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ABSTRACT

Deductive question-answering systems generally evaluate
queries under one of two possible assumptions which we in this
paper refer to as the open and closed world assumptions. The open
world assumption corresponds to the usual first order approach to
query evaluation: Given a data base DB and a query Q, the only
answers to Q are those which obtain from proofs of Q given DB as
hypotheses. Under the closed world assumption, certain answers are
admitted as a result of failure to find a proof. More specifically,
if no proof of a positive ground literal exists, then the negation
of that literal is assumed true.

In this paper, we show that closed world evaluation of an
arbitrary query may be reduced to open world evaluation of so-
called atomic queries. We then show that the closed world assump-
tion can lead to inconsistencies, but for Horn data bases no such
inconsistencies can arise. Finally, we show how for Horn data
bases under the closed world assumption purely negative clauses are
irrelevant for deductive retrieval and function instead as integrity
constraints.

INTRODUCTION

Deductive question-answering systems generally evaluate queries
under one of two possible assumptions which we in this paper refer
to as the open and closed world assumptions. The open world assump-
tion corresponds to the usual first order approach to query evalua-
tion: Given a data base DB and a query Q, the only answers to Q



120 / DEDUCTION

are those which obtain from proofs of Q given DB as hypotheses.
Under the closed world assumption, certain answers are admitted as
a result of failure to find a proof. More specifically, if no
proof of a positive ground literal exists, then the negation of
that literal is assumed true. This can be viewed as equivalent to
implicitly augmenting the given data base with all such negated
literals.

For many domains of application, closed world query evaluation
is appropriate since, in such domains, it is natural to explicitly
represent only positive knowledge and to assume the truth of nega-
tive facts by default. For example, in an airline data base, all
flights and the cities which they connect will be explicitly
represented. Failure to find an entry indicating that Air Canada
flight 103 connects Vancouver with Toulouse permits one to conclude
that it does not.

This paper is concerned with closed world query evaluation and
its relationship to open world evaluation. In the section, Data
Bases and Queries, we define a query language and the notion of an
open world answer to a query. The section called The Closed
World Assumption formally defines the notion of a closed world
answer. The section, Query Evaluation Under the CWA, shows how
closed world query evaluation may be decomposed into open world
evaluation of so-called "atomic queries" in conjunction with the
set operations of intersection, union and difference, and the
relational algebra operation of projection. In the section, On
Data Bases Consistent with the CWA, we show that the closed world
assumption can lead to inconsistencies. We prove, moreover, that
for Horn data bases no such inconsistencies can arise. Also, for
Horn data bases, the occurrence of purely negative clauses is ir-
relevant to closed world query evaluation. By removing such nega-
tive clauses one is left with so-called definite data bases which
are then consistent under both the open and closed world assump-
tions. Finally, in the section, The CWA and Data Base Integrity, we
show that these purely negative clauses, although irrelevant to
deductive retrieval, have a function in maintaining data base
integrity.

In order to preserve continuity we have relegated all proofs
of the results in the main body of this paper to an appendix.

DATA BASES AND QUERIES

The query language of this paper is set oriented, i.e. we seek
all objects (or tuples of objects) having a given property. For
example, in an airline data base the request "Give all flights and
their carriers which fly from Boston to England" might be repre-
sented in our query language by:



ON CLOSED WORLD DATA BASES / 121

< x/Flight, y/Airlinel(Ez/City)Connect x,Boston,z A Owns y,x
A City-of z,England >

which denotes the set of all ordered pairs (x,y) such that x is a
flight, y is an airline and

(Ez/City)Connect x,Boston,z A Owns y,x A City-of z,England

is true. The syntactic objects Flight, Airline and City are called
types and serve to restrict the variables associated with them to
range over objects of that type. Thus, (Ez/City) may be read as
"There is a z which is a city".

Formally, all queries have the form

< x./T
1 

x
n 

I(Ey
1 
/8
1 
)...(Ey /6 )W(x

1 
x

m) >"n m m " n 1
where W(xl,...,xn,y1,...,ym) is a quantifier-free formula with
free variables xl,...,xn,y1 ..... ym and moreover W contains no
function sins. For brevity we shall often denote a typical such
query by < x/TI(Ey/-6)W > . The T IS and 8's are called types.
We assume that with each type T is associated a set of constant
signs which we denote by ITI. For example, in an airline data
base, 'City' might be {Toronto, Boston, Paris,...,}. If
T = T1,...,T0 is a sequence of types we denote by ITIthe set.
IT
1

I X...XIT
n

I .

