate new concepts. We're talking about reversing
the process described in the last subsection: not how to explain discoveries, but
how to make them.

Notice that this forward search is much "bushier", much more explosive,
than was the backwards analysis previously described. Instead of having fixed
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starting and ending concepts, we are now given only a starting point. This explains
why it's much harder to actually make a discovery than to rationalize - by
hindsight - how one might have made it. We have all noticed this phenomenon,
the "Why-didn't-I-think-of-that-sooner!" feeling.

The forward search is quite explosive; we may hypothesize that the scientist
employs some additional informal rules of thumb to constrain it. That is, he
doesn't really follow rules like "Look at the inverse of each known relation f",
because that would take up too much time. Rather, his heuristic rules might be
more naturally stated as productions (condition/action rules) like this: "If a
relation f is 1-1, and is very interesting, and Range(f) is much smaller than
Domain(f), Then look at f Henceforth, "heuristic rule" will mean a condi-
tional rule of thumb. In any particular situation, some subset of these rules will
"trigger", and will suggest some relevant, plausible activities to perform. After
following those suggestions, the situation will have changed, and the cycle will
begin anew.

Such syntheses are precisely what the AM program - and perhaps what a
human scientist - does. The program consists of a large corpus of primitive
mathematical concepts, each with a few associated heuristics. Each such heuristic
is a situation/action rule which functions as a local "plausible move generator".
Some suggest tasks for the system to carry out, some suggest ways of satisfying a
given task, etc. AM's activities all serve to expand AM itself, to enlarge upon a
given body of mathematical knowledge. AM uses its heuristics as judgmental
criteria to guide development in the most promising direction.

2. DESIGN OF THE 'AM' PROGRAM

A pure production system may be considered to consist of three components:
data memory, a set of rules, and an interpreter. Since AM is more or less a rule-
based system, it too can be considered as having three main design components:
how it represents mathematical knowledge (its frame-like concept/facets scheme),
how it enlarges its knowledge base (its collection of heuristic rules), and how it
controls the firing of these rules (via the agenda mechanism). These form the
subjects of the following three subsections.

2.1 Representation of concepts

The task of the AM program is to define plausible new mathematical concepts,
and to investigate them. Each concept is represented internally as a bundle of
slots or "facets". Each facet corresponds to some aspect of a concept, to some
question we might want to ask about the concept. Since each concept is a
mathematical entity, the kinds of questions one might ask are fairly constant
from concept to concept. A set of 25 facets was therefore fixed once and for all.
Below is that list of facets which a concept C may have. For each facet, we give
a typical question about C which it answers.
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Name: What shall we call C when talking with the user?
Generalizations: Which other concepts have less restrictive (that is, weaker) definitions

than C?
Specializations: Which concepts satisfy C's definition plus some additional constraints?
Examples: What are some things that satisfy C's definition?
Isa's: Which concepts' definitions does C itself satisfy?
In-domain-of: Which operations can operate on C's.
In-range-of: Which operations result in C's when run?
Views: How can we view some X as if it were a C?
Intuitions: What abstract, analogic representations are known for C?
Analogies: Are there any similar concepts?
Conjec's: What are some potential theorems involving C?
Definitions: How can we tell if x is an example of C?
Algorithms: What exactly do we do to execute the operation C on a given argument?
Domain/Range: How many - and exactly what kinds of - arguments can operation C

be executed on? What kinds of values will it return?
Worth: How valuable is C? (overall, aesthetic, utility, etc.)
Interest: What special features can make a C unusually interesting? Boring?

In addition, each facet F of concept C can possess a few little subfacets which

contain heuristics for dealing with that facet of C's:

F.Fillin: What are some methods for finding new entries for facet F of a concept which
is a C?

F.Check: How do we verify/debug potential entries for such a facet?
F.Suggest: If AM bogs down, what are some new tasks (related to facet F of concept

C) to consider doing?

In the LISP implementation of AM, each concept is maintained as an atom with

an attribute/value list (property list). Each facet, and its list of entries, is just a.

property and its associated value.
Below is a stylized rendition of the Sets concept, which intuitively

corresponds to the notion of a collection of elements.

Name(s): Set, Proper Collection, Proper Class
Definitions:

Recursive: X (S) [S={} or Set.Definition (Remove(Any-member(S),S))]
Recursive quick: X (S) [ S={1. or Set.Definition (CDR (S))]
Quick: X (S) [Match S with {...}]

Specializations: Empty-set, Nonempty-set, Singleton, Doubleton
Generalizations: Unordered-Structure, Collection,

Structure-with-no-multiple-elements-allowed
Examples:

Typical: {{}}, {A}, {A,B}, [3].
Barely: {}, {A, B,{C, {{{A, C, (3,3,9), (4,{B},A)}}}}}
Not-quite: {A,A}, 0, {B,A}
Foible: (4,1,A,1>

Conjectures: All unordered-structures are sets.
Intuitions: Geometric: Venn diagram.
Analogies: {set, set operations1-=-. {list, list operations].
Worth: 600 [on a scale of 0-1000]
View:

Predicate: X(P) xEDomain(P) I P(x)}
Structure: X (S) Enclose-in-braces(Sort(Remove-multiple-elements(S)))

Suggest: If P is an interesting predicate over X,
Then consider { xEX I P(x)}.

In-domain-of: Union, Intersection, Set-difference, Subset, Member,
Cartesian-product, Set-equality

In-range-of: Union, Intersect, Set-difference, Satisfying
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To decipher the Definitions facet, there are a few things you must know.
Facet F of concept C will occasionally be abbreviated as C.F. In those cases

where F is "executable", the notion C.F will refer to applying the corresponding

function. So the first entry in the Defmitions facet is recursive because it contains

an embedded call on the function Set.Definition. Notice that we are implying

that the name of the lambda expression itself is "Set.Definition". Since there are

three separate but equivalent definitions, AM may choose whichever one it

wants when it recurs. AM can pick one via a random selection scheme, or always

try to recur into the same definition as it was just in, or perhaps suit its choice to

the form of the argument at the moment.

All concepts possess executable definitions (Lisp predicates), though not

necessarily effective ones. When given an argument x, Set.defmition will return

"True", "False", or will eventually be interrupted by a timer (indicating that no

conclusion was reached about whether or not x is a set).
The "Views", "Intuitions", and "Analogies" facets must be distinguished

from each other. "Views" is concerned with transformations between instances

of two specific concepts (for example, how to view any predicate as a set, and

vice versa). An entry on the "Analogies" facet is a mapping from a set of concepts

(for example, between {bags, bag-union, bag-intersection, ...} and {numbers,

addition, minimum, ...}; or between {primes, factoring, numbers, ...1 and

{simple groups, factoring into subgroups, groups ...D. "Intuitions" deals with.

transformations between a bunch of concepts and one of a few large, standard

scenarios (for example, intuit the relation "._" as playing on a see-saw; intuit a

set by drawing a Venn diagram). Intuitions are characterized by being (i) opaque

(AM cannot introspect on them, delve into their code), (ii) occasionally fallible,

(iii) very quick, and (iv) carefully handcrafted in advance (since AM cannot pick

up new intuitions via metaphors to the real world, as we humans can).

Since "Sets" is a static concept, it had no Algorithms facet (as did, for
example, "Set-union"). The algorithms facet of a concept contains a list of
entries, a list of equivalent algorithms. Each algorithm must have three separate
parts:

1. Descriptors: Recursive, Linear, or Iterative? Quick or Slow? Opaque
(difficult to analyse statically) or Transparent (cleanly coded)? Destructive
or non-destructive?

2. Relators: Is this just a special case of some other concept's algorithm?
Which others does this one call on? Is this similar to any other algorithms
for any other concepts?

3. Program: A small, executable piece of LISP code. It may be used for
actually "running" the algorithm; it may also be inspected, copied,
reasoned about, etc.

There are multiple algorithms for the same concept because different ones

have different properties: some are very quick in some cases, some are always
slow but are very cleanly written and hence are easier to reason about, etc.
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Another facet possessed only by active concepts is "Domain/Range".
It is a list of entries, each of the form <D1 D2 ... R>, which means that
the concept takes a list of arguments, the first one being an example of concept
DI, the second of D2, the last argument being an example of concept Di, and
if the algorithm (any entry on the Algorithms facet) is run on this argument list,
then the value it returns will be an example of concept R. We may say that the
Domain of the concept is the Cartesian product DI X D2 X ... X Di, and that the
Range of the concept is R. For example, the Domain/Range of Set-union is
<Sets Sets -4 Sets>; Set-union takes a pair of sets as its argument list, and
returns a set as its value.

Several other facets were considered from time to time, including "Un-
interestingness", "Justification", "Recognition", etc. They were all dropped
eventually, because of their insignificant contribution to the performance of the
AM program. The Intuitions facet was eventually dropped, because it never led
to any discoveries which had not been foreseen by the author.

Once the representation of knowledge is settled, there remains the actual
choice of what knowledge to put into the program initially. One hundred
elementary concepts were selected, corresponding roughly to what Piaget might
have called "prenumerical knowledge". Appendix 1 presents a graph of these
concepts, showing their interrelationships of Generalization/Specialization and
Examples/Isa's. There is much static structural knowledge (sets, truth-values,
conjectures ...) and much knowledge about simple activities (boolean relations,
composition of relations, set operations, ...). Notice that there is no notion of
proof, of formal reasoning, or of numbers or arithmetic.

2.2 Top-level control: the agenda

AM's basic activity is to find new entries for some facet of some concept. But
which particular one should it choose to develop next? Initially, there are over
one hundred concepts, each with about twenty blank facets; thus the "space"
from which to choose is of size two thousand. As more concepts are defined,
this number increases. It's worth having AM spend some time deciding which
basic task (facet/concept) to work on next, for two reasons: most of the tasks
will never be explored, and only a few of the tasks will appear (to the human
user) rational things to work on at the moment.

Much informal expert knowledge is required to constrain the search, to
quickly zero in on one of these few very good tasks to tackle next. This is done
in two stages:

1. A list of plausible facet/concept pairs is maintained. No task can get onto
this "agenda" unless there is some reason why working on that facet of
that concept would be worthwhile.

2. Each task on this agenda is assigned a priority rating, based on the
number (and strengths) of reasons supporting it. This allows the entire
agenda to be kept ordered by plausibility.
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The first of these constraints is much like replacing a legal move generator with a
plausible move generator, in a heuristic search program. The second kind of
constraint is akin to using a heuristic evaluation function to select the best
move from among the good ones. Here is a typical entry on the agenda, a task:

Activity: Fill in some entries
Facet: for the GENERALIZATIONS facet
Concept: of the PRIMES concept
Reasons: because

(1) There is only 1 known genl. of Primes, so far.
(2) The worth rating of Primes is now very high.
(3) Focus of attention: AM just worked on Primes.
(4) Very few numbers are primes; a slightly more

plentiful concept may be more interesting.
Priority: 350 [on a scale of 0-10001

The actual top-level control policy is to pluck the top task (highest priority
rating) from the agenda, and then execute it. While a task executes, some new
tasks may be proposed (and merged into the agenda), some new concepts may
get created, and (one hopes) some entries for the specified facet of the specified •

concept will be found and filled in. Once a task is chosen, the priority rating of
that task then serves a new function: it is taken as an estimate of how much
computational resource to devote to working on this task. The task above, in
the box, might be allotted 35 cpu seconds and 350 list cells, because its rating
was 350. When either resource is exhausted, work on the task halts. The task is
removed from the agenda, and the cycle begins anew (AM starts working on
whichever task is now at the top of the agenda).

2.3 Low-level control: the heuristics

After a task is selected from the agenda, how is it "executed"? A concise answer
would be: AM selects relevant heuristics and executes them; they satisfy the task
via side-effects. This really just splits our original question into two new ones:
How are relevant heuristics located? What does it mean for a heuristic to be
executed and to achieve something?

2.3.1 How relevant heuristics are located

Each heuristic is represented as a condition/action rule. The condition or left-
hand side of a rule tests to see whether the rule is applicable to the task on hand.
The action or right-hand side of the rule consists of a list of actions to perform if

the rule is applicable. Below is a typical heuristic:

IF the current task is to check examples of a concept X,
and (Forsome Y) Y is a generalization of X,
and Y has at least 10 known examples
and all examples of Y are also examples of X,
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THEN conjecture; X is really no more specialized than Y,
and add that conjecture as a new entry on the

Examples facet of the Conjecs concept,
and add the following task to the agenda:

"Check examples of Y"
for this reason: Y may analogously turn out to be

equal to one of its supposed generalizations.

It is the heuristics' right-hand (THEN-) sides which actually accomplish the

selected task; that process will be described in the next subsection. The left-hand

(IF-) sides are the relevancy checkers, and will be focused on now:
Syntactically, the left side must be a predicate, a LISP function which

returns True or False depending upon the situation at that moment. It must be a

conjunction P1 A P2 A P3 A ... of smaller predicates Pi, each of which must be

quick and must have no side effects. Here are five typical conjuncts which might

appear within rules' left-hand sides:

Over half of the current task's time allotment is used up;
There are some known examples of Structures;
Some known generalization of the current concept (the concept mentioned as part of

the current task) has a completely empty Examples facet;
A task recently worked on had the form "Fill in facet F of C", for any F, where C is

the current concept;
The user has used this program at least once before;

It turned out that the laxity of constraints on the form of the heuristic rules

proved excessive: it made it very difficult for AM to analyse and modify its own

heuristics.
From a "pure production system" viewpoint, we have answered the question

of locating relevant heuristics. Namely, we evaluate the left sides of all the rules,

and see which ones respond "True". But AM contains hundreds of heuristics,

and to repeatedly evaluate each one's condition would use up tremendous
amounts of time. AM is able quickly to select a set of potentially relevant rules,

rules whose left sides are then evaluated to test for true relevance. The secret is
that each rule is stored somewhere a propos to its "domain of applicability".
The proper place to store the rule is determined by the first conjunct on its
left-hand side. Consider this heuristic:

IF the current task is to find examples of activity F,
and a fast algorithm A for computing F is known,

THEN one way to get examples of F is to run A on
randomly chosen examples of the Domain of F.

The very first conjunct of a rule's left side is always special. It specifies the
domain of applicability (potential relevance) of the heuristic, by naming a
particular facet of a particular concept to which this rule is relevant (in the
above rule, the domain of relevance is therefore the Examples facet of the
Activity concept). AM uses such first conjuncts as pre-preconditions: Each
potentially relevant rule can be located by its first conjunct alone. Then, its
left-hand side is fully evaluated, to indicate whether it's truly relevant. Here are
a few typical expressions which could be first conjuncts:
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The current task (the one just selected from the agenda) is of the form "Check the
Domain/range facet of concept X", where X is some surjective function;

The current task matches "Fill in boundary examples of X", where X is an operation
on pairs of sets;

The current task is "Fill in examples of Primes";

The key observation is that a heuristic typically applies to all examples of a
particular concept C. The rule above has C = Activity; it's relevant to each

individual activity. For example, it can be used to find examples of Set-union,
since Set-union is an activity.

When a task is chosen, it specifies which concept C and which facet F are to
be worked on. AM then "ripples upward" to gather potentially relevant rules: it

looks on facet F of concept C to see if any rules are tacked on there, it looks on
facet F of each generalization of C, on each of their generalizations, etc. If the
current task were "Check the Domain/range or Union-o-Union",t then AM
would ripple upward from Union-o-Union, along the Generalization facet entries,
gathering heuristics as it went. The program would ascertain which concepts
claim Union-o-Union as one of their examples. These concepts happen to include
Compose-with-self, Compose, Operation, Active, Any-concept, Anything. AM
would collect heuristics that tell how to check the Domain/range of any com-
position, how to check the Domain/range facet of any concept, etc. Of course,
the further out it ripples, the more general (and hence weaker) the heuristics tend
to be. Here is one heuristic, tacked onto the Domain/range facet of Operation,
which would be garnered if the selected task were "Check Domain/range of
Union-o-Union":

IF the current task is "Check the Domain/range of F", for some Activity F,
and an entry on that facet has the form (D D... D R),
and concept R is a generalization of concept D,

THEN it is worth spending time checking whether or not
the range of F might be simply D, instead of R.

Suppose that one entry on Union-o-Union's Domain/range facet was
"<Nonempty-sets Nonempty-sets Nonempty-sets Sets>". Then the above
heuristic would be truly relevant (all three conjuncts on its left-hand side would
be satisfied), and it would pose the question: Is the union of three nonempty
sets always nonempty? Empirical evidence would eventually confirm this, and
the Domain/range facet of Union-o-Union would then contain that fact. AM
would ask the same question for the operation Intersect. Although the answer in
that case is negative, it is nonetheless a rational idea to investigate whether or
not the intersection of two nonempty sets is always nonempty.

Here is another way to look at the heuristic-gathering process. All the
concepts known to AM are arranged in a big hierarchy, via subset-of links
(Specializations and Generalizations) and element-of links (Isa's and Examples)
as diagrammed in Appendix I. Since each heuristic is associated with one
individual concept (its domain of applicability), there is a hierarchy induced

tThis operation is the result of composing set-union with itself. It performs X (x, y,z)xU(yUz).
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upon the set of heuristics. Heritability properties hold: a heuristic tacked onto
concept C is applicable to working on all "lower" (more specialized) concepts.
This allows us efficiently to analogically access the potentially relevant heuristics
simply by chasing upward links in the hierarchy. Note that the task selected
from the agenda provides an explicit pointer to the "lowest" - most specific -
concept; AM ripples upward from it. Thus concepts are gathered in order of
increasing generality; hence so are the heuristics.

Below are summarized the three main points that comprise AM's scheme for

finding relevant heuristics in a "natural" way and then using them:

1. Each heuristic is tacked onto the most general concept for which it

applies: it is given as large a domain of applicability as possible. This will
maximize its generality, while leaving its power untouched, hence bringing

it as close as possible to the ideal tradeoff between generality and power.
2. When the current task deals with concept C, AM ripples upward from C,

tracing along Generalization and Isa links, to quickly find all concepts
which claim C as one of their examples. Heuristics attached to all such
concepts are potentially relevant.

3. All heuristics are represented as condition/action rules. As the potentially
relevant rules are located (in step 2), AM evaluates each's left-hand side, in
order of increasing generality. The rippling process automatically gathers

the heuristics in this order. Whenever a rule's left side returns True, the
rule is known to be truly relevant, and its right side is immediately

executed.

2.3.2 What happens when heuristics are executed

When a rule is recognized as relevant, its right side is executed. Precisely how
does this accomplish the chosen task?

The right side, by contrast to the left, may take a great deal of time, have
many side effects, and return a value which is simply ignored. The right side
of a rule is a series of little LISP functions, each of which is called an action.
Semantically, each action performs some processing which is appropriate in some
way to the kinds of situation in which the rule's left side would have been
satisfied (returned True). The only constraint which each action must satisfy is
that it have one of the following three kinds of side-effects, and no other kinds:

1. It suggests a new task to add to the agenda.
2. it dictates how some new concept is to be defined.
3. It adds some entry to some facet of some concept.

Bear in mind that the right side of a single rule is a list of such actions. Let's now
treat these three kinds of actions:

2.3.2.1 Heuristics suggest new tasks

The left side of a rule triggers. Scattered among the list of "things to do" on its
right side are some suggestions for future tasks. These new tasks are then simply
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added to the agenda. The suggestion for the task includes enough information
about the task to make it easy for AM to assemble its parts, to find reasons for
it, numerically to evaluate those reasons, etc. For example, here is a typical rule
which proposes a new task. It says to generalize a predicate if it appears to be
returning "True" very rarely:

IF the current task was "Fill in examples of X", for some predicate X,
and over 100 items are known in the domain of X,
and at least 10 cpu secs. have been spent so far on this task,
and X has returned True at least once,
and X returned False over 20 times as often as True,

THEN add the following task to the agenda:
"Fill in generalizations of X"
for the following reason:
"X is rarely satisfied; a slightly less restrictive

predicate might be much more interesting"
This reason has a rating which is the False/True results ratio

Let's see one instance where this rule was used. AM worked on the task
"Fill in examples of List-Equality". One heuristic (displayed in Sec. 2.3.1, and
again in detail in Sec. 2.3.2.3) said: randomly pick elements from that predicate's
domain and simply run the predicate. Thus AM repeatedly plucked random
pairs of lists, and tested whether or not they were equal. Needless to say, not a
high percentage returned True (in practice, 2 out of 242). This rule's left side
was satisfied, and it executed. Its right side caused a new task to be formulated:
"Fill in generalizations of List-Equality". The reason was as stated above in the
rule, and that reason got a numeric rating of 240/2 = 120. That task was then
assigned an overall rating (in this case, just 120) and merged into the agenda. It
sandwiched in between a task with a rating of 128 and one with a 104 priority
rating. Incidentally, when this task was finally selected, it led to the creation of
several interesting concepts, including the predicate which we might call
"Same-length".

2.3.2.2 Heuristics create new concepts

One of the three kinds of allowable actions on the right side of a heuristic rule is
to create a specific new concept. For each such creation, the heuristic must
specify how the new concept is to be constructed. The heuristic states the
Definition facet entries for the new concept, plus usually a few other facets'
contents. After this action terminates, the new concept will "exist". A few of its
facets will be filled in, and many others will be blank. Some new tasks may be
added to the agenda at concept-time, tasks which indicate that AM ought to
spend some time filling in some of those blank facets in the near future. Here is a
heuristic rule which results in a new concept being created:

IF the current rask was "Fill in examples of F"
for an operation F, say from domain A into range B,

and more than 100 items are known examples of A,
and more than 10 range items (examples of B) were

found by applying F to these domain elements,
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and at least one of these range items 'b' is a distinguished
member (especially, an extremum) of B,

THEN for each such ̀ b'EB, create the following kind of concept:

NAME: F-1-of-b
DEFINITION: X (a) F(a) is a 'b'
GENERALIZATIONS: A
WORTH: Average(Worth(A), Worth(B), Worth(b), Worth(F),11Examples(B)o)
INTEREST: Any conjec. involving this concept and either F or

and the reason for this creation is:
"It's worth investigating A's which have unusual F-values"

and add five new tasks to the agenda,
each of the form "Fill in facet x of F-1-of-b"
where x is Conjectures, Gereralizations, Specializations, Examples, Isa's;
each for the following reason:

"This concept was newly synthesized; it is crucial
to find where it 'fits in' to the hierarchy"

The reason's rating is computed as:
Worth (F—i-of-b) = Arg (Worth (F), Worth (b)).

One use of this heuristic was when the current task was "Fill in examples of
Divisors-of". The heuristic's left side was satisfied because: Divisors-of is an
operation (from Numbers to Sets of numbers), and far more than the required
100 different numbers are known, and more than 10 different sets of factors
were located altogether, and some of them were in fact distinguished by being
extreme kinds of sets (for example, singletons, empty sets, doubletons, tripletons,
...). After its left side triggered, the right side of the rule was executed. Four
new concepts were created immediately. Here is one of them:

NAME: Divisors-of'-of-Doubleton
DEFINITION: X (a) Divisors-of(a) is a Doubleton
GENERALIZATIONS: Numbers
WORTH: 100
INTEREST: Any conjec. involving this concept and either Divisors-of or Times

This is a concept representing a certain class of numbers, in fact the numbers
we call "primes". The heuristic rule is of course applicable to any kind of operation,
not just numeric ones. As another instance of its use, consider what happened
when the current task was "Fill in examples of Set-intersect". This rule caused
AM to notice that some pairs of sets were mapping over into the most extreme of
all sets: the empty set. The rule then had AM define the new concept we would
call "disjointness": pairs of sets having empty intersection. Similarly, "subset"
arose as the relation that holds between sets A and B iff Set-difference (A,B)=-R.
So we see how the above heuristic rule led to the discovery of many well-known
concepts.

Here is just a tiny bit of "theory" behind how these concept-creating rules
were designed: A facet of a neonatal concept is filled in immediately at birth iff
both (i) it's trivial to fill in at creation-time, and (ii) it would be very difficult to
fill in later on. The following facets are typically filled in right away: Definitions,
Algorithms, Domain/range, Worth, plus a pointer to a "parent" concept (for
example, the trivially-computed entry "Numbers" for the Generalizations facet
of the Primes concept). Each other facet is either left unmentioned by the rule,
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or else is explicitly made the subject of a new task which gets added to the
agenda. For instance, the heuristic rule above would propose five new tasks at
the moment that the Primes concept was created, including "Fill in conjectures
about Primes", "Fill in specializations of Primes", "Fill in examples of Primes",
etc.

2.3.2.3 Heuristics fill in entries for a specific facet

If the task plucked from the agenda were "Fill in examples of Set-union", it would
not be too much to hope for that by the time all the heuristic rules had finished
executing, some examples of that operation would indeed exist on the Examples
facet of the Set-union concept. Let's see how this can happen.

AM starts by rippling upward from Set-union, looking for heuristics which
are relevant to finding examples of Set-union (there are no such rules), relevant
to finding examples of Set-operations, of Operations, of any Activity, of any
Concept, of Anything. Here is one rule garnered in the search, a rule which is
tacked onto (hence assumed applicable to) the Examples facet of Activity:

IF the current task is to fill in examples of activity F,
and there is a fast known algorithm for F,

THEN one way to get examples of F is to run F's algorithm
on randomly chosen examples of the domain of F.

Of course, in the LISP implementation, this situation-action rule is not coded
quite so neatly. It would be more faithfully translated as follows:

IF CURR-TASK matches (FILLIN EXAMPLES F4—any-activity),
and the Algorithms facet of F contains an entry with descriptor "Quick",

THEN carry out the following procedure:
1. Find the domain of F, and call it D;
2. Find examples of D, and call them E;
3. Find a fast algorithm to compute F; call it A;
4. Repeatedly:

4a. Choose any member of E, and call it El.
4b. Run A on El, and call the result X.
4c. Check whether (E1,X) satisfies the definition of F.
4d. If so, then add (El X) to the Examples facet of F.
4e. If not, then add (El X) to the Non-examples facet of F.

Let's see exactly how this rule found examples of Set-union. Step (1) says
to locate the domain of Set-union. The facet labelled Domain/range, on the
Set-union concept, contains the entry (SET SET —0' SET), which indicates that
the domain is a pair of sets. That is, Set-union is an operation which accepts (as
its arguments) two sets.

Since the domain elements are sets, step (2) says to locate examples of sets.
The facet labelled Examples, on the Sets concept, points to a list of about 30
different sets. This includes {Z},{A,B,C,D,E}, {}, {A,{{B}1},...

Step (3) involves nothing more than accessing some entry tagged with the
descnptor "Quick" on the Algorithms facet of Set-union. One such entry is a
recursive LISP function of two arguments, which halts, when the first argument
is the empty set, and otherwise pulls an element out of that set, Set-inserts it
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into the second argument, and then recurs on the new values of the two sets.

For convenience, we'll refer to this algorithm as UNION.
We then enter the loop of Step (4). Step(a) has us choose one pair of our

examples of sets, say the first two {Z} and {A,B,C,D,E}. Step (4b) has us run

UNION on these two sets. The result is {A,B,C,D,E,Z}. Step (4c) has us grab an

entry from the Definitions facet of Set-union, and run it. A typical definition is

this formal one:

(X (SI S2 S3)
(AND

(For all x in Sl, x is in S3)
(For all x in S2, x is in S3)
(For all x in S3, x is in Si or xis in 52)))).

It is run on the three arguments S1={Z}, 52={A,B,C,D,E}, S3={A,B,C,D,E,Z}.

Since it returns "True", we proceed to Step (4d). The construct ({Z},

{A,B,C,D,E1-0 {A,B,C,D,E,Z}) is added to the Examples facet of Set-union.

At this stage, control returns to the beginning of the Step (4) loop. A new

pair of sets is chosen, and so on.
But when would this loop stop? Recall that as soon as a task is selected

from the agenda, it is assigned a time and a space allotment (based on its priority

value). If there are many different rules all claiming to be relevant to the current

task, then each one is allocated a small fraction of those time/space quanta. When

either of these resources is exhausted, AM would break away at a "clean" point

(just after finishing a cycle of the Step (4) loop) and would move on to a new

heuristic rule for filling in examples of Set-union.

3. RESULTS

3.1 Excerpt of the AM program running

Repeatedly, the top task is plucked from the agenda, and heuristics are executed
in an attempt to satisfy it. AM has a modest facility that prints out a description
of these activities as they occur. Below is a tiny excerpt of this self-trace mono-
logue, in which AM discovers prime numbers. In Appendix 3, the reader may
observe (in much more condensed form) summaries of the tasks which preceded
these, tasks in which elementary set theory was explored, cardinality was

discovered, and arithmetic was developed.

** TASK CHOSEN: ** Fill in Examples of the concept "Divisors-of".

3 Reasons:
(1) No known examples of Divisors-of yet.
(2) Times (related to Divisors-of) is now very interesting.

(3) Focus of attention: AM just defined Divisors-of.

26 examples found, in 9 secs. e.g., Divisors-of(6)={1,2,3,6}
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** TASK CHOSEN: ** Consider numbers having small sets of Divisors-of.
2 Reasons:

(1) Worthwhile to look for extreme cases.
(2) Focus of attention: AM just worked on Divisors-of.

Filling in examples of numbers with 0 divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have precisely 0 divisors.

Filling in examples of numbers with 1 divisors.
1 examples found, in 4 secs. e.g., Divisors-of(1)={1}.
Conjecture: 1 is the only number with exactly 1 divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4 secs. e.g., Divisors-of(13)={1,13}.
No obvious conjecture. May merit more study.
Creating a new concept: "Numbers-with-2-divisors".

Filling in examples of numbers with 3 divisors.
11 examples found, in 4 secs. Divisors-of(49)={1,7,49}.
All numbers with 3 divisors are also Perfect Squares. Unexpected!.

The chance of coincidence is below acceptable limits.
Creating a new concept: "Numbers -with-3-divisors".

** TASK CHOSEN: ** Consider square-roots of Numbers-with-3-divisors.
2 Reasons:

(1) All known Numbers-with-3-divisors unexpectedly turned
out to all be Perfect Squares as well.

(2) Focus of attention: AM just defined Numbers-with-3-divisors.
All square-roots of Numbers-with-3-divisors seem to be

Numbers-with-2-divisors.
E.g., Divisors(169) = Divisors(13) = {1,131.

Even the converse of this seems empirically to be true.
I.e., the square of each Number-with-2-divisors seems to be a

Number-with-3-divisors.
The chance of coincidence is below acceptable limits.

Boosting the Worth rating of both concepts.

** TASK CHOSEN: ** Consider the squares of Numbers-with-3-divisors.
3 Reasons:

(1) Squares of Numbers-with-2-divisors were very interesting.
(2) Square-roots of Numbers-with-3-divisors were interesting.
(3) Focus of attention: AM just worked on Numbers-with-3-divisors.

The last task goes nowhere, and is a good place to terminate this excerpt and this
subsection.

32 Overall performance

AM began its investigations with scanty knowledge of a hundred elementary
concepts of finite set theory (Appendix!). Most of the obvious finite set-theoretic
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concepts and relationships were quickly found (for example, de Morgan's laws;
singletons), but no sophisticated set theory was ever done (for example,
diagonalization).

Rather, AM decided that "equality" was worth generalizing, and thereby
discovered the relation "same-size-as". "Natural numbers" were based on this,
and soon most simple arithmetic operations were defined (as analogs to set-
theoretic operations; for example, "subtract" is the analog of "Set-difference").
See Appendix 2.

Since addition arose as an analog to union, and multiplication as a repeated
substitution, it came as quite a surprise to AM when it noticed that they were

related (namely, N+N= 2 xN). AM later rediscovered multiplication in three
other ways: as repeated addition, as the numeric analog of the Cartesian product
of sets, and by studying the cardinality of power sets. These operations were
defined in different ways, so it was an unexpected (to AM) discovery when they
all turned out to be equivallent. These surprises caused AM to give the concept
'Times' quite a high Worth rating. Exponentiation was defined as repeated
multiplication. Unfortunately, AM never found any obvious properties of
exponentiation, hence lost all interest in it.

Soon after defining multiplication, AM investigated the process of multiplying
a number by itself: squaring. The inverse of this turned out to be interesting, and
led to the definition of square-root. AM remained content to play around with
the concept of integer-square-root. Although it isolated the set of numbers
which had no square root, AM was never close to discovering negative numbers,
let alone irrationals. No notion of "closure" was provided to - or discovered by -
AM.

Raising to fourth-powers, and fourth-rooting, were discovered at this time.
Perfect squares and perfect fourth-powers were isolated. Many other numeric
operations and kinds of numbers were found to be of interest: Odds, Evens,
Doubling, Halving, etc. Primitive notions of numeric inequality were defined,
but AM never even discovered Trichotomy.

The associativity and corrimutativity of multiplication indicated that it
could accept a Bag of numbers as its argument. When AM defined the inverse
relation corresponding to Times, this property allowed the definition to be:
"X (x) any bag of numbers (each >1) whose product is x". This was just the
notion of factoring a number x. Minimally-factorable numbers turned out to be
what we call primes. Maximally-factorable numbers were also thought to be
interesting, and this motivated some new results in number theory (see Lenat
1976, Appendix 4).

Prime pairs were discovered in a bizarre way - by restricting the domain and
range of addition to primes (that is, solutions of p + q = r in primes).

AM conjectured the fundamental theorem of arithmetic (unique factorization
into primes) and Goldbach's conjecture (every even number >2 is the sum of
two primes) in a surprisingly symmetric way. The unary representation of
numbers gave way to a representation as a bag of primes (based on unique
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factorization), but AM never thought of exponential notation. Diophantine
equations were isolated, but not developed very far.

Since the key concepts of remainder, greater-than, gcd, and exponentiation
were never mastered, progress in number theory was arrested. Other crucial
concepts which were never uncovered include: infinity, proof, rationals, residues,
etc. Most of these "omissions", could have been discovered by the existing
heuristic rules in AM. The paths which would have resulted in their definition
were simply never rated high enough (by AM, by itself) to warrant exploration.

All the discoveries mentioned (including all those in Appendix 2) were made
in a run lasting one cpu hour (Interlisp +100 K, Sumex PDP-1 0 K1). Two hundred
jobs in too were selected from the agenda and executed; many of these are
summarized (in order) in Appendix 3. On the average, a job was granted 30 cpu
seconds, but actually used only 18 seconds (by which time all the truly relevant
heuristics had finished executing). For a typical job, about 35 rules were located
as potentially relevant, and about a dozen actually fired (were executed). AM
began with 115 concepts and ended up with three times that many. Of the
synthesized concepts, half were technically termed "losers" (both by the author
and by AM; for example, "Subtract-x-from-itself" was a real zero), and half the
other new concepts were only marginal (for example, "Numbers which are
uniquely representable as the sum of two primes"). Two hundred and fifty
heuristic rules were present during this run of the program.

Although AM fared well according to several different measures of per-
formance (see Sec. 3.4), its limitations have considerable significance. As AM ran
longer and longer, the concepts it defined were further and further from the
primitives it began with. For example, "prime-pairs" were defined using "primes"
and "addition", the former of which was defined from "divisors-of", which in
turn came from "multiplication", which arose from "addition", which was
defined as a restriction of "union", which (finally!) was a primitive concept
that we had supplied (with heuristics) to AM initially. When AM subsequently
needed help with prime pairs, it was forced to rely on rules of thumb supplied
originally about unioning. Although the heritability property of heuristics did
ensure that those rules were still valid, the trouble was that they were too
general, too weak to deal effectively with the specialized notions of primes and
arithmetic.

For instance, one general rule indicated that AUB would be interesting if it
possessed properties absent both from A and from B. This translated into the,
prime-pair case as "If p +q =r, and p,q,r are primes, Then r is interesting if it has
properties not possessed by p or by q". The search for categories of such
interesting primes r was of course barren. It showed a fundamental lack of
understanding about numbers, addition, odd/even-ness, and primes. As another
example, AM didn't recognize a priori that the UFT (unique factorization
theorem) was more significant than Goldbach's conjecture.

The key deficiency was the lack of adequate meta-rules (Davis 1976):
heuristics which reason about heuristics: keep track of their performance,
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modify them, create new ones, etc. Here is one such rule, which would have
taken care of the "Goldbach vs UFT" problem:

After applying the "look at the inverse of extrema" heuristic, and thereby defining a
new concept C (as r. of b), where C is a new specialization of concept A,

Synthesize a heuristic which indicates that conjectures involving C and f (or f-') are
very significant and natural, whereas those involving C and unrelated operations
are probably anomalies,

and synthesize another heuristic which indicates that C is a good kind of A upon which
to test conjectures involving for ri.

How would this meta-rule be used? When primes are defined as the inverse

image of doubletons, under the operation "divisors-of", the meta-rule would

trigger, and two brand new rules would be synthesized. The first of those new

heuristics would say that conjectures about primes were natural iff they involved

multiplication or division. Thus the UFT would be rated as important, and
Goldbach's conjecture as cute but useless. The second new rule would say that

Primes are a useful kind of Number upon which to test out conjectures involving
multiplication or division; this, too is quite a powerful piece of informal

knowledge.
Aside from the preceding major limitation, most of the other problems

pertain to missing knowledge: Many concepts one might consider basic to

discovery in mathematics are absent from AM; analogies were under-utilized;

physical intuition was hand-crafted only; the interface to the user was far from

ideal; etc.

3.3 Experiments with AM

One valuable aspect of AM is that it is amenable to many kinds of experiment.

Although AM is too ad hoc for numeric results to have much significance, the
qualitative results of such experiments may have some valid implications for

mathematical research, for automating mathematical research, and for designing
"scientist assistant" programs.

3.3.1 Must the Worth numbers be finely tuned?

To signify its overall worth, each of the 115 initial concepts had a rating number
(0-1000) supplied by the author. The worth ratings affect the overall priority

values of tasks on the agenda. Just how sensitive is AM's behaviour to the initial
settings of the Worth numbers?

To test this, a simple experiment was performed. All the concepts' Worth

facets were set to 200 initially. By and large, the same discoveries were made as

before. But there were now long periods of blind wandering (especially near the
beginning of the run). Once AM hooked into a line of productive developments,

it advanced at the old rate. During such chains of discoveries, AM was guided by

massive quantities of symbolic reasons for the tasks it chose, not by nuances in

numeric ratings. As these spurts of development died out, AM would wander

around again until the next one started.
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3.3.2 How finely tuned is the agenda?

The top few tasks on the agenda almost always appear to be reasonable things to

do at the time. But what if, instead of picking the top-rated task, AM is always
made to select one randomly from the top 20 tasks on the agenda? In that case,

AM's rate of discovery is slowed only by about a factor of 3. But the apparent
"rationality" of the program (as perceived by a human onlooker) disintegrates.

3.3.3 How valuable is the presence of symbolic 'reasons'?

One effect of note was observed: When a task is proposed which already exists
on the agenda, then it matters very much whether the task is being suggested for
a new reason or not. If the reason is an old, already-known one, then the priority
of the task on the agenda shouldn't rise very much. But if it is a brand new
reason, then the task's rating should be boosted tremendously. The importance
of this effect argues strongly in favour of having symbolic justification of the
rank of each task on a priority queue, not just "summarizing" each task's set of
reasons by a single number.

3.3.4 What if certain concepts are excised?

As expected, eliminating certain concepts did seal off whole sets of discoveries
to the system. For example, excising Equality prevented AM from discovering
Cardinality. One surprising result was that many common concepts get discovered
in several ways. For instance, multiplication arose in no fewer than four separate
chains of discoveries.

3.3.5 Can AM work in the new domain of plane geometry?

One demonstration of AM's generality (for example, that its "Activity" heuristics
really do apply to any activity) would be to choose some new mathematical field,
add some concepts from that domain, and then let AM loose to discover new
things. Only one experiment of this type was actually carried out on the AM
program.

Twenty concepts from elementary plane geometry were defined for AM
(including Point, Line, Angel, Triangle, Equality of points/lines/angles/triangles).
No new heuristics were added to AM.

AM was able to find examples of all the supplied concepts, and to use the
character of such empirical data to determine reasonable directions to proceed in
its search. AM derived the concepts of congruence and similarity of triangles,
plus many other well-known concepts. An unusual result was the repeated
derivation of the concept of "timberline": this is a predicate on two triangles,
which is true iff they share a common vertex and angle, and if their opposite
sides are parallel. AM also came up with a cute geometric interpretation of
Goldbach's conjecture: Any angle (0-180°) can be approximated to within 10 as
the sum of two angles each of a prime number of degrees. But lacking a geometry
"model" (an analogic representation of Euclidean space, for example, the kind
that Gelemter (1963) employed,) AM was doomed to propose many implausible
geometric conjectures.
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More and more drastic changes to the knowledge base of AM would be
required if its task domain were to be shifted further and further from simple
finite set theory. For example, to work reasonably well in analysis, AM would
need the additional concepts of continuity, infinity, limits, measure, etc. To
work in a non-formalized field (such as mass spectroscopy), AM would have to
be spoon-fed data, the way that Meta-Dendral is, or else be connected directly to
physical sensing devices to that it could gather its own empirical data. One other
alternative would be to provide AM with a formal model of some real-world
phenomenon (for example, gravitation). But in such a case, AM could never do
more than reformulate the model, could never discover any "real" effects which
were not taken into account by the model. If fed a model of a Newtonian world,
AM might discover Lagrangian mechanics, but it could never observe any
relativistic effects. The impracticality of all these alternatives seems to indicate
that AM-like programs are best suited to theory formation in fully formalizable
fields (mathematics, programming, games, etc.).

3.4 Evaluating the AM program

We may wish to evaluate AM by using various criteria. Some obvious ones, with
capsule results, appear below:

1. By AM's ultimate achievements. Besides discovering many well-known useful
concepts, AM discovered some which aren't widely known: maximally-divisible
numbers, numbers which can be uniquely represented as the sum of two primes,
timberline. The first of these is related to Ramanujan's "highly composite
numbers", and represents a real (albeit miniscule) contribution to number theory.

2. By the character of the differences between initial and final states. AM moved
all the way from finite set theory to divisibility theory, from sets to numbers to
interesting kinds of numbers, from skeletal concepts (none of which had any
Examples filled in) to completed concepts, from one hundred concepts to three
hundred.

3. By the quality of the route AM took to accomplish this mass of results. Only
about half of AM's forays were dead-ends, and most of those looked promising
initially.

4. By the character of the human-machine interactions. AM was never pushed
far along this dimension. The human "user" is really little more than an observer,
a monitor; he occasionally interrupts AM to ask one of a few possible questions,
or to rename some common concept, etc.

5. By its informal reasoning abilities. AM was able quickly to "guess" the truth
value of its conjectures, to estimate the overall worth of each new concept, to
zero in on plausible things to do each cycle, and to notice glaring analogies
(sometimes).

6. By the results of experiments - and the fact that experiments could be
performed at all on AM. See Sec. 3.3.
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7. By future implications of this project. Only time will tell whether this kind of
work will impact on how mathematics is taught (for example, explicit teaching
of heuristics?), on how empirical research is carried out by scientists, on our
understanding of such phenomena as discovery, learning, and creativity, etc.

8. By comparisons with other, similar systems. Some of the techniques AM uses
were pioneered earlier: for example, prototypical models (Gelernter 1963), and
analogy (Evans 1968 and Kling 1971). There have been many attempts to
incorporate heuristic knowledge into a theorem prover (Wang 1960, Guard 1969,
Bledsoe 1971, Brotz 1974, Boyer and Moore 1975). Most of the apparent
differences between them and AM vanish upon close examination: The goal-
driven control structure of these systems is a compiled form of AM's rudimentary
"focus of attention" mechanism. The, fact that their overall activity is typically
labelled as deductive is a misnomer (since constructing a difficult proof is usually
in practice quite inductive). Even the character of the inference processes are
analogous: The provers typically contain a couple of binary inference rules, like
Modus Ponens, which are relatively risky to apply but can yield big results: AM's
few "binary" operators have the same characteristics: Compose, Canonize,
Logically-combine (disjoin and conjoin). The deep distinctions between AM and
the "heuristic theorem provers" are these: the underlying motivations (heuristic
modelling vs building tools for problem solving), the richness of the knowledge
base (hundreds of heuristics vs only a few), and the amount of emphasis on
formal methods.

Theory formation systems in any field have been few. Meta-Dendral
(Buchanan 1975) represents perhaps the best of these. But even that program is
given a fixed set of templates for the bond-breaking rules which it wishes to find,
and a fixed vocabulary of mass spectral concepts to plug into those hypothesis
templates; whereas AM selectively enlarges its vocabulary of mathematical
concepts.t

There has been very little published thought about "discovery" from an

algorithmic point of view; even clear thinkers like Polya (1954) and Poincare
(1929) treat mathematical ability as a sacred, almost mystic quality, tied to the
unconscious. The writings of philosophers and psychologists invariably attempt
to examine human performance and belief, which are far more manageable than
creativity in vitro.t

Amarel (1967) notes that it may be possible to learn from "theorem finding"
programs how to tackle the general task of automating scientific research. AM
has been one of the first attempts to construct such a program.

t Also note that unlike Meta-Dendral, AM must gather its own data. On the other hand, this
is rnich easier in mathematics than in organic chemistry.
t It is not clear how to design a null hypothesis experiment, one with a control group, for
tasks in which real scientists are performing real research. Hence psychologists simply don't
study such human activities. This is the danger Kuhn (1970) warns us against, of becoming
"paradigm-locked".
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3.5 Final conclusions

— AM is a demonstration that a few hundred general heuristic rules suffice to
guide an automated mathematics researcher as it explores and expands a large
but incomplete knowledge base of mathematical concepts. Results indicate
that some aspects of creative research can be effectively modelled as heuristic
search.

— This work has also introduced a control structure based upon an ordered
agenda of small research tasks, each with a list of supporting reasons attached.

— The main limitations of AM was its inability to synthesize powerful new
heuristics for the new concepts it defined.

— The main successes were the few novel ideas it came up with, the ease with
which a new task domain was fed to the system, and the overall rational
sequences of behaviour AM exhibited.
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APPENDIX I

Concepts initially given to AM

Below is a graph of the concepts which were present in AM at the beginning of

its run. Single lines denote Generalization/Specialization links, and triple lines

denote Examples/Isa links.

Anything

Any-concept non-concepts

  Activity Object

Relation
Predicate Operation Atom Conjec Structure

Logical-rein /1/ /
Constant-pred Equality-pred Truth-value Struc-of-strucs

III Empty

Const-T Const-F Obj-equal Non-mult Ord Unordered

Coalescing Osets
Inverted-operation

Canonization
Composition

Restricted-operation

All-but-first, All-but-list
First-element, Last-element,

Project, Repeat, Restrict, Reverse-ordered-pair
Identity, Invert-op, Parallel-join, Parallel-replace

Set-delete, Set-difference, Set-insert, Set-intersect
Set-union, Set-equality, Bag-delete, Bag-union, ...I
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APPENDIX II

Concepts discovered by AM

The list below is meant to suggest the range of AM's creations; it is far from
complete, and many of the omissions were real losers. The concepts are listed in
order in which they were defined. In place of the (usually awkward) name
chosen by AM, I have given either the standard mathematics/English name for
the concept, or else a short description of what it is.

Sets with less than 2 elements (singletons and empty sets).
Sets with no atomic elements (nests of braces).
Bags containing (any number of copies of) just one kind of element.
Superset (contains).
Doubleton bags and sets.
Set-membership.
Disjoint bags.
Subset.
Disjoint sets.
Same-length.
Same first element.
Count (Length).
Numbers (in unary).
Add.
Minimum.
SUB! (X (x) x-1).
Subtract (except: if x<y, then x-y results in zero).
Less than or equal to.
Times.
Compose a given operation F with itself (form F-o-F).
Insert structure S into itself.
Try to delete structure S from itself (a loser).
Double (add to itself).
Subtract 'x' from itself (as an operation, this is a real zero).

Square (X (x) Times(x,x)).
Coalesced-join: (X (S F) append together F(s,$), for each sES).
Coalesced-replace: replace each element s of S by F(s,$).
Coa-repeat2: create a new op which takes a struc S, op F,

and repeats F(s,t,S) all along S.
Compose three operations: X(F,G,H)
Compose three operations: X(F,G,H) (F-o-G)-o-H.
Adel (x): all ways to repr. x as the sum of nonzero nos.
G-o-H, s.t. H(G(H(x))) is always defined (wherever H is).
Insert-o-Delete; Delete-.o-Insert.
Size-o-Add-a. (X (n) The number of ways to partition n).
Cubing.
Exponentiation.
Halving (in natural numbers only; thus Halving(15)=7).
Even numbers.
Integer square-root.
Perfect squares.
Divisors-of.
Numbers-with-O-divisors; Numbers-with-l-divisor.
Primes (Numbers-with-2-divisors).
Squares of primes (Numbers-with-3-divisors).
Squares of squares of primes.
Square-roots of primes (a loser).
Times-1 (x): all ways of repr. x as the product of nos. (>1).
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All ways of representing x as the product of primes.
All ways of representing x as the sum of primes.
All ways of representing x as the sum of two primes.
Numbers uniquely representable as the sum of two primes.
Products of squares.
Multiplication by 1; by 0; by 2.
Addition of 1; of 0; of 2.
Product of even numbers.
Sum of squares.
Sum of even numbers.
Pairs of squares whose sum is also a square (x21-3,2=z2).
Prime pairs ({(P,c1,01 p,q,r are primes A p+q=4).
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APPENDIX III

A brief, task-by-task trace

1. Fill in examples of Compose. Failed, but suggested next task:

2. Fill in examples of Set-union. Also failed, but suggested:
3. Fill in examples of Sets. Many found (e.g., by instantiating Set.Defn) and

then more derived from those examples (e.g., by running Union.A1g).
4. Fill in specializations of Sets (because it was very easy to find examples of

Sets). Creation of new concepts. One, INT-Sets, is related to "Singletons".
Another, "BI-Sets", is all nests of braces (no atomic elements).

5. Fill in examples of INT-Sets.This indirectly led to a rise in the worth of Equal.
6. Check all examples of INT-Sets. All were confirmed. AM defines the set of

Nonempty INT-Sets; this is renamed "Singletons" by the user.

7. Fill in examples of Bags.

8. Check examples of Bags. Defined INT-Bags and BI-Bags.

9. Fill in examples of All-but-first.

10. Fill in examples of All-but-last.

11. Fill in specializations of All-but-last. Failed.

12. Fill in examples of List-union.

13. Fill in examples of Projl.

14. Check examples of All-but-first.

15. Fill in examples of Empty-structures. 4 found.

16. Fill in generalizations of Empty-structures. Failed.

17. Fill in examples of Set-union.

18. Check examples of Set-union. Define X (x,y) xuy=x, later called Superset.

19. Fill in examples of Bag-insert.

20. Check examples of Bag-insert. Range is really Nonempty bags. Isolate the
results of insertion restricted to Singletons: call them Doubleton-bags.

21. Fill in examples of Bag-intersect.

22. Fill in examples of Set-insert.

23. Check examples of Set-insert. Range is always Nonempty sets. Define X (x,S)
Set-insert(x,S)=S; i.e., set membership. Define Doubleton sets.

24. Fill in examples of Bag-delete.

25. Fill in examples of Bag-difference.

26. Check examples of Bag-intersect. Define X (x,y) xny=0; i.e. disjoint bags.

27. Fill in examples of Set-intersect.
28. Check examples of Set-intersect. Define X (x,y) xny=x; i.e., subset. Also

define disjoint sets: X (x,y) xrly={}.

29. Fill in examples of Equal. Very difficult to find examples; this led to:

30. Fill in generalizations of Equal. Define "Same-size", "Equal-CARs", and
some losers.

31. Fill in examples of Same-size.
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32. Apply an Algorithm for Canonize to the args Same-size and Equal. AM
eventually synthesizes the canonizing function "Size". AM defines the
set of canonical structures: bags of T's; this later gets renamed as
"Numbers".

33. Restrict the domain/range of Bag-union. A new operation is defined, Number-
union, with domain/range entry (Number Number Bag).

34. Fill in examples of Number-union. Many found.
35. Check the domain/range of Number-union. Range is 'Number'. This operation

is renamed "Add2"; it adds any two natural numbers.
36. Restrict the domain/range of Bag-intersect to Numbers. Renamed "Minimum".
37. Restrict the domain/range of Bag-delete to Numbers. Renamed "SUBJ.".
38. Restrict the domain/range of Bag-insert to Numbers. AM calls the new opera-

tion "Number-insert". Its domain/range entry is (Anything Number -0.
Bag).

39. Check the domain/range of Number-insert. This doesn't lead anywhere.
40. Restrict the domain/range of Bag-difference to Numbers. This becomes

"Subtract".
41. Fill in examples of Subtract. This leads to defining the relation LEQ (5).
42. Fill in examples of LEQ. Many found.
43. Check examples of LEQ.
44. Apply algorithm of Coalesce to LEQ. Conjecture: LEQ(x,x) is Constant-True.
45. Fill in examples of Parallel-join2. Included is Parallel-join2(Bags,Bagaroj2),

which is renamed "TIMES", and Parallel-join2(Structures,Structures,-
Prolj1), a generalized Union operation renamed "G-Union", and a bunch
of losers.

46. Fill in and check examples of the operations just created (really several tasks).
47. Fill in examples of Coalesce. Created: Self-Compose, Self-Insert, Self-Delete,

Self-Add, Self-Times, Self-Union, etc. Also: Coa-repeat2, Coa-join2, etc.
48. Fill in examples of Self-Delete. Many found.
49. Check examples of Self-Delete. Self-Delete is just Identity-op.
50. Fill in examples of Self-Member. No positive examples found.
51. Check examples of Self-Member. Self-Member is just Constant-False.
52. Fill in examples of Self-Add. Many found. User renames this "Doubling".
53. Check examples of Coalesce. Confirmed.
54. Check examples of Add2. Confirmed.
55. Fill in examples of Self-Times. Many found. Renamed "Squaring" by the user.
56. Fill in examples of Self-Compose. Defined Squaring-o-Squaring. Created

Add-o-Add (two versions: Add21 which is X (x,y,z) (x+y)+z, and
Add22 which is x+(y +z)). Similarly, two versions of Times-o-Times
and of Compose-o-Compose. •

57. Fill in examples of Add21. (x+y)+z. Many are found.
58. Fill in examples of Add22. x+(y +z). Again many are found.
59. Check examples of Squaring. Confirmed.
60. Check examples of Add22. Add21 and Add22 appear equivalent. But first:
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61. Check examples of Add21. Add21 and Add22 still appear equivalent. Merge
them. So the proper argument for a generalized "Add" operation is a Bag.

62. Apply algorithm for Invert to argument 'Add'. Define Inv-add(x) as the set
of all bags of numbers (>0) whose sum is x. Also denoted Add-1-(x).

63. Fill in examples of TIMES21. (xy)z. Many are found.
64. Fill in examples of TIMES22. x(yz). Again many are found.
65. Check examples of TIMES22. TIMES21 and TIMES22 may be equivalent.
66. Check examples of TIMES21. TIMES21 and TIMES22 still appear equivalent.

Merge them. So the proper argument for a generalized "TIMES" opera-
tion is a Bag. Set up an analogy between TIMES and ADD, because of
this fact.

67. Apply algorithm for Invert to argument 'TIMES'. Define Inv-TIMES(x) as the
set of all bags of numbers (>1) whose product is x. Analogic to Inv-Add.

68. Fill in examples of Parallel-replace 2. Included are Parallel-replace 2(Bags,
Bags,Proj2) (called MR2-BBP2), and many losers.

69. Fill in an check examples of the operations just created.
70. Fill in examples of Compose. So easy that AM creates Int-Compose.
71. Fill in examples of Int-Compose. The two chosen operations G,H must be

such that ran(H)'dom(G), and ran(G)'dom(H); both G and H must be
interesting. Create G-Union-o-MR2-BBP2, Insert-o-Delete, Times-o-
Squaring, etc.

72. Fill in and check examples of the compositions just created. Notice that
G-Union-o-MR2-BBP2 is just TIMES.

73. Fill in examples of Coa-repeat2. Among them: Coa-repeat2(Bags-of-Numbers,
Add2) [multiplication again!], Coa-repeat2(Bags-of-Numbers, Times)
[exponentiation], Coa-repeat2(Structures, Projl) [CAR], Coa-repeat2-
(Structures, Proj2) [Last-element-of], etc.

74. Check the examples of Coa-repeat2. All confirmed.
75. Apply algorithms for Invert to 'Doubling'. The result is called "Halving" by

the user. AM then defines "Evens", and also "Odds".
76. Fill in examples of Self-Insert.
77. Check examples of Self-Insert. Nothing special found.
78. Fill in examples of Coa-repeat2-Add2.
79. Check examples of Coa-repeat2-Add2. It's the same as TIMES.
80. Apply algorithm for Invert to argument 'Squaring'. Define "Square-root".
81. Fill in examples of Square-root. Some found, but very inefficiently.
82. Fill in new algorithms for Square-root. Had to ask user for a good one.
83. Check examples of Square-root. Define the set of numbers "Perfect-squares".
84. Fill in examples of Coa-repeat2-Times. This is exponentiation.
85. Check examples of Coa-repeat2-Times. Nothing special noticed,unfortunately.
86. Fill in examples of Inv-TIMES. Many found, but inefficiently.
87. Fill in new algorithms for Inv-TIMES. Obtained opaquely from the user.
88. Check examples of Inv-TIMES. This task suggests the next one:
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89. Compose G-Union with Inv-TIMES. Good domain/range. Renamed
"Divisors-of".

90. Fill in examples of Perfect-squares. Many found.
91. Fill in examples of Divisors-of.

This is where the excerpt presented in Sec. 3.1 begins: primes are defined, and
AM soon discovers some unexpected (and hence, interesting) relationships
involving them, which makes the Worth rating of Primes increase greatly.
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Local Organizing Processes and Motion Schemas

in Visual Perception

M. A. Arbib
Center for Systems Neuroscience and Department of Computer and Information Science
University of Massachusetts at Amherst, USA

Abstract

We examine models of low-level visual circuitry: "choice circuitry" in the frog
tectum, and circuitry in mammilian visual cortex for segmentation on depth. We
then examine some logical properties of schemas which represent visual input
and sketch experiments which suggest approaches to schemas which represent
dynamic states.

INTRODUCTION

Fig. 1 gives an overview of a number of subsystems which seem to be part of
the overall design of a visual system [1], be it that of an animal or a general
purpose robot. The visual input, light intensity maps varying over space and
time, goes through a family of interacting transformations (hinted at by the
multi-directionality of arrows in the figure) until a high-level interpretation is
achieved which can provide a satisfactory basis for planning, learning, and
action.

The low-level systems can be thought of as "preceding" interpretation,
though in much processing the interpretation of one part of an image will guide
the low-level processing of other parts. Low-level neural systems can be explored
by single-cell neurophysiology; and can be implemented by multi-layer com-
putational systems where each layer is made up of identical components
(for example, the VISIONS system described in [37]. Feature extraction over
windows local in space and time is followed by simple operations which allow
local organizing processes to remove spurious activity due to such things as noise
in the data, blurred gradients, overlap of windows, and false disparity cues. At
the next level, processes for aggregating local edges and areas into boundaries
and regions are applied.

We have characterized the output of the aggregation procedures as being
"symbolic", but we cannot yet give neurophysiological correlations to the
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names and lists of descriptive attributes for shape, motion, texture, etc., that

we assign to boundaries and regions in a computer visual system. But, pre-
sumably, such symbolic descriptors must play a role in activating the schemas
which represent the various objects or domains of interaction which occasion
the visual input.

HIGH

LEVEL

HIGH-LEVEL INTERPRETATION
(THE BASIS FOR PLANNING FOR ACTION)

SCHEMA ACTIVATION

(USES STORED
'WORLD KNOWLEDGE')

I SYMBOLIC REPRESENTATION
OF SEGMENTED IMAGE

AGGREGATION PROCEDURES

LOW
LEVEL

I 'CLEANED UP'FEATURE MAPS

LOCAL ORGANIZING
PROCESSES

I REDUNDANT 'NOISY'
FEATURE MAPS

FEATURE EXTRACTION

VISUAL INPUT
SPATIAL MAPS OF LIGHT

INTENSITY VARYING OVER TIME

Fig. 1 — Overall design of a generalized vision system in terms of a number of sub-
systems.

In Secs. 2 and 3 we examine models of low-level visual circuitry: "choice
circuitry" in the frog tectum, and circuitry in mammalian visual cortex for
segmentation on depth. In Sec. 4 we examine some logical properties of schemas
which represent (visual) input, while Sec. 5 sketches experiments which suggest
approaches to schemas which represent dynamic states.
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2. CHOICE CIRCUITRY IN THE FROG TECTUM

The ganglion cells of the frog retina send four or more "maps" in spatial register
to the visual midbrain system, the tectum [2]. One of these maps may be called
a "bugness" map — peaks of activity are spatially correlated with the position of
wiggling fly-like stimuli in the visual field. When confronted with more than one
fly, a frog may snap at one of the flies, snap at neither, or exhibit more compli-
cated behaviour which need not concern us here [3,4]. The fact that the frog
may not respond to multiple stimuli each of which is potent enough to trigger a
snapping response when presented in isolation, suggests that there is a process of
competition between their representatives. Didday [5,6] offered a model which
made plausible use of the neurophysiology known before 1970 — "sameness"
cells would turn down local activity if there was much activity elsewhere in
the "bugness map", thus providing the competition mechanism; while "new-
ness" cells would "alert" the circuitry to novel input. (For a recent survey
of behavioural and physiological studies of the, related, toad visual system, and a
modelling approach to the prey-enemy recognition system, see Ewert [7].)

New insight into Didday's computer simulation model is offered by a
recent mathematical analysis [8]. Here, the "bugness map" is represented by a
sequence (s1, ...sn) of input values (Fig. 2(a)) feeding a bank of identical exci-
tatory neurons whose membrane potential ui yields the "firing rate" f (u) via the
nonlinear transformation f. Competitive interaction is mediated via a single
inhibitory interneuron, whose firing rate is a monotone function of its mem-
brane potential, so long as the latter is positive.

Once plausible restrictions are placed on the coefficients, mathematical
analysis of the equations

= —ui +1wif(uA — w2g(v)— hi + si = 1, ...n

yields results such as the following:

(i) At most, one element can be excited in an equilibrium.
(ii) If all ui's are initially the same, and the 'element remains excited in

the equilibrium, it is the one receiving the maximum stimulus. Fig.
2(b) shows, however, that other elements may fire prior to equilibrium.

(iii) The network exhibits hysteresis. A tempory change in the threshold hi
can be used (cf. "newness" cells) to "release" a "blocked" response to
a new maximal stimulus.

3. CIRCUITRY FOR SEGMENTATION ON DEPTH

Mammalian visual cortex contains "line detectors" which are tuned not only for
spatial direction but also for disparity [9,10]. Presumably, a random dot stereo-
gram excites many "spurious" disparity pairs, and interest thus focuses on
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"cooperative phenomena" which suppress "false" correlations to allow per-
ception of an image cleanly segmented in depth [11]. A nonlinear neural model
[12] proposed by P. Dev and others achieved this on the principle "nearby cells
of the same disparity cooperate to signal surface; while nearby cells of differing

(e)

Fig. 2 — The Amari-Arbib primitive competition model. (a) The network. The i-th
of a bank of n "decision cells" receives three inputs: an external stimulus sj, a recurrent
excitation with synaptic weight w1; and an inhibition with synaptic weight w2. The
membrane potential ui of this cell is described by

fig= —ug + w,f(ug)— w2g(v)— h, + si

where h, represents a threshold for the cell, and its firing rate is given by Aug). The
inhibitory cell receives excitation from all the "decision cells". Its membrane potential
v is described by

where h, represents a threshold, and r is its time constant (on a time scale which
assigns a unit time constant to the "decision cells").
(b) The response curves for two "decision cells" of the network showing the time
course of initially equal membrane potentials u, and u, for constant external stimuli
Si > s2.
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disparity compete to avoid multiple surfaces in a given direction". The model, in
the form shown in Fig. 3, has been mathematically analysed [8], using the
equations:

oe
3ud(x,t) 

— ud(x,t) — t)f(ud(t,t)).dt
at —eo

00

w2(x — t)g(v(E,t))dt —h1 + Sd(x,t)
—00

av(x,t)— v(x,t) — h, + Aud(x,t))at

COMPETITION
DIMENSION:
DISPARITY

COOPERATION DIMENSION:
VISUAL DIRECTION

V(X) INHIBITORY
FIELD

w I(x d)

Fig. 3 — The full Amari-Arbib model. Excitatory cells are arranged along two co-
ordinates — the cooperation dimension x corresponds to visual direction in a stere-
opsis model, while the competition dimension d corresponds to disparity in such a
model. The net result of the excitatory effects via the weighting function w, and the
inhibitory effects via the summing of excitation on the inhibitory layer with weighting
function w2 is that cells of nearby visual direction "cooperate" (are mutually exci-
tatory) if their disparity agrees, but "compete" (are mutually inhibitory) if their
disparity differs by more than some critical amount. Such competition and coopera-
tion leads to segmentation as described in the text.
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where d indexes "disparity layers" in the excitatory field, and Sd(x,t) is the
stimulus array at time t. (Unfortunately, the first detailed analysis of the
Dev model [13] did not use the f nonlinearity, thus losing the crucial multi-
stability). Typical results include

(i) When a single-peaked stimulus is applied to a single d-layer, there is
a critical coherence length — dependent on the intensity of the stimu-
lation — and no excitation occurs unless the stimulus is wider than
that length.

(ii) It is impossible for two or more layers of the full model to be excited
at the same spatial positions, except for a small overlap at the boun-
daries of excited regions.

Computer simulations developing the Dev model not only use nonlinearity
but also involve a careful analysis of the geometry of the projection field [14,
15].

4. SCHEMAS

We have argued that low-level systems segment the visual image, and that these
segments activate schemas which represent objects or domains of interaction.
(For other approaches to "internal representation" see, for example, Minsky
[16], Bartlett [17] and Schank and Abelson [18].) In our theory [19,20] a
schema is viewed as a system with 3 components:

(i) Input-matching routines which test for evidence that that which the
schema represents is indeed present in the environment.

(ii) Action routines — whose parameters may be tuned by parameter-
fitting in the input-matching routines.

(iii) Competition and cooperation routines which, for example, use context
(activation levels and spatial relations of other schemas) to lower or
raise the schema's activation level.

Rather than repeat earlier observations [19,20], we adduce evidence
(supplied in part by Burt [21] ) that an episode is represented by a spatially
tagged array of activated parametrized schema instantiations. (The treatment is
brief, and omits many subtleties.) The Jastrow duck-rabbit shown in Fig. 4(a),
can be seen as either duck or rabbit, but not as part of each or as both sim-
ultaneously. This initially suggests that schemas are interconnected via mutual
inhibition, as in Fig 4(b), so that only one of the schemas can be above the
threshold level of excitation (compare Sec. 2). However, the fact that we can
see a duck and a rabbit side by side suggests the modification shown in Fig. 4(c)
in which inhibition is not at the schema level. (However, we still posit schema-
level cross excitation [19,20] embodying real world knowledge — so that in-
creased activity of an ice-cream schema augments activity of a cone schema for an
appropriate spatial relation.) We now posit, Fig. 4(c), that schemas compete
for lower-level features, and that as a feature contributes to the raised acti-
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vation of a schema, so does the schema to some extent "cover" the lower
level features. For the duck-rabbit input, increasing activity of one schema
goes with increasing coverage of lower level features — taking them from the
other schema and thus effectively inhibiting it. But if the input has duck and
rabbit separate, then duck schema and rabbit schema can be activated without
covering features required to activate the other schema.

(a)

FEATURES 

(b)

LOWER-LEVEL SCHEMAS
FEATURES COVER
ACTIVATE LOWER- LEVEL
SCHEMAS FEATURES

SCHEMAS

EPISODES - SCHEMA
INSTANTIATIONS

FEATURES

Fig. 4 — From schema to episode. The duck-rabbit (a) suggests that mutual inhi-
bition between the schemas (internal representations) of duck and rabbit are mutually
inhibitory (b) so that only one schema can be above a threshold level of excitation.
However, the fact that we can see a scene containing both a duck and rabbit suggests
that this inhibition is not "wired-in", but is rather mediated by the competition for
low-level features (c). Finally, our ability to see a scene with several ducks, say, argues
that perception does not so much activate a set of particular schemas as it activates a
schema-assemblage consisting of instantiations of schemas (d).
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We trace one more step in the logic of schemas. The fact that we can recog-
nize a scene containing, say, two ducks and a rabbit argues that the internal

representation of a scene is not the activation of schemas per se, but rather the

activation of a pattern of schema instantiations — parametrized and spatially

tagged to cover lower-level features in terms of input-matching routines of
higher-level schemas. These "episodes" — the patterns of schema instantiations
of Fig. 4(d) — can then be "stored" both for episodic memory and as building

blocks for new schemata. However, rather than elaborate Fig. 4(d) further in
this article, we now turn to motion schemas.

5. MOTION SCHEMAS

Our theory of schemas grew out of concern with action-oriented perception
[241. If an animal or a robot perceives in order to guide its interactions with a
dynamic world, then the schemas which embody its perceptions will often
represent dynamic rather than static states of the environment — it may be
more important to distinguish whether a man is approaching to shake your hand
or to hit you than it is to classify his facial structure.

TIME

A TYPICAL
"S NAPS H OTH

Fig. 5 — The set-up for a number of Michotte's experiments on the perception of
causality. The subject sees a portion of tracks A and B revealed as they are moved
behind a slit — the effect the view of particle A moving toward B, the two particles

"sticking" for time A, and then B moving away from A.
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One encouraging initial attempt [25] to place motion schemas in a formal
artificial intelligence framework models the finding of Michotte's studies [26]
of the perception of causality, such as those exemplified in Fig. 5. The typical
"snapshot" indicates what a human observer is shown at any time — a pair of
squares. The two "tracks" A and B indicate how the positions of the squares
vary with time. If the "contact time" A is small, and the apparent velocities
VA and v/3 are similar, a subject instructed to fixate the square B will say that
"A bumps into B and pushes it", while a subject fixating away from B will
simply see A pass through a stationary object. If A exceeds 0.2 seconds, the
subject sees two successive independent movements. If VB > 1.8vA, the subject
no longer sees A as pushing B — rather "it is as if A's approach frightened
B, and B ran away" or "as if A triggered a mechanism in B." Weir [25] is the
first attempt to posit control structures which will appropriately activate the
various "causality schemas" under varying input conditions.

Important studies of dynamic aspects of low-level visual processing include
the analysis of use of texture flow information to guide locomotion [27,28],
and texture-motion neurons in the pons [29] may provide the bridge to a
neural-net theory which could tie up with our earlier model [30] of how the
cerebellum and related brainstem nuclei [31] might tune the parameters of

(a) (b)

Fig. 6 — Joint pattern (b) of a walking man (a). Johansson observed that a static
such pattern is hard to recognize, but that a movie of such joint patterns gives a com-
pelling impression of walking.
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synergies [32,33] during locomotion. We close with a description of experi-

ments on perception of locomotion (rather than for locomotion) which suggest

a high-level schematic description of locomotion which could play a role in the

generation, and not only the perception, of movement. Johansson [34] found,

that a pattern of dots such as that of Fig. 6(b) has no compelling perceptual

effect. However, a motion picture showing such dots as taken, for example,

with high-contrast videotaping, of a walking man yields a compelling perception

of human locomotion. This shows that simple motion cues may activate schemas

without benefit of shape recognition. This suggests two questions for the

modeller: How are points in successive frames matched up [35] ; and what

bears the "locomotion information" in the trajectories? Low-level matching

processes in motion perception are analogous [21] to those we studied for

disparity matching in Sec. 3. Hoenkamp [36] analysed curves such as that

shown by a sawtooth and the knee motion by a sinusoid as shown in Fig. 7(b).

He found that CRT displays of dots — for example, for hip, 2 knees, and 2

ankles — generated according to these time courses still yielded compelling

perceptual effects. He could vary the observed style of progression simply by

altering a — from skating (a —0.4) to walking (a —0.6) to running (a —0.8).

This is a strikingly pure representation of a motion schema.

ANKLE MOTION RELATIVE TO KNEE

KNEE MOTION RELATIVE TO HIP JOINT

(o)

lb)

Fig. 7 — HoenIcany's crude approximations of ankle and knee motions by sawtooth

and sinusoidal curves respectively preserved the perceptual effect, but variations of

the parameter x induced the perception of different forms of progression — skating,

walking, and running.
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Formation of the World Model in Artifical Intelligence

Systems

V. P. Gladun and Z. L. Rabinovich
Institute of Cybernetics
Ukranian Academy of Sciences, Kiev, USSR

Abstract

The problem of automatic formation of a world model in artificial intelligence
systems is discussed. It is considered as a complex process which combines the
processes of classification, generalization and concept formation. Realization
of the suggested principles is described using a special (pyramidal) semantic
network.

INTRODUCTION

We know that a model of the real world is one of the most important elements
of artificial intelligence systems in determining the processes of decision-making
[1]. There is a common concept of the world model as a semantic network. We
should like to concentrate on a subject which has received little attention so
far, but which is of paramount importance; that is, how the model is formed.
Automation of the process of model formation is necessary in adaptive systems
of artificial intelligence if they are to be capable of mastering new classes of
problem in new environments.

Information enters the world model by two channels: (1) inputs to the
system and (2) outputs from the system. Information introduced into the
model from outputs contains the results of information processing within the
system, for example, problem solutions. This information is necessary to "fix"
experience. In the process of inserting information into the model, the fragments
of the model representing generalized knowledge of object classes, situations,
and reactions should be formed. It is this generalized knowledge which provides
the system with its ability for adaptation. It is useful to fix the experience of
the system in the form of generalized knowledge because only in this case can it
be used to solve new problems. Therefore, the insertion of any information
into the model must be accompanied by the processes of classification, generali-
zation, and concept formation, including modification of concepts already
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existing in the system. When inserting information, an associative proximity of
descriptions of individual objects, situations and reactions should be established
automatically. The algorithm for construction of the world model is in this
case simultaneously the algorithm for classification, etc. and for establishing

the associative proximity of objects.
Naturally, such information processing is possible only by using structures

which exist already in the system memory, that is, on the basis of the existing
world model. Thus, on the one hand, the model is the result of the processes of
classification, generalization, and so on, while on the other hand, it is the means
of realization of these processes.

So, we draw the following conclusion: in a developed adaptive system of
artificial intelligence, it is necessary to consider the world model in active
interaction with a complex of facilities for its formation. The question of
what the world model should be must not be separated from the question of
how the world model should be formed automatically, in the process of the
interactions which take place between the system and the environment.

Let us point out some features of the world model which are important
for the processes of decision-making:

1. Several levels of knowledge generalization should exist in the world
model, that is, the model should be hierarchical.

2. Information retrieval should be possible in the world model by tracing
associative links among individual fragments of knowledge, without the
revision of the whole memory, that is, the model should be associative.

The important consequence of these features is the changeover from the
purely informational representation of the world model as a sum of knowledge,
to the understanding of the importance of the organization of the information
in the model, that is, the changeover to representation of the model as a struc-
ture. Such structural features eliminate the necessity of scanning the whole
memory when the system is functioning. The complex engineering problem of
eliminating memory scanning (which disappears completely when problems are
considered at a theoretical level) is at present one of the main problems when
organizing the effective functioning of artificial intelligence systems which
operate with large amounts of data. Thus constructing a world model is the
process of forming the structures which constitute the model. We believe that
more developed forms of organization are called for than those usually put
forward in the context of semantic networks.

We shall now describe the complex of facilities which are used in our
construction of models of this type. A special data structure, called a pyramidal
network (PN), is the element which combines the mechanisms described below.

After the definition of a pyramidal network we shall describe the algorithm
of input which executes its construction, and the algorithm of concept for-
mation. In the last section, problems of the employment of pyramidal networks
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in the artificial intelligence systems ANALAYSER, PPR-1, and PPR-2 are
discussed.

PYRAMIDAL NETWORKS

Organization of memory in the form of a pyramidal network serves for the
storage of information about objects represented by sets of values of attributes.
The concept "object" in any given case is to be understood broadly. Articles,
sets of data characterizing a process or phenomenon, situations of the environ-

ment or the internal state of the system in which the pyramidal network is used,
can all be objects.

Input elements of the network through which signals associated with values
of attributes are received will be called receptors. Each receptor corresponds to
one value of the attribute. Apart from receptors there are associative elements,
with several inputs and one output. The associative element generates an output
signal if, during a definite interval of time, signals come to all its inputs.

A network consisting of receptors and associative elements can be illustrated
with a directed graph whose vertices correspond to the network elements. Links
among elements are designated by arrows directed towards inputs of the
elements.

Definition 1

A set of elements of the network incorporating the element a and all the
elements from which there are paths to the element on the network graph is

called a subset of the element a.

Definition 2

The pyramidal network (PN) is the network consisting of receptors and associ-
ative elements which are connected among themselves provided that the
following conditions hold:

(a) output of any element of the network must not be connected with
inputs of the elements composing its subset,

(b) inputs of the receptors must not have links with other elements.

Examples of PN graphs are given in Figs. 1 and 2.

Definition 3

A set of the network elements towards which there are paths from the element a
on the network graph is called a superset of the element a.

Definition 4

Elements from the subset of the element a, connected with it directly, form the
0-subset of the element a.

Definition 5

Elements from the superset of the element a, connected with it directly, form

the 0-superset of the element a.
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Definitions 1 to 5 define a class of pyramidal networks. With the help of
subsequent definitions supplementary restrictions are introduced, typical of

the PN variety which is used in our developments. It will be called a-PN. a-PN
serves to store the information about objects by non-ordered sets of values of

attributes.

Definition 6

By an active input of the element of a-PN is denoted the input connected
with the output of another element.

Definition 7

By an a-associative element is denoted the associative element which generates
the output signal when there are signals at all its active inputs.

Definition 8

The input of an a-associative element which is not connected with other
elements is called a passive input.

Definition 9

The state of the element of a-PN at which it generates the output signal is

called the state of excitation, and the time of existence of the input signal is
the period of excitation.

Before insertion of the information about objects, the network consists only
of receptors. The input algorithm is, in principle, the algorithm for constructing

the network from the elements which are in reserve. Inserting the information
about the object into the network or, as it will be called, the perception of the
object, is carried out by simultaneous application of external signals to the
inputs of receptors corresponding to values of attributes of the given object.
The time interval between two successive perceptions is more than the period

of network excitation, therefore up to the moment of perception of the next
object there are no excited elements in the network.

The a-PN can be constructed with the help of various input algorithms. One
of them, the most popular, is given below. The time of executing each of the
steps of the given algorithm is small in comparison with the period of excitation.
The algorithm is started when perceiving each object.

THE INPUT ALGORITHM OF a-PN

1. If, when perceiving the object, the subset 5" of 0-subset of a-associative
element a, containing no less than two elements, is excited, the links of the
element a with the elements of the set 5" are eliminated and a new a-associative
element is added to the network whose inputs are connected with outputs of
all elements of the set 1", and the output is connected with one of the passive
outputs of the element a. The new element is in excited state immediately
after insertion into the network.
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The execution of step 1 is illustrated by Fig. 1(a), (b).
After inserting the new element into all sections of the network where the

condition of step 1 is satisfied, step 2 is executed.

(a)

a 0
new element

( b )

6 ii

Fig. 1 — (b) is the network after excitation of receptors 2,3,4,5 in situation (a).
(c) is the network after excitation of receptors 2,3,4,5,6,7 in situation (b).

2. Let 0 be a set of excited elements of the network having no other excited
elvents in their 0-superset. If contains no less than two elements, a new
a-associative element adds to the network whose inputs are connected with
outputs of all elements from the set . The new element is in the excited state
immediately after insertion into the network.

The execution of step 2 is illustrated by Fig. 1(b),(c).

When perceiving the first object the condition which is presented in step 1
is not satisfied, because in the network there are no associative elements. The
execution of step 2 leads to the appearance of a simple pyramidal structure of
data with one associative element. After inserting many objects a complex
network arises.

Pyramids of the elements, construction of which is completed with the
execution of step 2 of the input algorithms, correspond to individual objects.
Pyramids being formed when executing step 1 correspond to combinations of
values of attributes belonging to several objects. For example, the pyramid
of the element c (Fig. 1) serves to store a combination of values of attributes
perceptible by receptors 2,3,4,5 which belongs to the objects represented in
the network by pyramids of the elements a and b.