A data base (DB) is a set of clauses containing no function
signs. For an airline data base, DB might contain such information
as:

"Air Canada flight 203 connects Toronto and Vancouver."

Connect AC203, Toronto, Vancouver

"All flights from Boston to Los Angeles serve meals."

(x/Flight)Connect x,Boston,LA =Meal-serve x

Let Q...<1/-4-1(E;a)w(1,-;) > and let DB be a data base. A

+ +
set of n-tuples of constant signs 

{(1)
c 

(r) 
) is an answer to

Q (with respect to DB) iff

" c E Ir! I - 1,...,r and

2. DB F- v (E;4')W(Z(1),;)
iSr

+(1) +(r)
Notice that if {c ,...,c } is an answer to Q, and c is any



122 / DEDUCTION

÷(1)
n-tuple of constant signs satisfying 1. then so also is {c
4.(r)
c ,c1 an answer to Q. This suggests the need for the following
definitions:

An answer A to Q is minimal iff no proper subset of A is an
answer to Q. If A is a minimal answer to Q, then if A consists of
a single n-tuple, A is a definite answer to Q. Otherwise, A is
an indefinite answer to Q. Finally define!MIOWA 

to be the set

of minimal answers to Q. (For reasons which will become apparent
later, the subscript OWA stands for "Open World Assumption".) No-
tice the interpretation assigned to an indefinite answer
r4-(1) 4-(1) -*(2) -0-(r)
tc 1 to Q: x is either c or C Or...Or C but
there is no way, given the information in DB, of determining which.

Instead of denoting an answer as a set of tuples {
4-(1) 4-(r)
c 1

we prefer the more suggestive notation c C , a nota-
tion we shall use in the remainder of this paper.

Example 1. 

Suppose DB knows of 4 humans and 2 cities:

IHumani = {a,b,c,d} 1City l = {B,V}

Suppose further that everyone is either in B or in V:

(x/Human)Loc x,B V Loc x,V

and moreover, a is in B and b is in V:

Loc a,B Loc b,V

Then for the query "Where is everybody?"

Q = < x/Human,y/CitylLoc x,y >

we have

= 
{(a,B),(b,V),(c,B) + (c,V),(d,B)+(d,V)].

i.e. a is in B, b is in V, c is either in B or V and d is either
in B or V.

Since it is beyond the scope of this paper, the reader is re-
ferred to Reiter [1977] or Reiter [1978] for an approach to query
evaluation which returns IIQII OWA 

given any query Q.
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THE CLOSED WORLD ASSUMPTION

In order to illustrate the central concept of this paper, we
:onsider the following purely extensional data base (i.e., a data
base consisting of ground literals only):

ITeacherl = {a,b,c,d}

!Student = {A,B,C}

Teach
a A

a

Now consider the query: Who does not teach B?

Q = < x/Teacher I Teach x,B >

By the definition of the previous section, we conclude, counter-
intuitively, that

1100wA =
Intuitively, we want {c,d} i.e. ITeacher! - 1< x/TeacherITeach
x,B > . The reason for the counterintuitive result is that

OWA
first order logic interprets the DB literally; all the logic knows

for certain is what is explicitly represented in the DB. Just
because Teach c,B is not present in the DB is no reason to con-
clude that TTSEN c,B is true. Rather, as far as the logic is

concerned, the truth of Teach c,B is unknown! Thus, we would also

have to include the following facts about Teach:

Teach 
a

A

A

A

Unfortunately, the number of negative facts about a given domain

will, in general, far exceed the number of positive ones so that

tLe requirement that all facts, both positive and negative, be
explicitly represented may well be unfeasible. In the case of
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purely extensional data bases there is a ready solution to this
problem. Merely explicitly represent positive facts. A negative
fact is implicitly present provided its positive counterpart is
not explicitly present. Notice, however, that by adopting this
convention, we are making an assumption about our knowledge about
the domain, namely, that we know everything about each predicate
of the domain. There are no gaps in our knowledge. For example,
if we were ignorant as to whether or not a teaches C, we could not
permit the above implicit representation of negative facts. This
is an important point. The implicit representation of negative 
facts presumes total knolwedge about the domain being represented. 
Fortunately, in most applications, such an assumption is warranted.
We shall refer to this as the closed world assumption (CWA). Its
opposite, the open world assumption (OWA), assumes only the infor-

mation given in the data base and hence requires all facts, both
positive and negative, to be explicitly represented. Under the
OWA, "gaps" in one's knowledge about the domain are permitted.