CONCEPT FORMATION ON THE BASIS OF PYRAMIDAL NETWORKS

Let a set of attributes be specified each of which has a set of values.
A concept is generalized information about a set of objects represented by

collections of values of attributes which

303



PERCEPTION AND WORLD MODELS

(a) represent logical relations among individual values of attributes, typical
for the set, and

(b) are sufficient to distinguish, with the help of a recognition rule,
between objects belonging to the set and objects which do not belong

to it.

The word "generalized" means, in the given case, that the concept includes
only essential values of attributes which characterize a set of objects as a whole

and does not contain some particular values of attributes which individualize

separate objects.
A set of objects to which the concept corresponds is called the volume of

the concept. Depending on whether the object enters or does not enter into the
volume of certain concept it will be called a positive or negative object of this
concept.

Let us define the problem of inductive concept formation for a given set
of objects 'U.

Let X be a set of objects such that £flcU= and 'Y X. For each a E X
there is an indication of the type a E 0" (positive object) or a '1)" (negative
object). It is necessary to construct, by the analysis of set .C, a concept which
discriminates between its positive and negative objects (that is, notions on the
basis of which it is possible, applying a certain recognition rule, to recognize
correctly all positive and negative objects of the set .0 of a learning sample).

The algorithm of inductive concept formation on the basis of a-PN is started
after the construction of a-PN for all objects of the learning sample. The
operation of the algorithm of concept formation after the execution of the
input algorithm is described by the three rules given below. The time taken for
the execution of all these operations is considerably smaller than the period of
excitation of network elements.

Two numbers m and k are then placed into correspondence with each
element of the network. m is the number of excitatations of this element when
perceiving all positive objects of the learning sample, and k is the number of
receptors in the subset of elements. In the process of learning, special elements
are singled out in the network with the help of which the objects from the
concept volume should be recognized. We shall call them positive or negative
checking elements of the given concept.

Rule 1

If, when perceiving a positive object of the concept 61, there are no checking
elements of the concept 61 in its pyramid, the element having the largest k of
all elements of the pyramid with the largest m is marked as a positive checking
element of the concept R.

This statement of the rule takes into account the possibility of existence,
among the excited elements, of several elements with the same m exceeding the
m of all other excited elements. If in the group of elements having the largest
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m, the values of k of all elements are equal, any one of them can be marked as
a checking element of the concept (R.

Rule 2

If, when perceiving the negative object of the concept 61, there are positive
checking elements of the concept a in its pyramid which do not contain in their
supersets Ul, U2, . .. Ul other excited checking elements of the concept R, in
each of the sets 14, U2, ...111 the element having the smallest k among all excited
elements is marked as a negative checking element of the concept R.

According to this rule the excitation of the pyramid of element 2 (Fig. 2(a)),
on condition that the pyramid represents the negative object of the concept R,
leads to singling out elements 4 and 5 (Fig. 2(b)) as negative checking elements
of the concept R.

(a)

Fig. 2.

(b) (C)

Rule 3

If, when perceiving the positive object of the concept R, there are negative
checking elements of the concept a in its pyramid which do not contain in their
supersets Ul, U2, . . . q other excited checking elements of the concept 61 in
each of sets Ub U2, . . . 111  the element having the smallest k among all excited
elements is marked as a positive checking element of the concept R.

According to this rule the excitation of the pyramid of element 1 (Fig.
2(b)), on condition that the pyramid represents the positive object of the
concept (ft, leads to singling out element 3 (Fig. 2(c)) as the positive checking
element of the concept 6/.
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With the help of positive checking elements the most typical (having the
largest m) combinations of values of attributes belonging to the objects from
the concept volume are singled out. For example, singling out element 8 (Fig.
2(a)) as the positive checking element means singling out combinations of
volumes of attributes perceptible by receptors g, h, I. With the help of negative
checking elements the combinations of values of attributes of negative objects
are singled out. Note that such combinations are singled out only in cases when
in perceiving the negative objects the positive checking elements are excited;

that is, when perceiving those objects which are negative even if they incor-
porate the singled-out attributes of positive objects.

If at the revision of all objects of the learning sample at least one new
checking element appears, that is, the conditions contained in rules 1,2,3 have
been fulfilled at least once, a new revision of all objects of the learning sample

is carried out. The algorithm operation is completed if at the next revision of

the learning sample no new checking element appears.
After the learning the following recognition rule can be used.
An object enters into the volume of the concept I{ if in its pyramid there

are the excited checking elements of the concept 61, and among them there is
not a single negative checking element of the concept 61 the superset of which
is free from the excited checking elements of the concept 6/.

An object does not enter into the volume of the concept Rif in its pyramid
there is not a single excited positive checking element of the concept 6 the
superset of which is free from the excited checking elements of the concept R.

If none of the conditions of this rule is fulfilled the object is considered to
be undefined.

Thus, in the process of executing the defined algorithm a data structure
arises in which, with the help of checking elements, the generalized information
about a set of positive objects is singled out which permits discrimination
between positive and negative objects. The distribution of checking elements in
the constructed structure reflects logical relations between values of attributes,
typical of the set of positive objects. For example, the ensemble of checking
elements of the network fragment shown in Fig. 2(b) is described by the logical
expression

(cAd)A1 b V (e A f)A—I (gAh Ai)V (gAh (e A f),

in which designations of attributes associated with receptors serve as variables
(the algorithm for constructing the logical expression based on the analysis of
distribution of checking elements of PN has been demonstrated [3,7]. Thus, in
accordance with the definition of the concept when executing the algorithm
described above the concept of a set of positive objects is constructed.

The following two important statements which characterize the algorithm

of concept formation on the basis of a-PN have been proved [3,7].

1. The algorithm provides for singling out the concept, discriminating
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between positive and negative objects of an arbitrary complex learning
sample.

2. The algorithm realizes a piece-wise linear separation of distribution
areas of positive and negative objects of the learning sample in the space
of attributes.

After the process of learning is completed it is not necessary to retain the
network elements outside the pyramid of checking since they are not used for
recognition.

PYRAMIDAL NETWORKS IN ARTIFICIAL INTELLIGENCE

Let us consider the features of PN.
The network is suitable for executing various operations of associative

search. For example, it is possible to select all objects incorporating a given
combination of attributes, tracing the output links of the element which corres-
ponds to this combination. To select all objects associatively connected with the
given one it is sufficient to trace output links of the elements entering into
its pyramid. The pyramidal structure fixes the hierarchy of combinations of
attributes by length and thus makes it possible to look through combinations
belonging to one object in order of changing lengths. The algorithm of the
network construction provides automatic establishment of associative proximity
of objects with common combinations of values of attributes. The domain of
search in the realization of algorithms of input and concept formation incor-
porates only elements of the pyramid of the perceivable object, and those of
the excited elements which are directly connected with this pyramid.

Associative elements of the network correspond to combinations of values
of attributes which determine conjunctive classes of objects. More complex
definitions (concepts) of classes are represented by ensembles of checking
elements. Through the inclusion of the excited elements into the pyramid of the
perceivable object the object is tied up with classes whose definitions are repre-
sented by these elements. Thus the perceivable objects are classified.

In the inductive formation of complex concepts the main difficulties are
connected with the problem of reducing the scannings of great amounts of data.
Using the PN for concept formation enables us considerably to reduce scannings
in comparison with other methods. When examining the algorithm of concept
formation on the basis of a-PN, 3 to 5 scannings of the learning sample are
sufficient to construct concepts of any complexity; this is fewer than the
number of scannings in the program CLS [2] by an order of magnitude.

Apart from the aforesaid, the advantage of the PN consists in the eco-
nomical expenditure of memory elements, owing to the fact that the same
combinations of values of attributes of several objects are represented by one
common pyramid.

In the PN the information is stored by way of its representation in the
memory structure. Information about objects and classes of objects is repre-
sented by ensembles of memory elements distributed over the whole network.
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The introduction of new information into such a memory leads to redistribution
of links among memory elements; that is, to the change of the memory

Structure.
Two methods of realization of PN are possible: physical and programmed.

The first method entails the creation of physical media having the features
of PN, the second a computer simulation of pyramidal networks. Physical
realization is hampered by the fact that the network structure must reflect the
information being stored and, therefore, must change when new information

is introduced. In program realization, the cells of a computer main memory

correspond to the elements and links of the network. Cells of the output links

of each element form an associative list whose head is the cell corresponding to

the element. Cells of the links contain addresses of the elements to which these

links lead. To form new elements and links, free memory cells are used which

are integrated into an associative list-stack. Naturally, the advantages of PN

must fully manifest themselves in a physical realization admitting parallel

distribution of signals. PNs are used in a number of systems developed at the

Institute of Cybernetics of the Ukrainian Academy of Sciences. In the scientific
research automation system ANALYSER [3,4,7], the algorithm for concept
formation on the basis of a-PN is used with the purpose of singling out regulari-
ties when performing scientific researches. Concepts formed by ANALYSER

when solving complex problems in the field of chemistry, economics, astronomy,

and medicine are far in excess of concepts synthesized by the human brain, in

the number of attributes taken into account and in logical complexity.
In systems of search for solutions of transformation problems and planning

actions of robots PPR-1 [5,6] and PPR-2 [7] the algorithms described are at the

root of processes forming the world model. The world model in these systems
contains the information about situations, goals, operations, generalized plans of

pyramid of object 1

Fig. 3.

"object ion object 2"

pyramid of object 2

N

on
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search for solutions, classes of situations and problems. All information is
represented in the form of PNs. Apart from ce-PN, pyramidal networks 13-PN are
used intended to store the information about objects represented by ordering
sets of values of attributes (texts, programs, plans). Attributes in descriptions of
situations are characteristics, states of the objects, and relations among objects.
Fig. 3 shows the network fragment representing the relation "object 1 on object'
2". Individual receptors correspond to names of relations.

The structural features of PN make it possible successfully to overcome

the difficulties which arise in searching for problem solutions; in particular,
the problems of planning a robot's behaviour, in a complex multicomponent
environment. With the help of the operations of associative search in PN the
selection of information related to the problem being solved (the information
field of problems), and the choice of the applicable operator are carried out
comparatively simply. The algorithm for concept formation based on the a.PN
is used for the formation of definitions of classes of situations corresponding to
generalized plans of searching solutions.

As a whole, the process of constructing a solution can be interpreted as the
"routeing" among network fragments, representing the initial and objective
situations, through a number of intermediate situations. Here the network is
complemented by new concepts defining new situations, classes of situation,
the obtained solutions, and generalized plans of searching solutions.

The PN in which relations among objects are represented is, in principle,

a semantic network. The structural features of the PN, considered above,
are convenient for performing semantic analysis of the information represented

in the network. It is very important for performing operations of semantic
analysis that in PN, the associative links of a complex structure, corresponding
to combinations of properties of objects or relations among objects, are repre-
sented with the help of associative elements.
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INTRODUCTION

A robot in developed form is an automatic machine with a certain degree of
autonomy, designed for active interaction with the environment. It integrates

systems for perception of the environment, decision taking, and the formation
and execution of plans. All these systems co-function.

The robot's activities can be complex and diverse, including as they do
movements associated with the execution of working operations, the robot's
own movement, and movements which provide active perception of the
environment.

Organization of the robot's movement should be hierarchical. Plans formed
at the upper level are then instructions for the lower levels, and are used by them

as the initial data for planning. As a rule, the sequential acts of planning take
place at the upper levels, with greater time intervals than at the lower ones. In
planning at each level conditions for plan realizability at the lower levels are

taken into account, using simplified models of the lower level functioning. In

principle, a hierarchical structure for motion planning is not obligatory, and
planning can be effected directly by taking account of all the peculiarities of the
movement. However, a hierarchical organization is preferable for complex
problems.
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GENERAL DESIGN PRINCIPLES

Designing an efficient robot is an informal problem in large-system design. One
of its aims must be to decrease the information flow.

One problem is the need to create simultaneously both the robot itself and

its "world", that is, the environment in which the robot operates and which

it interacts. The world of a "walker", designed exclusively for locomotion,

may be regarded as comparatively simple, in that only the mechanical properties

of the world have to be considered.

The characterisitic size of the robot body can be used as the natural linear

unit for all kinds of measurements in its environment and the same unit is used

for measuring the region of leg movement relative to the body.
It seems reasonable to take the value of 10 x body size as the maximum for

the robot's world. The complexity of motion tasks is not likely to be much
increased in an enlarged environment when the speed is moderate. We suggest
the minimal size should be from 0.1 to 0.01 of the robot's body. It characterizes
the world's lowest level of detail and defines the amount of information and the
accuracy of the required measurements.

As the walker solves only one problem, namely that of locomotion, the
relief of the supporting surface is the most important geometrical characteristic.

The locomotion goals solved by the walker in his world are prescribed from

outside.
All movements should be made up from a set of standardized actions,

developed beforehand and stored in the robot's memory. Planning involves

arranging the sequence of these standard actions modified by changes in a small
number of free parameters. Such a method, applied at all the levels of planning,

secures a great variety of movements and requires only moderate computer
resources.

A similar approach is advisable in solving the problems of perception of the
environment. The robot's current environment can be described by using a
set of standard situations. Perception is then reduced to recognizing these
situations and determining the values of the characterisitic parameters. The
term "situation" includes the robot's state and its position in the environment.
The situations are described by signs reflecting the properties of the environment
which are essential for the robot's functioning. For each different level of
perception, an appropriate set of standard situations should be developed. The
scope of environment perception and the depth of analysis are different for
different levels of perception. This multilevel analysis makes for efficient per-
ception of the properties of the environment, and is in good agreement with the
multilevel organization of motion planning.

It is expedient to organize the descision-making process so as to include
a "situation-action" dictionary that establishes correspondence between the
results of perception analysis and the movement actions, or other actions that
should be performed. "Situation-action" dictionaries should be designed in the
form of separate, specific modules of the algorithm. This simplifyies the logical
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structure of the algorithm, and any subsequent modification and extension of
the decision-making rules.

For adequate functioning in the environment, the robot should be supplied
with a model of the world which includes some a priori information on the

environment and on the eventual results of the robot-environment interaction.

The perception, decision-making and motion-design systems contain this infor-

mation, which in this case may be treated as the robot's a priori knowledge.
It seems reasonable to consider robots with stored knowledge as a specific

class of robots.
It is possible to imagine a more intelligent automatic device .which is able

to modify and extend the stored knowledge by itself, using an appropriate

algorithmic complex. However, a more complicated self-modifiable system of

this nature is worth developing only when it promises a marked increase in
efficiency. There are reasons to suppose that a stored knowledge system, well
organized, would provide the building blocks for knowledge modifications at
higher system levels.

Organization of the robot's movements requires an information feedback
channel from the environment. This channel should provide motion correction
capability for which it is primarily necessary to determine the geometrical
characterisitcs of the environment. Direct location measurements of distances

from the robot to the points of its environment are therefore convenient.

SIMULATION STUDIES

Properties of environment location measurements were studied for the auto-

matic walker's motion organization [1,2], and a method of active scanning of
the environment was used that decreased the load on the control computer.

The rules of active scanning provide information on the environment in

the direction of the robot's planned motion.
In the standard situation, the centre of the scanning sector follows a point

which moves along the planned route, some distance ahead. If the information
obtained is poor, the motion design system lifts the scanning sector.

If the required information can be received by rescanning the relief elements
previously screened, the scanning sector is lowered or removed to the point of
the uncertainty region which is nearest to the robot. Then the scanning sector
returns to the initial position. If the distance is found to be too great, the
scanning plane is lowered.

If the robot discovers an insurmountable obstacle in its path, the scanning

sector turns from an extreme right position to an extreme left one to determine
obstacle boundaries, etc.

The perception and motion-planning algorithms are essentially dependent
on the rate and extension of the environment scanning, and on the robot's
velocity.

Let us turn now to the design of the walker's movements.
Motor control problems can be considered as the reverse of pattern recog-
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nition problems. In the latter the aim is to create a generalized image reflecting
only essential characteristics of the real object. For motor control, detailed real

movements must be designed given the most general instructions.
The control of mechanical systems with many degrees of freedom is an

unusual task in engineering. In studies of motor activity in men and animals,
N. A. Bernstein [3] has formulated the simple hypothesis that the basic

problem of movement coordination is concerned with overcoming a large

number of degrees of freedom; in other words, in lowering the number of inde-

pendent variables controlling movement. This result can be achieved in two
ways:

1. By the fixation (switching off) of some degrees of freedom by perma-
nent muscle tension. This method is usually used at the first stage of
forming a new motor skill. It helps to implement motor control but
greatly restricts the whole system.

2. The second way (more often found at the next stage Of motor skill
learning) is to form motor synergies. For each synergy specific con-
nections are imposed on certain muscle groups, all the muscles partici-
pating in a movement being subdivided into a small number of connected
groups. Thus, in order to make a movement, it is enough to control a
few independent parameters, although the number of muscles partici-
pating in the movement can be large.

These ideas can be used for designing the control system of the walker.
A simple synergy can be organized for the regular gait. Each leg of the walker
is controlled by only one generator of programmed kinematics. A system of
interlimb interaction is used for the coordination of the movements of all
the legs [4,5]. The generator controls the switching of locomotion phases,
that is, lifting, swinging, placing, and stance. The system of interlimb coordi-
nation is responsible for the switching sequence of the programmed kinematic
generator, which is itself dependent on the type of the gait and on the move-
ment feedback signals.

The mechanism of synergy is, of course, only one way of simplifying the
problem of movement control. A six-legged walker needs a multilevel algorithm
able to control the body's motion and plan the walker's forces for some distance
ahead [8,9,10]. This problem also includes the choice of gait, footholds, and
step schedule. The motion design system uses the environment information
which the perception system accumulates in the information field. It should
be stressed again that well-developed methods of collecting and processing
information about the environment and the robot's state are of the utmost
importance for integrated walking robots. We believe that it is helpful to
consider biological prototypes in this context, and that these robots must

possess some technical counterparts of the sensory system.
When speaking about technical analogues of sensory systems, it should be

remembered that, though the receptors of different animal species are complex
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in structure and function, the organization of afferent processes is much more
so. Morpho-functional analysis has shown that the main factor stimulating

the development of the central part of the sensory systems is not the processing
of the sensory information of different modalities but the formation of sensory
complexes [3]. We should like to point out that the sensory system of an adult
individual is affected not only by genetically controlled structural-functional
organization but by the subject's past experience. Even the structure of the
sensory system may thus be influenced. It is essential that this experience be

gained during an inter-sensory and sensory-motor interaction. Motor activity
serves as a school for sensory systems.

We took as our point of departure the notion that the perception of the
external world is not an end in itself, but serves to perform definite actions.

Let us discuss some problems of the dynamics of the walking robot. These
arise mainly in the motion execution phase and also in the motion planning
phase when the robot has a small stability margin.

Thus, the six-legged robot has no fewer than 24 degrees of freedom: 18
in the legs, and 6 in the body. To test the efficiency of the motion control
algorithms, a complete dynamic scheme has to be used [11,12], though in
special cases the dynamic scheme may be simplified, for example by taking
no account of the inertia of the legs [10,13].

It is a statically indeterminate system. For the walker as a whole, six
equations of statics or kinetostatics have to balance 9 to 18 components

of support reaction forces in the leg tips. This gives rise to force balancing
problems.

Force distribution in the leg reactions has to be considered [10,13,14].
A reasonable approach is to apply some optimization criteria, for example,
minimizing the maximum value of the vertical reaction components in the
supporting legs, in order to decrease the load on the ground; the horizontal
components should be chosen so as to minimize the maximum value of the

angles between the reaction force vector and the axis of the friction cone in the
point supporting the leg. The last criterion proves to be efficient in the case of
motion over a surface with a small friction coefficient [10,14].

A reasonable force distribution makes it possible to avoid antagonism in the
leg actuators, and decreases the load and energy consumption. Force balancing
should be ensured in the leg motion control [10,14].

Some problems of dynamics also arise in designing the servo-systems con-
trolling the leg actuators and in testing their performance.

Our investigations with integrated walking robot systems include computer
simulation and laboratory models in hardware.

When using computer simulation the control algorithms should be imple-
mented as software complexes. The walker itself and its environment must be
simulated as well as measurement data collection and processing. Our simulation
results were presented on a computer graphics display in the form of a moving
image of the robot walking over the terrain.
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The early stages of computer simulation [15,16] were devoted (1) to the
development of the motion design algoithms, and (2) to the analysis of gaits
and the investigation of kinematic potentialities.

A special algorithmic complex was developed to analyse the problem of
interaction of the walking robot with a human operator. The complex operated
in real time [17]. Two coupled computers were used. The main calculation
was carried out in a BESM-6 computer. The second computer, supplied with a
built-in graphics display, played the role of a terminal and was used for the input
of the operator commands and visualization of the robot's walking. By moving
the two-degrees-of-freedom joystick the human operator could prescribe both
the velocity and the direction of the walker. As to the terrain, a plane surface
was used, complicated by "pits", that is, areas impossible for leg tip placement.

The first programs developed were for movement along a rectilinear route
over a terrain with prismatic obstacles (Fig. 1). The active-perception principle
was used, with a controllable distance-measuring beam. This made it possible
for the robot to climb over complicated obstacles near the margin of feasibility
[1,18]. Fig. 2 shows the movement phase when the robot is stepping over one
pit and scanning the bottom of a second and larger one. This cannot be stepped
over, and the robot will have to climb over by moving down to the pit bottom
and up again on the other side. The rectangle with a dot inside it which is seen
in the top of Fig. 2, shows the centre of gravity inside the supporting polygon,
which is used for estimating the static stability margin of the moving walker.
Fig. 3 shows two phases of the robot climbing over "very difficult" obstacles.

The problem of walking in a 3-D world is much more complicated. While
solving the motion design problem the algorithms were synthesized which
controlled the capacity to walk along a prescribed curved route, under the
contraint that footholds should be chosen only inside small areas irregularly
placed on the supporting plane (Fig. 4). Heuristics were provided for selecting
foothold points and scheduling which would maximize the walker's static
stability margin.

Fig. 5 represents the walker moving over terrain with "pits" arbitrarily
placed on the supporting plane. The route is rectilinear. Information about the
terrain relief is delivered by processing the distance measurement data. The
measuring beam oscillates inside some sector shown as a triangle in Fig. 5. The
walker uses a "free" gait [9,19,20]. The footholds and walking schedule are
produced by a control algorithm which makes decisions depending on the
shape of the obstacles under the constraint of maintaining a large static stability
margin.

To test the algorithms in the case of the walker's motion on terrain with
more complicated relief, a special terrain model was constructed, based on the
use of the square grid., Three object scale levels (Fig. 6a) and several standard
object types made it possible to design a complex terrain relief, while saving the
computer resources needed for storing the 3-D terrain model, transforming it
into a CRT picture, and solving the hidden-line problem [21]. As the specific
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properties of the terrain model are not used when testing the motion control
algorithms, it is reasonable to assume that the algorithm's efficiency is thus
severely tested. Fig. 6b and Fig. 7 present examples of relief with "pits" and
"boulders".

Specific modules of the algorithm were designed for simulating the per-
ception of the terrain relief, the walker's motion along both rectilinear and
curved route, and the route selection to avoid collisions and to by-pass large-
scale obstacles.

Tests made it clear that for the motion along a slightly curved route, the
same logic of relief measurement can be used as for a rectilinear route. The
central line of the scanning sector should at all times be in the vertical plane
of symmetry of the walker's body. If the route has significant curvature or
contains break points with considerable change of route direction, a scanning
plane manoeuvre should be used. Here the scanning plane turns from side to
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Fig. 6b.

Fig. 7.
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side around the vertical axis, so as to investigate in advance the relief area round
the bend of the route.

Route replanning contains the following operations. When the robot dis-
covers an obstacle, the scanning sector expands its width and elevates its central
line of vision. The right or left path round the obstacle is selected on the
criterion of minimal route perturbation. After making the decision and modifying
the route, the scanning sector returns to its regular mode of operation. The
dotted line in Fig. 7 shows the walker's route in the process of replanning.

The above-mentioned control algorithms for the integrated walking robot
cover levels from the collecting and processing of measurement information
about terrain relief up to planning the kinematics of the robot's body and legs.
For the execution of the planned movement, the problems of robot stabilization
and reasonable force distribution in a statically indeterminate system must be
solved. Appropriate algorithms and some test results using computer simulation
are presented in [10,14,22]. The approach used was briefly described above, in
the discussion of dynamic problems.

HARDWARE MODELS

Fig. 8 shows one of the first models designed for developing methods of low-
level leg motion control and interleg coordination [5,23]. The vehicle could
walk along both the rectilinear and curved route. Direction and velocity of
walking were prescribed by a human operator. Some of the model's design
principles were taken from physiology, and components of a quasineuron
type were used in the control system.

Fig. 8.
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Fig. 9 shows the first attempt to implement the execution part of the
six-legged walking robot [6]. Methods of generating regular gaits of different
types — for example, "tripod gait", "wave gait", and others — were investigated.

A new model, RICKSHA, was designed for elaborating the logic of leg
motion control [24,25,26]. Each of two legs had three degrees of freedom.
The tips of both legs were supplied with contact sensors to monitor contact
with the supporting surface. The angles in the joints were measured by potentio-
meters, and angular velocity by tachometers. The control system was implemen-,
ted by using an analog computer. The model was supplied with an elementary
capability for terrain profile adaptation and was able to move autonomously
over an uneven surface with small-scale obstacles while maintaining smooth
body motion. The investigations carried out with RICKSHA resulted in a
method of generating a flexible step cycle and an efficient method with simple
hardware for transforming the leg-tip Cartesian coordinates into joint angles.
The results obtained achieved an economy in computer hardware and in specially
designed electronic circuits.

RICKSHA was further developed in two ways. First, an improved sus-
pension system was designed which made it possible to test the motion

Fig. 9.
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control methods in a greater range of movements. RICKSHA was able to climb
over larger and higher obstacles, using a body-tilting and clearance manoeuvre.
Secondly, some distance-sensing elements were used, in the form of a two-link
lever system supplied with a contact sensor at its tip and potentiometers in the
joints. When following the obstacle profile, the lever system delivered the
measurement information which was used (1) for estimating the size and shape
of the obstacles, and (2) for planning the foothold points and scheduling the
leg motion. It should be noted that the measurement information delivered by
the lever system is, in some sense, similar to the information obtained by the
system with the distance-measuring beam. Thus the robot equipped with the
coupled-lever measurement system may be considered as a prototype of the
the robot with a distance-measuring system.

The next step in modelling the walking robots was in designing a robot
with more powerful legs. Fig. 10 shows a pair of such legs being tested in the
same way as the modified RICKSHA. Each leg has a "free orienting" foot with
three degrees of freedom and a contact sensor. Successful results made it
possible to design and test the whole six-legged walker shown as Fig. 11. At
present, the six-legged model is controlled by an analog computer.

Fig. 10.
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Fig. 11.

Fig. 12 shows another model supplied with a scanning distance-measuring
system [27]. When connected to a computer the model will make use of the
previously designed motion control algorithms for simulating autonomous
walking over rough terrain.

Along with autonomous walking robots capable of operating in new and
complex environments, it is reasonable to consider the development of walking
vehicles controlled by a human operator (driver) [7,28,29,30] who is res-
ponsible for the long-range planning, route selection and mode of operation.
Such a walking vehicle could be implemented in the form of a "proprioceptive"
robot, supplied only with tactile perception of the environment or in the form
of a robot with restricted tele-receptors oriented only towards problems of
short-scale planning. In the latter case, when walking over complicated terrain,
the robot might be restricted to selecting foothold points, scheduling leg
movements, and planning body motion.

The development of integrated walking robots is a wide and challenging
field of investigation. We believe that progress will lead to the successful inte-
gration of results obtained in many different branches of artificial intelligence.
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Influence of Artificial Intelligence Methods on the

Solution of Traditional Control Problems

G. S. Pospelov and D. A. Pospelov
Computer Centre, USSR Academy of Sciences, Moscow, USSR

Abstract

The paper demonstrates how methods of knowledge representation and solution
search characteristic of artificial intelligence theory influence the solution of
control problems for discrete processes which have a combinational field of
allowable solutions.

INTRODUCTION

When a new view on old problems opens and new problem presentation lan-
guages are developed, with solution methods based on them, one naturally
wants to estimate the influence of these new ideas on progress in the solution
of traditional problems. In this publication we try to estimate the effect of
description and representation methods and languages on the development of
methods for solution of combinational problems that are characterized by the
"dimensionality curse"; that is, by combinatorial growth of the number of
operations required to solve a problem with linear increase of problem dimen-
sionality. Such problems may be exemplified by allocation of limited resources
within an integrated operational schedule, graph cutting into a prescribed
number of minimally connected components, processing of parts on a set of
machines, search for a path of a given type over a network, and numerous
others. There is an exact method for solution of all of these problems that
lies in complete enumeration of variants, but the size of these problems in
practice prevents implementation even on modem computers. ,

A standard way to solve such problems is to use various heuristic methods
satisfying "local success criteria" [1-6]. But the informality of heuristics and the
impossibility of estimating their effectiveness are the shortcomings of this
approach.

We hope that progress in the field of artificial intelligence may open a way
to the development of purposeful methods for the solution of combinatorial

331



ROBOT AND CONTROL SYSTEMS

control problems. In this connection, two of the results obtained by artificial
intelligence theory are of interest to us, namely methods for construction of
compact hierarchical models of knowledge useful in the determination of
solution plans, and those for the design of interactive systems providing man-
computer dialogue in the course of solution.

Before discussing the influence of these methods on the solution of
control problems, we shall describe the principal difficulties that discourage
application of the classical automatic control methods. Over recent decades,
classical control theory has gone through a certain crisis. The theory used to
deal with plants whose structure and functioning could be formally described,
for instance, by some type of differential equations. The control goals and
criteria were also easy to describe. Control theory, thus, was developing as a
purely mathematical science, dealing solely with formal models and exact
methods. The control engineer could even do without knowing the actual
plant for which he studied a control model. He ought only to be confident
that the model was adequate, but that was the headache of a specialist operating
the plant. The plants and control techniques could thus be standardized.

In the early fifties, however, control engineers became aware of plants
having essentially new features. Firstly, describing the structure and functioning
of these in terms of customary formal models as a certain (albeit very compli-
cated) set of equations (logical, algebraic, differential, etc.) was out of the
question. Secondly, these plants were active themselves, varied in time and had
"free will". Thirdly the goals and control criteria were not formalizable and also
changed with time. One example is a city, the problem of whose management
was posed almost simultaneously in several countries. Above all, the purpose
of its existence is not clearly defined. What is a city for? This question has no
ready-made answer and is unlikely to have one. As a result, no exact formu-
lation of the city-management criterion can be given. The city's evolution,
in the course of which it can grow, expand, and die, changes the basic functions
of its existence and renders construction of any closed city-management model
impossible. A city is by no means the sole example. A large enterprise, an
industry or service (for example, the care of public health), an economic region,
etc. exemplify other control plants of this sort.

Inapplicability of the classical control techniques is evident here. One might
assume that since no formal description is possible, no statement of the problem
is possible either. But the experience of people who control such plants, well
or not-so-well, is that the control problem can still be stated and solved.

Psychological analysis of the behaviour of people sharing in control or
management of such plants [7] reveals that, in learning to control, people
develop a mental model of the plant, the processes therein, and the transfor-
mations of these processes to make decisions on control. In that model, struc-
tural situational relations between components of the plant and inputs into the
plant are the core. In our paper we shall take this for granted because it has been
sufficiently well justified [8]. Some necessary additional considerations leading
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to more precise description of models developed by the operator have also been
given [9].

The psychological analyses enable us to formulate two hypotheses which
will underlie the further discussion:

Whatever the operator has to know to exereise control may be expressed as
a set of texts in a conventional language. In other words, all data on the
plant, its purpose, control criteria, and the set of possible decisions may be
supplied to the control system as a sequence of phrases in a natural language.

The control system required for the kind of plants, in principle, cannot be
closed-loop. It is an essentially open-loop system, and its learning process
is never completed by development of a final formalized model.

These two hypotheses give rise to the above-mentioned interest in methods
for constructing models of knowledge about plants and their operation, and
also in dialogue systems.

An illustrative example

Consider a well-known example from the computer system theory problem of
program allocation [10].

A computer system has n processors or computers (not necessarily of a single
type),- and at most m various tasks may be simultaneously presented at the
system input.

Denote by tii the time required by the computer j to execute task 1. Intro-
duce binary values defined as follows

(1 if ith task is handled by jth computer,
xii z= 0 otherwise

Now the problem of optimal allocation of m tasks between n processors/
computers may be presented as an In x mImatrix lit/Il whose binary entries xii
should be determined so that

and
n m

f= X/ l/
i=1 i=1 .

reaches minimum.

for i = 1, 2, ...n ;

forj= 1, 2,...m;
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This is a standard Boolean programming problem that may be solved by
numerous methods [11]. Nevertheless, none of them is applicable to task allo-
cation in an actual computer system. This is easily explained by the fact that
the time required for optimal task allocation completely overlaps the time
saved by the optimal allocation. This situation is reminiscent of short-term
weather forecasting where, according to an expert, "We are already able to
forecast tomorrow's weather, but it would take a month of computer time".

That is why designers of computer operating systems prefer to use allo-
cation procedures based on some heuristic considerations rather than on exact
methods. It is important to note that the screening of heuristic considerations
might itself take much time, but it should result in an approximate method
which' requires little time and prevents combinational growth of the number
of operations with problem dimensionality; that is, the number of computers
in a system and the number of executed tasks. We shall describe below a pro-
cedure for construction of heuristic allocation rules as proposed by D. Boev
[12]; examples are taken from the same publication.

At each step of allocation there is a matrix. Allocation depends on both
matrix entries and relations between them. The gist of Boer's approach is to
construct allocation decision rules in the form of logical functions of ti and
relations between them. This approach is based on a recognition method des-
cribed by Bongard [13].

Linearly ordered sets of elements of II II tabulated as below are used as
source situation descriptions:

Table 1.

gi g2 g3 ga gs g6 g2 gs

3 7 9 5 11 8 6 13
5 7 13 12 4 6 14 9
4 3 9 2 7 4 1 11

Numbers in the first row of Table 1 may represent the following situation:
there are two computers; four terminals have received tasks, the first task may
be executed by the first processor in 3 time units (;), and by the second one in
7 units (g2); the second task is executed by the processors, respectively, in
9(g3) and 5(4) time units. In each table of this sort all given situations that
require, in an expert's opinion, a similar type of allocation are summarised.
Description of a situation class (generalized situation) should contain all the
peculiar features of the individual situations involved in the table for a given
class. To generate such descriptions, the following special operators are used:
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(a) if gi> , then Lu = 1
otherwise Li; = 0.

(b) if g1 = max[min (. .4), min( . .gk gs) min( .gt)]
then Lu = 1
otherwise Lu = 0 .

Four logic functions are used: a V b,(7 V b, a V band a V E.
Now introduce a notion of a characteristic that is constructed as follows:

two arbitrary logic operators are applied to each row resulting in two logic
variables ti and t 2; next, one of the four above functions is applied to them:

0m(tht2) = tm[Li(glig2 gic)s , (gbh gic)s]

and its result is a characteristic of the row.
A logic product of the characteristics of all the rows constituting a table is

a table characteristic.
The next stage is separation of the so-called useful characteristics. For each

class of situations there are two tables, working and checking ones. Charac-
eristics are computed for both tables. The major requirement for the useful
characteristic is that it should be the same for the working and checking tables
of a class.

The second requirement for the useful characteristic is that is should allow
decomposition of a set of objects (tables) used for learning; that is, the charac-
teristic should never be the same (0 or 1) for all the tables.

Now the process proceeds by separation of the so-called minimal charac-
teristic basis. A set of characteristics is referred to as a minimal basis of some
class of tables (situations) if a product of the characteristics constituting the
minimal basis of class i is "1" for this class, and "0" otherwise.

The minimal basis of characteristics for some class is identified with a
generalized situation (situation-solution) for this class. A meaningful writing
of the characteristics involved in the minimal basis points to those relations
between elements of a situation tithat are essential in terms of classification.

Consider a particular example of allocation of two tasks to two computers
whose throughputs are not multiples.

There are two situation-solutions:

— the first task is assigned to the first computer, and the second one to the
second computer;

— the first task is assigned to the second computer, and the second one to
the first computer.

The learning situations are summarized in the tables below, using a similar
construction to that in Table 1.
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Table 2.

g1 gz g3 gi

26 6 7 6
..1 4

3
1
9

5
2

2
1

al 4 6 5 3

Ch
ec

ki
ng

 
ta
bl
e 

5 6 3 4
7 9 6 8
9 3 11 6
8 4 10 7

g1 gz g3 gs

Wo
rk
in
g 

ta
bl
e 

2 5 1 6
5 3 4 2
7 5 4 8
3 4 5 6

OA 1 2 3 4
1u 0 9 1 2 8
.44),Z,

12
10

5
8
3

4
8

7
9

Here
gi is the time (in conventional units) for execution of the first task on

the first computer, denote it by Pi ;
g2 is the time taken by the second computer to execute the first task,

g3 is tb and
g4 is t.

The following logic operators are utilized:

: if git > g2, then t(i) = 1; otherwise t = 0. '
:if g1 > g3, then t (i) = 1; otherwise t (i) = 0; etc.

Characteristics of situation classes were selected by computer, and a table
was compiled for this example.

Table 3.
L1 14 F T1 12 E1 E2

1 5 7 1 0 1 1
3 5 7 1 0 1 0
1 3 8 1 0 1 0
2 4 8 1 0 1 0
1 3 9 0 1 0 1
1 5 9 0 1 0 1
2 3 9 0 1 0 1
2 6 9 0 1 0 1
3 5 9 0 1 1 1
5 6 9 0 1 1 1
1 2 10 1 0 1 0
1 4 10 1 0 1 1
1 5 10 1 0 1 1
2 6 10 0 1 0 1
5 6 10 0 1 1 1
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where LT is the number of the first logic operator; L1 is that of the second
operator, F is the number of logic function (No. 7 — a V b; No. 8 — a V b;
No. 9 —a V band No. 10 —avh"). Totality of the first three columns of the
table makes up a logic characteristic that will be denoted as (41,j F) for the
sake of brevity. Columns T1 and 7; contain values of the characteristics
for the first and second classes of the table, respectively. Columns E1 and E2
have values of characteristics for two examination situations

E1(5,11,8,3) and E2 (4,2,3,5).

As can be seen from the table, even application of a simple concordance
procedure classifies situations E1 and E2 as belonging, respectively, to the first
and second classes of situations-solutions.

To find out minimal characteristic bases, values are required of charac-
teristics of all the rows of learning tables, that is, of all situations. Tabulated
below are the results of calculations.

Table 4.

Li Li F Ti T2

1 5 7 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1
3 5 7 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0
1.38 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
2 4 8 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1
2 5 8 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1
1 3 9 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 5 9 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
2 3 9 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1
2 6 9 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1
3 5 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
5 6 9 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1
1210 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1
1410 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
1510 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
2610 00 1 0 1 1 0 0 1 1 1 1 1 1 1 1
5610 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

Characteristics (3, 5, 7) and (1, 2, 10) may be taken as minimal bases for
the first class of situations-solutions. As may be seen from Table 4, product
of these characteristics is "1" for class T1 and "0" for all the situations in 7'2.

Meaningfully, a statement for the minimal basis for T1 is as follows:
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= [(gi, > g4) V (g2 > g4)] • [(g1 > g2) V (g1 > g3)1 =

< tl) V (ti < t?)] • [(t1 < th V (t1 < t1)] =

< t1)(t1 <t?) V (d < t1)(t1 < a) v
(4 <4)01 v(t<4)(t1 <ti).

A minimal basis for 7'2 is determined in a similar manner for instance,

characteristics (1, 5, 9) and (2, 6, 9)).

f2 = [(g1> g2) V (g2 > )] • [(gi > g3) V (g3 > g4 )] =
Kt? < ) V (t? < d)] • Rd < tl) V (t1 < ti)] .

Physically, the above expressions mean that the first task is allocated to
the second computer and the second task to the first one if the first task is

better executed by the second computer (in less time) than by the first one, or

the first task is executed by the second computer no worse that the second one

on the second computer; and at the same time the second task is better executed

by the first computer than the first one by the first computer, or the second
task is executed by the first computer no worse than by the second one.

Being derived, expressions for fi and f2 are stored in the operating system

memory as heuristic rules for dynamic scheduling of a flow of tasks in the

computer system. The rules, of course, do not ensure one hundred percent

infallibility of situation classification. Note that the above-mentioned minimax

operators lead to more effective classification rules for this problem:

LI: if gi =MX, then t = 1,
otherwise t = 0,

: if g4 = MX, then t = 1,
otherwise t = 0;

where
MX = max [min (g 1,g2), min (g ,g3),

min (83,84), min (g2 ZI)] •

The following generalized situations result in this case:

= [(gi = MX) V (gs = MX)] = -[ [(gi < g2 ) V (gi < g3 )] &

(gi> g4) V [(g4 < g3) V (g4 < g2)] (g4 > gill =
{[(d < d) V (d < )1 •(tI > d) V
[(d < d) V (d <t)1l.(ti > t)} =
< th.(t1 < ti) v <a).(d <4)v

(4 <4).(t1 <4)v (4 <4)44 <4).
= [(g2 = MX) V (g3 = MX)] = -Mt? < ) V (t? < d)] &

(t? > ) V [(ti <4)V(1 <4)1 >4)}.
These decision rules give essentially fewer classification errors as compared

with those above.
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With increase of problem dimensionality, the number of operations required
to verify decision rules (but not the number of operations for determining
them!) grows with the same rate as dimensionality [12].

The detailed illustrative example above demonstrates a way that may be
followed by the theory of complex-system control, making use of the advances
of artificial intelligence theory. Below we shall describe a fragment of this
theory known as "situational control" [9,14,15].

Method of situational control

The idea of the method is simple. Assume that at each time we can have an
informal description of the current situation including the state of a control
system and its current objectives and tasks. Denote that description as S(t).
The data contained in S(t) with that already stored in the control system
memory are sufficient to make a control decision which is generated by means
of a specified set of elementary decisions -[P11. The decision is regarded as a
certain chain consisting of elementary decisions, or a tree the path through
which is defined by a set of situations occurring at the input of the control
system. Then, for each time t one can consider an elementary problem of
determining that decision /3 out of -[/11 which has to be made at this time in a
situation S(t). This implies that in the course of learning a covering of the set
-[Si(t)} should be found such that each class in the covering corresponds to a
certain elementary decision /3. On the face of it, the formulated problem is
rerniscent of statements characteristic of pattern recognition theory, but the
classification problem in situational control needs not only to ascertain the
presence or absence of the classification characteristics in S(t) but also the
additional data introduced into the system during learning. These data are not
explicitly contained in the descriptions S(t) and cannot be extracted from them.
Besides, the classifying functions which are either statistical or analytical in
pattern recognition are in our case replaced by informal text-classification rules
derived from operations with texts written in a natural language. Two more
remarks are in order. In constructing a classifier, it is not the decomposition of
the set -{Si(t)} but its cover that is sought. In actual problems with informal
descriptions S(t) this is impossible. Control engineers use different classifi-
cations among which preferences cannot be strictly set. The boundaries between
classes of situations are fuzzy, and the classes are a remarkable example of what
L. Zadeh calls fuzzy sets [16]. The second remark concerns the fundamental
multi-level nature of the classifier. The situations are generalized into classes
gradually and the utility of each intermediate generalization is tested as a result
of making decisions on that generalization. In addition to the vertical con-
nections between the strata of the classifier, the horizontal ones corresponding
to relations that may be established between elements of generalized situations
have an important role to play.

Let us now describe the process of decision making in situational control.
Two stages that are always present in the process may be isolated: classifier
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updating and, most important, decision making. Let us take them separately.

In situational control, the situations are described in a special micro-description

language [5]. Without going into details of that language [6] let us note two

features useful for comprehending the essence of classifier updating. The texts

of the micro-description language use five fundamental sets: basic concepts

A = {alia2,. an}, basic relations R = basic names / = i2,

elementary decisions P = {Ph P2, • • • Pw}, and estimates 0 = {Oh 02, • • • 051.
Elements of these sets are assembled into texts describing input situations

S(t). The set of basic concepts consists of physical concepts and concept-

classes. The physical concept is specified as a set of values of characteristics

defining that concept (for example, a set of readings of some instruments in-

stalled in the control plant). Denote that set as (IL 112, , rid. The concept-

classes are simply totalities of physical concepts homogenous from some point

of view, for example "machine tool", "workshop", "part", etc. Associating a

physical concept with a concept-class is for a situational control system an

external function, and no rules for that association are formulated. Names

serve to personify elements of a certain concept-class. Relations established

binary connections between elements of A, I and P. Consequently, the situation

description S(t) is a certain structure. Let us give an example. A part No. 2754

is on the conveyor belt and approaches a machine tool No. 12. In the language

of micro-descriptions that text will be represented as follows:

S(t) =- (((a2r1 )r3a3)r2((a2 )
r4 (a1 r1 i2)))

where al denotes the concept-class "machine tool",a2 the concept-class "part", a3

the concept-class of conveyor belt ,ii and i2 are names 2754 and 12; the relations ri

denote: ri "to have name", r2 "simultaneously", r3 "to be on", and r4 "to

approach". To link the description of that situation with certain decisions on

control, a correlation rule is developed in the form a •13 which essentially
denotes that in the presence of a one should do 13. In particular, if the decision
Pi signifies "start machine tool", then for our example the correlation rule may
be written in the form S'(t) (pi Ti i2). Elements of P may be directly included
into the situation description, for example S*(t) = (Si(Ors (pi ri i2)) which

signifies (with Ts denoting precedence): "once the situation S'(t) had arisen, the

machine tool No. 12 was started". Formulate now a very important hypothesis

which is the core of all studies in situational control and concerns the power of

the set R. For any developed natural language, the set of basic relations is finite

and contains about 200 elements. It has been proved [3,5] that all other relations

can be obtained from the basic set by combining the basic ones. Once accepted,

this hypothesis enables development of a universal set of rules for transfor-

mation and generalization of situation micro-descriptions.

Now let us take up the description of situations. If there existed a practi-

cally observable set of situations S(t), then one could hope to develop a finite

set of correlation rules whose left-hand parts would enumerate all possible
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descriptions, and the right-hand parts would list the necessary elementary
control actions. It is quite obvious, however, that in cases of practical interest
the cardinality of the set -[S(t)} is so high that development of a set of corre-
lation rules is out of the question. The only way to reduce the number of these
rules is to use generalized descriptions in their left-hand parts. This is the reason
why generalization of situation descriptions is the key problem of situational
control.

The existing systems of situational control use three types of situation
generalizations. The simplest are generalizations by names whereby one class
includes all those situations which differ only in names put in certain sites and
which require the same type of decisions when they arise. One example is the
situation S'1(t) obtained from a situation of the type

S'(t) : r(t) = (((a2ri )r3a3)r2 ((a2ri xi )r4 (ai i2))).

Here x1 denotes "arbitrary name". The generalized correlations rule for that
case is of the form S''(t) (p1,r1,i2). Performing one more generalization by
name and obtaining a description of the situation in the form

S'"(t) = (((a2 ri )r3a3)r2 ((a2 r1 )r4 (ai ri x2)))

where xi and x2 denote "arbitrary names", the generalized correlation rule takes
the form

S'''(t) (pi T1 X2).

Another type of generalization rules are those used in forming the function
of belonging to a class of situations through the values of the characteristics Hi
pertaining to the physical concepts involved in the description of S(t). These
functions are, as a rule, of the form of certain Boolean functions of binary-
encoded values of Hi or predicates of these values.

A third type of generalization rules are those related to generalization of
situations in terms of the structure of relations which describe them [9,14,151
Essentially, in the situations associated with a class these rules isolate a certain
frame (standard structure) whose presence is sufficient to relate a particular
current situation to that generalized class. In situational control, generalization
by frame has proved most productive and effective. It should be noted that in
the theory of robots this method of description generalization is also the key
point in the generalization problem. •

An important point is estimating the quality of a generalization. The system
of generalization may be viewed as a puff-pastry with links between the layers
to indicate transition from lower-level descriptions to descriptions in broader
terms. In the process of search for a generalization, weights are assigned to these
vertical links via estimates 0 whose values are selected during the learning. The
arrangements for the learning process have been described in D. A. Pospelov
[141. It should only be noted that, as already stated, the object of learning is the
search for the covering of the set -[Si(t)} rather than for its decomposition into
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a set of situations. This signifies that in a trained system there may be corre-
lation rules of the form a a and simultaneously rules of the form a 7 where

the recommendations a and 7 are different. To make a decision, estimates of
applicability should be formulated for these rules. The estimates are made of

the same set 0 and are semantic rather than numerical ("nearly always useful",
"needed in nearly half of the cases", "occasionally useful", etc.).

The overall structure of situational control at the functioning state after
completion of the first stage is like this: the system receives the current situ-
ation which is classified into a certain class by the classifier, the decision making
unit uses the name of that class to select the necessary rule from among the
correlation rules and implements that rule. The results of implementation,
together with the decision made, serve further (never ceasing!) learning. If the
system comes across a non-typical situation which cannot be classified, then it
either turns to an expert teacher or tries various decisions by simulating the
process dynamics. Gorbatov [6] describes and analyses the structure of this
system and its functioning as used for situational control in artificial intelligence
problems.

Applications of situational control

Over recent years, situational control methods have been widely applied in
various control systems. In this paper we concentrate on three examples. Other
applications have also been described and have, in addition bibliographies on

situational control.
The first example will be prompt control of batch production. In such plants

the accurately computed long-term production schedule (which is usually the
outcome of employment of mathematical programming techniques) undergoes

large fluctuations over short periods such as shifts or days. All possible distur-
bances cannot be taken into consideration in advance over these intervals
because they are due to human factors, specific technological facilities and
other non-typifiable factors. Therefore, no accurate mathematical models can
be expected for this kind of prompt control. An instrumentation factory control
system has been described [19,20] that proved cost effective by improving the
rhythm of schedule fulfilment. In industrial information and control systems,
situational control will evidently be especially effective at that level.

The second example is situational management in non-typical situations.

Normally, operation of many industrial processes can be controlled through

simple and formal models. But intermittent deviations from the setpoint require

the making of prompt decisions which are outside the scope of standard models.
In such cases situational control can be of certain help. For instance, a control

system has been studied for clinker cement roasting [21,22] where this

approach proved highly effective.
Situational control is also useful in those problems where an accurate

model is feasible but too cumbersome to be practicable. Situational control

methods can reduce the dimensionality of the model, and isolate only that
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subset of versions which contains the best variant, which then is sought with
some formal method. This approach has been used, for instance, to develop
an effective chess end-game program [23]. This approach also helped to reduce
the dimensionality of the transport problem in management of automotive
transport deployment in an oil field [24].

Finally, we would like to discuss the influence on the control theory of
today of dialogue systems using languages close to natural ones.

Dialogue systems for control

To make our conclusions more obvious, we now discuss the structure and
operation of a system of this type that is under development in the Computer
Center of the USSR Academy of Sciences and is called DILOS (Dialogue Infor-
mation and Logical System) [25]. The system is oriented to computational,
informational, and logic tasks and to man-computer dialogue in a language as
close to natural language as possible. Therefore, DILOS has five special-purpose
processors: linguistic, information, logic, computational, and one for system
learning and specification. Each of the above processors has its own data banks
organized according to processor specificity.

User's data presented at the system input in the form of typed text in
Russian (or any other language) are sent to the linguistic processor whose task is
to translate the source message into an interval system language (0-language).
Translation is necessary because the natural language is not a formal system,
it may be ambiguous and very redundant, and the system can operate only
with strictly formally represented facts, directions and questions. The 0-language
is such a stringent analogue of the natural language.

Messages in the 0-language are first classified into several types, the most
important of them being facts for checking (and possibly storing) rules, requests
and direction. Depending on message type, it is sent by the analyser to an appro-
priate processor (information, logic, or computational).

Facts to be stored are sent to the information processor, which is a facto-
graphic data-retrieval system. The processor executes procedures for storing a
fact in the data bank.

For checking, the fact is sent by the analyser to the logic processor that
verifies its truth and consistency in terms of the world model. The logic pro-
cessor is a set of facilities enabling theorem-proving, inductive inference, data
classification, and generalization. The processor can also enrich the input
message by new facts that may be inferred from the input data. If necessary, the
checked and enriched fact may be sent through the information processor to the
data bank.

A message concerning the world model and classified as a rule is sent to the
logic processor. As a result of its processing, the world model may be updated.

A request is first sent to the information processor. If the data bank has
a ready answer, it is sent to the analyser and then to the user in the form of
either a synthesized oral answer, or printed or displayed text. If there is no
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direct answer to the request, it is sent to the logic processor which attempts
to obtain an answer by adding new facts to the data bank so as to satisfy the
request (in DILOS a special request-generated logic inference is realized).
Possibly some. computations (of new facts) are required to generate an answer.
In this case the logic processor generates a direction to the computational
processor.

Directions thus come to the computational processor from both the logic
processor and the analyser. Directions are compiled by the computational

processor into a program consisting of applied program modules stored either in
this computer, or in other computers connected to this one through an infor-
mation network. Computation results are either sent to the logic processor
for further handling, or to the user through the analyzer.

Thus, each type of message in the 0-language has a certain addressee, which
is one of the DILOS executive processors. DILOS also includes a system pro-

cessor that is a set of facilities enabling DILOS' dialogue with the system pro-
grammer. This processor performs initial filling of data bank, world model, and

memories with standard computational modules. The system processor is also
used for system debugging and for updating operational algorithms of other

processors.
Now we shall describe in more detail what DILOS gives to the user:

I. A factographic structured data bank, enabling (by means of the
information processor) storage and retrieval of data on the basis of a
system of "superconcepts — individual objects". Such an organization

permits answers to be formed to non-standard requests (with respect
to any system of superconcepts or relations).

Particular filling of the bank and assignment of this or that system
of structuring superconcepts or relations is performed by the system
analyst through special system facilities without any changes in opera-
tion of the information processor. The information processor may
operate as a descriptor data-retrieval system, if necessary.

2. Reduction of information requests in conventional Russian to a standard
form. Only those concepts and relations should be used in requests that
are embedded in the system.

3. Generation of answers to complicated questions which do not have a
direct answer in the data bank. Generation of answers to such questions
requires computations, logic inferences, and data handling. In DILOS,
these additional programs are generated ad hoc by the system itself
through request analysis.

4. Generation of complicated computer programs from a set of standard
modules is also performed automatically in terms of a request for com-
putation formulated in a conventional natural language by means of an
established set of concepts and relations.
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5. Updating of the data base and the set of realizable functions through
direct user-system dialogue. To put it differently, the system may be
taught either to execute new programs, or to make new logic inferences
based on the world model.

Thus, DILOS is able to perform various functions whose automation was
not feasible until very recently.

In actual applications, various versions of D ILO S may be employed:

(a) The natural-language based data-retrieval system. In this case only the
linguistic and informational processors are used along with the data
bank. In contrast to the conventional data retrieval systems, this version
of DILOs can accept requests in a natural language in typed or oral
form. One can organize the data retrieval system either as the descriptor
type, or as a type where search is done through a set of object charac-
teristics.

(b) The factographic data-retrieval system. This makes use of a simplified
logic processor performing factographic search in the data base in terms
of a given set of relations. The world model is not used. This version
may include all the facilities of (a).

Such a data-retrieval system supplies the user with answers to any
question provided that the data bank has information to be actuated by
the question.

(c) A computer system using a natural language as a task presentation

language. This system involves only linguistic and computational pro-
cessors and applied program modules as well. The user presents his tasks
in his habitual professional language. The computational processor
complies by means of a built-in semantic network complex computation
program consisting of computational modules:I.

(d) An Intelligent Data Bank (IDB) which makes use of all the facilities of
version (a) plus logic processor and the world model. The IDB opens up
essentially new possibilities to the user as compared with data retrieval
systems.

The world model and logic processor enable the IDB to answer
questions for which the data base has no direct answer. Missing infor-
mation will be inferred by the logic processor from the content of the
data bank by means of the laws (logics) of the environment.

(e) The IDB with computations contains, in addition to the above version,
a computational processor deriving new data from the source one, if
necessary. Such an IDB is most comprehensive in terms of the possi-
bilities offered to the user. This version may be regarded as a logic and
computational system using a natural language as the input one.

t Outside the scope of DI LOS, an operable system of this type (P RIZ) has been designed at
the Institute of Cybernetics of the Estonian Academy of Sciences (Tallinn) [26,27].
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In addition to the above versions of DILOS, other modifications are possible
where system facilities may be used in different combinations.

The possibility of making various modifications is due to a special structural
feature of DILOS where all the processors can operate idependently. For the
information, logic, and computational processors, the 0-language is the input
one. This enables a sufficiently simple combination of the processors resulting in
the system most convenient for a particular user.

Besides the problems solved by the advent of DILOS, there is one more

problem of control automation whose solution is impossible without interactive
man-computer systems.

An essential component of managerial activity is the formulation of objec-
tives and tasks for people and organizations that have a specific aim. A clear-cut
formulation of an objective or task is rather difficult except in the simplest
cases (stabilization of technological parameters, robot motion control, etc.).
But at the higher level of national economy or scientific activity it is reasonable
to ask whether this or that objective is necessary and whether this particular
result is desirable. Apart from this, two more questions arise: what higher pur-
poses would be served by attainment of a particular objective, and what are its
consequences (including also undesirable spin-offs)? If it turns out that the
objective was defined correctly, one may proceed to decompose it into a hiera-
chical set of particular objectives and tasks, concerning subordinate persons
and organizations; that is, in essence, one begins to plan, to make preliminary
decisions about assignment of partial tasks and resource allocation.

Thus, mathematical decision-making models are required that can be
adjusted to operate in dialogue mode, and are capable of being embedded into
the organizational structure of planning and management agencies and are
compatible with their functions. This aspect of the dialogue problem is discussed
in more detail in the monograph by Pospelov and Irikov [5].

CONCLUSION
In our paper we have treated only a segment of the spectrum of questions
involved in the estimation of the effects of artificial intelligence theory on the
theory and practice of complex plant control. We have not discussed such
important areas as design automation and control robotization. Nevertheless,
we can confidently assert that the influence of artificial intelligence methods
in this field is very significant and, before long, will become of still greater
weight.
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CHEOPS: A Chess-oriented Processing System
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Abstract
A chess-oriented processing system was built, capable of extremely rapid search
in the game-tree. This report describes the special hardware designed for the
system. There is also a brief summary of some software developed to make this
facility easier to use, and to integrate it into existing Al-oriented programs.

INTRODUCTION

Computer chess was one of the first areas of research into machine intelligence.

Some of the founding fathers of computer science lavished their attention on

the problem [1, 2]. But after a few decades of development, the best chess

programs are still no match for the best human players. In this paper we describe
a chess-oriented processing system (CHEOPS) which we hope will boost the
rate of progress in this area.

Ever since Claude Shannon wrote his classic paper on computer chess in
1950, debate has raged on the potential strength of his methods. By the early

sixties, his fundamental ideas of minimax search and the later addition of alpha-
beta cutoff were fairly well understood. These ideas have formed the basis of
most chess programs, and virtually all strong ones, to the present day.

As computer chess developed during the 1960s, there became apparent a
dichotomy in approaches to the search algorithm. Brute-force programs played
surprisingly well, using algorithms which incorporated relatively little chess-
specific knowledge, but concentrated on attaining the highest possible searching
speed. On the other hand, much effort was expended on programs which greatly
reduce the size of the search tree by using heuristic methods, which mimic some

of the complexities of human techniques of play.

t Present address: IBM Thomas J. Watson Research Laboratories, Yorktown Heights,
New York State, USA.
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The strength of brute-force programs derives both from speed and from
simplicity. The search strategy used is very straightforward; for example:

Examine all moves for a certain number of plies (called the basic depth),
and all capture chains to indefinite depth beyond that. Search by a simple
recursive depth-first enumeration. After the basic depth, update the current
best-so-far (minimax) scores alpha or beta when necessary, using the material
balance as a static evaluation function (sometimes simple positional terms
are added in as well). Pop from a given node when there are no more suc-
cessors to that position, or when one of the successors has already been
shown to be an adequate rejoinder to the previous move (alpha-beta cutoff).
In the course of this search, the effectiveness of cutoffs is improved by gen-1

erating moves at each node in a specific order: for example, captures of high-
valued pieces by pawns first, then captures by pieces, then non-capturing moves
by pawns, etc. Only modest amounts of memory are required to hold state
information during the search. With sufficient static ordering (as in the example
given), the algorithm requires only a push-down list containing the ancestors of
the current node together with the corresponding alpha-beta values found so far
at each level. (A more complex ordering might require the push-down list to
hold the set of legal moves possible at ancestors of the current node, still a
modest amount of memory).

Brute-force programs are usually rather small and simple. Furthermore, they
are quite easy to debug. On the other hand, a moderately strong human chess
player can learn to predict at a glance what variations the program will and will

not see with given settings of the parameters (modulo 'oversights' on his part,
of course).

The CHEOPS system is capable of executing brute-force chess programs
at speeds considerably faster than any of the general purpose machines com-
monly available for chess research — for example, more than a hundred times,
faster than a Digital Equipment Corporation PDP1O-KA10. Such a speed increase
corresponds to an exhaustive search 6 to 8 plies ahead in about two minutes, as
compared to 4 or 5 plies for current programs. One of the aims of the CHEOPS
project is to determine just how quickly the standard of play improves with in-
creased depth of lookahead in brute-force programs, as measured by ratings in
play with human competition.

As an alternative to the brute-force approach, a variety of heuristic or know-
ledge-based programs have been developed [3] . These also incorporate the basic

search algorithm described by Shannon, but the trees searched are very much
smaller: perhaps 100 to 1000 nodes are examined in the course of making a
move instead of several hundreds of thousands of nodes. Two basic heuristic
methods are used to achieve this reduction in tree size:

i) Instead of examining all moves from a given position, the program

attempts to identify the interesting ones and examines those only.

ii) Instead of having a relatively fixed basic depth, the program attempts to
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adjust the search depth to the types of positions encountered, proceeding

deeper only if necessary to clarify the situation.
Although these methods are clearly right in that they correspond closely to

what human masters do, in practice certain difficulties have been encountered

in attempting to apply these ideas. Consider, for example heuristic (i), which

reduces to writing a program which tests a move for being interesting. How

many different criteria are there for determining whether a given move could

possibly be interesting? Let us assume a moderate number, for example 50.

Suppose at a given time we have procedures for checking for 49 of these criteria

coded and debugged, but have not yet programmed the fiftieth one. We find that

our forty-nine fiftieths completed program plays very weak chess! Every time a

move good for the fiftieth reason comes up, the program overlooks it, and hence

may produce arbitrarily gross blunders, perhaps permitting checkmate in a few

moves. More commonly the loss occasioned will be smaller but in tournament

chess even a single blunder which loses a piece without compensation usually

results in eventual loss of the game.
In chess, only within a context supplied by very nearly perfect tactics can

anything called strategy or positional play exist. To arrive at this state of affairs

the program must be nearly finished: in its earlier stages of development, a

• supposedly sophisticated program will be unable to beat even rank beginners.

One can imagine that this is very discouraging for the developers of the program.

One of the aims of the CHEOPS system is to develop ways to combine

brute-force lookahead with the knowledge-based approach, so that they support

each other in their complementary characteristics. In the simplest case, a brute-

force program running in CHEOPS can serve as a backstop to preserve the

morale of the developers by assuring a respectable level of play. It also gives

them an opportunity to obtain badly needed feedback before their program is

completed, and it is too late to introduce major changes.
Sophisticated chess programs tend to be very large and complicated, and

difficult to debug adequately. This in itself can largely explain their poor
performance in computer chess championships. If a sophisticated program
is designed with the knowledge that CHEOPS will be available, the size and com-

plexity of the program can be much reduced. By supplying tactical support to

the heuristic methods mentioned above, CHEOPS frees the high-level program to

deal with strategic issues of play.

1. HARDWARE

1.1 The anatomy of the CHEOPS processor

The core of the CHEOPS system is a high-speed microprogrammable processor

which is specially designed to execute chess-oriented algorithms. This processor

incorporates all the major data paths of general purpose machines (see left side

of Fig. 1). In particular, it has a 16-bit arithmetic logic unit (ALU) which accepts

operands selected from an ABUS and from a set of 16 accumulators (ACC), and
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produces a result on the output bus (OBUS). The ABUS selects data from a

variety of sources — including accumulators, a 1024-word push-down list (PDL),
and various flags and interfacing registers.

ACC

OBUS  

ALU CHARM

  t 

ABUS

PDL

0

Fig. 1 — CHEOPS Block Diagram.

MEMORY (PDP 11

MEMORY BUS

INTER-
FACE

PDP 10

UDR.UAR

FLAGS

TIMING

NAF I IR

CMEM

In addition to the ALU, however, the CHEOPS processor possesses a power-

ful chess array module (CHARM), which contains most of the chess-specific logic

of the system. Like the ALU, this module takes its inputs from the ABUS, and

outputs results into the OBUS, whence they may be written into any of the

internal memories of the machine. The role of CHARM, however, is to perform

the basic non-numeric operations which are required by all chess-playing

algorithms. For example, CHARM can accept a record from the PDL of the last

move tried from a given position, and generate the next possible move in a

specified order. It can also detect conditions such as king-in-check and raise the

appropriate flag, all in a single cycle. Thus CHARM acts as a powerful "com-

binatorial engine" that reduces most fundamental chess operations and decisions

to the execution of a single CHEOPS micro-instruction.
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1.2 The chess arrays

The chess-specific power of CHARM derives from an 8 X 8 hardware chess array,
whose design was originally suggested by Prof. Edward Fredkin. The purpose of
this array is to find a specified subset of legal board moves. Each of the 64
squares retains information about the colour and type of piece (if any) occupying
it. The basic operation of the board array is as follows: first a signal indicating
side-to-move is applied; then an individual square is designated as destination-
square. The output from the array consists of 64 lines which specify which of the
64 squares contain pieces of the moving colour which can capture or move to

this destination. Alternatively, a square can be designated as the originating-area,
in which case the 64 lines assert possible destinations for moves from this square.

Special control bits can cause the array function to be more specific: for
example, it can discriminate captures from non-capturing moves, or pawn from

noble captures. Also, one control bit causes the entire board to be designated as
originating or destination area, so that such general questions as "any captures
possible?" can be answered in a single operation.

The logic which drives the 64 square lines is a purely combinational 8 X 8

array, containing about a dozen TTL DIPs in each cell. For example, an OR-gate
(actually, a NAND-gate in inverted logic) senses whether any of the 8 squares
immediately adjacent to a given square has been designated as a destination; and
if the given square contains a King as well, it asserts "King origin here" signal.
Similarly, other OR-gates detect the presence of possible destinations for pawn

and knight moves from the given square. Sliding pieces are handled differently:

for example, a signal asserting "destination to Northeast" trickles through
squares in each NE-SW diagonal until it encounters an occupied cell, which then

asserts "Queen origin" or "Bishop origin" if the corresponding piece exists.
(Since the selectors through which these sliding piece signals trickle form the
longest signal path in the arrays, they are implemented in Schottky TTL). All
the various kinds of origin signals are gathered together and selectively enabled
by control function bits (that is, depending on whether we are currently generat-
ing pawn or noble moves) to drive the 64 corresponding square lines which form
the final output of the array.

Design and construction of the chess array was greatly facilitated by use of
the Stanford Drawing System. A "template" drawing was prepared for the logic
required in an individual square of the array, with the signal names indexed by
rank and file. Then macros were written which repeated this circuit 64 times,

replacing the indices with the successive square locations. Other macros took
care of edge connections and actual location of the DIPs on Augat boards.

Finally, the program generated a wire list deck which was used to drive auto-

matic wire-wrapping machines. This system not only obviated manual con-

struction of the machine, but thanks to its error messages and file-sharing

capabilities, greatly economized on the design process itself, and automatically

produced a standardized set of documentation. With the help of this automated

design aid, the entire design and construction of the CHEOPS hardware was

completed with about one and a half man-years of effort.
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1.3 The array module

The inner structure of the array module itself (see Fig. 2) is dictated by the

need to drive the array at a rate approaching design capacity. Most of this
structure amounts to a hardwired implementation of the inner DO loops which

scan pieces and squares for the next move or capture. In particular, a square

scanner (S-SCAN) is provided which looks at the 64 square lines, and given a last

square number (LS) generates the number of the next active square line (in raster

order). Similarly, a piece scanner (P-SCAN) takes as input the piece existence

register (PXR). The PXR contains a bit for each piece, which is set for each piece

that currently exists on the board. Given a last piece number and the PXR,

P-SCAN produces the next one, in order of the value of the pieces.

LA
POUT—'

RA

1 PR i—'-

LP

SCAN
PXR

SIR

SR  s

SCAN

PBUS

SQUARE
LIST

PIECE

POUT

PIECE
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1 SR 1
POUT,LOC
PBUS, SBUS

SBUS
PR .SIR—

SBUS

SQUARE LINES

Fig. 2 — Chess Array Module.
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CHARM also contains memories which keep track of the board image in

convenient forms. The square list records the piece on each square; and the

piece list, the location of each piece. Both of these memories, with their

corresponding scanners, are driven by data paths organized into two busses: the

piece bus (PBUS) and the square bus (SBUS). (Note that in Fig. 2, input enters

the tops of memory boxes, addresses enter the sides, and data is output from

the bottom).
These 8-bit busses are entirely internal to CHARM. When the 16-bit input

to CHARM arrives from the ABUS, it is divided into a left byte and a right byte,

which enter the PBUS and SBUS respectively. In this piece-square format, a
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chess move can be coded within the machine as two words: the first describing
the piece moved and origin square, and the second, the piece captured (if any)
and destination square. Selectors within CHARM allow such data to be routed
very flexibly. It can either be fed directly into the scanners, or be buffered in

the piece and square registers (PR, SR), or loaded into the board memories.
The output of CHARM (which goes into the OBUS — see Fig. 1) also maintains

the piece-square format. These two halves of the output word are selected by the
piece-square bus (PSBUS) from a variety of alternative sources within the

module — for example PBUS, SBUS or POUT, SBUS or POUT, LOC or PR, SIR

(see Fig. 2, right side).
Some basic operations of the chess array module are as follows. A move is

made (rather than generated) in two CHARM cycles: first the origin square is

cleared, then the moving piece is deposited on the destination square. A capture
takes three cycles, an additional one to clear out the captured piece. (Although
the captured piece would get properly overwritten on the board, the extra cycle
is required to update the piece existence register (PXR). Each of these cycles
involves routing the desired square to the SBUS and the desired new contents of

that square to the PBUS. Once this is done, activating a single control line will

cause the piece-list, square-list, and piece-existence-register to get updated
simultaneously. Unmaking a move is similarly accomplished by restoring the

piece moved to the origin and then the piece captured to the destination on the
board.

During this unmaking process, the PR can be loaded with the piece moved,
the SIR (designated square input to the arrays) with the origin, and the SR with
the destination. Then CHARM is immediately ready to generate a next move by
scanning the array lines to find the next square to which the same origin piece
can move. If there are no more moves by this piece, the next existing piece is
produced by P-SCAN, its location is loaded into the SIR, and S-SCAN outputs
the first possible destination for this piece. There is no need to enumerate all the
legal moves on the PDL. Instead, only the most recently searched move (the one
in fact played in the current variation) is retained there. Later, when that move is
reverted, CHARM will concurrently be generating the next move to look at,
should it be decided to do so.

CHARM and the ALU work in close coordination during the search process.
In a typical case, the blocks that are pushed and popped on the PDL for each
node searched consist of four words. The first two describe the corresponding
move to CHARM, the third is an alpha or beta value which the ALU checks for
minimaxing and alpha-beta cutoffs, and the fourth records such special con-
ditions as castling rights, ghosts for en passant captures, promotion, etc. Just as
the ALU makes available Overflow and Carry-out bits to the branching control
logic of the processor, so does CHARM generate a variety of flags which
influence the flow of control in the machine — for example, ANYMORE-
PIECES (from P-SCAN), ANYMORE-SQUARES (from S-SCAN), KING-IN-
CHECK and CASTLING-POSSIBLE (from special logic on the array). The
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coordination of CHARM and the ALU is thus facilitated by their Parallel roles
not only in the data paths but also in the control logic of the CHEOPS
processor.

1.4 M icrocontrol

The sequence of operations in CHEOPS is determined by a large (1K by 64 bit)
RAM control memory (CMEM on right of Fig. 1). Each micro-instruction
consists of four 16-bit words. At the beginning of a machine cycle, all four of
these words are loaded from the current microaddress into the instruction
register (IR), from which the bits are routed to the various function control,
selector, and write enable bits in the machine. The first word of each instruc-
tion includes a next address field (NAF), and a conditions field, which specify
a set of four flag bits to be IOR-ed with the four lower-order bits in the NAF to
produce the next microaddress. Hence every micro-instruction is potentially a
16-way branch. There is also an OP-code bit which determines whether the rest
of the instruction should be decoded as an ALU or array operation. In the ALU
case, the remaining words specify ALU function, A source, accumulator source,
OBUS destination, etc. In the array operation case, they specify array function,
bus select and write enable for memories internal to CHARM, and the A source
and 0 destination for communication between CHARM and the rest of the
processor.

The first word of an array instruction (specifying array function and internal
bus select) is latched in a separate array instruction register (IRA) during ALU
operations, so that arithmetic can be done during array operations that take
longer than one cycle to settle. Thanks to this technique, the cycle time of the
machine is about 180 nanoseconds. In other respects, the timing is completely
straightforward. The IR is latched at the beginning of each cycle, setting up
addresses for the sources and all the data path selectors, and specifying the
function control bits for the ALU and CHARM. During the middle of the cycle,
the data trickles through CHARM and the ALU and settles on the OBUS. At the
end of the cycle, the destination is clocked and a new IR is strobed in. Slightly
higher speed might have been achieved by attempting to overlap the RAM writes,
but the resulting complexity would have made it more difficult for the user to
microprogram the special-purpose machine.

The remainder of the CHEOPS system consists of a PDP-11 and a time-
shared PDP-10 which communicate with the special processor through a special
bus interface (see upper right part of Fig. 1). In the crudest mode of interaction,
the general purpose machines can stop CHEOPS, read and write directly into
memories and microstore, and restart at an arbitrary address. Without stopping
the processor, the machines can effect CHEOPS through flag bits, and can read
the contents of a status register. Finally, CHEOPS itself can initiate data transfers
or interrupts on the UNIBUS. These various facilities provide a basis for efficient
communication between algorithms running on the CHEOPS processor and
high-level programs running on other computers.
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2. SOFTWARE

2.1 Utility programs

A series of utility programs were written to make CHEOPS accessible to the

user from video terminals on the time-shared PDP-10 system. A chess micro-

assembler (CHASM) accepts mnemonic specifications of fields for CHEOPS

microcode. It also resolves address labels and efficiently allocates blocks for

branch destinations. A CONSOLE program provides all of the usual facilities of

a console to the special processor — for example, start, stop, and single-step,

examine and deposit registers, load microcode, etc. In addition it automatically

translates data into alphanumeric or other implicit data types, recalls the

CHASM labels corresponding to micro-addresses, displays square lines and board

image, examines the stack of moves in the current game, and executes rapid store

and restore of the state of the entire machine from disc file. Finally, it imple-

ments a variety of debugging features that facilitate the finding of speed-

dependent errors, as well as other less subtle problems with CHASM code.

2.2 Baisleys's TECH II program

Alan Baisley of the MIT Artificial Intelligence Laboratory has developed a

number of brute-force oriented programs, the simplest of them resembling

Gillogly's TECH Program in many respects [4]. The moves from the top level

position are ordered according to plausibility by a program on the PDP-10, using

a variety of measures, such as pawn structure, control of centre, and king safety.

The resulting positions are shipped over to the CHEOPS processor, where .an

alpha-beta minimax search with material balance as an evaluator is performed,

returning a principal variation. This search contains a few refinements, such as a

weighted depth parameter, which is incremented by 1 for normal moves and by

0 for replies to check. Out of the positions which receive the highest evaluation

from CHEOPS, the fist (hence presumably most plausible) is actually played.

Special high-level routines deal with endgame situations.

2.3 The Greenblatt program

The Greenblatt MACHACK Program [5] is also being integrated into the

CHEOPS system. The CHEOPS processor plays two kinds of roles in this

context. First, as a background task, it does a Baisley-type brute-force search

from the top position, the result of which is used for comparison with the final

choice made by the heuristic program. Second, as a foreground task, it does

short searches (that is, 3 plies exhaustive, plus capture chains) from nodes within

the game-tree searched by MACHACK, to provide a tactical backstop for the two

kinds of heuristics mentioned in the introduction.

In particular, CHEOPS performs these mini-searches to rectify the action of

the plausible move generator, alerting the high-level program to possible material

gains for either side that might otherwise be missed. Finally, a mini-search is also

initiated during static evaluation of a terminal node. If the result does not agree

with the heuristic evaluation, or if CHEOPS indicates future material exchange in
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an apparently stable position. MACHACK will proceed deeper to clarify the
situation.
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Computer Analysis of a Rook End-game

V. L. Arlazarov and A. L. Futer
Institute of Control Sciences, Moscow, USSR

Abstract

This paper describes an algorithm for dividing the set of positions in a single-pawn
Rook end-game into winning ones for White and drawing. Data arrangement and
processing methods are described whereby within reasonable computer time,
large (up to about 1500-million bits) data arrays can be studied; a number of
procedures are put forward, such as search for problem symmetry, levels of data

arrangement, data restructuring, batch processing of data, and others.

1. INTRODUCTION

In programming a computer for chess, the end-game is of special significance.
The reason is that there are approximately as many alternative moves in an
end-game position as in the middle game, namely several dozen. For playing,
however, strategies many moves deeper are needed, and so the methods of tree
search to a limited depth [1,2] do not work very well in end-games.

On the other hand, full analysis of certain end-games with a few pieces
seems a promising idea. This implies that for each position the result of the game
and strategies of the players are determined. A substantial step forward in this
direction was the analysis of a single-Pawn Queen end-game (the King, the
Queen, and a Pawn against the King and the Queen) with a White Pawn on
g7 [3].

This paper will discuss a single-Pawn Rook end-game with the Pawn in an
arbitrary position.

There, a set of positions is taken up where White has the King, a Pawn, and
a Rook agains Black's King and Rook (KPR-KR). For each position (of four

pieces, a Pawn, and the move) it is required to determine whether it is a win for
White, and indicate the best possible move.

Note that the size of such a set of positions is about 1500-million (60 X
48 X 2). If each position takes one bit, then practically all the resources of one
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of today's large computers will be used up. And each computer operation for
one position takes up to one hour (with the computation rate of 500 thousand

operations per second). Therefore if the previous algorithm [3] were simply
transferred into this problem it would require about one thousand hours of
computer time.

This paper will propose a general procedure of end-game study. Then an

algorithm is described whereby the set of positions in a KPR-KR end-game
is divided into winning and drawing ones. For each winning position we deter-
mined the number of moves to win the position, so that the best move is indi-
cated for each position. The data structuring and processing methods and pro-
cedures, which may be of special interest, are described.

2. A STUDY PROCEDURE

Any arbitrary end-game is studied in two stages. First positions are defined

which incorporate successful moves leading to another end-game. Then positions
are written in sequence that are reducible to the desired one in one move, two
moves, etc.

Let us give a more detailed explanation of each stage. White has, for instance,
the following moves to other end-games. The pawn can become a Queen or a
Rook, or the Black Rook can be captured, possibly together with promotion. If
any of these moves is successful, or leads to a winning position, the original
position is assumed won for White in zero steps and is included into the class
Wo (zero rank). If there are no such moves in a position or if none leads to a
victory, the position is ranked as NW, nonranked White.

In a similar way, Black can take the Pawn or Rook and secure a draw (or
a victory, which will not be discussed hereafter). Thus a set B, is obtained.
Positions without such a move are the NB, non-ranked Black, class. Now let us

take up a set of positions from NB which has no moves in NW These are positions
all moves from which lead to the complement of NW, or they are Black's games
lost in one move. These positions will be referred to as the set of the first Black
rank, RBI.

Remove RBI from NB and take up RW1 (the first White rank), or those
positions of NW from which there is a move into RBI. These are White's wins
in one move. Remove them from NC, etc. Fig. 1 illustrates this ranking pro-
cedure. (Here A-1 denotes the class of positions which may have at least one

move in to the set A and the symbol \ denotes set-subtraction).
The procedure ends when the set of positions of the next rank, RB i or RWi,

is empty. The sets NB and NW at that time are draws with moves of Black or
White, respectively. This ranking is consistent with Zermelo's approach [4] if the
end positions are those of the sets Wo and 130.