Formally, we can define the notion of an answer to a query

under the CWA as follows:

Let DB be an extensional data base and let EDB = {15-CIP is a

predicate sign, e a tuple of constant signs and Pt DB}

Then is a CWA answer to <1/-41(6i/g)W(x,Y) > (with respect to

DB) iff

1. -C. E 1 7fl and

2, DB U EDB (0a)W(-C,-;)

For purely extensional data bases, the CWA poses no diffi-
culties. One merely imagines the DB to contain all negative facts

each of which has no positive version in the DB. This conceptual
view of the DB fails in the presence of non ground clauses. For

if Pc it DB, it may nevertheless be possible to,infer Pc from the

DB, so that we cannot, with impunity, imagine Tc E DB . The ob-
vious generalization is to assume that the DB implicitly contains

Pc whenever it is not the case that DB I- P.

Formally, we can define the notion of an answer to a query

under the CWA for an arbitrary data base DB as follows:

Let

EDB = {PIP is a predicate sign, -C. a tuple of constant signs

and DB 1-11- Pc }

Then -C(1) +...+ C4r) is a CWA answer to

< ;rtl(E-jr/;)W(34-;) > (with respect to DB) iff
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4*(i) tI1. c E T1 i=1,...,r and

2. DB U EDB I— V (E;/)1,4(C.(i),;)
iSr

This definition should be compared with the definition of an answer
in the previous section. We shall refer to this latter notion as
an OWA answer. As under the OWA, we shall require the notions of
minimal, indefinite and definite CWA answers. If Q is a query, we
shall denote the set of minimal CWA answers to Q by II Q II CWA •

Example 2. 

We consider a fragment of an inventory data base.

1. Every supplier of a part supplies all its subparts.

(x/Supplier)(yz/Part)Supplies x,y A Subpart z,y Supplies x,z

2. Foobar Inc. supplies all widgets.

(x/Widget)Supplies Foobar,x

3. The subpart relation is transitive.

(xyz/Part)Subpart z,y A Subpart y,x Subpart z,x

Assume the following type extensions:

'Supplier = {Acme, Foobar, AAA}

1Widget1 = {w1,w2,w3,w4}

1Part1 = {p1,p2,p3,w1,w2,w3,w4}

Finally, assume the following extensional data base:

Su lies Sub art x
Acme
AAA
AAA

pl
w3
w4

P2
P3
wl
w2

P1
P2
P1
wl

Then EDB is:
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lies x Sub art x
Acme w3 P1 P1
Acme

w4 P1 P2
AAA P1 P1 P3
AAA 

P2 P1 
w1

AAA P3 131 
w2

AAA wl 
P1 w3AAA w

2 P1 w4
Foobar 

pl P2 P2
Foobar p2 

P2 P3
Foobar p3 

P2 
w
1

P1 
Acme 

P2 w2
PI 

AAA 
P2 

w
3

PI Foobar 
P2 w4

P1 P1 P3 P3

PI P2 P3 w
I

p1 P3 P3 w2

131 
w
1 P3 w3

etc. p3 w4

The notion of a CWA answer is obviously intimately related to
the negation operators of PLANNER (Hewitt [1972]) and PROLOG
(Roussel [19751) since in these languages, negation means "not
provable" and the definition of EDB critically depends upon this
notion. Clark [1978] investigates the relation between this notion
of negation as failure and its truth functional semantics. The
need for the CWA in deductive question-answering systems has been
articulated in Nicolas and Syre [1974].

Notice that under the CWA, there can be no "gaps" in our
knowledge about the domain. More formally, for each predicate
sign P and each tuple of constant signs c, either DB I— Pa" or
EDB 1--P-c. and since, under the CWA the data base is taken to be
DB U EDB, we can always infer either Pc or Pc from DB U EDB.
Since there are no "knowledge gaps" under the CWA, it should be
intuitively clear that indefinite CWA answers cannot arise, i.e.
each minimal CWA answer to a query is of the form c. The follow-
ing result confirms this intuition.

Theorem 1.

Let Q = < -)s.crt I ( E;fi)WGtS» • Then every minimal CWA
answer to Q is definite.