Let us apply this procedure to all the end-games obtained from KPR-KR
(referred to as junior). The end-games will be taken successively upward, starting
with the simplest ones. In this way the positions inferior to the current ones will
have been studied. Fig. 2 shows the graph of end-games.
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Each of the junior end-games was studied separately and in different ways.
None of them is of interest to chess players. For our problem, however, we
needed complete sets of winning positions or drawing positions or both for each
of them.

3. REDUCING A KPR—KR END-GAME TO A FOUR-PIECE ONE

Because of the vertical symmetry of the chessboard the KPR-KR ending can be
studied only for one half of possible Pawn positions. Besides this, the Pawn can
move to another column only by capturing, which would result in another end-
game. For these reasons the whole study is four independent analyses of the

a, b, c, and d column.
Now let us show that one column can be studied in steps the size of a

square, in other words, the problem is reducible to study of a four-piece
end-game with the Pawn fixed.

This reduction can be performed by a method analogous to the junior end-
game procedure with a move by the Pawn regarded as obtaining a new end-game.
In other words, in studying positions with the Pawn at the jth row an array can
be obtained of Pi losing positions with Black's move. Then, in studying a square
of cfr• 

si)
th row, White's positions having a Pawn move into that array are included

in the zero rank set.
In this approach, however, the position ranking becomes artificial because

the position rank denotes the minimal number of moves until the Pawn is
advanced rather than the minimal number of moves to a victory. This kind of
ranking is an incentive for White to advance the Pawn even at the risk of heading
into a difficult, albeit winning, position. In real games the advance of the Pawn
should often be stalled; the larger pieces should secure good positions and then
win the game quickly.

To obtain a natural ranking in studying a square of the jth row we store the
array Pi as a merger of sets of successive Black ranks P1 = y Pi where Pi = RA are

sets of positions with a Black's move lost in t moves (with the Pawn at the
th row). Now in processing a square of the (j-1)th row, positions with White's
move of the Pawn in I are assigned to RW,, the ith White rank; Blacks's losses

are entered in the array P1_1 = etc.
This procedure significantly reduces the data storage for one problem

to 644 X 2, 32 million positions, which with one bit allocated per position

means about four million bytes.

4. METHODS OF DATA PROCESSING AND STRUCTURING

Data arrays of the size of about a million bytes can be stored only in magnetic
media. As follows from section 2 these arrays need to be repeatedly processed
to go through the ranking procedure.

This is why economical access to media is an urgent requirement. We
will enumerate the basic methods and procedures whereby this, essentially
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an exchange problem, can be solved at a practically possible processor rate.
A reasonable time of program operation was needed, a mere 60 computer
hours.

4.1 The data structure

This requires three levels: distribution of data components into blocks (a block
being an exchange unit), the location of units in the array, and allocation of
arrays among shelf media. Thanks to the existence and interaction of the first
and second levels, the number of accesses to the magnetic media is not high. The
third level requires, in particular, the use of different kinds of media, sequential
and random access.

The number of the latter is usually limited in each computer configuration,
we needed them for performing the data re-ordering algorithms. Thus in the
program for creating a set of positions of a subsequent rank, transposition
algorithms for 4096 X 4096 square matrices were needed. (When a Black rank is
obtained, Black chessmen retreat and White chessmen are fixed, and the reverse
is true). To reduce the output arrays of the program to a format convenient
for computer playing of a Rook end-game, a transposition algorithm was
developed for a rectangular matrix of 60 X 16 million. Thanks to transposition,
each unit of the arrays was processed the first time it was accessed.

4.2 Formats of data arrays

As is often the case, in our problem two conflicting requirements had to be met,

reduction of the amount of the data stored and ease of its use. To resolve this

conflict, two chief formats were used, unpacked and packed. In the former the
address of a four-piece end-game position in the data array is defined as a linear

function of the position of these pieces. In the latter the positions are stored as
a list.

4.3 Buffering

In all parts of the program the processor and the exchange channels operated in
parallel. When a new rank was constructed, three buffer spaces were used. At
each instant a block of the array, for example NW, was read into one of them,
another was accessed by the processor, and in the third the renewed state of

, the array was written into the medium. Once an operating cycle was completed,
,the regions ehanged their function by circulation. The program itself needed
appropriate restructuring because all its commands were adjusted for using the
appropriate part of the store.

4.4 Development of improved exchange software

Convenient macro-operations were developed for array opening and closure.
Also, for compatibility with the multi-buffer configuration and for making
the exchange periods approach the potential of the media, the macro-operations
of exchange with the tape and the disc had to be improved.
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5. PROGRAM IMPLEMENTATION OF THE ALGORITHM

5.1 Batch processing of positions

In analysis of end-games the positions were handled individually in almost no
part of the program. The argument and the operation result are position sets: a
document of 4096 bits (positions of two chessmen change), a board of 64 bits
(the position of one chessman is variable) or still smaller sets of bits.

The method proved especially effective in transposition algorithms for
unpacked arrays (Sec. 5.2) and back-up (Sec. 5.3).

5.2 Transposition

A square matrix of unpacked format is transposed in two stages. First each row
of the original matrix is divided into equal parts. Parts of different rows
belonging to the same groups of columns are assembled and written into
the medium. This is performed repeatedly (twice in our case) until the set of
columns of the original matrix can be stored in the core memory in its entirety.
Then in the memory the transposition is completed by the method put forward
by M. M. Bongard, involving permutations and conjunctions of sets of bits.

The algorithm takes somewhat less than a minute for a 4096 X 4096 matrix.
A square matrix in packed format is transposed in a similar way. The matrix

is divided several times. Each of its squares is covered by some part denoted by
the ordinal number of the column. The transposition time for a packed array is
proportional to its size and is the same as the unpacked transposition time for
about 500,000 nonempty elements.

The ouput of the ranking program was a totality of arrays Pi (see Sec. 3).
To facilitate computer playing of Rook end-games, this totality should be
recorded. For each jth position of the Pawn a rectangular a X 224 matrix should
be tranposed where the number of ranks a varies for different j from 20 to 60.
Originally, this matrix was represented as rows, or as successive subarrays, each
represented in a packed format. In transposition each block of these subarrays
was transferred to a disc, a random access medium. Concurrently, an inquiry '
file g is made in main memory, where for each block B of the disc the disc;
address of that block and the number of the column of the matrix for the first ■
element in B are entered.

Then the inquiry file S is ordered in terms of the numbers of the columns;,
an S file is obtained. Now the processor memory successively calls block of the!
disc in compliance with the movement in S. Elements of similar columns are:
grouped and entered into the medium.

This routine takes 20 to 30 minutes for each j.

5.3 Backing moves

The argument and the result of the operation MRK, that is, backward moves
by the Rook and the King, is a document of unpacked format, 642 = 4096 bits.
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Let the White pawn be in square p; the document D assumes positions
m and n of the Rook and the King of the colour and inside the values k and 1 of
squares of the same pieces of the other colour. Let us refer to pieces taking the
squares p, m and n as external (for the document D) and those taking k and 1 as
internal. Also, let us define the position of the Rook in terms of the coordinates
m and k and that of the King, n and 1; in other words, the Rook is assumed
senior to the King.

A document is required, D = MRK(D) whose unit bits will be associated

with positions with at least one move by internal pieces into some position
recorded in D.

The operation MRK is represented as a merger of two operations, MR,
moves of the Rook, andMK, moves of the King: MRK = MR UMK; in other words,
we will have two intermediate documents, °DR= MR (D) and DK = MIC(D)
which will be merged later: MRK(D)= DR U DK.

The document DR = MR (D) is obtained as a totality of boards DR (q),
0 q <63 where DR(q) denotes a portion of the document DR, namely 64
successive bits associated with the position of the Rook at the square q.

Let the internal Rook be at the square qe. Then there are fourteen squares,
q1, q2, within its tange in an empty board. Remove from this set those
squares that are shielded by external chessmen. The remaining squares make a
set Q =

Let us take up a totality of positions recorded in the board D(q,) of the

original document D, qi E Q. From this totality remove positions associated
with the positions of the internal King between the squares qi and qc. Then
for each of the remaining positions there is a move of the internal Rook from
the square qi to the field qe. Therefore to implement this move, first, the board

D(q1) should be moved to D(q) and, second, to make the bits associated with
the fields between (11 and qc zero. Perform this operation for all qi from K and
unite the results in DR(qc).

To save computer time, for each square of the chessboard a separate pro-
gram without cycles was written which implements the moves of the Rook
to that field (with the chessboard empty). The program was not written manu-
ally; instead, a sentence of its commands (approximately 64 X 50 long) was
developed by another program. The resulting back-up program was corrected
for each set of positions of external chessmen which shielded certain squares
from the internal Rook.

The operations of MK (moves of the King) over the document D are per-
formed separately for each board D(q), 0 q < 63. The board D(q) leads to
the board MK(D(q)) where one's are in the bits of those squares from which

there is at least one move of the King to the unity bit of the board D(q). The
MK operation for one board takes several logical commands of the computer.

The entire MRK operation over a document of 642 bits took five to six
thousand computer commands, or about a minute of computer time for each
rank.
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6. COMPUTER RESULTS

In program operation, obtaining first ranks of each square took a few minutes

and for subsequent ranks, 30 to 45 seconds. Each column took about 15 com-
puter hours.

Computations revealed that in the seventh row the number of ranks varied
from 20 to 23 (for different columns). This number increased with decreasing

ordinal number of the row and amounted to 50 by 60 by the second row. The
number of positions won by White with the move of White varied from square

to square within 1.5 to 4.5 million and with Black's move from 0.5 to 5.5 million.
Only these positions, or losses of Black, were retained in the program

output, which required, depending of the position of the Pawn, from two
to eight million bytes. The overall size of this set of positions for all the squares

was about 60 million and their storage required about 120 million bytes.
After classification of all the positions into winning for White and drawing,

the same procedure was used to classify the drawing positions into enforced

and positional draws. Enforced draws are those achieved by capture of the
White Rook or Pawn in several moves in positions of the KPR-KR type. Foi
human players the outcome in such positions is a foregone conclusion; the
fraction of such positions, especially for the last rows, is tremendous. Thus, for
the square d7 there are about 2 million draws, achieved with a move by Black,

and among those only 35,000 are positional.
In positions which take White the longest to win (60 moves) the white

Pawn is on the field b2. These positions are shown in Figs. 3-6 (Black's move):

Fig. 3 — w: K c3, R c4,P b2; b: K e4, R dl.
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Fig. 4 — w: K c3, R c4,P b2; b: K f4, R dl.

Fig. 5 — w: K dl, R d6, P b2; b: K h6, Ra8.

369



MACHINE ANALYSIS OF CHESS

Fig. 6 -w: K dl, R d6, P b2; b: K g7, R a3.

What follows is the optimal way to victory from the position of Fig. 3 (1):

White Black White Black

1. Ke5 20. Kd5 Rd8+
2. Rc5+ Kd6 21. Kc4 Rc8+

3. Kb4 Rb! 22. Kd3 Rd8+
4. Rc2 Rfl 23. Kc2 Rc8+
5. Kb5 R15+ 24. Kb! Rb8
6. Kb6 Rf8 25. Re3 Rd8
7. Rd2+ Ke5 26. Kc2 Rc8+

8. Kc7 Rf4 27. Kd3 Rb8

9. Kc6 Rc4+ 28. Kc3 Rc8+

10. Kb5 Rc8 29. Kd4 Rd8+

11. Rh2 Rb8+ 30. Kc5 Rc8+

12. Kc6 Ke6 31. Kd6 Rb8
13. Rh6+ Kf7 32. b3 Rb5
14. Rh7+ Ke6 33. Kc6 Rb8

15. Rh2 Ke7 34. Rd3 ICf8
16. Kc7 Rb3 35. Kc5 Ke7
17. Re2+ Kf7 36. b4 Rc8+
18. Kc6 Rb8 37. Kb5 Rb8+

19. Kc5 Rc8+ 38. ICa4 Ra8+
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White Black

39. Kb3 Rb8 50. Ka6 Re7

40. Rd4 Ke6 51. b6 Re3

41. Kc4 Ke5 52. Ka7 Kc6

42. Rd5+ Ke6 53. Rg6+ Kb5

43. b5 Rc8+ 54. Rd6 Rf3

44. Rc5 Rb8 55. b7 Ra3+

45. Kb4 Ke7 56. Kb8 Rc3

46. ICa5 Kd6 57. Rd2 Kc6

47. Rg5 Rc8 58. Ra2 Rb3

48. Kb6 Rd8 59. Kc8 Re3

49. Kb7 Rd7+ 60. Rc2+ Kd6
61. b8=Q+!

White easily wins in the resultant position.
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The reader should be aware that not all possible derived sub-games are covered in the

authors' Fig. 2. Some of these (e.g. KN-KR) would require further computations for sub-

division according to the "won-drawn-lost" criterion.
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Abstract

Adaptive search algorithms are considered, built around the KAISSA chess
program. Adaptation of the program to a given search problem consists of
building, treating, and using information contained in a so-called "Reference
Book". The information consists of a number of elements describing the
duration and results of searches of various subtrees. So in the program local
search rules are built and used. These rules advise or forbid certain moves in
the search. This paper contains both a formal and an informal description of
the adaptive search algorithms. A number of chess illustrations of the program's
working are given. On the basis of the chess program, algorithms can be written
that use human chess experience.

INTRODUCTION

This paper describes algorithms of adaptive search that act as a superstructure
of the chess program KAISSA. A detailed description of the basic program
algorithms and their theoretical substantiation can be found in the reference
which also gives precise definitions of notions used in this paper.

Program adaptation to a specified search is data generation, processing,
and use in a so-called Reference Book. This consists of element lists describing
the results of the search of various subtrees. In this way rules banning or advising
moves in the search are generated, corrected, deleted, or applied to the program
search. In comparison with the global rules for search reduction used in all chess
programs these rules have two advantages: (a) high frequency of applicability
and simplicity of applicability check, and (b) absolute accuracy of applicability,
in that application does not change the search results obtained without using this
rule.

The paper consists of seven parts. The fist updates and explains the
definition of "influence" [1] which is the basic linguistic tool for the algorithms
of adaptive search.
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The second part contains a general description of the algorithms.

The third part describes the Reference Book format, contents, data struc-

tures, and links between elements of these data.
The fourth part gives a detailed description of algorithms for data genera-

tion and processing in the Reference Book.
The fifth part describes the Reference Book algorithms for search reduction

and improvement of move ordering.

The sixth part illustrates elements of both the notion of influence and the

algorithms of adaptive search.

The seventh part discusses results, the problems facing further advances

along these lines, and approaches to their solution.

1. THE INFLUENCE RELATION

Let L = (p,q) be a pair of plies from the position U to the position V. Define the

boards of this pair.
p°,q° are squares-from for the ply p and the ply q respectively.
p;q1 are squares-to of the respective plies.

10 - are squares of the line along which the move p was made,
excluding the initial p° and the final pl fields of the move

P;
— if in the position V the q-King (of the player who made

the move q) is not checked, then T,' is empty; otherwise
these are check lines including squares where the q-King
and the checking piece are;

12 — if in the position V there are no pinned q-pieces, then 12
is empty; otherwise for each pinned q-piece12 contains a
pinning line starting with the square where the pinner is
and ending with a square where the q-King is, both these
square inclusive;

r, = r,0 u u r,2 _ are paths of the pair L.
17 — are positive lines of the pair L or sets of squares for which

there is a q-piece attacking this square in the position V
and not attacking it in the position U. The square q° is not
included in r.

Le — are positive long-range lines, or sets of squares for which

there is a long-range q-piece (a Bishop, a Rook, or a

Queen) attacking this square in the position V and not
attacking in the position U. The square q° is not included
in 1,°.

— are negative lines of the pair L, or squares for which there

is a p-piece which attacks this square in the position U
and does not in the position V.
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— are new checking potential, or a set of squares for which
there exists a piece type so that a q-piece of that type
can check from that square in the position V and cannot
do so in the position U.

L* — blocking the q-King. If in the position V the q-King was
not checked the set L* is empty; otherwise it contains
squares where the q-King cannot move because they are
occupied by its own pieces;

— if in the position V the q-King is not checked, then e is
empty; otherwise it contains squares where the q-King
cannot move because these squares are under attack by
the opponent's pieces.

The boards of the set of pairs are defined as logical sums of associated
boards of each pair. The set of pairs L1 "influences" the set of pairs L2 if one of
the following intersections is nonempty.

(du p? up)n(pyypluLliucd)

(p? Up U q U cd) n E2

U n(7 U L*2)

rt n (IRU q U A)
E1 n(pUpUq'Uq)
n u

Lj n

U u Lei) n (py u ca)

In chess terms, "influence" implies the following:

If the variation L2 lost and the moves L1 include those that can affect the
results of the variation L2 (either by generating new possibilities for the losing

- q-player or hindering best moves of the p-player), this will necessarily be felt in
the influence of L1 on L2 by the formula. The reverse is not true, the formula
may speak of the influence of L1 on L2 although this is not the case.

Notes on the notion of influence

(1) p? flp? — the same piece acts in both variations. In particular,
this intersection is nonempty in overloading.

(2) n p — a square where the opponent moves in one variation,
is taken in another. This intersection may indicate
decoying.

(3) n PI
and pi n — occur only with other intersections.

(4) q? n p — a piece which was captured in one variation leaves the
dangerous square in the other.
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(5)
(6)

(7)

(8)

(9)

(q? Up?) n

(g? Up) n
U

(10) (pl Uqpn

(11) E2

(12) pl

(13) (14 U g?) C) —

(14) p1rIL
(15) q? nt2

(16) ri n (p? U
(17) ru+2

(18) E, n (pi (")
(19) E, n (AU q?)
(20) L41 flZ
(21) Lflp
(22) L+1 n

(23) E1 nL

(24)
(25)
(26)

occurs only simultaneously with other intersections.
in one variation a piece moves to the square on which,
in the other variation, there is a new attack.
in one variation a piece which was under attack in the
other has moved. This may indicate opening up a line
for another attack.
occurs only simultaneously with other intersections.
in one variation an opponents's piece has moved to a
square to which, in another variation, one's own piece
has moved.
in one variation a piece moves to the path of a move in
the other variation. Then the latter may either become
impossible or ceases to be a check. This intersection
may also be cutting a pin.
in one variation the q-King made a move and in the
other it was checked. Now the latter may cease to be a
check.
in one variation a piece has made a move which pins a
piece in another. Now the pin may cease to exist.
in one variation the piece has moved from the square
through which checks could be made in the other. May
indicate a new check.
can occur only with other intersections.
in one variation a piece leaves which blocked the
q-King in the other. Indicates a new check evasion.
see (12).
there is a square from which a check can be made in
one variation; simultaneously, it belongs to positive
lines of the other. Indicates the possibility of a new
check.
see (10).
see (11) and (12).
see (17).
see (6).
in one variation the check path of the other variation is
intercepted. Indicates a new response to a check.
in one variation the attack is removed on a square
where the q-King could not go because of the oppo-
nent's attack. May indicate a new evasion of a check.
see (5).
see (3).
in one variation an opponent's piece is captured that
made a move in the other. The opponent's move
becomes impossible.
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(27) qflq? — see (8).
(28) a n (q? Up) — in one variation a long-range piece has attacked a

square left by a piece in the other version. May indicate
discovered attack.

2. THE GENERAL ALGORITHM

At any time the Reference Book contains elements of data associated with
positions of the current branch (sequences of moves leading from the initial
position of the search into the one treated at this particular time). Each element
contains data on certain moves; these data represent, generally speaking, the
course and result of searching a variation beginning from that move in the
position associated with this element. These data include the refutation of the
opponent to that move, the material loss from this variation (this loss may be
negative; instead of the contention "the move loses at least a Pawn", the con-
tention "the move gains no more than a Knight" is true) and boards of that
variation.

At the time when the move generator proposes some move into the search,
the program verifies whether there are elements which contain data on that
move in the Reference Book. Then for each element tests are made (using the
influence formula) also whether the variation described by that element holds
and whether we can afford the material gain specified in the element. If there is
an element for which the loss is large enough and the variation holds, the search
of the move is delayed.

When the search of all non-delayed moves from the position has been
completed, for each delayed move the influence of the version described in the
boards of the associated element on the minimax subtree of a variation from
that position is tested. If there is no such influence, then the move is cut off
because the move loses by virtue of the condition of the preceding paragraph, by
itself and, by virtue of the latter condition, in combination with others.

Special attention should be given to elements containing data on an
"empty" move. They describe material loss if they are in a position to let the
opponent make a move without moving on the board, and are thus referred to
as "threats".

In each position it is established, even before move generation, whether
there is a threat whose variation holds in this position with a large enough
material gain.

If there is such a threat and the other side is not poised for a new attack,
the search is stopped because this threat can be carried through and a gain be
obtained.

The Reference Book elements are constructed in moving upwards along
the tree. When the search from position V is completed, for each element
assigned to this position the program first decides whether the data which is
contained in that element is valid in the position U of the current branch one
level higher. If it is, the element is assigned without change to the position U.
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If this_is not the case, or if in point of fact the variation at hand has been
provoked by the move, p, along which backing up is made, it is checked whether

this element was generated at the minimax subtree from the position V. If this

is not so, the element is simply deleted from the Reference Book. If this is so,

the data contained in that element will be merged into the data of the new

element describing the move p.

If the move p wins in the sense of the minimax procedure, then the resul-

tant element is a threat; if it does not, it is an ordinary element.

3. THE REFERENCE BOOK FORMAT

The Reference Book is structured as a number of lists. Two lists are pushed up
through each element: the list of elements of a specified level and the list of

elements associated with a specific move described by a "piece-square-to"
couple. For each level there is a heading of the list of elements at a given level,
containing the address of the first element of the level, and each element has a
reference to the subsequent element of the same level.

Also, for each square of the board there is a heading of the piece list on
whose moves to this square at least one element in the Reference Book is avail-

able. This list is made of references. The list of pieces is made by heading
elements of the list of elements with a fixed "piece-square" couple. Simul-
taneously, they contain data on a certain variation of that move.

Thanks to this structure two basic operations take little time: access to all
elements of a specified level, and access to each element for a specified move.

In addition to these four references a Reference Book element contains the
refutation, the amount of material loss, and boards of the variation.

4. ALGORITHMS OF REFERENCE BOOK USE

Once a certain move defined by the "piece-square-to" couple has been generated,
the program looks for elements in the Reference Book that would contain
data on that move. When the first such element is found, the program verifies
whether the material difference brought about by the variation of this element is
sufficient for a-0 pruning. If it is not, the program proceeds to the next element.
If it is, the program constructs boards of the branch which leads from the
position to which the element is assigned to the current position. Then these
boards and the variation boards contained in this element are used to verify the
influence of the branch on the variation. If this exists, the program proceeds to
the next element. If not, the search of the move is delayed and the element
which causes this delay is stored.

If none of the elements causes a postponement, in the beginning of the
"piece-square" list a special element is written which prevents the move verifi-

cation on the knowledge of the already existing elements in the entire subtree
of the current node.

After dealing with the nondelayed moves, the program takes up the delayed
ones and verifies whether the variation element causing a delay influences
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the minimax subtree of the current node. If it does not, the move is kept
delayed.

When such influence is present, the next element of this move is taken up,
and both the influence of a branch which leads from the position associated
with this element toward the current position on the variation of this element
and the influence on the same variation of the minimax variation from the
current vertex are verified.

If an element is found with neither of these influences, the move is delayed

again. The address of the element causing a new delay is memorized.

Moves with influence for all the elements are included in the search. Upon

completion of searching these moves the program again verifies the influence

of the minimax variation which is naturally broader, on the corresponding

variations of elements.
The procedure terminates in one of two cases — either all the moves are

included in a complete search, or none of the delayed moves is included in it.

In both cases the search from the current node terminates. In the other case a

part of the moves is cut off.
Testing threats is much more complicated. Apart from the influence on

threat boards of the branch leading to the current position from the one with
which this threat is associated, one has to check whether the opponent can

make new attacks or has any threats of his own.
The latter case is most unpleasant since there are no means of testing

whether the threat grows (an influence is just a means to test whether the

threat weakens); to say nothing of the difficulties in determining, with the

use of these two threats, the result of their interaction.

In this case, the present program does not stop the search, because the
information available is insufficient for a satisfactory prediction of the search
result from this position.

The Reference Book is finally used for improving the order of the moves
in the position. The threats which were found by tests to be futile are included
in the search before other moves, together with the profitable captures. This is
substantiated by the relative redundancy of the influence formula [l].

Often, even if influence exists, the threat wins. On the other hand the
complete search of threats which are not now winning, costs little, and mistakes
are not crucial, because the search ceases very rapidly.

For the same reason, before allowing the inclusion of a move whose elements
the Reference Book contains, the program at first responds by searching the
moves written down in these elements as refutations.

5. THE REFERENCE BOOK UPDATE ALGORITHM

Going back up the tree with each element associated with positions where the
search is completed, the program carries out the following procedure.

Depending on the side which runs the variation described by this element
the boards for one backward ply are built (to be more exact, the pairs "empty
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move—backward move" or "backward move—empty move" depending on the

side which made this move). Then these boards are used to verify the influence
of this ply upon the element version. With no influence the program adds this
element to the position from which this ply was made. If influence exists, the

program verifies whether this element is taken from the minimax tree of the

current vertex. If it is not, the element is simply deleted from all the lists,

otherwise it is included in one of the two special lists (for each player) of

elements associated with the current ply.
Thus after processing all the elements associated with the current position,

some of these elements will be associated with the previous position of the

current branch, some deleted, and the remaining ones associated with the

current ply.
The program then starts processing the current ply. If its estimate does

not go as high as the upper bound, an element is generated which describes
this move. Its boards comprise logical sums of the squares of the entire ply
and those of all the elements associated with the current element of the same
side.

If the estimate of the current ply exceeds the lower boundary, a threat is
generated, along with an element holding the information on an empty move.
Then the current ply is recorded in this element as the refutation. The threat
squares are logical sums of squares of the "empty move — current ply" pair

and of all the elements of the other player associated with this element. The
material difference as a result of the threat is that of the "empty move — current
ply" pair plus the minimum of the material differences of all the elements of
the other player (not the one which has made the current ply).

A single exception to this scheme is made when the threat is not trans-

ferred over the move by the same player. In this case a current ply will substitute
for an empty move in the element, and its boards and material difference will be
added to those of a threat.

Thus a number of elements may be generated for a move when the position
of this ply is associated with several threats of the other side which influence
this move.

6. CHESS ILLUSTRATIONS

In the position given at Fig. 1 let us take up a variation where the Bishop from
QB2 captures a Pawn on QR4. This capture is refuted by a Knight K5 check
with subsequent capture of the Rook on KN3. The tree of variations of Fig. 2
results.

Construction of the boards of this variation starts with backing up through
the move N X KN6 after the move K-K2. A threat N X KN6 is generated with a
material difference equal to (R-N). In returning through the move K-K2 it is
found that the threat N X KN6 arises because of K-K2, and the move is replaced

by an empty move in the threat element N X KN6.
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21)
Fig. 1 — Example chess position (see text).

NxR

Fig. 2 — Tree of variations.

An element is obtained on the move K-K2 with N X KN6 as the best
response and a material difference of (R-N). In the same way elements are
obtained on the moves K-B3, KN1, KN2. In backing up through the move
N-K5, the program assigns all these elements to the move N-K5 and generates

a threat N-K5 with a material difference of (R-N) and boards containing
boards of all these elements and also of the move N-K5. In returning through
B X RP the program finds that this move has provoked the threat N-K5
(having removed the attack from the square K5), and therefore the move B X RP
replaces the empty move in the threat. An element is thus obtained on the move
B X RP with the best response N-K5 and material difference (R-N-P). Let us
write down its boards:
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Eq° = {QB2, KB2};
Eql = {QR4, K2, KB3, KN1, ICN2},
Ep° = {Q3, K51;
Epl = 4K5, KN61;
Er.0 = {0};
zE1 = .[KB2};
ZE2 = {O};

Er2+ = {QB61;
IL* = {IC1, K3, KB1, KN31,
L® = {KN31;
Et = {QN5, QB6, Q1, Q2, Q3, K4, ICB4, ICN4, KR1, KR2, KR31;
EV) = {QN5, QB61;

Assume that in the position in Fig. 1 two moves have been
variation of Fig. 2 remain valid? We will build now different br
two moves and try to answer.

made. Does the
anches from the

B X R4 should

B X R4 should

1. P-KR3, R-QN4: intersection (6) = {QN5}. The move
be searched again (p1 n L.21. ).

2. P-KR3, P-KR3: all intersections are empty. The move
be cut off.

3. P-KR3, P-QN4:
4. P-KR3, N-QN4:

5. P-KR3, P-K5:
6. P-KR3, P-KR4:

intersection (7) is QN6

intersection (1) is Q6

intersection (2) is K4
intersection (4) is KN3

7. B-QR3, P-KN4, B X N, K X B: intersection (26) is Q6
intersection (13) is Q5
intersection (20) is Q5

intersection (11) is KB2
intersection (21) is K4

8. P-QB4,P X P:
9. R-Q1, P-KN4:

10. K-KN1, P-KN4:
11. N-Q2, P-KN4:

Several examples illustrating influence redundancy are given below.

1. R-K2, P-KN4: intersection (15) is K1 n L*2)
2. B-QR3, P-ICN4: intersection (18) is Q6 WI fl p)
3. P-Q134, P-Q5: intersection (13) is Q5 (p° n r2)
Another example will be the variation R X Q6, RB8 in the position in Fig. 3.

Branches permitting search of the capture R X Q6 are as follows:

1. N-Q3, P-QN4: intersection (10) is Q3 n E2)
2. P-KB3, P-QN4: intersection (15) is KB2 (q?
3. P-QN3, N-KB3: intersection (23) is KR2 fl L)
4. N-QN3, P-QN4: intersection (22) is KB1 n
5. K-KB1, P-QN4: intersection (11) is KN1 (q? r,2)
The final example is the variation R X Q4, K X Q5 in the position in Fig. 4.
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Fig. 3.

ii
st? 

Fig.4.

The branches permitting search of this variation are as follows:

1. P-KN3, K-Q3: intersection (16) is QB6 (z-42- fl p?)
2. P-KN3, K-QB1: intersection (17) is Q7 (Zll) /72)

3. N-QN3, K-QN1, N X P. N X N: intersection (9) is Q4 (pi n 4,1)
4. R-QB2, R-KN1: intersection (28) is QB6 p2)
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7. CONCLUSIONS

Adaptive search algorithms have been implemented as a superstructure over the

chess program KAISSA. They reduced the search by a factor of 4 while the time
for studying one position was increased by a factor of 1.5.

A side effect of introducing these algorithms was accurate posing of the
problem of interaction of the plans and strategies in terms of threat interaction.
The algorithm employs little human chess experience, but nevertheless diffi-
culties arise which are typical of algorithms which make more use of this
experience. We believe that this fact indicates the possibility of solving these
difficulties without introducing the complex and often poorly-formulated chess
notions of a human.

In this respect we intend to use formal plans where the notion of the
purpose of a variation is formally defined in the same influence language.

Included in the search after a certain move of White are either the moves
influenced by this move of White, or by Black's response, or by "globally acting"
moves. Without the implementation of this idea it is not plain how a program
built round this principle would play: nevertheless, the results of adaptive search
algorithms show that influence language is reliable for determining the deep-
rooted links between moves.

Another direction in which these algorithms could develop is in making a
Reference Book structure more sophisticated, so that it could represent more
complex search elements. For instance, once an element has been associated
with the previous moire, the existing algorithms lose it altogether. After the
same move is made on a different search branch, all the elements are constructed
anew. A more sophisticated structure would avoid reconstructing these elements.

The work carried out has shown the potential of the chess program KAISSA

as a test-bench for algorithms which need only little infacing with search
algorithms. In particular, routines using human chess experience can be
developed over these algorithms.
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A Bibliography of Computer Chess

T. A. Marsland

Computing Science Department
University of Alberta

The following is a fairly comprehensive list of English language articles on
computer chess. Although works about related games like checkers and GO
have been excluded, it would be wrong not to refer here to A. L. Samuel's
early masterpiece "Some studies in machine learning using the game of checkers"
In IBM J. Res. Dev., 3, (1959) 210-229, also in Computers and Thought (eds.
E. A. Feigenbaum and J. Feldman) McGraw-Hill 1963, pp. 71-105 and IBM
J. Res. Dev., 11, 601-617, and to the follow-up papers by A. K. Griffiths, "A
new machine learning technique applied to the game of checkers" Al Memo 94,
Project MAC, Cambridge, USA: Mass. Inst. Techn. (1966), and "A comparison
and evaluation of three machine learning procedures as applied to the game of
checkers" Artificial Intelligence, 5, 1974, 137-148. In addition, a few chess
books have been listed which are known to contain useful data or ideas for pro-
grammers, along with a number of papers on general mechanisms and theoretical
foundations. It is probably not possible to account for all the articles which have
been written on the subject of computer chess. In particular, 'popular press'
items have in general been neglected, as also have reviews of books or papers.

This bibliography is available in machine-readable form. Its generation was
simplified through the use of a program developed by Ken J. McDonell, whose
general assistance was much appreciated. Many people reviewed and commented
upon early drafts, the comments and observations by Max Bramer and Hartmut
Tanke being especially valuable. Readers may also be interested in the excellent
annotated bibliography by Harald Relcsten [259], whose reviews include not only
quotations and paraphrased abstracts, but interesting observations. For com-
puter chess works in other languages, especially German and Russian, a revised
version of the bibliography by Egbert Meissenberg "Schach liche leistungen
von computer", Deutsche Schachblaetter (1968), 1-4, is reputed to be the most
correct.
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Issues of Representation in Conveying the Scope

and Limitations of Intelligent Assistant Programs

B. G. Buchanan
Department of Computer Science
Stanford University, USA

1. INTRODUCTION

Success of a knowledge-based program depends on both competence and accep-

tability. It must perform well for it to be worth using, but is must be acceptable

to users for it to be used. There are many dimensions to developing competent

and acceptable knowledge based systems which can serve as "intelligent assis-

tants" for problem solvers in science (see Shortliffe and Davis, 1975). One of

these is the old AI problem of representation of knowledge. Since most previous

work on representation has stressed its importance for problem-solving (e.g.

Amarel, 1971), we will concentrate here on the importance of representation
in acquiring knowledge for a reasoning program and in making the program

acceptable to users.
In the past, computer assistance in science was limited to numerical calcu-

lation. Beyond numerical help, however, the computer can provide more assis-
tance if given combinatorial and inferential abilities. That is, the problem-solving
assistant should be a problem solver for the non-numeric, as well as numeric,
subproblems the scientist finds tedious. For example, manipulating graph
structures systematically enters into routine problems of chemistry and molecu-
lar biology: and finding the consequences of prescribing different combinations
of drugs frequently enters into medical practice.

As computer programs become more complex and powerful, new problems
of program design and use become apparent. Simple programs need only simple
introductions. Their use is straightforward, and their output is easily interpreted.
For example, a procedure that computes mean and standard deviation from a set
of data requires little explanation. The most complicated step is formatting the
input data. By contrast, using a complex reasoning program such as CONGEN
(discussed below) requires a substantial investment of time to understand the
program's scope and limitations as well as its input and output conventions.
For these purposes, the choice of representation of the program's knowledge
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becomes as important for communicating with users as for solving problems
in the first place.

This point is illustrated in this paper by three of the DENDRAL programs,
described in the next section. We briefly discuss some aspects of these programs
that are relevant for the representation issues. Then in the following sections
we look at two ways, in addition to problem solving, that the representation of
knowledge is important for designing intelligent assistants. Communicating the
scope and limits of programs is especially critical at times when a user is either
augmenting the knowledge base or requesting assistance. Thus our examples
focus on these two aspects. It is not necessary that the reader fully understand
the details of the examples, and it is suggested that the discussion of the
DENDRAL programs in the next section be skimmed on first reading.

In order to use a program intelligently, a user needs to understand the
program's scope and limits. The scope, roughly, is the broad class of problems
which it is designed to solve and the context in which solutions will be found.
The limitations include the idiosyncrasies that must be remembered to obtain
reliable solutions, but which are less fundamental to the whole procedure. For
example, enumerating polymeric structures is outside the scope of CONGEN,
while its working definition of aromaticity is a limitation that is more easily
changed. Operationally, the scope is the broad definition of the problem which
can be changed only at the cost of writing an entirely new procedure. The
limitations are the explicit and implicit items in the pioblem definition that are
added to make the problem solvable but that may be changed or removed
more readily. It is not a sharp distinction; the point is that a scientist needs to
understand the assistant's interpretation of the problem before the program
(assistant) can be used responsibly and confidently.

2. DENDRAL PROGRAMS
The Heuristic Programming Project at Stanford University has developed a
family of computer programs, collectively known as DENDRAL, which are
designed to provide assistance to chemists with structure elucidation problems.
In this section three of these programs are described: CONGEN, the DENDRAL
Planner, and Meta-DENDRAL. The tasks that they perform are complex, even
for chemists. And the depth of knowledge required for high performance forced
early confrontations with problems of knowledge representation.

Many of the examples are difficult to read, and to this extent constitute
negative examples to the point that input and output conventions ought to be
transparent. However, we are concerned here with the more fundamental issue
of conveying enough information so that the programs' reasoning framework
and abilities are transparent.

2.1 CONGEN
CONGEN (see Carhart, Smith, Brown and Djerassi, 1975) is a generator of
molecular structures that are consistent with constraints inferred from chemical
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and spectroscopic data. (The name of the program stands for "constrained
generator") CONGEN produces a list of all plausible structural descriptions
for an unknown compound with a guarantee that none has been ommitted and
that there are no duplicates. The criteria of plausibility, the constraints, come
from the chemist or another program called the DENDRAL Planner. CONGEN
provides assistance by generating chemical graphs, displaying them, and testing
them for the chemist.

CONGEN is valuable for structure elucidation problems because it provides
the chemist with all and only structures that are consistent with the interpre-
tations. The empirical formula (that is, the numbers of atoms of each type in
the unknown) is a necessary piece of information; the other constraints inferred
from the data are all optional. The kinds of constraints one can give to CONGEN
are shown in Table 14. This list describes features of chemical molecules that
can be represented as features of graphs, and thus helps delimit the scope of
CONGEN.

Table 1 — Types of constraints accepted by CONGEN.

Composition:

(a) SUPERATOMS — Inferred polyatomic structural fragments with
one or more potential bonding sites
(free valences).

(b) ATOMS — Any remaining atoms of any type, e.g., C, N, 0.

Constraints:

(c) BADLIST — Forbidden structural features.
(d) GOODLIST — Required structural features.
(e) BADRINGS — Forbidden ring sizes.
(f) GOODRINGS — Required ring sizes.
(g) PROTON — Desired protons and their environments.
(h) ISOPRENE — Desired isoprene units and their linkages.
(i) HRANGE — Allowed numbers of hydrogens on specific atoms.

A convenient substructure definition language (EDITsTRuc) allows easy
construction and modification of superatoms and other structural subunits the
chemist wants to mention in the problem statement. An example of its use (to
define a superatom named "parabridges") is shown in Fig. 1. This substructure
used on BADLIST will disallow structures possessing an aromatic ring with a
bridge of fewer than eight atoms between atoms that are opposite ("para" to)
one another. Although this language is not self-documenting and requires
brief instruction, the commands are easily understood and remembered by
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chemists. They are designed to be terse enough to be fast; for example,
repeated calls to the same command can be avoided by typing additional sets of
arguments into the first call.

[editstruc]
NAME:[parabridges]

(NEW STRUCTURE)
>lring 6]

; Start with a six membered ring.

>[bord 1 2 any 23 any 34 any 45 any 56 any 61 any]
; Allow any bond order between atoms 1&2, 2&3,3&4, etc.

>[artypela2a3a4a5a6a]
;Require all atoms to be aromatic.

>[link I 4 I]
; Link atoms 1 & 4 with a new atom.

>[Inode 71 7]
; Allow the new linking atom (7) to be a chain of one to

seven atoms.
>fatname 7 xi

; Let atom 7 be any atom type (x).

>[adraw]

PARABRIDGES: (AROMATIC ATOMS AND "ANY" BONDS NOT

INDICATED)
LNODES ARE INDICATED BY AN ATTACHED @

[A chemist would reconstruct this as:

where node 7 (X) stands for a bridge containing 1-7 atoms.]

Fig. I — Definition of a superatom for CONGEN with the structure editing language
EDITSTRUC. [Bracketed characters typed by use. Annotations follow a semi-colon.]
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The more constraints there are, naturally, the smaller the list of structures
will be. For example, the program will produce 284 structural isomers with the
composition C6H13N, but will generate only 4 if the program is told there is one
six-membered ring and one methyl group. More complex examples of CONGEN
problems are given by Carhart et al. The size and complexity of problems that
CONGEN can handle are limited more by the number of structural units (super. 
atoms plus remaining atoms) than by the total number of atoms in the empirical
formula. Thus CONGEN can help with structural problems of real interest when
the chemist is able to infer some structural features from available data.

22 DENDRAL Planner
The DENDRAL Planner (see Smith et al., 1972) is a program designed to aid in
the interpretation of mass spectra. It is not "automatic" in the sense of pro-
ducing structural interpretations of an unknown mass spectrum with no inter-
vention from the chemist. Instead, it uses the chemist's relevant knowledge of
mass spectrometry and applies it systematically to the spectrum of an unknown.
That is, using the chemist's definitions of the structural skeleton of the molecule
and the relevant fragmentation rules, the program does the bookkeeping of
associating peaks with fragments and the combinatorics of finding consistent
ways of placing substituents around the skeleton.

Fig. 2 shows the structure of the common skeleton (defined with EDIT-
STRUC) for a class of compounds called capnellanes. For purposes of illus-
tration, three major fragmentations were defined, which are shown schematically
in Fig. 2, overdrawn on the computer's drawing of the skeleton. It is possible
to specify other definitions of the context in which the chemist wants the
interpretation to be made, such as the intensity threshold for noise peaks.

[struc]
CAPNELLANE

•••

8-7
I \
I 6-5
I /
9-10 I

\
12 11-4 -13

14-1-15

2

Fig. 2 - A structural skeleton defined for the DENDRAL Planner. Fragmentations
were manually drawn on the computer's output. [Bracketed characters typed by user.]
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From the information about the skeleton and fragmentations for the
general class, the program begins interpreting the mass spectrum as shown in

Figs. 3 and 4. First the empirical formula (or "molecular ion") is determined

(see Dromey, Buchanan, Lederberg, and Djerassi, 1975). Then it fmds data

points (peaks) in the spectrum that could plausibly be associated with the
defined fragmentations, with and without combinations of substituents. (The

range of possible substituents is determined by subtracting the composition
of the skeleton from the empirical formula for the determined molecular ion.)

[plan]
(COMPUTING MOLECULAR ION (S))

MOLECULAR IONS

1234. 1609 100 (C. 15) (H .22) (0 .2))

;Only one plausible molecular ion peak is found for this

problem, at mass 234.1609 and intensity 100.
;From the exact mass 234. 1609 only one empircal formula is

plausible, viz, C55H2202.

Fig. 3 — Start of planning: molecular ion determination. Annotations follow semi-

colons.

(STARTING ANALYSIS PART)
BREAK: SUBSTITUENTS ON CHARGED FRAGMENT: EVIDENCE (M/E)

6H ((DOT .4) (C .0)(0. 1)) 161.0975

((DOT . 2) IC . 0)(0. 1)) 163.1136

((DOT . 4) (C 0)(0. 2)) 178.0993

;The format is not clear as it should be. There are three sets of alternative

substituents on the fragment resulting from Break 6H (see Fig. 2).
These are (a) 2 double bonds or rings (4 "dots") and one oxygen,

(b) 1 double bond or ring and one oxygen, or (c) 2 double bonds or rings

and two oxygens.
Each has supporting evidence in the data at the masses shown,

7H ((DOT . 4) (C . 0))
((DOT . 2) (C . 0))

133.1009
133.1009

((DOT . 4) IC . 0) (0. 1)) 150.1038 149.0951 148.088
147.0811

((DOT . 2) IC . 0) (0 . 1)) 150.1038 149.0951
((DOT . 4) IC . 0) (0 . 2)) 163.0758

7L ((DOT. 4) (C .0)) 65.03971

((DOT . 2) (C . 0)) 67.05513

((DOT .0) (C .0)) 69.07053

((DOT . 0) IC . 0) (0 . 1)) 85.06461

Fig. 4 — Intermediate planning results: likely assignments of special peaks to frag-

mentations. Fragmentations 6H, 7H, and 7L are shown in Fig. 2. Annotations follow

semicolons.
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The output from the Planner is a list of structure descriptions with as much
detail filled in as the data and defined fragmentations will allow. Because there
are limits to the degree of refinement allowed by mass spectrometry alone, sets
of atoms are assigned to sets of skeletal nodes. Thus the task of fleshing out the
plan — specifying possible structures assigned to specific skeletal nodes — is left
to CONGEN. Figure 5 shows the program's output for the capnellane example:

there is only one structure, and it has one oxygen and two double bonds (or
extra rings) within nodes C4-C13, with one oxygen on node C3. (Most probably,

these are a keto [C=0] group and carbon-carbon double bond somewhere
within C4-C13 and hydroxyl [OH] on C3.) This partial description of the

unknown can be used by CONGEN, together with other constraints, to produce
a list of complete structures.

BEGIN SYNTHESIS OF MOLECULAR ION = 234.1609
STRUCTURE 1
(((DOT . 4) (0 . 1)) C4 C5 C6 C7 C8 C9 C10 C11 C12 C13)
(((O . 1)) C3)

;The evidence shown in Figures 4 can be consistently
combined in only one way. •

;I.e., two double bonds or rings (four "dots")
and one oxygen atom can be placed within nodes 4-13 of
the skeleton, and one oxygen is on node 3.

EVIDENCE USED TO BUILD STRUCTURE:

(6H (DOT . 4) (0 . 2))
(7H (DOT .4) (0.1))
(7L (0 . 1))

;The parens and dotted pairs are not helpful,
but the information helps the chemist relate
final conclusions to the intermediate reasoning.

DONE

Fig. 5 — Results of DENDRAL Planner: description of structure(s) consistent with the
data. Annotations follow semicolons.

2.3 Meta-DENDRAL

The Meta-DENDRAL program (Buchanan et al., 1976) is designed to provide
assistance to mass spectroscopists who are formulating new fragmentation
rules to explain the behaviour of a new set of compounds. It begins with a
collection of known structure-spectrum pairs. From these data, together with
the chemist's defined criteria of plausibility, the program finds plausible
fragmentations and rearrangements that account for many of the most signifi-
cant peaks in the spectra. For example, rules 6H, 7H, and 7L used in the
example above (Figs. 2 to 5) can result from the program's examination of a
training set of capnellane structures and their known mass spectra.
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The mass spectrometry rules are written in terms of a topological des-
cription of a piece of a molecule (a subgraph) and a corresponding fragmen-
tation or rearrangement process. For example, rule M-6 in Fig. 6 says that in
the presence of a keto group we would see evidence for fragmentation of the
bonds opposite and adjacent to that group. The subgraphs are described in

"ball and stick" terms, with no stereochemistry. The corresponding processes

are defined in terms of bond cleavage(s), net transfer(s) of hydrogen, or neutral

species such as water, and charge placement. Because the program writes new

rules in terms of an existing vocabulary (and does not invent new terms) it is
extending an existing theory but not developing a new one.

Two rules produced by the program are shown in Fig. 6 along with a
summary of the evidential support for them in the training set. These are
taken from a results table of a paper (see Buchanan et al., 1976) describing
the program's help in formulating mass spectrometry rules for three classes
of compounds not previously codified in this way (the mono-, di-, and tri-
ketoandrostanes).

Name Subgraph

M-4 R H
V

1
\
H

(with loss of 0,1. or 2 H's)

M-6

/, =O
(with loss of one H)

Positive Negative Average
Evidence Evidence Intensity
Any Unique Percent

21 0 1 3.71

0 3.29

Fig. 6 — Two general fragmentation rules found by Meta-DENDRAL. (The positive

evidence is the number of data points correctly predicted by the rule: it is unique if

no other rules also predict the same data point.
Negative evidence is the number of peaks predicted by the rule but not found in the

data.
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The rules are formed in three distinct stages: (1) data interpretation and
summary, (2) rule generation, and (3) rule modification. Each depends on the

chemist's definitions of the context in which rules will be formed. For example,

the context includes whether the program should consider cleavage of aromatic

ring bonds and multiple bonds, the numbers of hydrogens to consider in re-

arrangements, the types and numbers of neutral fragments (such as water) to

be lost, and the complexity of the processes that can count as explanations of

peaks. A sample of the interaction specifying the context is shown in Fig. 7.

specify fragmentation process constraints? YIN. :

prompt for all constraint values? Y/N. : [V]

forbid cleavage of more than one bond

to the same atom? YIN. : [Y]

forbid cleavage of aromatic ring bonds? YIN. : [N]

allow default definition of aromatic rings? Y/N. : [Y]

forbid cleavage of double and triple bonds? Y/N. : [V]

minimum number of carbons in a fragment?: (2)

allowed hydrogen transfers? : [2 1 0 —1 —21

maximum number of bonds allowed to cleave

in a single step process? : [21

maximum number of steps in a fragmentation process? : [2]

maximum number of bonds allowed to cleave
in a multiple-step process? : [2]

maximum number of rings allowed to fragment

in a multiple-step process? : [1]
allowed neutral transfers (other than H)?

: [CO —1]
any other constraints? YIN. : [NI

Fig. 7 — A sample of the context definition for Meta-DEND RA L. [Bracketed characters

were typed by user.]

The rule formulation procedure is not modelled after human procedures,

but is perhaps more systematic and thorough than the creative methods of

scientists. At bottom, it is a systematic exploration of the space of more and

more specific rules that can explain the interpreted data. This is followed by a

final "fine tuning" of the rules to make them more general, when possible, or

more specific (if this helps reduce the negative evidence), or to merge similar

rules into a common form (see Buchanan etal., 1976, for details).

3. REPRESENTATION PROBLEMS IN KNOWLEDGE ACQUISITION

AND VERIFICATION

Accumulating knowledge of a domain in a form that a program can interpret and

use is essential for the program to assist with problems of reasoning. This is one

of the central themes of all the work at the Stanford Heuristic Programming
Project. We have experimented with various ways of adding scientific and
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medical knowledge to programs. The three main methods that we have used we
call handcrafting, interactive dialog, and automatic rule formation. The work
has been performed by several persons at Stanford in the context of work on
D END R A L and other programs.

In each case we are concerned with giving the program the same kind of
knowledge that an expert in the domain uses for problem solving. We do not
pretend to be able to make the problem-solving assistant as sophisticated as an
expert in all respects. But we want to transfer enough knowledge into the
program to make it a useful assistant.

3.1 Functional components

In order to build a high performance reasoning program four logically separable
systems must interact. These are

(1) an expert,
(2) a transfer agent,
(3) a reasoning program,
(4) a verifier.

In most instances, AI programs are built by single individuals who act as
expert, transfer agent and verifier, very often in domains that require no more
formal source of knowledge than common sense. Many interesting specialized
systems have recently been developed which rely on much more than common
sense. Some programs are constructed by persons who are first and foremost
domain experts (for example, Colby in psychiatry, Berliner in chess); others
are constructed by programmers who become experts in a specialized area of
science (for example, Reddy in speech understanding). However, even in cases
where an individual fills the role of two or more of the four systems, it is
instructive to separate the activities of the component parts.

Expert -÷ Transfer Program
Agent

L— -- —Verifier

Fig. 8 — Functional components for building an expert system.

3.1.1 Expert

For most system building activities we think of the expert as a human being.
In this decade, a person is far more effective in this role than a program would
be, because of the breadth and depth of knowledge required for teaching com-
plex tasks. (See Waterman, 1970, for comparisons of both a human and a
program as expert.) Representation problems become critical in knowledge
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acquisition and in verification, since the expert is expected to match what the
program can and cannot do.

Although we often think of the domain expert as the ultimate source of
expertise for AI programs, we can also consider the origin of that individual's
expertise as a source of knowledge. In science there is one ultimate source —
observations, or empirical data. Experts also learn from textbooks and papers
written by others who have codified and explained empirical observations.

3.1.2 Transfer Agent

There is no reason to expect the expert to know the details of the programming

language and the implementation of the reasoning program. Perhaps it is more
accurate to say that the expert's own codification of knowledge is not execu-

table as a program without some translation. The expert sometimes serves as
translator, but usually this task is given to someone closer to the program itself.

Transfer can also be accomplished by a program. See Davis, 1976, for a
fuller discussion of interactive knowledge transfer issues and methods for aiding
the transfer. Meta-DENDRAL avoids the link with the expert by formulating

rules directly from the original data and transferring them to the performance
program.

3.1.3 Program

There are many examples of expert systems which illustrate the kind of perfor-
mance we expect from a program built under the supervision of an expert.
DENDRAL and Meta-DENDRAL are two of these.

For the cost of eliciting knowledge from experts, we expect the resulting
program to be superior to one developed without the aid of an expert. Primarily
this means that we expect superior performance. In addition, however, we want
the program to be easier to understand, easier to justify, and easier to modify.

3.1.4 Verifier

In addition to the performance program, we, as system builders, need mecha-
nisms for determining the program's level of expertise. Programmers are used
for correcting syntactic errors and verifying that the program meets performance
requirements on test cases. If we were translating algorithms into programs,
almost all of the verification could be done this way. However, in a knowledge-
based AI program there may be errors in the knowledge base that are impossible
for anyone but an expert to detect and correct. For this reason the feedback is
shown to the expert in Fig. 8, not to the transfer agent. For this reason also, the
output of the reasoning program and its intermediate conclusions must be
easily understood by the expert.

3.2 Representation issues

The choice of representation for the expert's knowledge must be a compromise
between what is natural and easy for the expert and what is natural and easy
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for the programmer (transfer agent). The choice of concepts and relations must
certainly come from the expert, but the means of encoding them be partly
chosen by the programmer. For example, the DENDRAL representation of
chemical molecules as two-dimensional connected graphs was chosen by
Professor J. Lederberg as an appropriate representation for mass spectrometry
problems. The actual implementation of graph theoretic concepts and operations
in LISP lists, and operations on lists, was based more on programming con-
venience than on chemical considerations.

However, there is no reason to believe that the expert's first conceptuali-
zation is complete or correct. The expert will begin with classical textbook
statements that are reasonably certain and well accepted. But in domains like
mass spectrometry. and medicine there is still a gap between what the textbooks
say and what is needed for expert performance. The differences can show up
in many ways. For example, the textbooks may lack statements of relations
that are less than certain but are used in practice; they may fail to make dis-
tinctions that are useful in practice, and they may state facts at a theoretical
level not used in practice. In addition, as the field grows, the textbooks lose their
claim to completeness.

Similarly, there is no reason to believe that the programmer's first imple-
mentation is correct and appropriate. There is tremendous potential for mis-
interpreteing what the expert says when the programmer has little understanding
of the domain. A more serious problem is that the internal representation chosen
by the programmer, on the basis of initial conversations with the expert, will be
inappropriate for ideas to be incorporated later.

Overcoming this communication barrier is a major hurdle in constructing a
knowledge-based system. Both the expert and the programmer are simul-
taneously developing representations of the domain that they believe are appro-
priate for the task and for the program that performs that task. Thus it is not
surprising that new applications programs often need to be completely rewritten
after their initial implementations.

Figs. 1 and 2 show parts of the knowledge acquisition processes for
DENDRAL programs. These have been designed with an experienced user in
mind — one who has read the documentation, but not necessarily one who
understands the details of the program. The knowledge built up in these ways
can be saved and used in other problems. The TEIRESIAS system (Davis,
1976) emphasizes interaction with naive users much more than DENDRAL's
knowledge acquisition procedures. The main point is still the same: limits on
what the program can represent are limits on what knowledge it can acquire.

The programs' conceptualization of the domain of chemistry was moulded
by chemists. It does not include everything chemists know about molecular
structures or mass spectrometry, but it meshes well with a subset of their
knowledge. The most significant difficulties come from mismatches between
how chemists think about part of a problem and how the program represents
that part. For example, CONGEN treats double bonds as rings of size two,
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for reasons of efficiency and completeness, yet chemists often make a clear
distinction between rings and double bonds, for chemical reasons. Thus
CONGEN has been modified in many places to recognize the distinction even
though it is not necessary for problem solving. Without mapping the program
steps into the chemist's conceptual framework, there would be great difficulty
in verifying and augmenting the knowledge base.

4. REPRESENTATION ISSUES IN USE AND ACCEPTANCE

For a high-performance computer program to capture the sustained, widespread
attention of working scientists, it must contain a large number of features that
make it easy and pleasant to use. These features are commonly termed "human
engineering aspects" of a program. In very rare instances, a program will be so
useful that it will be widely adopted even without proper attention to human
engineering. But the general principle seems to be that programs that are only
understandable to programmers are used only by programmers, if at all.

Just as the expert creating the program must feel that the representation
of knowledge is appropriate for the task, the user of the system must also feel
comfortable with it. This is an indispensable element of acceptability: problem
solutions must be presented to the user in a familiar vocabulary. A common
error we make is to present solutions in the vocabulary of the programmer,
using the concepts of the program instead of those of the domain practitioners
and experts. (Even though the output shown in Fig. 5, for example, could be
improved with respect to notation and readability, the concepts are the right
ones to convey.) Occasionally one might fmd cases where the expert's con-
ceptualization is not fully shared by the users, in which cases some further
translation is also required for the users.

Because an Al program can be a powerful tool it also has the potential
of powerful misuse. Paraphrasing a message by J. Weizenbaum (1976) (to
teachers of computer science), the designers of intelligent programs have a res-
ponsibility to teach users the limitations of their tools as well as their power.
A most important set of limitations stems from the choice of representation
of knowledge about the problem domain. Whatever representation is chosen,
it will have its own set of limitations and peculiarities that can mislead and
confuse the users of the program. For example, user's who expect DENDRAL to
give them information about bond lengths and angles in its drawings of molecu-
lar structures are going to misinterpret those drawings.

4.1 Documentation and assistance

A designer usually leaves to the user the task of understanding a program's scope
and limitations by telling him that he must read and understand the program
documentation before beginning. But documentation usually does not discuss
appropriate uses of a program or the program's limitations. (Unfortunately, the
more complex a program is and the more a user needs full documentation of its
scope and limits, the less willing programmers are to create the document).
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While it is tempting to think of intelligent use of a program in terms of
understanding its documentation, the program itself can aid considerably. One
of the exciting possibilities of the future is creating intelligent assistants that
carry an awareness of their own problem-solving abilities and can explain them
to users.

Documentation is the most obvious way of conveying the scope and limi-
tations of a program. We are beginning to work with some of the easier steps
of learning about a program and to shift some of the burden from documen-

tation to interactive aids built into the program. For example, the programs
themselves can be asked what to do next, what the available commands are,

what a prompt means, what the effect of a parameter is. Some of these features
are illustrated in the context of the DENDRAL Planner. Fig. 9 shows the
program's response to a request for a summary of available commands. Fig. 10
shows the program's descriptions of two critical parameters.

[menu]

*** MENU
COMMAND

CNTRL-E
GET

OF AVAILABLE COMMANDS ***
WHEN-APPLICABLE PURPOSE

ANYTIME TO GET MORE INFORMATION
ANYTIME TO CANCEL COMMAND
AFTER > TO GET PARAMETERS FROM A

CLASS FILE
AFTER > TO DEFINE NEW VALUE FOR

PARAMETER
TO SEE THE VALUE OF A PARAMETER
TO READ A MASS SPECTRUM FROM A
FILE
TO RUN THE PLANNER PROGRAM
TO SAVE THE DEFINED PARAMETERS
TO SEE A DESCRIPTION OF THE
COMMAND
TO SEE IMPORTANT PARAMETER
NAMES
TO DESCRIBE THE NAMED
PARAMETER
TO EXIT FROM THE PROGRAM

<PARAMETERNAME>

<PARAMETER>? AFTER >
READ AFTER >

PLAN AFTER >
SAVE AFTER >
DESCRIBE <COMMAND> AFTER >

LIST AFTER >

DESCRIBE <PARAM> AFTER >

DONE AFTER >

Fig. 9 — The DENDRAL Planner's description of commands. [Bracketed characters
were typed by user.]

Through documentation or otherwise, it is necessary to convey to the
chemist what the program knows about the current problem. This is harder as
more knowledge is put into the program. We have tried to keep the judgmental
knowledge used by DENDRAL programs separate from the coded procedures
that depend on that knowledge. In this way we can, in principle, explain what
each program knows. In CONGEN, for example, we give the chemist control
over (almost) all the specifications of the structure elucidation problem. The
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constraints are 'defined and modified by the person with the immediate problem,

as illustrated in Fig. 1. The whole set of constraints can be examined on-line in
the course of problem solving, as shown in Fig. 11.

[list)
*** ESSENTIAL PARAMETERS ***

>>> STRUC

"STRUC (PARAMETER) IS THE STRUCTURE OF THE BASIC SKELETON OF

THIS CLASS. IT MAY BE EDITED BY USING THE FOLLOWING COMMAND:

EDIT STRUC
THIS COMMAND INVOKES THE STRUCTURE EDITING PROGRAMS USED

IN CONGENFAND OTHER DENDRAL PROGRAMS."

>>> BREAKS
"BREAKS (PARAMETER) IS THE SET OF FRAGMENTATION RULES FOR
THE SKELETON; EACH BREAK DESCRIBES THE BONDS BROKEN AND
THE HYDROGENS TRANSFERRED"

Fig. 10 — Example of program's description of its parameters. [Bracketed characters
were typed by user.] Programs with the same names as the parameters are available to
aid in defining new values.

[contraints71

BAD LIST CONSTRAINTS

NAME
PARABR I DGES

GOODLIST CONSTRAINTS
NAME MIN MAX

CH-3 1 1

Fig. 11 — CONGEN's response to request for description of current constraints. Para-
bridges is shown in Fig. 1; other superatoms would be defined similarly.

There remains much subtle knowledge of chemistry embedded in the

programs that we are not able to display, except through hard-copy documen-

tation. For example, Meta-DENDRAL uses "built in" criteria to decide when

an emerging rule is good enough or when one rule is better than another. And

CONGEN cannot explain to the chemist how subproblems are ranked to

determine their order of solution, or how problem size is estimated. Perhaps the

closest we have come to this is in the DENDRAL Planner, where the user can

see and change the complex conditions under which the program assigns

evidence to fragmentations as shown in Fig. 12.
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(controlrules1
USE ONLY THE STRONGEST EVIDENCE FOR SOME BREAKS (Y/N)7(y)
APPLICABLE BREAKS: [6h1
PASSES: 111
USE EVIDENCE THRESHOLD FOR SOME BREAKS (Y/N)fly]
APPLICABLE BREAKS: [7h 71)
APPLY ON PASSES: (1)

PERCENT OF MAXIMUM INTENSITY (DEFAULT = 33): [31

WHAT THRESHOLD DO YOU WANT AS A CUTOFF — GIVE A NUMBER THAT
WILL BE USED AS PERCENT OF MAXIMUM INTENSITY TO THROW AWAY
(RELATIVELY) SMALL INTENSITY PIECES OF EVIDENCE.
PERCENT: (33)

; This requires the chemist to understand that different
criteria can be applied to the evidence in successive attempts
("passes") to find structures consistent with the evidence.
Only the strongest evidence for Break 6H, and only evidence
above 33 percent of the maximum intensity for 7H and 7L, will be
used on the first pass, in this example.

Fig. 12 — Example of user control over the DENDRAL Planner's procedure that
selects evidence for fragmentations (see Fig. 2 for drawings of 611, 7H and 7L).
[Bracketed characters were typed by user.]

4.2 Laboratory notebook
With a simple program, there is little point in asking for a detailed record of
progress: between problem specification and solution there is little to note. As
soon as a program is expected to behave as a problem-solving assistant on com-
plex subproblems, however, progress notes printed by the program take on the
importance of a laboratory notebook.

There are three different kinds of notes we expect the DEN D RA L programs
to provide:

(a) a record of initial conditions, intermediate conclusions, and final results;
(b) a complete record of the interaction between chemist and program

(including false starts and typing mistakes);
(c) a trace of the program's reasoning steps.

Each of these is important for a different reason. The final results, of
course, are the sine qua non of the assistant's work. The record of initial con-
ditions and major intermediate conclusions gives the chemist at a glance the
context in which the problem was solved and the major steps in its solution.
This serves as a useful reminder of scope and limits; in addition, disagreement
on initial conditions or intermediate conclusions would be sufficient reason to
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request the assistant to start over. Meta-DENDRAL, for instance, immediately
precedes its stored and printed results with a summary of the context specified
by the chemist. Because they are together there is less chance that the results
will be interpreted without proper regard for the context.

The record of the chemist's interaction with the program is a detailed
account of what the investigator requests of the assistant. Failure to find a
solution to a problem can often be attributed to ill-specified requests, so it is
helpful to review the complete record of specifications made by the investigator.
The requests for help and the program's response illustrated in the previous
section are important entries in the experimental record.

Finally, the trace of the assistant's reasoning steps is helpful whenever the
investigator wants to keep track of the inferential steps of an assistant. In any
case it is often useful to have a record in order to justify moving from one
point to the next. For example, before the DEN DRAL Planner prints the results
shown in Fig. 5 above, it prints the plausible molecular ions it inferred from the
data (Fig. 3) and the data it associates with each of the separate fragmentations
(Fig. 4).

In all cases, the entries in the laboratory notebook must be easily inter-
preted by the investigator for them to be useful. We have much to learn in this
respect. The examples above are still cryptic and hard for outsiders to under-
stand. But within each entry there is much information of value to a chemist
about the program's problem solving procedure.

4.3 Multiple representations

One thing that we can do to help the chemist discover the scope and limits of
the program's problem-solving abilities is to present information to the chemist
in more than one way. Our representation of chemical structures is very limited.
We do not know how to convey its limitations adequately, although we do
present structures in several ways in order to give the chemist as good a feeling
for the limits of the representation as we can. The documentation is explicit in
these matters: the programs themselves are usually not as explicit. In CO NGEN
we present structures as pictures of graphs, as connection matrices, as des-
criptions of graphs with node properties listed. From the collection of these
representations we hope that a chemist will be able to see accurately what the
program assumes about molecular structures, even if he avoids reading the
documentation. Fig. 1 above showed the definition of a superatom and the
program's rough drawing of it. Another description of the superatom (for
experienced users) is shown in Fig. 13.

The scope of Meta-DENDRAL is conveyed in similar ways. For example,
the program works with mass spectrometry fragmentaion rules with possible
hydrogen migration and loss of neutral species. By describing those processes
in different ways, we expect the chemist to see, for example, that the program
knows only about net losses.
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>fshowl
NAME=PARABRIDGES

ATOM TYPE ARTYPE NEIGHBORS LNODE
1 C AR OM 7 6 2

2 C AROM 1 3

3 C AROM 2 4

4 C AROM 7 3 5
5 C AROM 4 6
6 C AROM 5 1

7 X NON-AR 1 4 1-7
BONDS 6-1, 5-6, 4-5, 3-4, 2-3 AND 1-2 ARE OF TYPE "ANY"
>[done]

Fig. 13 — Another description of the superatom in Fig. 1.

4.4 Description of context

The context in which problem solving proceeds is essential information for inter-
preting the solutions. The more an assistant can make explicit the assumptions
and initial conditions of a problem, the easier it is for an investigator to under-
stand the answers. This has always been true, but the emergence of computer
programs as assistants brings the problem clearly into focus.

In a program the assumptions are often completely hidden. As computer
programs become able to convey many of their own assumptions and limitations,
however, the users will be able to delegate significant parts of their problems
with confidence they will be solved as the user wants them solved.

The only step we have made along these lines with DENDRAL programs is
to keep a good laboratory notebook, as described above. One of the items we
try to make explicit at the time problem solutions are printed is the set of
assumptions under which the program arrived at those solutions. Much more
remains to be done.

5. CONCLUSION

We do not want to inflate our expectations of future programs to the point that
we are bound to be disappointed. On the other hand we cannot remain content
with computer programs in which the whole burden of intelligent use is placed
on the user. Computer programs will have to contain much more knowledge
of the domain and of their own procedures in order to make significant dif-
ferences in the practice of science.

It is essential to find representations of the knowledge contained in programs
that are appropriate for the persons using them and for the experts who help
build them. Clever representations for expert problem solving are only half
the story of creating intelligent assistants that aid working scientists. Equally
important are the representations commonly used in human practice that allow
users to determine the scope and limitations of what their assistants can do.
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The Dialogue Information Logical System

V. M. Briabrin
Computer Centre, USSR Academy of Sciences
Moscow, USSR

Abstract

The general structure and functional features of the Dialogue Information
Logical System (DiLoS) are considered. The system provides the user with the
possibility of natural language communication with the computer. It is intended
for the control of typical computational processes: information retrieval, logical
analysis, calculation planning and realization. The system is developed at the
Computing Center of the Academy of Sciences of the USSR on the basis of the
LISP programming language, and transferred to the, other computer systems
with appropriate adaptation for different LISP versions and input/output
environment.

1. INTRODUCTION

During the last 10 to 15 years programming methods have been developed very
intensively, and at the present they constitute the relatively stable field of
"computer science". The main developments of this science include the theory
of formal grammars and translation systems, computer networks and data-bases,
the packages of application programs and problem-oriented languages for inter-
action with them. Different methods have been developed, and many practical
systems have been implemented; however there are few ideas now in the air
which imply revolutionary changes in the traditional practice of computer
utilization.

Science fiction writers, at the very beginning of the computer era created
the image of the "supercomputer", capable of speech understanding, and familiar
with the general laws of human behaviour, and able to solve almost any problem
which is based on logically correct premisses. We are still rather far from the
possibility of having a conversation with such a supercomputer, but many
scientific laboratories around the world are producing results in this direction.
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At the Software Systems Laboratory at the Computing Center of the
Academy of Sciences, Moscow, we are engaged in the development of a dialogue
system which understands written natural language expressions; it knows the
the basic facts and laws that characterize the area of research; it also knows how
to analyze and solve specific problems in that area. We would like to stress that
the approach described does not ask for another programming language but for
another programming style. This style implies that the user provides the system
with a verbal description of the initial prerequisites and then poses the problem
in question, including a description of the desirable goals. However, it is not
necessary to specify an algorithm for the system's behaviour, impelling it to
analyse the state of the world, together with the given task description, and to
find the solution. The user plays an active role in the process of problem solving.
He provides the system with the necessary remarks, interpretations, and
preferences, by means of natural language dialogue through a terminal.

We do not expect to attain perfect results immediately. The first goal con-
sists of the development of a practical system using a small number of highly
qualified people. The system's structure and the basic software must allow for
natural extension, and the attainment of more ambitious results in the future.

2. THE GENERAL CHARACTERISTIC OF THE SYSTEM
The Dialogue Information Logical System (DEWS) is intended to be a mediator
between the end-users, such as translators, application programs, data manage-
ment systems, network interface processors etc, and traditional means of
computation. The system consists of a set of programs written in LISP. It
controls the following basic operations:

—creation of, and associative search in, the "model data base" which
contains the system's "knowledge" about the external world and problem
areas (PA);

—initiation of application programs, extraction, and storage of data in
application data sets;

—logical analysis of the PA models, development of plans for the calculation
—of specific results, consistency checking when new facts are considered
for storage in the model data base etc.
We are trying to make a clear distinction between the process of speci-

fication, performed by the systems analysts, and the process of utilization,
performed by the end users. The specification stage when the model data base
(MDB) with relevant information about the PA is constructed, is time- and
knowledge-consuming; on the other hand, the utilization stage tends to become
a rapid and simple method of planning, or getting advice on how to solve the
given problem.

DILOS facilities are enhanced by the special linguistic processor which
accepts natural language phrases (NL-phrases) at the input and translates them
into the formal interface expressions (0-expressions) which control further
operations.
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The system's "intelligence" is embodied on the one hand in DILOS pro-

cedures performing linguistic transformations, information retrieval, logical

analysis and calculation planning. On the other hand it is based on the system's

"knowledge" about the PAs, represented by the contents of the MDB.

Dialogue communication between the human and the system is the basic

idea propagated through all the system's operations. Each processor — linguistic,

logical, information-retrieval, or computational — appeals to the user's terminal

each time some ambiguity arises, or one of alternative paths has to be chosen.

This leads to greater efficiency in the problem-solving process and creates psycho-

logical comfort for the user, who is able to understand what is going on.

3. PROBLEM CLASSIFICATION
The system can be applied to different PAs. It is useful to distinguish the follow-

ing problem classes, which have obvious practical interpretation.

(1) Model modification: the process that utilizes information extracted

from the input phrases, and transforms it into new knowledge about

the world (Fig. la). This process is governed by the current MDB

contents and could be called the system's "learning", as it results in

filling the MDB with the new pieces of knowledge.

(2) Question-answering: based on logical analysis and information retrieval

from the MDB (Fig. lb). New knowledge usually does not appear in the

MDB during this process. Linguistic and logical analysis are the basic
stages in the process of question-answering.

(3) Calculation planning: an important part of users' interaction with the
system. Given the initial data and a description of desirable results, the

system tries to build up an activation sequence of applied programs

(Fig. lc). Such a sequence constitutes an algorithm for solving the

specific problem which was not envisaged in advance.
(4) Action planning: similar in a sense to calculation planning. Given initial

and goal situation descriptions, the system develops a plan of actions by
means of which the object of interest could change its position (state)
in the desirable direction (Fig. 1d). This process could be called "situation
control".

All these processes are intermingled in real problem solving in the sense that
they work on the same MDB, and each of them utilizes the same set of general
DILOS procedures.

Different research groups concentrate usually on one of the above men-
tioned processes. For example R. Schank, C. Rieger, C. Riesbek, N. Goldman and

S. Veber have developed a "general theory of language understanding", but their
systems [1,2] are intended first of all for adequate interpretation of the input
text in terms of existing world models. In our classification this corresponds in

part to the system's learning and in part to question-answering processes. A
similar idea underlies the research of the Soviet school of mathematical linguistic
investigating the transformations "meaning" •u. "text" [3,4,5].
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(a) Model modification

MDB

(b) Question-Answering

desirable

results

MDB

( c ) Calculation planning

  [sequence(algorithm)

of program activation

(d) Action planning

Fig. 1 — Problem classification.
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Question-answering systems are being developed successfully by many
researchers in the USA (T. Winograd, E. Charniak, G. Hendrix, F. Thompson

et al), USSR (Y. Bukchshtav, M. Malkovsky, G. Senin), Japan (H. Nishino,
M. Nagao), German Democratic Republic (E. Lehmann), Federal Republic of

Germany (H. Lehmann), and other countries [6,7,8] . Most really operational

QA's are based on limited lexicons and simple procedures of logical inference.

However, complex systems are now at the door.
From our point of view the most interesting prototype of our calculation-

planning system is being developed by E. Tyugu and his colleagues in Tallinn

[9,10] . Other researchers working in the same field are providing interesting

ideas on automatic program synthesis [1 1, 12] .
Situation control systems are being developed in the USSR by D. Pospelov,

Y. Klykov, L. Zagadskaya and their followers. Their work is now supported by

developed theory and a number of practical systems [13,14,15,16].

Thus the principles underlying DILOS rely on the successful research of

many different groups in many countries.
We have no intention of reproducing all the useful functions of other

systems; rather, we wish to develop the basic procedures and representations

which would allow creation of adequate world models and provide solutions

to the practical problems of the problem classes mentioned above.

4. SYSTEM COMPONENTS

The general system structure from the end-user's point of view is shown in Fig. 2.

The Principal Data Base (PDB) contains the sets of application programs, data
files, translators, and other conventional computer instrumentation.

The Model Data Base (MDB) is a medium for representation of the system's
knowledge about the world. It consists of different divisions each containing a
set of objects. An MDB object serves as a carrier for an elementary unit of
knowledge. It possesses properties with values; the properties may obtain ter-
minal values or they are used as descriptors for other objects' properties. A
particular group of MDB objects is utilized for description of the PDB contents:
for example, each application program residing in the PDB has its "representative"
in the MDB, the latter carrying all the necessary information about program
,arguments, results, location in the file system etc.

DILOS is a set of LISP programs, which receives users' messages and interprets
them on the basis of MDB contents.

DILOS can modify MDB, generate answers to the user's terminal, initiate
application programs etc. Application programs in their turn can produce
changes in the PDB, print texts or numbers on the line printers or draw pictures
on the plotters; however all such actions are considered to be a side effect of
the operation of DILOS.
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Systems Analysts )

Fig. 2 — System components

end— users
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Hence, the computing system has three basic components from the user's
point of view: DILOS, MDB, and PDB. With respect to this structure we can

-consider the process of system specification. The systems analyst has to fill
MDB with appropriate objects representing his view of PA. In addition, the
corresponding application programs and data should be stored in PDB while the
corresponding descriptors find their places in MDB.

MDB specification may be performed in two ways:
(1) by conventional computer methods, such as reading texts from cards,

editing from the terminal etc.;
(2) by means of special DILOS functions, providing for the creation and

amendment of MDB objects.
The first method is used when a considerable number of homogeneous objects

have to fill MDB. The second way is more appropriate for "individualized"
storage and modification of MDB objects, such as particular vocabulary entries
created by the linguistic processor.

The procedures for automatic learning have not yet been implemented. The
procedures will rely on various inductive inference and learning-by-analogy
mechanisms.
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5. DILOS CONFIGURATION AND FUNCTIONING
All DILOS operations are performed by sets of functions grouped into four
basic units called "processors" (Fig. 3):

(1) The Linguistic Processor (LingP) transforms input natural language
phrases (NL-phrases) into formal inference expressions (0-expressions)
that are directed to the other, "executive", processors;

(2) The Information Retrieval Processor (InfP) provides object creation,
modification, and associative search in MDB, each object possessing a
unique name and set of properties which reflect the object's semantics
or serve the purposes of the internal system.

(3) The Computational Processor (ComP) is for establishing links between
MDB and PDB, in particular for the activation of application programs,
computation control, and the organization of program interaction
through the flow of their results/arguments, and the extraction and
storage of application-oriented data sets etc;

(4) The Logical Processor (LogP) is the basic part of the system, controlling
the logical analysis and modification of the world model. It performs
the planning of actions (computations) that lead to the achievement of
a desired goal or the calculation of specific results. LogP usually inter-
acts with the other executive processors and could be considered as a
complement to LingP in the process of natural language "understanding".

(natural language phrases)

1
Linguistic
Processor

t
(Formal interface expressions)

Logical
Processor

Information
Retrieval
Processor

\
Computational

Processor

 /r- --)
I MODEL DATA BASE I
I I
L—   --J

Fig. 3 — DILOS configuration.
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The language of the formal interface (0-language), being an input for InfP,
ComP and LogP, is essentially a set of top-level LISP-functions. Function calls
are generated within program evaluationt thus allowing all DILOS processors

to interact with each other as desired.
The end-users (or systems analysts) can also directly access executive pro-

cessors by simply typing in appropriate function calls instead of NL-phrases,

thus bypassing the LingP. This fact is widely used in the process of debugging

and MDB specification, when a quick response is essential.

6. KNOWLEDGE REPRESENTATION IN THE MDB

Any problem-oriented world model can be represented in MDB by a set of
objects which may appropriately be divided into the following categories:

(1) Concept classes (CC) describe abstract sets of objects possessing similar
properties. Some CCs serve as "superconcepts" with respect to others
— "subconcepts". The basic properties of the superconcepts are pro-
jected over the lower-level subconcepts and individual Objects, although
the latter can possess additional properties.

Examples of CC: "city"; "aircraft"; "polygon"; "clothes",
(2) Individual objects (10) are particular representatives of specific CCs, in

the sense that they obtain terminal values for the properties described
in a general way within the corresponding CCs. IOs can never be con-
sidered as superconcepts, that is, they occupy the lowest level in the
hierarchy of super-sub-concepts.