There is one obvious difficulty in directly applying the
definition of a CWA answer to the evaluation of queries. The de-
finition requires that we explicitly know EDB and, as Example 2
demonstrates, the determination of EDB is generally non trivial.
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In any event, for non toy domains, EDB would be so large that its
explicit representation would be totally unfeasible. Fortunately,
as we shall see in the next section, there is no need to know the
elements of EDB i.e. it is possible to determine the set of closed
world answers to an arbitrary query Q by appealing only to the
given data base DB.

QUERY EVALUATION UNDER THE CWA

It turns out that the CWA admits a number of significant sim-
plifications in the query evaluation process. The simplest of
these permits the elimination of the logical connectives A and V
in favour of set intersection and union respectively, as follows:

Theorem 2. 

1. <ifl(E;/)(1.11 v w2)>1iCWA < (E;14.)Wl>11 CWA U

< I (E/)w2>fIcwA

2. 11< 
W1 A W2 >IICWA= 11<l

9.
itlwl>16wAn 11<li1 I w2>I6A

Notice that in the identity 2, the query must be quantifier free.
Notice also that the identities of Theorem 2 fail under the OWA.
To see why, consider the following:

Example 3 

Iii = {a}

DB: Pa V Ra

Q = < xhiPx V Rx >

noowA = {a}
but

11< x/TIPx ›HowA -11 < x/TIRx >11014A

Example 4 

ITI.{a,b}

DB: Pa V Pb, Ra, Rb

Q = < x/TIPx A Rx >
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but

11Q110„ = 
{a+b}

x/TIPx >16A = {a+b}

m< x/Tlitx >1 towA = 
fa'b}

One might also expect that all occurrences of negation can be
eliminated in favour of set difference for CWA query evaluation.

This is indeed the case, but only for quantifier free queries and
then only when DB U EDB is consistent.

Theorem 3. 

If W, Wi and W
2 
are quantifier free, and DB U EDB is consis-

tent, then

1. 11.4:3Zr-tit:I > IlcwA 1;1 — II < -)tirtlw >11 CWA
2. 11<: ]Z/7-tlwi A 172 >11 CWA = li < '1/7nW1 >11 CWA -11‹ 1/-;1W2>11 CWA

To see why Theorem 3 fails for quantified queries, consider

the following:

Example 5 

Iti = {a,b}

DB: Pa,a

Then EDB = Tb,a, 7b,b1

Let Q(P) = < x/TI(Ey/t)Px,y >

Q(T) = < x/TI(Ey/T)-ix,y >

Then Q(P)HcwA =

Q(T)HcwA = {a,b} A IT1 MQ(1)11 CWA

Notice also that Theorem 3 fails under the OWA.

,By an atomic query we mean any query of the form

<:I/T1(Eyg)Pti,...,tn > where P is a predicate sign and each t
is a constant sign, an x, or a y.

Theorems 2 and 3 assure us that for quantifier free queries,

CWA query evaluation can be reduced to the Boolean operations of
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set intersection union and difference applied to atomic queries.
However, we can deal with quantified queries by introducing the
following projection operator (Codd [19721):

Let Q = 17T,z/01W > where W is a possibly existentially quanti-
fied formula, and x is the n-tuple Then AlcwA is a
set of (n+1)-tuples, and the projection of ODC wA with respect to 

z, TrzINICWA, is the set of n-tuples obtained from—TOICwA by
deleting the (n+l)st component from each (n+1)-tuple of I q I CWA •
For example, if Q = < x./tl' 

x
2 
/T2' 

z/tplW > and if

then

liQIICWA= 
{(a,b,c),(a,b,d),(c,a,b)}

TrZ "MCWA = 
((a,b),(c,a)}

Theorem 4. 

II < 3Pc/TI (E37/73)W >II CWA = Tr; 11‹ 21/g1W

where 7+ denotes It 7, •••7

YmY1 '2

Corollary 4.1 

1. 11<1/71(EM)Ti>16/A 

:›77,!:1115':14-1::11t/gIW >161A)

2. -itrti(EV- )wi A w2 H 7014./tVglwi >HcwA

n 1/1S41w2 >1IcwA )
Thus, in all cases, an existentially quantified query may be decom-
posed into atomic queries each of which is evaluated under the CWA.
The resulting sets of answers are combined under set union, inter-
section and difference, but only after the projection operator is
applied, if necessary.