Examples of IO; "Leningrad"; "TU-144"; "triangle ABC"; "my hat".
(3) Relation descriptors (RD) characterize semantic relations by means of

which CCs, IOs and terminal values can be combined in such a way as
to represent a state of a problem-oriented world model. Some RDs can
be considered as basic "super-relations" with respect to others — "sub.
relations". RDs may also be used in D ILO S for the purpose of "theorem"
activation considered below. By contrast to the CCs properties which
represent the inherent semantics of the problem-oriented model, RDs
specify the dynamic, time-dependent links between different objects
and values.

Examples of RD: "to exceed"; "to obtain the numerical values"; "to move", "to
be allocated in".

(4) Facts (F) constitute "knowledge units" constructed on the basis of
appropriate RDs. Different objects, values, and other facts may be
connected by semantic relations specified by appropriate RDs. Facts
usually represent different actions, events, and states of the world.

Examples of facts: "The speed of our airplane exceeds 800 km/hour"; "The
parameter D obtains the numerical value V"; "Robot R moves box B1 into
room N3"; "John's house is situated on the outskirts of London".

t A peculiarity of LISP is used in this process: programs are indistinguishable from data and
can be generated within other programs for later evaluation.
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(5) Regularities (R) or theoremst describe the general rules of static and
dynamic behaviour of the objects under investigation. A typical regularity
could be verbally expressed as the following:
"If a sequence of actions A 1,A 2 . Am is performed in the presence of
facts constructed from relations R1,R2,...Rk, then another set of
facts constructed from relations Q1,Q2, Qn appear in MDB". We
can represent this kind of regularity by the following formula:

 > {Qi,Q2, Qn}.
A 1,A2,...Am

If the actions A 1,A . .Am are omitted from this formula then
it corresponds to the ordinary cause-effect relation; other combinations
of {R}, {A]. and {Q]. have appropriate semantic interpretations. It is
possible, for example, to indicate by means of an appropiate regularity
that a combination of "primary" relations R1,.....Rk can produce a
"derivative" relation Q.

Examples of regularities: "After the aircraft has landed the unloading procedures
commence"; "If in the triangle 0 two angles X, Y and the side W opposite Y

sinX
obtain numerical values then by application of formula V=W.—

sinY 
the numerical

values for the side V opposite X can be calculated"; "If John doesn't have a
whisky at 6 p.m. he loses his sense of humour till the end of the party".

Other researchers introduce different classifications for the objects con-
stituting the world models. For example, in Schank et al (1975), the objects are
classified into: (1) general concepts and tokens; (2) events, including actions and
states; (3) characteristic features of general concepts and tokens; (4) conceptual
modifiers represented by adverbial constructions in natural language; (5) con-
ceptual patterns describing typical events; (6) time relations; (7) inference
molecules representing cause-effect relations between events.

Careful analysis reveals that the latter categorization is similar to the one
exploited in DIL0S, and this is an encouraging factor. It is worth noting that
the adequacy of a particular categorization is completely defined by the avail-
ability of appropriate mechanisms by means of which the programming system
handles the objects of each category.

A fragment of a semantic model is illustrated in Fig. 4. The simplified
picture corresponds to a phrase:

"FLIGHT 2172 LANDED AT LENINGRAD AT 19:40".
The various elements of this scheme fall into different categories. For example
"means-of-transportation" and "flights" are concept-classes, while "flight-2172"
is an individual object in the class "flights". It has properties "type", "pass", and
"speed" with appropriate values, the assumption being that these values match
the descriptions given in the object "flights".

t The term "theorem" has stuck to our notation owing to the influence of PLANNEFL
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basic notion

ITis
means of

transportation

basic relation

is
basic notion

is

/j 
80 900 3500 USSR ( rw av sea)

Denotations

Class Concepts Enid.object)
Fig. 4 — A fragment of a semantic model corresponding to the phrase "FLIGHT 2172
LANDED AT LENINGRAD AT 19:40".

A similar chain of concept classes and individual object is represented by
"settlement", "city", and "Leningrad". These two chains correspond to the
"static" knowledge about the world, and they are bound dynamically by the
fact "1120" which is a concrete representative of the "landing" relation. The
arguments of this relation "what", "when", and "where" (presumably defined
in general form within the "landing" relation description) have actual values
"flight-2172", "19:40", and "Leningrad". Thus the essence of this fact is that
two individual objects referring to different class concepts, and a terminal value
with the meaning day-time are connected by the relation "landing"; the whole
thing now corresponds to the specific event described in the input phrase.

436



BRIABRIN

Note that the property values of individual objects as well as the argument
values of the facts can be represented by terminal values (80, 19:40, .. . ),
individual object names (TU-134, Leningrad, USSR, ...), fact names (1120, ... ).
The terminal values in DILOS in their turn can be represented by:

—simple numerical or character string values;
—special values designating day-time, calendar time etc.;
—set-values designating enumerable groups of objects;
—range values designating upper and lower limits of numerical values;
—executable values assuming the evaluation of an arbitrary expression which
is legitimate in the given system.

The above example illustrates that relation descriptors and concept classes
play equal roles in constructing fragments of the semantic model. Similarly,
individual objects look externally the same as facts except that they play different
roles in representing "static" and "dynamic" knowledge about the world.
Moreover, "theorems" in DILOS are also represented in the form of similar MDB
objects possessing names and sets of properties, which allow them to be mani-
pulated like ordinary individual objects.

This uniformity of representation is deliberately introduced in DILOS with
the purpose of unifying the basic processing functions, and facilitating system
portability and maintenance.

7. (A-LANGUAGE

According to the DILOS general configuration (Fig. 3) the formal interface
language has the following functions:

—it plays the role of the formal output representation in the process of the
natural language analysis performed by LingP;

—it serves as a medium of intercommunication between the executive pro-
cessors LogP, InfP, and ComP;

—it allows end-users to access the executive processors directly, bypassing
the linguistic analysis stage.

The above functions require that 0-language should be characterized by a
number of features including the following:

(1) The expressive means of 0-language must ensure sufficient power for
its usage as a • bearer of meaning of the NL-phrases in the process of
NL--0.0 transformation. In this role 0-language has to be comparable
with predicative and relational formalisms [16,17,18].

(2) The 0-expressions must be operational in a sense that they must
comply as much as possible with the actions performed by executive
processors over the MDB and PDB contents. This means that the
syntax of 0-language should be tightly correlated with its pragmatics,
namely with the necessity of controlling the various processes in
computer, system.

(3) The syntax of 0 -language should be also concise, unambiguous and
comfortable for a human accessing the executive processors directly,
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without NL--,0 transformation. Besides that, the end-user has to be
able to read and understand 0-expressions which are generated
dynamically by the system so that the user may verify the correctness
of the system's behaviour.

7.1 Relations

Each executive processor has its own set of 0-expressions (top-level LISP func-
tions) evaluated in an appropriate way. The most frequently generated expressions
are likely to be directed to LogP. The general form of such 0-expressions is:

(ADDR (relation))
(DELR (relation))
(CHECK (relation)).

The ADDR function tries to enter new facts into MDB, DELR provides
deletion, and CHECK performs the search of appropriate facts. However, each
of these functions could invoke any other 0-expression depending on the actual
contents of (relation).

The general syntax of (relation) is as follows:

(prefix : arg0 tel argl argk) (2)

(prefix) specified the range of a given function, that is, the name of the division
of MDB where the action startst. It could be omitted from (2), in which case the
system considers the previously established division as the current one. The rest
of (relation) is a generalization of elementary "syntagmatic formulae" which is
utilized in the relational RX-language [16] . The meaning of such an expression
could be formulated verbally as follows:

An object corresponding to the main argument (arg0) falls into relation (re)
with the objects (values) corresponding to the arguments (arg1)...(arga

In contrast with the RX-language [16] where only binary relations are con-
sidered, this system can work with n-ary relations, each of arguments (arg1),
(arg2), . usually corresponding to adverbial modifiers in NL-phrases.

Example of relation corresponding to the NL-phrase considered earlier:

(*AEROFLOT : flight-2172 landing Leningrad 19:40)
t

(prefix) (arg0) (rel) (argl) (arg2)

Each of the relation arguments could be represented by a terminal value,
object name, or another relation thus allowing an arbitrary nesting of relations.

Any relation name (rel) can be connected in MDB with a set of theorems,
invoked by appropriate patterns during the evaluation of the ADDR, DELR, and

t During the evaluation process, the system can skip from one MDB division to another.
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CHECK functions. Theorem activation can produce different side-effects includ-

ing the prohibition of the initially requested action. This is implemented through

a special "filtering" mechanism which is a part of (relation) processing.

7.2 Semantic Expressions

Another set of 0-expressions is processed by InfP. The general form of appro-

priate functions is as follows:

(ADD (semex))
(DEL (semex))
(CHANGE (semex))
(ADDNEW (semex))
(FIND (semex)).

(3)

The basic difference between (relation) and (semex) is that the latter tends
to describe the inherent ("static") semantics of the appropriate objects. The

general syntax of (semex) is:
(prefix : propertyl ; property2 ...). 

0 
(4)

The prefix part plays the same role here as in (relation), but it can include also

pattern variables and a list of particular object names which are subject to

modification or search operation.

The (property!) ; (property2) ... part of the semantic expression describes

particular properties of the objects which have to be ADDed, DELeted, CHANGEd

or are subject to ADDNEW and FIND operations.
Each property consists normally of a pair l(indicator) (prop-value)} which

means that the corresponding object has to possess a given property value under

the given indicator. However, when the FIND operation is involved the property

can consist also of a single (indicator) or an (indicator) followed by pattern-

variables.
Example of FIND expression:

(FIND (*CITIES =W: loc USSR ; popul (: 1000000 $) ; transp =Y))

(prefix) (property!) (property2) (property3)

This expression corresponds to the question "What means of transportation have
USSR cities with a population of more than 1,000,000?" The prefix part here

contains pattern-variable =W which will obtain the list of city names after com-

pletion of the FIND operation. The (property!) and (property2) parts work as

the search restrictions, whereas (property3) indicates that we are interested in

the values of "transp" property. The pattern variable =Y will be bound to the

list of appropriate values after completion of the FIND operation.
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7.3 Calculation Planning and Realization

Finally, there is a special set of 0-expression directed to ComP. The purpose of
the appropriate functions lies in initiating the process for creating sequences of
actions (calculations) which lead to achievement of the desired goals.

Two basic functions are used for this purpose:

(ATTAIN (pattern)) (5)
(CALC (pattern)).

The argument (pattern) usually contains references to a problem area, a
description of the initial data and a description of desired results, in the form of
a binary relation:

(prefix : initial-descr probl-area result-descr) (6)
t t

arg0 rel argl
Thus, an example of the ATTAIN function call, referring to "robot moving
boxes", could be the following:
(ATTAIN

(*ROBOTICS:
( , (robot at X) (box-1 at X) (box-2 at Y))
robot-move-boxes
( , (box-2 at Z) (box-1 on box-2)) )).

Line 1 here contains function name, while line 2 establishes ROBOTICS as
the current MDB division name. Line 3 contains (arg0) represented by a set of
three relations which describe the initial situation concerning the position of two
boxes and a robot on some surface. Line 4 contains the atom "ROBOT-MOVE-
BOXES" which serves as an indicator of (probl-area). Finally, line 5 contains the
description of the resulting situation represented by a set of two relations that
show the new positions of BOX-1 and BOX-2.

Thus the above example illustrates a formal representation of a particular
task to be solved by the system, also the use of nested relations. In the process
of executing ATTAIN, the system generates appropriate function callst and
builds up a sequence of actions to be executed later. This sequence is inspected
and possibly modified by the end-user, and finally becomes a plan for attaining a
desirable goal. The plan is identified by a special (process-identifier).

The constructed plan usually comprises a sequence of special function calls
of which the following could be mentioned:

(EX (process-identifier))
(INIT (appl-progr-descr) ) (7)
(RUN (appl-progr-descr) )
(FINISH (appl-progr-descr) )

t Relations constituting (initial-desc) become arguments of CHECK operations, while
relations constituting Cresult-descr) finally become arguments of the operation ADDR.
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The first function starts the execution of a computational process identified
by (process-identifier). Within this process several different things can happen — for
example, brief conversations with the user's terminal about the values of some
control variables, extraction of data from MDB/PDB etc.

In particular, functions INIT, RUN, and FINISH provide initialization,
execution, and finalization of the appropriate applied program(s) identified by
(appl-progr-descr). The latter functions can also be used in stand-alone mode,
that is, called directly from the user's terminal or from some other place in the
system.

Thus 0-language is determined by the set of functions (1), (3), (5), and (7),
each group of functions reflecting appropriate pragmatics, that is, actions
performed by the corresponding executive processor.

8. IMPLEMENTATION

The system is implemented at the Computing Center of the Academy of Sciences
of the USSR on the basis of a LISP translator for the BESM-6 computer [19,20].
The choice of this powerful and elegant programming tool allows us to modify
and extend the system's facilities relatively easily. In addition it makes the
system portable, as was demonstrated when a sub-version of DILOS was installed
on the PDP 11/45 computer at the International Institute of Applied System
Analysis (IIASA) in Laxenburg, Austria [21,22] .

In Moscow DILOS is exploited under the control of the BESM-6 multi-
access system. All application-oriented programst and data sets are accessed
by means of the general operating system utilities, which can themselves be
considered as parts of the principal data base. The Model Data Base is also
implemented by means of a general file system accessed by built-in LISP
functions. The possibility of using a distributed data base is being considered,
where some programs and data sets are stored and processed on different com-
puters connected through a network. In such a case copies of DILOS and the
corresponding MDBs could be located at the node computers, each "local"
MDB containing particular knowledge corresponding to the interests of the
owners of that node.

Up to the present (January 1977) the system has been used in an experi-
mental environment for tasks connected with administrative management,
new industrial regions development, and computer automated design.

We believe that natural language dialogue in connection with the logical
analysis of problem-oriented models and advanced methods of information
retrieval and calculation planning will become a widespread instrument of
systems analysis and other computer-assisted research.

t Most of the application programs are written either in ALGOL-60, FORTRAN, or
PASCAL.
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Natural Language for Interaction with a Database
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INTRODUCTION

The Dialogue Information Logical System (DILos) has been developed for the

purpose of serving as an "intelligent" mediator between the user and the set

of applied programs and data modules [1]. The system is written in LISP,

and it could be divided functionally into several parts called "processors".
Three executive processers are activated by the "formal interface expressions"

(-expressions), and they perform logical inference, information retrieval, and
calculation planning/realization. Thus 0-language constitutes one possible

medium for users' communication with the system.
The special Linguistic Processor (LingP) is a front-end part of the system

intended for the transformation of the input natural language phrases (NL —
phrases) into the corresponding 0-expressions. We present here a short des-

cription of LingP operation and its underlying principles.

RESTRICTED CONTEXT

The problem of natural language (NL) understanding has always been considered
a difficult one because it was believed that a processing system should operate
successfully in a practically infinite context and handle a gigantic variety of
individual lexicons. However, we accept the hypothesis that natural language
communication with a computing system, which is intended for specific

problem-solving, involves rather restricted lexicon and context, and this frame
is sufficient for creating an NL processor by comparatively simple means.

In fact, any system that "understands" NL, is characterized by the context
in which it "places" the user. If we put some restrictions, lexical or grammatical,
on the input language, then the latter ceases to be "natural").

t Therefore, NL understanding either implies complete knowledge of grammar, or is semantic-
oriented, that is, it is determined by world knowledge, not linguistic.
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We distinguish between the following kinds of context:

(a) The general context is defined by the purposes and possibilities of the
whole system; part of that is NL recognition. In our case the context is
connected with the pragmatics of data base (DB) management and with
the data representation. It means each input phrase tends to be con-
verted into a meaningful 0-expression, leading to some operation on
the data base contents.

(b) The local context is specified by the particular knowledge of the given
problem area (PA), that is, by a restricted world model. Such context
is represented by the set of class concepts, relations, and inference
rules as well as by individual objects and facts, which reside in the
current data base division (file).

(c) Finally, the current context emerges as the "story" of the user's com-
munication with the system and includes the previous user's phrases and
their interpretation by the system; in particular, concrete individuals,
facts, "situations", described by the user and as a rule kept temporarily
in the DB.

Thus, the system's reaction would be relevant only if inputs are pragmatic,
problem-oriented, and correctly refer to each other.

While using (0 -language as an input one, this means the correctness of the
0-inputs syntax and semantics.

While using NL, the context is appealed to indirectly, through a vocabulary
that expresses knowledge of language in terms of the above mentioned context.t
So the amendment of vocabulary can be considered as teaching the system the
language in the given context frame.

VOCABULARIES

Thus, Ling? operates in the restricted environment defined by the general,
current, and some specific local contexts.

Any two vocabularies, first of all, can differ in the latter, that is, they can
be adjusted to a different PA. Besides that, a vocabulary (VOC) is characterized
by the language of communication (English, Russian etc.) as well as by the user,
which "starts" the VOC and works with it (naturally, each user has his own style
of conversation, lexicon, and so on).

Hence, vocabulary may be considered as a function of three parameters:
V(A,L,U), where A is a specific problem area, L — an NL, U — a user. All the
information in vocabularies is segmented "along" these parameters, and in each
session the LingP is to be adjusted to some PA, language, and user.

Such an approach permits:

(a) Restriction of the lexicon of each vocabulary, and, therefore, a reduction
in the time of word retrieval.

t Of course, a vocabulary should contain also some linguistic (grammatical) knowledge.
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(b) Simplified description of the sense of some words.
(c) Avoidance or reduction of homonymy.

The defects of this organization are (1) that much memory is expended and
(2) that the LingP is scarcely able to adjust itself to some individual VOCs.

So it is reasonable to unify several VOCs with similar contents.t
It is not expedient to unify two VOCs with different A or L, because in this

case the above mentioned requirements (a), (b), (c) are not satisfied.
On the contrary, it is convenient to unify "by users", since lexicon and style

of conversation of several users, working within the same PA, almost coincide.
It is worth noting that, generally speaking, the hierarchy of the vocabularies

is as necessary as their segmentation; that is, drawing the common lexicon out
of several specially-oriented VOCs.

In DILOS the formal mechanisms for that is a division-subdivision structure.

THE GENERAL PRINCIPLES OF NL -+ 0 TRANSFORMATION

Let us consider LingP interaction with an Information Retrieval Processor
(IRP). The general syntax of a 0-expression directed to IRP looks as follows [31:

(   
[(obj-names)11(restriction)

(func-name)(div-name) 
j
.
[ ii ' (I)(var) (prescrpton)i 

(func-name) defines the type of operation (FIND, ADD, DEL, ...). (div-name)
sets up the scope of operation to be performed; that is, it establishes a current
data base division name; (obj-names) put further restrictions on the scope of
operation requiring that it should be applied only to the objects with the given
names. If (var) is used instead of the (obj-names) then all objects of the current
division participate in the operation.

(restriction) is represented usually by the pair find) (val) implying that a
required object should possess the given value (val) under the given indicator
find). (prescription) is represented by the pair (ind)(var) impelling the system
to extract the value of (in& property from a given object and assign it to the
variable (var). (id) could be represented by an atom or a list;

(van — by an atom, a list, a number, an interval, or a set of values.
(var) is a pattern variable designated by = (identifier).

Example:

(FIND CITIES = X: LOC USSR ; POPUL 1.0 ; = Y

div-name var restr 1 restr 2 prescr

t For the LingP implementation in DILOS (see the next section) the operation of vocabu-
lary unification has a simple formal definition: if V, = V(A„ L„ 1) and V, = V (A„ L2, U2),
then V3 = 11; t.) V, has a lexicon, unifying as sets lexicons of V, and V2, and each entry
contains under the corresponding indicators (S-type and code) homonymic unification of
the indicator values from the entry in V, and V, (see in DILOS [3] value type "set" of
the form (, ...)).
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In the process of NL 0 transformation an attempt is made to tackle
each word from the input string in such a way that is would help to fill an
appropriate position in the 0-expression which becomes an output of LingP.

Thus a phrase "what industries have the USSR cities with population
1M?" has to be transformed into a 0-expression as in the above example. For
this purpose a problem-oriented vocabulary (which is a part of the data base)
should contain appropriate entries for the words from the input phrase. Each
word has among other properties two that are most essential:

(a) Internal code, substituting the given word in the constructed 0-
expression; this property often refers to a local context.

(b) Semantic type (S-type) usually designates the role played by the given
word in the general context (compare [2]).

The analysis is directed by the augmented transition network (ATN) where
each node contains preconditions allowing transitions from one state to another
and predictions about the likely S-types of the words which can occur in the
current state.

Preconditions could be connected with:

(1) features (properties) of the current input symbol, particularly its S-
type;

(2) contents of the "registers" (variables) reflecting the history of input
phrase processing.

Of course, an input phrase could contain "unknown" words which are not
found in the vocabulary. A special arrangement is made for dealing with such
words, and we shall discuss it later.

ATOMIC S-TYPES AND THEIR COMBINATIONS

Each word possibly has one of the following elementary (or atomic) S-types:

plays the role of (ind> in 0-expression;
✓ —plays the role of (val);

— designates interrogative word; impels to introduce the (var) in, 0-
expression;

p — punctuation mark; such a word or character usually serves for tran-
sition to another state (changing expectations);

or — separator of alternatives;
leq, greq — substitutors for the words, designating "<" and ">" relations;
fn — plays the role of (func-name);
fl — plays the role of (div-name);

• 

— plays the role of (obj-name);

• 

— designates a "superconcept" of an object;
aa — designates an additional action (for example, calculation of minimum,

maximum, average, etc.);
last — marks the end of the text.
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Generally speaking, S-type does not depend directly on the syntactic
properties of a word or its "ordinary" semantics, but it is entirely defined by
the above-mentioned contexts. For example, if we consider a local context
describing the employees of an institution, then LingP possibly has to deal
with the following words and their S-types:

S-type ("get") = S-type ("salary") = i
S-type ("sit") = S-type ("room") = i
S-type ("earlier") = S-type ("before") = leq.

There exists an approximate correspondence between the words and their

senses (reflected in S-types). This could be one-to-one correspondence, that is,

"i word -> i sense2", but three other cases could also emerge:

(1) Auxiliaries, that is, words with "less than atomic" sense are processed

during the pre-editing stage (see below).
(2) Composites, that is, words with "more than atomic" sense are assigned

sequences of atomic S-types (in the form of LISP-lists). When encoun-

tering such a word the input string processing is suspended until all
atomic senses constituting the composite sense are tackled in a proper

way. Afterwards the input string processing is resumed.

(3)

Examples:

oldest = most + age -aa + I
who = what + person -> q + c
woman = person + sex + female -> c + i + v

Homonyms, that is, words with multiple (alternative) senses sl, s2,
are represented by the lists which have the form: ( , Si S2 ...). We
shall call it "a list of alternative senses" (LAS).

Each homonym creates a branch point (BP) in the input string
processing. All the necessary information is stored in BP; then the first
(the next) element from LAS is extracted and treated as a possible
S-type of the current word. If the following processing becomes upset
for some reason, then the analysis backtracks to the BP, restores all the
necessary information, and tries to handle the next alternative from
LAS.

Besides the three above-mentioned cases, some words may be
declared as "unimportant", they are assigned "null" S-type, and LingP
ignores them in the process of input string analysis (for example,
articles, some prepositions etc.).

PROCESSING OF UNKNOWN WORDS

The system can deal with the unkown words in two modes.
(a) In "careful" mode, the system interrogates the user about each unknown
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word, stores the information received in the vocabulary (if the user encourages
the system to do it), and proceeds with normal analysis.

(b) In "careless" mode, all the unknown words are assigned "null" S-type,
impelling the system to ignore them at the first scan. But the analysis pro-
ceeds from this moment exactly as in the case of homonyms, except that the
LAS content emerges not from the vocabulary but from the ATN state in which
the corresponding unknown word was encountered. As mentioned above, each
ATN state contains predictions about S-types, which are "acceptable" in this
state, and these predictions become a source of LAS contents.

Thus in careless mode each unknown word creates a new BP leading the
system to backtrack to this point if the analysis fails in the future.

When all the alternative LAS are exhausted and there is still no success
(LingP or the user is unhappy with the constructed 0-expression) then we have
two possibilities:

— to cease processing at the current BP (that is, backtracking allows only 1
level back, not more, to be jumped);

— to backtrack along the entire tree of alternatives with an attempt to
consider all the possibilities created by homonyms and unknown words.

The first decision seems to be more applicable when an input phrase contains
a small portion of homonyms and unknown words, because "verification" of
alternatives produced by one BP usually takes place before the next BP will be
established.

The user can help the system deal with unknown words in careless mode by
defining some of them. In this case both modes are adjoined into one.

NL - SENTENCE -+ 0-EXPRESSIONS CORRESPONDENCE
In this version LingP receives the input text from the user by portions, and in
each input there can be many phrases, which are to be processed one by one.
One of the previously-established symbols serves as end-marker for each phrase.

Each NL-phrase is mapped into exactly one output 0 .expression except the
following cases:

(a) "Preliminaries": Execution of the "basic" expression is possible only
after some preliminary actions.
Example: Who gets more than Brown?
Preliminary: How much does Brown get?
Basic: Whose salary is more than the one just found?

(b) 'Additions": After execution of the basic expression some additional
actions are necessary.
Example: What is the average salary of RDD laboratory employees?
Basic: What are the salaries of RDD laboratory employees?
Addition: Compute the average of the numbers found.

When the situations relating to (a) and (b) are recognized, the corresponding
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0-expressions are generated and pushed into the special stores ("preliminary"
store and "addition" store). After terminating the analysis, all preliminaries
are executed first, then the basic expression is processed and after that all
additions are executed.

After the 0-interpretation of the current portion and the corresponding
operations on the DB, LingP is ready to take another portion.

PRE-EDITING STAGE

Words, marked in the vocabulary as "auxiliaries", are processed before the
principal block of translator starts operation. In the vocabulary the following
information is connected with such words:

(a) What is the "master" of the given word, to which it "adds" its sense?
(b) What is the "summary" sense of the two words?

As a rule, auxiliaries are predicates and syntactically govern its master. The
master is usually represented at the entry by means of its syntactic and possibly
semantic properties.

If the master is found in the sentence it acquires the "total" sense. The
aux-word in this case is excluded from the input string and does not participate
in further considerations.

The following NL word classes can be considered as auxiliaries.

— prepositions and postpositions,

— articles;
— elements which are used within analytical forms of verbs, adverbs and

adjectives;
— possibly, some adverbs, adjectives, etc.

It is worthy of note here that marking a word as an auxiliary is guided by
consideration of convenience and uniformity of further analysis rather than by
linguistics, and on the whole is determined by the pragmatic purposes of the
system.

CONCLUSION

Two basic features are inherent in DILOS:

— the uniformity of internal data representation,
— the independence of basic procedures from data base contents.

Relating to LingP processing, it means, that all VOC's are stored apart from
the programs, which do not explicitly use the VOCs' contents. This allows the
system to translate from one language to another by its adjustment to corres-
ponding VOC.

Furthermore, the ATN is also kept as one of the DILOS divisions, being
written uniformly. Hence, LingP is rather flexible, because of the possibility
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of being adapted for special purposes by slight ATN amendment without
changing the basic programs.

We have performed the first tests of the system in Russian and English, and
the results encourage us to develop it further.

ill

[2]

[31
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Abstract

Al research in Novosibirsk Computer Center is limited to two main subjects:

(1) Non-deterministic model of behaviour control (for movement of a
stepping robot).

(2) Natural language for human-computer interaction. This includes:

(i) Development of a structured multi-level formal model of natural
language syntax.

(ii) Formal means for presentation of semantic information. Software

support for this.
(iii) Application systems for analysis of natural language interrogation

of a simple data base.

INTRODUCTION

The activity of our AI group includes first the use of natural language for man-
machine interaction, and second a non-determinisitic approach to robot control
in complex environments. It is a small three-man project and for the last four
years our work has centred on the construction of simple models of walking
robots on complex surfaces.

THE ROBOT PROJECT

Stepping over pits with maximal non-determinism.

This model has three principal levels of control, as follows:

(a) The bottom level is a behaviour generator; that is a directed graph, in
which the vertices correspond to different states of the robot (individual points

of the discrete space of the states or some generalized states), and each arc from
the state Si to the state Si corresponds to some elementary act of control which
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is possible for the robot in the state Si and transfers it into the state Sp The
bahaviour generator has only those arcs and vertices which are incorporated
either in cycles or in the paths entering the cycles. All other states are excluded,
thus guaranteeing absence of a priori deadlocks.

Each non-terminating path in the generator corresponds to some line of
behaviour in ideal conditions without any obstacles. In general, such a behaviour
line is irregular and does not correspond to that which we usually call "a gait",
although of course every gait is a particular case of cyclic path in the graph.

(b) The middle level is a look-ahead mechanism, its task being to mark out
a "corridor" of allowed behaviour for the bottom level. This corridor is planned
for several steps ahead and takes into account all main details of the surface at
the given distance, plus the values of some external parameters of control
(speed, the height of the platform, "the co-efficient of caution", etc.). The
corridor must be as wide as possible, yet guarantee the absence of "dynamic"
deadlocks due to particularities.

(c) The top level is for planning the route. It is not connected directly
with the stepping feature or with the non-determinism of the lower levels, and it
was included in the model only for the sake of completeness for demonstrations.

Progress so far is as follows: .

(a) The behaviour generator: we have tried three different approaches to
control a sufficiently general method which could be synthesized for compara-
tively complex models.

— Direct presentation of the discrete space of the states. In fact it is reduced
to the general problem of compact presentation of a multi-dimensional
function, which in our case is the space of all possible states.

— Description of that function with some system of predicates. Such a
system turns out to be most unwieldly, even for simple models.

— Reduction version, whose main component is some base set of repre-
sentative states, chosen so that each (or almost each) permissible state
could be traced to one of the base states with a simple procedure. So far, the
generators obtained were too reduced to give sufficient non-determinism.

(b) Look-ahead: our attempts to find a method to define "the corridor" in
precise form were successful only for the simplest cases, so we were forced to
look for some heuristic approach. Now we use a simple mechanism, which can
be described in brief as a set of several behaviour lines which are realized simul-
taneously and are ahead of the real position of the robot. If some of the lines
come to a deadlock, another grows a new "branch" from a point several states
back, and the "dead branch" is pruned.

These look-ahead lines fill the corridor and are used as a support for the
control to define a way for moving along the corridor.

(c) Planning the route: in the beginning we used Bellman's algorithm for
a defined optimal route for a "black-white" map of the range. Planning was
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therefore on the basis of complete information. Now it is not so simple: the

range is presented with a three-dimension map, and the robot knows only what
it has seen or can see at the particular moment. It defines some subgoal and
moves to it to see more, and then defines the next subgoal.

THE NATURAL LANGUAGE PROJECT

Our natural language project (NL) covers three main fields of interest:

(i) Syntax: linguistic model of natural language, formal means suitable for
description, formal model for the syntax of Russian.

(ii) Semantics: formal means to shape semantic information and to work

with it.
(iii) Application systems (AS): this direction makes it possible for us to be

active in the wide gap between the syntax and semantics fields, to
probe and use practical concrete results from (i) and (ii).

AS development is planned as a sequence of AS versions with NL input at
first and dialogue capabilities in the future.

We began with a simple data base which understood NL queries. The simple
data base here is merely a list of objects with a standard set of attribute values,
that is, personnel files, catalogues of goods or industrial shipment, etc.

A user may use "min", "max", "average", >, ‹, =, 0, "number of",
"sum" without syntax or vocabulary limitations on queries. So he is able to ask

a question such as: "How many holders of Ph.D.'s older than average and earning
less than S 1 0 , 0 0 0 work in the computer science department?"

A toy system which can answer queries of that type with the attributes

"name", "wages", "position", "subdivision", "year of birth" was worked out,
programmed, and debugged by the author and our chief programmer D. Levin.
The process took no more than two weeks, owing to the following:

(a) As an implementation language we used SETL, an ultra-high-level
language designed by Prof. Schwartz of N.Y. University, on our BESM-6
computer.

(b) The object-world of our data base is so primitive that it allows the
system to understand queries using only the semantic information and the
order of words in input sentences. The system needs no syntactic analysis to
understand most of the queries, even rather cumbersome ones. When processing
a query the system takes into account only semantically significant words and
completely ignores the rest. After the substitution of significant words with
corresponding semantic symbols and the exclusion of non-significant words, the
system (with the help of a simple two-stack mechanism) constructs a formula
defining the program to compute an answer for the given query.

This experiment brought us to the idea of a "bottom up" style of analysis,
under which a system tries at first to understand a query with the help of pure
semantics, and only if more than one variant is produced the system turns to
syntactic analysis in order to choose among them.
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The syntactic analysis has to be as local structurally as possible, because its
function is to prove (or to refute) that each of the variants obtained corresponds

to the syntactic structure of the sentence. If at some stage only one variant

remains unrefuted, the system regards it as the meaning of the given query
and stops troubling itself with further syntactic details.

We based our work preceding the experiment on the positional "surface

down" scheme of syntactic analysis which is the traditional approach to auto-
matic translation. So the idea of the "reversed" analysis was a real revelation for
us as we could see at least three reasons to prefer it to the "standard" way:

(i) It is much more effective: the gain is more noticeable when the object
world of the system is smaller.

(ii) It makes it possible to produce a good application system without
waiting for a good formal model of NL syntax.

(iii) It makes it possible for a computer to understand a text in "an incorrect
form", even "broken" language, if the text is non-ambiguous from the
semantic point of view.

Of course, the more complex and wide the object world is, the more com-
plete and detailed syntactic analysis the system needs. If the object-world is

complex enough, it needs all the syntax information to resolve the ambiguity of
the semantic analysis, or to prove that the input sentence is really ambiguous.

Before the experiment with the toy system our project had only investi-
gated the first domains out of the three enumerated above, and our idea of text
processing was formed by the nature of the previous model of syntax. It was a

level-to-level position process directed from surface to deep structure under
analysis and backward under synthesis.

After the three-year experience, we decided to change our syntax philosophy
and to begin at the same time on the third domain; that is, the application
systems.

It now seems to us that the analysis ought to be realized by some mixed

strategy under which the process is developed simultaneously from the surface
inwards and from the semantic level towards the surface with the primacy of the
second direction.

Such a process requires that the formal syntactical model is well structured
not only in the "horizontal" levels of representation but also in the hierarchy
of constituents of a phrase. It allows analysis as a synchronous interaction of

concurrent processes of analysis of individual constituents. •
This has not yet been achieved, but we have launched a project which we

hope will result in a sequence of versions of successively increasing power.
Our recent (second) version took much more time to implement than the

first one. It is a transitional version, not as "toy" as the previous one, but
without the complete scheme of "backward" analysis, and its object world
corresponds to the original simple data base.

The analysis in this version has two levels. The first one carries out pre-
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liminary processing: it recognizes word-complexes with the elementary meanings
for this data base (such as "greater-than-or-equal-to", "twenty-three-point-five",
or "project-leader"). The second level combines semantic and partial syntactic
analysis. Both levels are realized by the same program mechanism, using two
different sets of rules. Each of the sets is a binary context-dependent grammar
of constituents where the context is limited to the elementary constituents for
this level.

All "lines" of the analysis are carried out simultaneously by a process which
can be defined as "parallel" and "non-deterministic". As in the toy version,
every ultimate constituent obtained as one of the results of the analysis corres-
ponds to a formula which can be translated into a program to compute the
answer to the query. If the system obtains no ultimate constituents it answers
that it does not understand the query, and when the analysis gives two or more
different formulas the query is recognized as ambiguous. Only in the case of
a single result does the system assume that the query has only one meaning and
that this meaning corresponds to the obtained formula. This second version is
almost finished and corresponds in its recent form to the scheme shown as
Fig. 1.

DICTIONARY

Fig. 1.

r-------1 The rules
I query I 

(internal representation)

•■••••■.1.
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_ _ - -
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PROGRAM
- - _ t_ _ _
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CESSOR Rules I

- - -J

This is an experimental system: we intend to use it for two main purposes:
to probe and perfect the program mechanism and to debug the linguistic model,
that is, the complex of rules.

To make the second task easier, the system is provided with a preprocessor-
editor which permits work with the rules in their external "natural" form while
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the program uses them in their internal representation. The deep structure here
is a tree of constituents including all the semantically significant lexemes.

As stated above, this recent version is a transitional one: we regard it as the
next version in embryo.

(a) The grammar it uses, that is, the binary context-dependent grammar of
constituents, is too low-level to be convenient for a linguistic model.
We believe that it would not be high-level enough even with an arbitrary
context and constituents with a gap allowed. We think that a grammar
combining the constituent structure with a dependency tree would be
more adequate, and we hope to have a corresponding mechanism in the
next version.

(b) The recent version does not use semantic and syntactic analysis as two
separate processes to realize the "reversed" scheme. More exactly, it
permits the use of the scheme, but the methods of the semantic
analysis are too weak and eclectic in this version to regard it as an
autonomous stage.

For the next version we plan a separate and more powerful semantic analysis
module which will include a special data base and an inference mechanism
for the description of the object world, and active use of this information
for the analysis. This will help to make it more universal and will facilitate its
orientation for a particular object world. We hope that it will be possible to use
this data base for the recognition of the equivalence of deep structures.

(c) We plan that the next, that is, the third, version will be ready in two
years, during which time the linguistic group will consider some com-
paratively simple variants of the syntax model and attempt at the same
time, in cooperation with mathematicians, to find a complex of formal
constructions which would be high-level enough to permit "natural"
and compact formalization of the model.
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1. INTRODUCTION

For the past ten years we have been working on the problem of getting a com-

puter to understand natural language. In the beginning, work centred on the

problem of parsing. We built an early version of a parser that mapped from

English into a language-free representation of the meaning of input sentences

(Schank and Tesler, 1969). Simultaneously we worked on the meaning represen-

tation itself. We developed Conceptual Dependency which represents meaning

as a network of concepts independent of the actual words that might be used to

express those concepts (Schank, 1969).
Over the years the parser and the representation evolved as we began to

understand the complexity of the problem with which we were dealing. Con-
ceptual Dependency began to rely more on underlying primitives for the repre-
sentation of the similarities in meaning that transcend the particular words of
a language (Schank, 1975). Similarly, our parser developed into a program that
relied less on syntactic information to aid it than on predictions that could be
obtained by exploiting the properties of the conceptual representation into
which we were mapping (Riesbeck, 1975).

We began at this point to worry about the possible use of the conceptual
parse that we were producing. We built an inference program (Schank and Rieger,
1974) that exploited the properties of the primitive concepts uncovered by the
parser and derived new information from them. These inferences then added
information to the conceptual content extracted by the parser. One problem
with the inferencer was that it was hard to control. It made inferences without
regard for their need. This was part of Rieger's (1975) theory of inferences,
but its effect on our programs was to make them rather purposeless and slow.

At this point we developed a theory of understanding of connected text.
Part of the problem that we had with controlling inference was due to the fact
that we had been working on sentences taken out of context. Sentences con-
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sidered in the context of the rest of the text in which they were contained in a

sense pointed the way towards the appropriate and necessary inferences. Thus,

an inference was considered to be crucial if it helped to tie together the sentences

of a text. The end product of such an inference procedure was a connected
causal chain of events that represented the implicit and explicit information in a

text (Schank, 1974).
At this point we began to program a computer understanding system that

would attempt to process input texts. An item crucial to our ability to accomplish

this task was what we called a script. A script is a frequently repeated causal
chain of events that describes a standard situation. In understanding, when it is

possible to notice that one of these standard event chains has been initiated,

then it is possible to understand predictively. That is, if we know we are in a
restaurant then we can understand where an "order" fits with what we just
heard, who might be ordering what from whom, what preconditions (menu,
sitting down) might have preceded the "order", and what is likely to happen

next. All this information comes from the restaurant script.
The method of processing text outlined above is analgous to that used in

parsing. Once we have a well-defined idea of what belongs in the conceptual
representation we can determine what is missing and go back into the text to

look for it. Thus in both parsing and script application, processing is bottom up
until enough information is available to allow the switch to top down.

The program we built to understand texts by the use of scripts is called
SAM and is described in Schank et al. (1975), Schank and Abelson (1977) and

Cullingford (1977). The program works on the domain of newspaper stories.
It does a tremendous amount of detailed processing including inferencing,
reference specification, disambiguation, and memory simulation. The program
can produce summaries, long paraphrases, translations into other languages as

well as answer questions about the input story.
SAM is a very complicated program. It attempts to understand exhaustively

and completely. Because of this SAM has two major problems: First, it is rather
slow. Although there are ways in which it could be speeded up, it is not at this
point the kind of program one would want to have running all the time on one's
system. Second, it is a bad simulation of how people actually read newspapers.
We built SAM to test out our ideas about how people read as well as to attempt
to get a program to read. Obviously there are many kinds of texts besides news-
papers, but there is a common basis to reading that transcends what you read.
However, we began to wonder if there wasn't something special about newspaper
reading that we could exploit so as to build a faster and thus more useful program.

One obvious thing is that people tend to read newspapers with a purpose.
They do not read every article nor do they read every word of the articles
that they choose to read. People skim until they decide to read in detail.

It seemed reasonable to us to attempt to model this skimming process, using
what we had learned about the process of understanding in general. In other
words we set out to build a program that would be an extremely top down
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system. It would know what it wanted to know or what it was interested in and
go out and look for it. Finding what it wanted would cause it to generate new
goals to find related information that would amplify what it had found. This
purposive understanding program we named FRUMP for Fast Reading and
Understanding Memory program.

UNDERSTANDING WITH A PURPOSE
Although there undoubtedly are people who read every word in their daily
newspaper, most people do not. The usual procedure is to scan the paper for

items of interest, perhaps by starting in a relevant section of the paper, or else

by starting randomly. When an interesting headline is found then the reader

begins to read. He may read in several modes:

(1) If the story is a completely new one, he may read every word until he

becomes tired or the article is finished.
(2) If the story is an update of a currently running story, he may scan for

the new information present in the story.
(3) If the story is of a generally continuing nature, he may go quickly

through it, looking for items relevant to his particular interests.
(4) If the story is in the reader's domain of special interest, he may read

every word and make all possible inferences.

These four modes of reading exemplify four very different processes. Com-
pletely new stories occur somewhat less frequently than the others. Examples
might be earthquake reports, plane crashes, assassinations, the introduction of
a new bill in the legislature, a special announcement by a political figure. Mode
1 stories have usually a "one-time-only" nature, or else they are the beginning
of a continuing story.

Mode 2 stories usually contain little if any new information for someone
who has kept up to date on the story. Newspapers are written in such a fashion
that people who have not kept up can still figure out what was going on. Thus,
for example, recent long-running stories in the news such as the Patty Hearst
kidnapping or the Philadelphia Legionaires' disease, continually retell the initial
setup of the story in each subsequent report. Readers who already know these
facts skim them to search for new developments. Often these developments
are told in the headline and lead paragraph, and readers will stop there.

Mode 3 stories are probably the most common type of newspaper story.
Continuing situations such as the Middle East situation or the energy shortage
are problems about which there are usually one or two new developments per
week in peak periods, drifting down to a few items a month in slower periods.
Some of these kinds of updates occur only once or twice a year in a situation
that is very long-term, for example, stories about high taxes and socialism in
Sweden.

To read a mode 3 story, a reader must have an interest in the situation in
general, along with one or more specific interests related to the situation. Thus
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a businessman might be interested in the possibilities for trade with Israel and
nothing else about the Middle East. Similarly, a socialist might want to read
only about the successes of the government in Sweden and care little about
party infighting, for example. Such a goal-oriented reader is easier to simulate
than a more passive reader. If we know what we are looking for, we can go in
and find it. We need not be disturbed by the complications involved in reading
where we have no interest. An obvious advantage for computers here is that we
also need not put in all possible knowledge for a situation, where situation is

defined very broadly. Rather, by limiting our domains of reading ability to
those that coincide with what we are interested in, we solve both the problem
of too broad domains causing unbounded amounts of knowledge to be needed
and the problem of having to do a lot of useless work to read stories or parts
of stories in which we have no interest.

Mode 4 corresponds most to what we normally assume to be the process
of reading. However, as we have been arguing, this "normal" reading mode
may not occur all that often in newspaper reading. It might occur for reading
columnists, or reports of a game in which a favourite team is playing, or other
special interest kinds of things.

The four modes correspond to our programs as follows:

mode 1 — this is what SAM does
mode 2 — this is what FRUMP does in update mode
mode 3 — this is what we are designing FRUMP to do
mode 4 — this is what the ultimate reading program would do.

An important point here is that there is a class of stories that we described

as being mode 1 that are best read by a FRUMP-type program rather than by a
SAM-type program. That is, new events such as car accidents or earthquakes
need not always be read for all the detail they contain. Thus, we decided that
FRumP's first task would be in the area of mode 1 stories. Next we worked on
updating those stories by quick skimming (mode 2). We are aiming eventually
for mode 3 ability in FRUMP.

THE GENERAL STRATEGY

We will assume that a reader should approach a newspaper story as follows:

1. Reading headlin■
We have four options here:

(a) quit and forget
(b) quit and remember
(c) go on in a careful detailed manner
(d) go on and skim.

2. Skimming

(a) old story recognized: fill in and update information
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(b) new story: scan for concepts predicted by the domain of the story
(c) any story: scan for key concepts of special interest.

3. Updates

(a) look for the continuation of a previously instantiated script

(b) look for unfulfilled expectations from the last reading

(c) look for update-specific problems (for example, the death toll mounts

in an earthquake each day).

4. Special interest concepts

(a) instantiate scripts specific to special interest
(b) begin reading carefully when a key concept is found.

A FRUMP RUN

With the above in mind we began to build FRUMP. FRUMP was designed to

work on mode 1 and mode 2 kinds of news stories. In theory, when it becomes

interested is something it could send control to SAM; however, we have not

actually tried to implement this.
To demonstrate its understanding, FRUMP produces summaries of what it

has read. Since its basis is language-free Conceptual Dependency type scripts, its

summaries can come out in any language, thus Russian and Spanish summaries

are produced in addition to English ones. FRUMP's scanning ability is based on
abstracting out the principles behind SAM. It is by no means a key-word parser.

Its parser is connected to the scripts that it has which describe news situ-
ations. It only looks at what it is interested in, ignoring the rest. It is thus a
very fast program. FRUMP can understand and produce a brief summary of a
150-word news article taken directly from a newspaper in about 5 seconds of
CPU time on a DEC KA10 processor.

To give an idea of FRUMP'S capabilities we will now show an example of
a run of FRUMP:

Sample run of FRUMP

INPUT:

10-11 CHIHUAHUA, MEXICO, — A PASSENGER TRAIN

CARRYING TOURISTS, INCLUDING SOME AMERICANS, COLLIDED

WITH A FREIGHT TRAIN IN THE RUGGED SIERRA MADRE OF

NORTHERN MEXICO, KILLING AT LEAST SEVENTEEN PERSONS
AND INJURING 45, THE POLICE REPORTED TODAY.

THEY SAID THAT AT LEAST FIVE OF THE INJURED WERE
AMERICANS, AND THERE WERE UNOFFICIAL REPORTS THAT ONE
OF THE DEAD WAS FROM NEW YORK CITY.

SOME OF THE PASSENGERS WERE TRAVEL AGENTS, MOST
FROM MEXICO CITY, MAKING THE TRIP AS PART OF A TOURISM
PROMOTION, THE POLICE SAID.
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THE AMERICAN SOCIETY OF TRAVEL AGENTS HAD BEEN
MEETING IN GUADALAJARA, THOUGH IT WAS NOT KNOWN
WHETHER ANY OF THE GROUP WERE ABOARD THE TRAIN.

ONE OBSERVATION CAR ON THE RAILROAD TO THE PACIFIC
TUMBLED INTO A 45 FOOT CANYON WHEN THE PASSENGER TRAIN
SMASHED INTO THE FREIGHT YESTERDAY AFTERNOON NEAR
THE VILLAGE OF PITTOR REAL ABOUT 20 MILES WEST OF
CHIHUAHUA CITY AND 200 MILES SOUTH OF THE UNITED STATES
BORDER, THE POLICE SAID.

THEY SAID THAT RESCUE WORKERS WERE STILL TRYING TO
PRY APART THE CAR'S WRECKAGE TO REACH PASSENGERS
TRAPPED INSIDE. THE RESCUE SQUADS COULD NOT USE CUTTING
TORCHES ON THE WRECKAGE BECAUSE SPILLED DIESEL FUEL
MIGHT IGNITE, THE POLICE REPORTED.

SELECTED SKETCHY SCRIPT $VEHACC1DENT

DONE PROCESSING
SATISFIED REQUESTS:

((<=> ($DATEL1NE LOC &DLOC MONTH &MON DAY &DAY)))
&DLOC

CLASS (*LOCATION)
LOCALE (*MEXICO*)
SATISFIED ((10) (11))

&M ON

&DAY

NUMBER (10)
SATISFIED (NIL (11))
CLASS (*NUMBER)

NUM BER (11)
SATISFIED (NIL NIL)
CLASS (#NUMBER)

((<=> ($VEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC)))
&VEH

&OBJ

CLASS (*PHYSOBJ)
TYPE (*VEHICLE*)
SROLE (&TRAIN)
SCRIPT ($TRA1N)
SATISFIED ((10) (11))

CLASS (*PHYSOBJ)
TYPE (*VEHICLE*)
SROLE (&TRAIN)
SCRIPT ($TRA1N)
SATISFIED ((10) (11))
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&LOC
CLASS
LOCALE
SATISFIED

((ACTOR &DEADGRP
&DEADGRP

NUMBER
SATISFIED
CLASS

((ACTOR &HURTGRP
&HURTGRP

NUMBER
SATISFIED
CLASS

SCHANK AND DeJONG

(#LOCATION)
(*MEXICO*)
((10) (11))

TOWARD (*HEALTH* VAL (-10))))

(17)
((10) (11))
(#PERSON)

TOWARD (*HEALTH* VAL (—LT10))))

(45)
((10) (11))
(#PERSON)

CPU TIME = 7.522 SECONDS

SUMMARY:
17 PEOPLE WERE KILLED AND 45 WERE INJURED WHEN A TRAIN
CRASHED INTO A TRAIN IN MEXICO.

HOW FRUMP WORKS

The basis of FRUMP is the script. However, rather than using a script like

SAM'S, FRUMP uses what we call a sketchy script. The crucial difference is
that sketchy scripts have far fewer conceptual dependency representation (only
those corresponding to the most important events in SAM's scripts) and more
often than not, the causal connections between conceptualizations are not
included. The result is that F RUMP understands most of what is important to
understand in news articles and works very much faster than SAM. The article
of several paragraphs that takes SAM a quarter of an hour to understand can be
processed by FRUMP in under ten CPU seconds.

When FRUMP begins to read a newspaper story, it already knows what
facts it wants to find. For each type of newspaper story, FRUMP has a list of
expected facts that it wants to see. These expectations are called "requests". The
collection of all the requests for one type of story makes up the "sketchy script"
for that story type. In the remainder of the paper, when we refer to a script we
will mean FRUMP'S sketchy scripts, not S Am's scripts unless otherwise noted.

In understanding an article, FRUMP must select a script and then try to
find occurrences in the article of the facts represented by the requests. Requests
are in Conceptual Dependency format and contain unfilled slots. These slots are
called "script variables". Understanding an article consists of finding the infor-
mation corresponding to a request in the text and filling in the slots (binding
the script variables) in that request. When an instance of one of the requests is
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found in the text and the script variables have been bound, that request is
said to be satisfied. The process of satisfying the requests of a script is called
instantiating that script. The number of requests in each script is small. The
requests correspond to the most important information in a particular type of
story. For example, the vehicle accident script used in the sample run above
contains four requests. The first request in the vehicle accident script will be
satisfied when FRUMP finds the type of vehicle in the accident, the object that
the vehicle collided with, and the location of the accident. FRUMP can satisfy
the second request by finding the number of people killed; the third by the
number injured, and the fourth by who was at fault in the accident. When all
of these requests are satisfied by a story. FRUMP knows all that it wants to
know about that news event. The rest of the article will be ignored.

When FRUMP is given a new article to understand it skims the first para-
graph for identifying information. This information is used to find the appro-
priate script to use to understand the article. Once the script is identified,
FRUMP begins skimming the article.

FRUMP is composed of two conceptually different parts: a parser and a
script applier. The parser FRUMP employs was inspired by Becker's phrasal
lexicon (Becker, 1975) which was presented at the TINLAP conference in 1975
but unfortunately was not actively pursued by him after that. The parser parses
phrases from the text into Conceptual Dependency representations. The script
applier then matches these conceptual representations against the requests in
the script. When a match is found, the fillers in the parser representation are
used to bind the script variables occurring in the request.

FRUMP uses the same language-free system of representation as is used
by Riesbeck's parser (Riesbeck, 1974) which is used in SAM. Yet FRUMP'S
parser is very different from the parser in the SAM system. The Riesbeck parser
parses an entire sentence at a time. There is very little communication allowed
with the script applier of SAM during parsing; FRUMP'S parser is concerned
only with parsing parts of a sentence. In SAM the parser and script applier are
very distinct. As a result, each does its thing with little influence over the other.
FRUMP, however, is much more integrated. The parser and script applier do
different tasks, but the precise division between the two is fuzzy. The advantage
of the fuzziness is that the two modules can communicate with each other
freely. This allows the script applier to control parsing to an extent not possible
in SAM. FRUMP'S script applier can tell the parser which of several interpre-
tations is correct or even to stop trying to parse the current input text.

THE CONCEPTUAL FRAGMENT PARSER

FRUMP'S 'parser is very top down. It is driven by the high-level requests of
the sketchy scripts and works very closely with the script applier. The parsing
strategy is to find conceptual fragments from the input text being skimmed that
will satisfy all or part of some script request. Important properties of the actual
conceptual referents in the text are then copied to variables in the conceptual
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representation from FRUMP'S dictionary. Finally, this conceptual representation
of the meaning of the input text is returned as the parse. Dictionary entries for
each word are made up of a list of meaning fragments in conceptual dependency
format. For each different meaning there is a series of context tests that must be
satisfied before this meaning can be realized as the parse. There are also instruc-
tions on how to bind variable role fillers in the conceptual dependency repre-
sentation. FRUMP has two dictionaries: one is the conceptual fragment dictionary
described below; the other contains information about objects and forms and
tenses of entries in the other dictionary.

The following is the conceptual fragment dictionary entry for "strike".

( (BKWRDS (MI (TYPE (*VEHICLE*))))

(FRWRDS (M2 (CLASS (#PHYSOBJ))))

((MERGE PI MI) (MERGE P2 M2))

((<=> ($VEHACCIDENT VEH PI OBJ P2))) )

The context tests are arranged in two lists which search backward and
forward respectively from the entry word for words that will satisfy the context
tests. If a context test is a single word, that word must be present in the input
text. If the context test is a list, it is satisfied by finding a word in the input
text that has all the properties specified, and copying them to a temporary
variable. For example, the first line in the above dictionary entry searches
backward from a form of the word "strike" for a vehicle. If it finds one, all the
properties of that vehicle are copied to the temporary variable MI, and the
forward tests are evaluated. The forward tests require that the word "strike" be
followed by a physical object. If all the context tests are satisfied, the properties
of the temporary variables are copied to the role fillers in the conceptual
representation. This representation is then returned as the parse.

The output of FRUMP'S parser is not modified English as it is in Colby's
system (Parkinson, Colby, and Faught, 1976), but a language-free conceptual
representation. The advantage of a language-free representation is that different
phrases with the same meaning will be parsed into the same representation.
This in turn means that the test to see if a request is satisfied by a parse is very
efficient. It also makes generating summaries in different languages no harder
than generating the summary in English.

EXAMPLE OF A SKETCHY SCRIPT

One of the scripts that FRUMP has is a vehicle accident script. All vehicle
accidents, whether they are train wrecks, boat collisions, plane crashes etc., have
many things in common. In a vehicle accident story there is always a vehicle and
there is always an object that it collides with. There is always the possibility that
a number of people are killed or injured. In addition, in newspaper stories, the
cause of the collision is often reported. These are the important points of a
vehicle accident, and these are what FRUMP tries to find out when reading a
vehicle accident article. There are, of course, many other things that can happen
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in a collision. For example, the injured people are often taken to a hospital, for
auto crashes there is often a policeman called to the scene etc. These are less
important facts, and unless there is some special reason for noticing them, a
human skimming the article will usually miss them. FRUMP also ignores these
lesser points. The vehicle accident script currently consists of four requests at
three important levels.

Request RI
value: (((<=> ($VEHACC1DENT VEH &VEH OBJ &OBJ LOC &LOC)))

((EQU (<=>) $VEHACC1DENT))
(PROP (<=> VEH) *VEHICLE* TYPE)
(PROP (<=> OBJ) #PHYSOBJ CLASS)
(PROP (<=> LOC) *LOCATION CLASS))

importance: 0

Request R2
value: (((ACTOR &DEADGRP TOWARD (*HEALTH* VAL (-10))))

((EQU (TOWARD) *HEALTH*)
(EQU (TOWARD VAL) —10))
(PROP (ACTOR) #PERSON CLASS))

importance: 1

Request R3
value: (((ACTOR &HURTGRP TOWARD (*HEALTH* VAL (—LTIO))))

((EQU (TOWARD) *HEALTH*)
(EQU (TOWARD VAL) —LTIO))
(PROP (ACTOR) #PERSON CLASS))

importance: 1

Request R4
value: (((<=> ($FAULT ACTOR &ACTOR)))

((EQU (<=>) $FAULT))
(PROP (<=> ACTOR) #PERSON CLASS))

importance: 2

Before FRUMP'S processing can be understood in detail, one must under-
stand the requests of its sketchy scripts. As a typical example of FRUMP's
requests consider request R2 above. The first line of the request is the Con-
ceptual Dependency representation of the request. &DEADGRP is one of
variables of the vehicle accident script. (*HEALTH* VAL (-10)) is the Con-
ceptual Dependency representation for dead. When the variable &DEADGRP
is bound to something, the meaning of this Conceptual Dependency repre-
sentation is that the something it gets bound to is dead. The next three lines
are constraint tests that are applied to the output of FRUMP'S parser. If the
parser yields a representation that passes all of these tests, the script variables
contained in the request are bound to the corresponding conceptual role fillers
in the parser representation, and the request is satisfied. The first test in the
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example request checks that the filler of the TOWARD role in the parser repre-

sentation is *HEALTH*. The second test checks that the filler of the VAL

slot in the filler of the TOWARD slot is —10. The third test checks that the

filler of the ACTOR slot (that is the thing that the parser proposes should be

bound to &DEADGRP in the request) is of conceptual type PERSON. This

means that the only thing that can be bound to &DEADGRP is a person or

group of people. In fact the parser is set up so that only groups will be generated

in this slot. One of the important properties of groups is the number of things

in them. When &DEADGRP is bound to something, all of its properties are copied

over to the script variable &DEADGRP. Therefore one of the pieces of infor-

mation available from this request after it is satisfied (and indeed the most

important datum of this request) is the number of people who were killed.

The observant reader will have realized that the first two tests in the request are

set off from the third one by parentheses. This is to group the tests by whether

or not they involve one of the script variables. The first two tests in the example

do; the third does not. The grouping makes the understanding process more

efficient. This will become clear in the next section.

HOW FRUMP UNDERSTANDS

Once FRUMP has the correct script to use, it starts to scan the article, looking

for conceptual fragment words. When it finds one, it retrieves the dictionary

entry for that word. Recall that the dictionary entry consists of a list, each
element of which contains context tests and a representation that corresponds

to one meaning. FRUMP tries to realize each meaning one at a time until all the
context tests are satisfied or the dictionary list is exhausted.

The processing of each dictionary word sense or possible meaning consists

of first making a list of all the outstanding requests the conceptual repre-
sentation of this meaning might satisfy. This is done to avoid evaluating all of
the context tests of a word sense that has no chance of satisfying a request,
and to limit the number of requests that the parse needs to be matched against.
A request is included in the list only if all of the first group of role-filler tests of
this request are satisfied. Remember that the first group role-filler tests are all
tests that do not reference one of the script variables. Therefore these tests can
be made before the script variables or the variables in the context tests are
bound. For example, if while processing a vehicle accident story, the parser
found a word that indicated ((ACTOR P1 TOWARD (*HEALTH* VAL (-10))))

might be a parse, the list of possible requests would be just (R2). The tests

that do not look at script variables require that the <=> filler for RI be
$VEHACC1DENT, the filler of the VAL slot in the TOWARD slot must be

—LT10 for R3, and the <=> slot in R4 must be filled with $FAULT. Thus
the only request that might be satisfied is R2. If the list is empty, there is no
need to evaluate any of the context tests; it cannot satisfy a high-level request.
At this point, none of the context tests have been evaluated, so that this word
sense might not be correct. However, the list is very cheap to create and usually
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cuts down on processing later. This is the reason for separating the request
tests that reference script variables from those that do not. If the list contains
at least one element, the context tests for this meaning are evaluated one at a
time. If there is at least one context test that fails, this sense is not a proper
reading of the text. If all the word sense fail, the word that was found was a
false alarm, and FRUMP reverts to the original scan. If all the context tests
are satisfied, the conceptual representation is filled out with the variables bound
while evaluating the context tests. This representation is then matched against
elements of the list of potentially satisfiable requests made earlier. If one
matches, the script variables in that request are bound to the role fillers of the
representation, the request is marked with the date of the article, and it is
marked as satisfied. At this point, FRUMP can dynamically modify the sketchy
script. Associated with each script variable can be a set of demons which are
checked when the script variable is satisfied. They can make arbitrary tests and
load or delete requests. Thus, it is possible, for example, to have FRUMP look
for aid to a country if it is hit by a severe earthquake but not if it was a mild
quake. This amounts to high-level inferencing and makes FRUMP much more
efficient by eliminating the need to process large numbers of very specialized
requests, the specialized requests are not loaded until they are needed. After
processing the satisfied request, FRUMP continues its scan for conceptual
fragment words. If no request fulfils the detailed match, FRUMP reverts
to the original text scan. Notice that there were three ways in which parsing
can be discontinued; in these cases FRUMP does just enough work to realize
it is working on a bad parse. This is in a large way responsible for FRUMP's
efficiency in processing and is directly attributable to the broad communication
between the parser and the control structure that makes up the script applier.

When FRUMP has finished processing an article, some requests will have
been satisfied but, very likely, others will not. The script has been partly
instantiated. This partly instantiated script is then stored on a disk file. If
FRUMP should later come across an article updating this news event, it can
then retrieve this partly instantiated script and continue satisfying requests
where it left off.

DECIDING ON A SCRIPT

Presented with an article FRUMP chooses one of three following ways to
process it. First, it can decide that the article is an update of a news event
that it has previously processed and select the partly instantiated script from
that article to understand with. Second, it can decide that it is the first article
of a news event and select the appropriate virgin script. Third, it can fail to
recognize the article as one of the types of events for which there exists a
script, in which case it will ignore the entire article. The choice is made from
information gleaned from a preliminary scan of the article's first paragraph.
This scan is made with a special set of active requests.

There is for each script one key request which, if satisfied in the text,

470



SCHANK AND DeJONG

strongly indicates that its script is appropriate to understand the article.

For example, the key request for the vehicle accident script is ((<=>

($VEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC))): here &VEH,.&OBJ,

and &LOC are script variables which get bound to the vehicle, the object

collided with, and the location of the accident respectively. Furthermore, owing

to the style of newspaper writers, this request seems always to be satisfied in

the first paragraph (and usually the first sentence). The special set of requests

is therefore composed of the key request from each virgin script that FRUMP

has.
The first paragraph is skimmed until one key request is satisfied. FRUMP

now knows which script type the story is and also some information about

the story. In the case of the vehicle accident it knows what the vehicle and

object are and where the accident occurred. This information is used to decide

if the current article refers to a previous news event or a new one. After a
sketchy script is partly instantiated by the first article of an event, it is stored

away. The type of script it is and the key information about the event are

stored specially. After a new article's first paragraph is skimmed, the key

information gained is matched against all stored scripts of the same type. If a

stored, partly-instantiated script is found that matches, it is brought into core

and used to understand the new article. If no previous script is matched, a

virgin script with no requests satisfied is used to understand the story. When

it is finished, FRUMP writes this partly instantiated script out on the disk

file so that any update articles that it finds will have access to it.

UPDATING STORIES

There are three main types of update that FRUMP must handle. These types

correspond to pieces of information and not to articles, so that an update

article can cause more than one type of update to be made. The update types

differ from one another by how the new information is added to the partly
instantiated sketchy script.

In the first kind of update, information is only added to a sketchy script.
That is, a new article is found to refer to the same news event as previous articles

and it supplies information that satisfies a request that was never before satisfied.

This is the simplest type of update and is handled as follows: After FRUMP
finishes an article, the sketchy script is written out to a, file with the key

identifying information discussed above. Some of the requests will have been

satisfied and some will not. All the requests, whether satisfied or not, are written

on the file. When this partly instantiated script is read back into core, the

unsatisfied requests are, of course, still active. On reading the update article

then, this type of update is treated exactly as if it were a virgin script. When a

previously unsatisfied request is satisfied, it is marked as satisfied and tagged

with the date of the newspaper.

In the second type of update, the information in the update article replaces
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the information in an already satisfied request. In this type, generally only one
request is changed at a time, and the change is a direct modification of one
or more role-fillers of the request. All requests, whether satisfied or not, are
processed during understanding as if they are not. When the role-fillers of a
request are to be bound, the date that they were last bound is compared to
the date of the current article. If the current article is later, the fillers are
updated. If not, the information from the current article is thrown away.

The third type of update is the most complicated. There are many news
event types where an arbitrary number of similar sub-events can occur. These
sub-events themselves may be rather complex. For example, an earthquake
may be followed by any number of aftershocks. Each aftershock may cause
death and injury. The recent fighting in Lebanon was made up of a number of
individual clashes. Oil from a leaking tanker can wash ashore in several places
at different times, each causing different kinds and varying degrees of damage
to the shoreline. There are three things to notice about such updates. First, they
add new rather than replace old information. Therefore, they must be pro-
cessed by as yet unsatisfied requests. Second, the structure of each sub-event
can be complex so that it cannot be represented by one request alone. Third,
since the initial requests for each sub-event must be the same, there is the
possibility for any number of copies of the same request to exist in a script
each satisfied by a different sub-event. For example, an earthquake and two
of its aftershocks may all cause people to be killed. In this earthquake script,
then, there will be three copies of the request ((ACTOR &DEADGRP <=>
(*HEALTH* VAL (-10)))) each satisfied with a different &DEADGRP.

The solution to these problems of the third update type is to organize the
requests corresponding to sub-events into bundles. The script will always have
one fresh copy of the bundle active and completely uninstantiated. When a bundle
is about to be partly instantiated (that is, when at least one of its requests is
to be satisfied) a copy of the uninstantiated bundle is made and these new
requests are added to the script. Then F RUMP continues instantiating the bundle.
This enables FRUMP to understand any number of the sub-events. Of
course, an article could update an update article (for example, revising the death
toll caused by an aftershock of an earthquake). If one of the requests in a
particular bundle has to be changed, FRUMP must first identify the bundle.
After that the update can be handled exactly as the type two updates above.

Bundles are subsections or scenes of scripts. They are very similar to scripts
in many ways. In particular, they can always be differentiated by key infor-
mation. This key information is often simply the date or location of the sub-
event. For example, a newspaper report might update the death toll from
last Thursday's aftershock of the earthquake that struck Eastern Turkey five
days ago. Five days ago, Eastern Turkey, and the fact that it is an earthquake,
are used to find the original script. Within this script, FRUMP then finds the
bundle of requests for the proper aftershock by matching the date of each
to the date last Thursday. When it finds the correct bundle, FRUMP finds the
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request corresponding to the number of people killed and updates the proper
script variable.

More FRUMP output

The following news stories were taken directly from the New York Times and
the NewHaven Register. The Spanish summarizer was written by Jaime Carbonell
and the Russian summarizer by Anatole Gershman.

INPUT:
2 — 4 ITALY — —A SEVERE EARTHQUAKE STRUCK

NORTHEASTERN ITALY LAST NIGHT, COLLAPSING ENTIRE

SECTIONS OF TOWNS NORTHEAST OF VENICE NEAR THE

YUGOSLAV BORDER, KILLING AT LEAST 95 PERSONS AND

INJURING AT LEAST 1000, THE ITALIAN INTERIOR MINISTRY

REPORTED.

IN THE CITY OF UDINE ALONE, A GOVERNMENT SPOKESMAN

SAID THEY FEARED AT LEAST 200 DEAD UNDER THE DEBRIS.

THE CITY, ON THE MAIN RAILROAD BETWEEN ROME AND VIENNA,

HAS A POPULATION OF ABOUT 90000.

THE SPOKESMAN FOR THE CARIBINIERI, THE PARAMILITARY

NATIONAL POLICE FORCE, SAID THERE HAD BEEN REPORTS OF

SEVERE DAMAGE FROM HALF A DOZEN TOWNS IN THE

FOOTHILLS OF THE ALPS, WITH WHOLE FAMILIES BURIED IN

BUILDING COLLAPSES. COMMUNICATIONS WITH A NUMBER OF

POINTS IN THE AREA WERE STILL OUT.

THE EARTHQUAKE WAS RECORDED AT 6.3 ON THE RICHTER

SCALE, WHICH MEASURES GROUND MOTION. IN POPULATED

AREAS, A QUAKE REGISTERING 4 ON THAT SCALE CAN CAUSE

MODERATE DAMAGE, A READING OF 6 CAN BE SEVERE AND A

READING OF 7 INDICATES A MAJOR EARTHQUAKE.

SELECTED SKETCHY SCRIPT $EARTHQUAKE

DONE PROCESSING
SATISFIED REQUESTS:

((<=> ($DATEL1NE LOC &DLOC MONTH &MON DAY &DAY)))
&DLOC

CLASS (#LOCATION)
LOCALE (*ITALY*)

SATISFIED ((2) (4))

&MON

&DAY

NUMBER

SATISFIED
CLASS

NUMBER

SATISFIED

CLASS

(2)

(NIL (4))
(#NUMBER)

(4)

(NIL NIL)

(#N UMBER)
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((<=> ($EARTHQUAKE LOC & LOC SEVERITY &RIC)))

&LOC

CLASS (#LOCATION)

LOCALE (*ITALY*)

SATISFIED ((2) (4))

&RIC

NUMBER (6.3)

SATISFIED ((2) (4))

CLASS (#NUMBER)

((ACTOR &DEADGRP TOWARD (*HEALTH* VAL (-10))))

&DEADGRP

NUMBER (95)

SATISFIED ((2) (4))
CLASS (#PERSON)

((ACTOR &HURTGRP TOWARD (*HEALTH*) VAL (-LT10))))
&HURTGRP

NUMBER (1000)

SATISFIED ((2) (4))
CLASS (#PERSON)

CPU TIME = 9.440 SECONDS

RUSSIAN SUMMARY:
ZEMLETRYASENIE SREDNEI SILY PROIZOSHLO V ITALII. CILA

ZEMLETRYASENIYA OPREDELENA V 6.3 BALLA PO SHKALE

RIKHTERA. PRI ZEMLETRYASENII 95 CHELOVEK BYLO UBITO I

1000 RANENO.

SPANISH SUMMARY:

HUBO 95 MUERTOS Y 1000 HERIDOS EN UN TERREMOTO FUERTE

EN ITALIA. EL TERREMOTO MIDIO 6.3 EN LA ESCALA RICHTER.

ENGLISH SUMMARY:

95 PEOPLE WERE KILLED AND 1000 WERE INJURED IN A SEVERE

EARTHQUAKE THAT STRUCK ITALY. THE QUAKE REGISTERED

6.3 ON THE RICHTER SCALE.

INPUT:

11 - 29 KATHEKANI, KENYA,'- AT LEAST 12 PEOPLE WERE

REPORTED KILLED EARLY TODAY WHEN AN EXPRESS TRAIN RAN

ONTO A FLOODED BRIDGE WHOSE RAILS HAD BEEN SWEPT AWAY,

CRASHED THROUGH IT AND PLUNGED INTO A RIVER IN KENYA.

THE OFFICIAL PRESS AGENCY REPORTED THAT THE DEATH

TOLL WAS AT LEAST 12 AND THAT 70 WERE INJURED IN WHAT

RAILROAD OFFICIALS CALLED THE WORST PASSENGER TRAIN

DISASTER IN EAST AFRICAN HISTORY.
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SELECTED SKETCHY SCRIPT $VEHACC1DENT

DONE PROCESSING

SATISFIED REQUESTS:

((<=> ($DATELINE LOC &DLOC MONTH &MON DAY &DAY)))

&DLOC
CLASS

LOCALE

SATISFIED

&MON

&DAY

NUMBER

SATISFIED

CLASS

NUMBER

SATISFIED

CLASS

(#LOCATION)

(*KENYA*)

((11) (29))

(11)

(NIL (29))

(*NUMBER)

(29)
(NIL NIL)

(#NUMBER)

((<=> (SVEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC)))

&VEH

&OBJ

&LOC

CLASS
TYPE

SROLE
SCRIPT

SATISFIED

CLASS

CONENT

CPRPS

SATISFIED

CLASS

LOCALE

SATISFIED

(#PHYSOBJ)

(*VEHICLE*)

(&TRAIN)

($TRAIN)

((11) (29))

(#PHYSOBJ)

(*RIVER*)

(*WATER*)

((11) (29))

(#LOCATION)

(*KENYA*)

((11) (29))

((ACTOR &DEADGRP TOWARD (*HEALTH* VAL (-10))))
&DEADGRP

NUMBER (12)

SATISFIED ((11) (29))

CLASS (#PERSON)

((ACTOR &HURTGRP TOWARD (*HEALTH* VAL (—LT10))))
&HURTGRP

NUMBER (70)
SATISFIED ((11) (29))
CLASS (#PERSON)
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CPU TIME = 9.539 SECONDS

RUSSIAN SUMMARY:

V ZHELEZNODOROZHNOI KATASTROFE V KEN!! 12 CHELOVEK

BYLO UBITO I 70 RANENO.

SPANISH SUMMARY:

HUBO UN ACCIDENTE DE FERROCARRIL EN KENYA QUE RESULTO

EN 12 MUERTOS Y 70 HERIDOS.

ENGLISH SUMMARY:

A TRAIN CRASH CLAIMED 12 LIVES AND INJURED 70 IN KENYA.

INPUT:

3 -4 PISA, ITALY - OFFICIALS TODAY SEARCHED FOR THE

BLACK BOX FLIGHT RECORDER ABOARD AN ITALIAN AIR FORCE

TRANSPORT PLANE TO DETERMINE WHY THE CRAFT CRASHED

INTO A MOUNTAINSIDE KILLING 44 PERSONS.

THEY SAID THE WEATHER WAS CALM AND CLEAR, EXCEPT

FOR SOME GROUND LEVEL FOG, WHEN THE UIS MADE HERCULES

C130 TRANSPORT PLANE HIT MT. SERRA MOMENTS AFTER

TAKEOFF THURSDAY.
THE PILOT, DESCRIBED AS ONE OF THE COUNTRY'S MOST

EXPERIENCED, DID NOT REPORT ANY TROUBLE IN A BRIEF

RADIO CONVERSATION BEFORE THE CRASH.

SELECTED SKETCHY SCRIPT $VEHACCIDENT

DONE PROCESSING

SATISFIED REQUESTS:

((<=> ($DATELINE LOC &DLOC MONTH &MON DAY &DAY)))

&DLOC

CLASS (#LOCATION)

LOCALE (*ITALY*)

SATISFIED ((3) (4))

&MON

NUMBER (3)
SATISFIED (NIL (4))

.CLASS (#NUMBER)

&DAY
NUMBER (4)

SATISFIED (NIL NIL)

CLASS (#NUMBER)

((<=> (SVEHACCIDENT VEH &VEH OBJ &OBJ LOC &LOC)))
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&VEH

&OBJ

&LOC

CLASS (#PHYSOBJ)

TYPE (*VEHICLE*)
SROLE (&AIRPLANE)

SCRIPT ($A1RPLANE)
SATISFIED ((3) (4))

CLASS (#PHYSOBJ)

CONENT (*MOUNTAIN*)
SATISFIED ((3) (4))

SATISFIED ((3) (4))
CLASS #LOCATION

LOCALE (*ITALY*)

SCHANK AND DeJONG

((ACTOR &DEADGRP TOWARD (*HEALTH*) VAL (-10))))
&DEADGRP

NUMBER (44)

SATISFIED ((3) (4))

CLASS (#PERSON)

CPU TIME = 6.778 SECONDS

RUSSIAN SUMMARY:

V AVIATSIONNOI KATASTROFE V ITALII 44 CHELOVEK BYLO

UBITO.

SPANISH SUMMARY:

HUBO 44 MUERTOS CUANDO UN AVION CHOCO CONTRA UN

MONTANA EN ITALIA.

ENGLISH SUMMARY:
44 PEOPLE WERE KILLED WHEN AN AIRPLANE CRASHED INTO A
MOUNTAIN IN ITALY.

CONCLUSION

We are now hooking up FRUMP to the United Press International wire service.
We intend to produce a system that will know about the interests of the users
logged in to it and will provide them with summaries of events that they care
about as soon as they happen.

Our intention is to produce a practical working Artificial Intelligence
program. We do not see FRUMP as the solution to all the complexities of
language understanding. It is certainly not a replacement for SAM in anything
except an immediate practical sense. However, it does have some theoretical
validity of its own. When people skim they use some but not all of the reading
techniques available to them. FRUMP, in a sense, has abstracted out the essence
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of SAM. Viewed in that way it is analogous to how skimming abstracts out the
essence of reading. That is, FRUMP both works and tests out a theory. We view
it as a success.
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D. F. Brailsford and A. N. Walker, Department of Mathematics, University of
Nottingham.
Teaches the elements of computers through the use of Algol 68. Develops
programming style and skill in the context of real-life problems.

SOFTWARE ENGINEERING
K. Gewald, G. Haake and W. Pfadler, Siemens AG, Munich
Introduces a new engineering discipline based on an industrial research project
aimed at widening knowledge on methods and equipment in the field.

FUNDAMENTALS OF COMPUTER LOGIC
D. Hutchinson, Department of Computer Science, University of Strathclyde
Helps the reader analyse logic circuits with insight into their design. Worked
design examples with complete circuit diagrams related to computer parts.

INTERACTIVE COMPUTER GRAPHICS IN SCIENCE TEACHING
Editors: .I. McKenzie, Dept. of Physics & Astronomy, University College London

L. Elton, Head, Institute of Technology, University of Surrey
R. Lewis, Head of Educational Computing, Chelsea College, London

Records experience of National Development Programme CAL project, presenting
interdisciplinary teaching packages as subject-specific material for physics,
chemistry and biology. Covers technical matters of computers.

SYSTEMS ANALYSIS AND DESIGN FOR COMPUTER APPLICATION
D. Millington, Department of Computer Science, University of Strathclyde
Sets out foundations of systems developed and follows through the task to be
performed. Discusses tools and techniques. A sound introduction.
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GUIDE TO PROGRAMMING PRACTICE
Edited by: Brain Meek, Director, Computer Unit, Queen Elizabeth College

Patricia Heath, Plymouth Polytechnic

A compact guide to all aspects of a programmer's work. Discusses problems,
guides on choice of facilities, program documentation, maintenance. Specially
recommended for trainee programmers.

RECURSIVE FUNCTIONS IN COMPUTER SCIENCE
R. Peter, formerly Professor of Mathematics, University of Budapest

Relates the theory as it exists in the fundamental mathematical theory of
computation to actual uses of recursive constructs found in programming
language.

AUTOREGRESSIVE ALGORITHMS
L. J. Slater, Department of Applied Economics, University of Cambridge, and
M. Pesaran, Trinity College, Cambridge

A statistical background with numerical examples of such calculations for
teaching and study. Lists and describes 4 Fortran programs developed for such
study.

CLUSTER ANALYSIS ALGORITHMS
Helmut Spath, Professor of Mathematics, Oldenbourg University

A useful unification of the problems involved in application. Interspersed with
discussion of techniques, adequately documented FORTRAN programmes, 21
sub-routines and examples.

Of related interest...

COMPUTATION GEOMETRY FOR DESIGN AND MANUFACTURE
I. D. Faux and M. J. Pratt, Cranfield Institute of Technology

Outlines mathematical techniques available for the representation, analysis and
synthesis of shape information by a computer.

COMPUTER AIDED DESIGN AND MANUFACTURE
C. B. Besant, Imperial College of Science and Technology, University of London

Introduces CAD and CAM from basics of computers to applications in real
engineering draughting design and manufacture. Describes both hard- and
software.
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