Example 6. 

11< x/TI(Ey/e)Px,y v Qx,y Rx,y >IICWA
.1< x/TI(Ey/e)Px,y u xii,y/e1Qx,y IHCWA >LCWA
n Il< x/T,y/e1Rx,Y >11CUA )
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< x/TI PxQx V iX >16.7A = lI.< x/T I Px > II cwA

n II < xtr IQx >II cwA U [Iii -II < x/r1Rx >ji cwA]

m< x/TI(Ey/e)px,y V Qx,Y ixa > HCWA

= 11< x/TI(Ey/opx,y > < x/r,y/AIQx,y11 CWA Li y( >11CWA

- m< x/T,y/e1Rx,y >licwA )

In view of the above results, we need consider CWA query
evaluation only for atomic queries.

We shall say that DB is consistent with the CWA iff DB U EDB
is consistent.

Theorem 5. 

Let Q be an atomic query. Then if DB is consistent with the
CWA, 

11Q11 CWA = 11(4 OWA •

Theorem 5 is the principal result of this section. When cou-
pled with Theorems 2 and 3 and the remarks following Corollary 4.1
it provides us with a complete characterization of the CWA answers
to an arbitrary existential query Q in terms of the application of
the operations of projection, set union, intersection and difference
as applied to the OWA answers to atomic queries. In other words,
CWA query evaluation has been reduced to OWA atomic query evalua-
tion. A consequence of this result is that we need never know
the elements of EDB. CWA query evaluation appeals only to the
given data base DB.

Example 7. 

We consider the inventory data base of Example 2. Suppose the
following query:

Then

where

= < x/Supplierl(Ey/Widget)Supplies x,y A Subpart y,pi
A Supplies x,p3 >

11 Q M CWA = ry(11 Q1 11 OWA n 11Q211 OWA) n ('supplier' -11 Q3-0wA)

Q1 = < x/Supplier, y/Widged Supplies x,y >
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Q2 = < x/Supplier, y/WidgetISubpart y,pi >

Q3 = < x/SuppliedSupplies x,p3 >

It is easy to see that

11Q111 OWA =
{(Foobar,wi), (Foobar,w2), (Foobar,w3), (Foobar,w4),

(AAA,w3), (AAA,w4), (Acule,w1), (Acme,w2)1

1 1 Q2 owA = {(Acme,wi), (Acme,w2), (AAA,w1), (AAA,w2),
(Foobar,w1), (Foobar, w2)}

11Q311 OWA 
= {Acme}

whence

and

Hence

75,(IIQ1lI OWA In 1Q2- M owA) = {Foobar,Acmo

= {Foobar,AAA}'Supplied - 14,11
OWA 

CWA = {Foobar}.

ON DATA BASES CONSISTENT WITH THE CWA

Not every consistent data base remains consistent under the

CWA.

Example 8. 

DB: Pa V Pb

Then, since DB F/ Pa and Db 171- Pb , EDB = {Ta, Pb) so that

DB UEDB is inconsistent.

Given this observation, it is natural to seek a characteriza-

tion of those data bases which remain consistent under the CWA.
Although we know of no such characterization, it is possible to

give a sufficient condition for CWA consistency which encompasses a

large natural class of data bases, namely the Horn data bases. (A

data base is Horn iff every clause is Horn i.e. contains at most

one positive literal. The data base of Example 2 is Horn.)
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Theorem 6

Suppose DB is Horn, and consistent. Then DB U EDB is con-
sistent i.e., DB is consistent with the CWA.

Following van Emden [1977] we shall refer to a Horn clause
with exactly one positive literal as a definite clause. If DB
is Horn, let A(DB) be obtained from DB by removing all non defi-
nite clauses i.e., all negative clauses. The following Theorem
demonstrates the central importance of these concepts:

Theorem 7 

If Q = < -:tfil(E;/;)W > and DB is Horn and consistent, then

IIQ II CWA when evaluated with respect to DB yields the same set of
answers as when evaluated with respect to A(DB). In other words,
negative clauses in DB have no influence on CWA query evaluation.

Theorem 7 allows us, when given a consistent Horn DB, to dis-
card all its negative clauses without affecting CWA query evalua-
tion. Theorem 7 fails for non Horn DBs, as the following example
demonstrates:

Example 9 

DB: Pa V Ra, Ra V Sa, Pa

Then DB 1- Sa

But A(DB) = {Ra V Sa, Pa} and A(DB) h' Sa.

Let us call a data base for which all clauses are definite a
definite data base.

Theorem 8 

If DB is definite then DB is consistent.

Corollary 8.1 

If DB is definite then

(i) DB is consistent

(ii) DB is consistent with the CWA.

Corollary 8.1 is a central result. It guarantees data base
and CWA consistency for a large and natural class of data bases.
Since the data base of Example 2 is definite we are assured that it
is consistent with the CWA.
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In van Emden [1977], he addresses, from a semantic point of

view, the issues of data base consistency under the CWA. He defines

the notion of a "minimal model" for a data base as the intersection

of all its models. If this minimal model is itself a model of the

data base, then the data base is consistent with the CWA. Van Emden
goes on to point out some intriguing connections between minimal
models and Scott's minimal fixpoint approach to the theory of compu-
tation, results which are elaborated in van Emden and Kowalski [1976].

THE CWA AND DATA BASE INTEGRITY

Theorem 7 has an interesting consequence with respect to data
base integrity. In a first order data base, both intensional and
extensional facts may serve a dual purpose. They can be used for
deductive retrieval, or they can function as integrity constraints.
In this latter capacity they are used to detect inconsistencies
whenever the data base is modified. For example, if the data base
is updated with a new fact then logical consequences of this fact
can be derived using the entire data base. If these consequences
lead to an inconsistency, the update will be rejected.

In general, it is not clear whether a given fact in a data
base functions exclusively as an integrity constraint, or for de-

ductive retrieval, or both (Nicolas and Gallaire [1978]). However,

if the data base is both Horn and closed world, Theorem 7 tells us

that purely negative clauses can function only as integrity con-

straints. Thus the CWA induces a partition of a Horn data base

into negative and non-negative clauses. The latter are used only
for deductive retrieval. Both are used for enforcing integrity.

SUMMARY

We have introduced the notion of the closed world assumption

for deductive question-answering. This says, in effect, "Every

positive statement that you don't know to be true may be assumed

false". We have then shown how query evaluation under the closed

world assumption reduces to the usual first order proof theoretic

approach to query evaluation as applied to atomic queries. Finally,

we have shown that consistent Horn data bases remain consistent

under the closed world assumption and that definite data bases are

consistent with the closed world assumption.
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APPENDIX

Proofs of Theorems

Theorem 1. 

Let Q = < ;ft' (E;/;)W6t,;) > . Then every minimal CWA to Q
is definite.

The proof requires the following two lemmas:

Lemma I 

Let W1,...,Wr be propositional formulae. Then

DB U EDB E- 'W V VW1 • • '

U EDB W. for some i.

'only if" half is immediate.

iff DB

Proof: The '

With no loss
i.e., for no

in generality, assume that the set of W's is minimal,
I do we have

DBUEDBHW1 ' •
V . VW

i-1 
VW

i+1 
V...VW

r 
.

Suppose WI is represented in conjunctive normal form, i.e. as a
conjunct of clauses. Let C = LI V ... V Lm be a typical such
clause. Then DB U L or DB U Tzu i=1,...,m. Suppose
the latter is the case for each i, i Sm. Then DB U EDB Z. so
that DB U EDB 'W1 . Since also DB U EDB Wr, then
DB U EDB 1-'412 V...V Wr contradicting the assumption that the set
of W's is minimal. Hence, for some i, Le.m, DB U EDB E. Li so
that DB U TFIW F- C. Since C was an arbitrary clause of
DB U EDB E-411 which establishes the lemma.

Lemma 2 

DB U EDB F-(EY/6')W(;) iff there is a tuple E 1;1 such that

DB U EDB F-W(d) .

Proof: The "only if" half is immediate.

9.
Since DB U EDB 1--(g;/;)14(;) then for tuples am, ...,a(r) E I g I

DB U EDB w(d )
r

The result now follows by Lemma 1.
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Proof of Theorem 1:

+(1) +(m)Suppose, to the contrary, that for 2, c +...+ c is a
minimal CWA answer to Q. Then

+(i) +‘DB U EDB I- V (E;
t
b0)W(c 07,i sm

i.e.,

DB U EDB 1--(E4Y/-4.)

so by Lemma 2 there is a tuple E M such that

DB U EtHimW

By Lemma 1, DB U EDB W(C."),1) for some i whence -C.(i) is an
answer to Q, contradicting the assumed indefiniteness of

-c(l) • -c(m) •

Theorem 2. 

1. m< -P,fiti(E-y'7-4)(wi vw2»11 CWA =11 <Ii-T1(6/i)/.41>IICWA
U 11 < 7J(/'-t 1 (EY/-1)142>11cwA

2. 11 -4: 
W1 A W2>11CWA 11< IICWA n < x/rlw2 >11 CWA

Proof: 1. follows from Lemmas 1 and 2 and Theorem 1. The proof
of 2. is immediate from Theorem 1.

Theorem 3. 

If W, W
1 

and W
2 
are quantifier free, and DB U EDB is consis-

tent, then

1. < 7d;17̀ HCWA = - < > 11 CWA
2. 11 < "Pcit1 W1 A 142 >11CWA =H <H(/-;Iwi "HcwA -'*</-;1w2 "HcwA
Proof: 1. The proof is by structural induction on W. Denote

II <IfitIW CWA by Q(4)*
We must prove

Q070 = 11.1 - Q(W) •
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Case 1: W is Ptl,...,tm where P is a predicate sign and t
'
tm

are terms.

Suppose -C. e Let 11(C) be Ptv... tm 
with all occur-

rences of xi replaced by Ci. Then DB U EDB F--rf(). Since

DB U EDB is consistent, DB U EDB n(), i.e. -C. Q(W). Since

171'.. 1, then -C. e - Q(W), so that Q(-17) C ITI - Q(W). Now

suppose c E IT' - Q(W). Then c Q(W) so DB U EDB 1/1- fl(). But

then DB U EDB 11-(C.), and since E , then E Q(W), so that

1'71 - c Q(W)

Case 2: W is Ul A U2 .

Assume, for i=1,2 that Q(Ui) = Q(Ui).

Then (g-17) = (gui A u2)

QG V 172)
Q(U1) U Q(712)

WI - Q(U1)]
14.1 [Q(111)

rfl - Q(U1 A

= 170 - Q(W)

by Theorem 2

U WI - Q(u2)]

n Q(U)

U2) 
by Theorem 2

Case 3: W is Ul V U2 .

The proof is the dual of Case 2.

Case 4: W is

Assume that Q(.15.) = - Q(U). Since Q(U) C Ill, it follows

that Q(U) - Q(-6). i.e. Q(W) I1 - Q(W)

Q(W1 A 72) = Q(W1) n C)(W2) by Theorem 2

Q(W1) n WI - Q(W2)] by 1.
= Q(W1) - Q(W2) since Q(141)

Theorem 4

11' < 1/7t1 (E4571g)W(14.;) >II cwA IT-3;11 < 1/1:0-;/gIWG'c'9;)>I1 WA

where T+ denotes r it
Yl Y2 Ym
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Proof:

Suppose 't E ii < (E;g)W(I,;) >11 CWA
Then by definition

DB U EDB

whence by Lemma 2 there is a tuple E 01 such that

DB U EDB H W(Z,1)

i.e., -C,1 E 11 < -21ATAW(,;)>I1 CWA

i.e., c E n-11..c1/1,;a1w(x,;) >h CWA

Now Suppose E 11.11ITTP,i'<: Mw(1,-;) > CWA

Then for some tuple E

Ell < IfTt;i1W(3t,;) >11 CWA

so that DB U EDB W(-C,1)

i.e., DB U EDB H (6/-f1)W(-&;)

i.e. E Il< (E;/)w(-)1,-;) II>" CWA

Theorem 5. 

Let Q be an atomic query. Then if DB is consistent with the
CWA, 

11Q11 CWA = 11Q11 OWA

Proof: The proof requires the following:

Lemma 3 

If DB is consistent with the CWA then every atomic query has

only definite OWA answers.

Proof:

Let Q < IM(6g)P64;) > be an atothic query where PG,)
is a positive literal. Suppose, on the contrary, that Q has an

indefinite OWA answer c 
1) 

+...+ -C(m) for m 2 . Then

DB I— ym (E3;i bp(Z(1),;) (1)

and for no 1, 1 s ism, is it the case that DB (E-Yg)P(C(i),3i).
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Hence, for all E 1;1 , DB 1/- P(C(i),C1) i=1,...,m.

Thus FIC(i),1) E —EDB for all 1 E re] ,i=1,...,m.

Hence, DB U EDB F-T( i),1) for all a E 11 ,i=1,...,m and from

(1), DB U EDB I-- V (E;AP(c)-(i),;)
im

i.e. DB U EDB is inconsistent, contradiction.

Proof of Theorem 5:

Let Q = litl(E;f)P(Pc,;) > where P(Pc,;) is a positive
literal. By Lemma 3 110 owA consists only of definite answers.
Now

E "11 CWA 
iff E 1-fl and DB (E;/;)1,(,;)

c E 110 
CWA 

iff E Ft' and DB U EDB (E;/)P(-C,;)

Hence IIQII owA c QII CWA •

We prove 1Q111 CWA C
 
1Q11 OWA • 

To that end, let E 110 CWA. Then

DB U EDB P(C,I) for some I E 1 -1;1 •

If DB H p(a,a), then E 11Q11 CWA and we are done.

Otherwise, DB V- P(C,1) so that T(Z,1) E EDB

i.e. DB U EDB P(C.,I) and DB U EDB 1--'17(-c*,1)

i.e. DB is inconsistent with the CWA, contradiction.

Theorem 6. 

Suppose DB is Horn, and consistent. Then DB U EDB is consis-
tent, i.e. DB is consistent with the CWA.

Proof: Suppose, on the contrary, that DB U EDB is inconsistent.
Now a theorem of Henschen and Wos [1974] assures us that any in-
consistent set of Horn clauses has a positive unit refutation by
binary resolution in which one parent of each resolution operation
is a positive unit. We shall assume this result, without proof,
for typed resolution*. Then since DB U EDB is an inconsistent'

*Because all variables are typed, the usual unification algorithm
(Robinson [1965]) must be modified to enforce consistency of types.
Resolvents are then formed using typed unification. For details,
see (Reiter [1977]).
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Horn set, it has such a (typed) positive unit refutation. Since

all clauses of •En• are negative units, the only occurrence of a

negative unit of EDB in this refutation can be as one of the par-

ents in the final resolution operation yielding the empty clause.
There must be such an occurrence of some U E EDB, for otherwise Mr

does not enter into the refutation in which case DB must be incon-

sistent. Hence, DB U {U} is unsatisfiable, i.e. DB1— U . But

then U cannot be a member of •EDB, contradiction.

Theorem 7. 

If Q = < 2-tM (E3477g)W > and DB is Horn and consistent, then

11Q II CWA when evaluated with respect to DB yields the same set of
answers as when evaluated with respect to A(DB). In other words,
negative clauses in PB have no influence on CWA query evaluation.

Proof: By Theorems 2, 3, and 4 CWA query evaluation is reducible
to OWA evaluation of atomic queries whenever DB is consistent.
Hence, with no loss in generality, we can take 9 to be an atomic
query. Suppose then that Q = < 3/7tI(E;a)P(1,y) > , where

is a positive literal. Denote the value of MOCWA with
1.DB A(DB) 

, MO 
DB

respect to DB by hQ11 Similarly, IIQII " 'CWA' CWA OWA'
1(1 11 A(DB) DB

We must prove MO CWA CWA • = 
Ai:DB)

OWA 
Since DB is con.-

I I 

sistent and Horn, so also is A(DB) so by Theorem 6, both DB and
A(DB) are consistent with the CWA. Hence, by Theorem 5, it is

sufficient to prove Ho = Ho gitB) . Clearly 1101 
A(DB)
OWA

DB DB
MQ II M Q M OWA 

since A(DB) C DB. We prove 
OWAc 

A(DB) TIIQII OWA '
that end, let -c). E 11Q11 

OWA 
Then DBF (ETTT6')P(C',;). Hence, as.in

the proof_of Theorem 6, there is a (typed) positive unit refutation
of DB U {P(c,y)} . Since DB is Horn and consistent, P(Z,y)
enters into this refutation, and then only in the final resolution
operation which yields the empty clause. Clearly, no negative
clause other than 17(Z,y) can take part in this refutation i.e. only
definite clauses of DB enter into the refutation. Hence we can
construct the same refutation from A(DB) U {PCP(930} so that

A(DB) 
, 

P(c,y) i.e.

Theorem 8. 

E 11(4 OWA •

If DB is definite, then DB is consistent.

Proof: Every inconsistent set of clauses contains at least one
negative clause.
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