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PREFACE

In reviewing the first three Machine Intelligence volumes, Nature (14 Dec-
ember 1968) wrote: 'The enterprise of Edinburgh University in fostering
many of the developments reported has been amply rewarded'. It also noted
that several of the contributions were speculative, and seemed 'to grope in
the darkness for some signs of a breakthrough towards a true Machine
Intelligence'.
A Vice-Chancellor may be forgiven these days for seizing every chance

to stress the obvious. The practice of research is proper and vital to a uni-
versity. Such pursuits — speculative or experimental — often lead, penulti-
mately, to a blind alley; and such negative results are themselves positive
contributions to knowledge. John Donne put it well:

Doubt wisely . . On a huge hill,
Cragged, and steep, Truth stands, and he that will
Reach her, about must, and about must go....

Furthermore, the practice of such research, as is described in this volume,
has a markedly beneficial effect on the quality of teaching; not just on the
teaching of those directly involved in it, but also of their colleagues who share
so stimulating an intellectual environment.
In the eyes of the Greek bureaucrats, the teaching of Socrates corrupted

the youth of Athens. In this sense, research is also, and literally, a sub-
versive activity. Its results tend to overthrow established opinions and accepted
truths, and totalitarian states therefore control its liberty. Thus the quality
of university research — its intensity, its freedom, and its courage — is a good
indication of a nation's self-confidence and psychological health. .
A particularly encouraging aspect of research in the field of Artificial

Intelligence is its inter-disciplinary nature. The subject, one might hazard,
is a new colloidal solution, with computer scientists, mathematicians,
biologists, psychologists, metaphysicians, logicians, and linguistics scholars,
beginning to form a new gel. No two cultures here. Indeed, the career of one
distinguished contributor to this as to previous volumes suggests the emer-
gence of a higher synthesis; for this particular scholar, after graduating in
Classics at Cambridge, and in Philosophy at Princeton, and after holding,
in succession, Chairs of Philosophy and Computer Science, is now the
occupant of a new Chair of Logic and Computer Science.



PREFACE

The quality and success of this combined operation is readily evident
in the present volume. Most notable is the long-predicted arrival of mathe-
matical logic and its mechanisation at the centre of the machine intelligence
arena. The fourth Machine Intelligence Workshop was noteworthy for a
series of important theoretical contributions; in particular, several which
apply the new insights to the design principles of intelligent computing
systems. A further feature which distinguishes the present volume is a section
devoted to the programming of robots so as to confer on them the capability
to reason and plan.
We have here a nascent technology which provides a meeting ground for

theorists, engineers, software innovators, and students of cognition in
biological systems.
The speedy and accurate communication of research is a subordinate but

still important part of scholarship. That this is where a University Press can
often be most effective, is testified by the publication of this volume within
five months of the receipt of the contributions.

MICHAEL SWANN
March 1969
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1

Program Scheme Equivalences and
Second-Order Logic

D. C. Cooper
Computation Department
University College of Swansea

The equivalence problem for program schemes, or for programs, is reduced
to the proving of a theorem in second-order logic. This work extends Manna's
first-order logic reductions. Some examples of the technique are given to-
gether with a suggested method for obtaining proofs in special cases by first-
order methods.

INTRODUCTION

Several workers in recent years have considered using techniques and ideas of
various mathematical theories of computation for proving interesting results
about computer programs. This paper is concerned with two of these approa-
ches.
Floyd stressed the practicability of, and formalised, an idea due to several

people (Floyd 1967a, Floyd 1967b, Naur 1966). In this approach, predicates
are associated with various parts of the program (including the exit point).
These predicates may be thought of as expressing the relevant relations
between the values of the variables of interest at the given point; in par-
ticular, the predicate on the exit point represents the property of the program
we wish to prove. For example, in a sort program the final predicate could
be: the values of A1,. ., An are some permutation of their original values and,
for all i from 1 to n — 1 we have A14,41+1. By a mechanical procedure relations
between these predicates may be found in the form of a formula of the first-
order predicate calculus. If we can prove this is a theorem then we have proved
that, assuming the program does not get stuck in a loop, the final values of the
variables will indeed satisfy the exit predicate.
Floyd (1967a) also interprets his approach as a formal way of specifying

the semantics of a programming language and discusses a technique for
proving the non-looping of a program with given data. He discusses various
features of ALG 0 Land their effect on the relations between the predicates; this
paper will, however, only consider assignment statements and two-way tests.
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Manna (1968) introduced the idea of associating predicate symbols, rather
than specific predicates, with points in the program. He then showed how to
construct a formula of first-order logic whose unsatisfiability proved the
convergence of the program for all inputs, and a similar idea was used to
prove convergence and equivalence of two programs. Knowledge of the
content of Floyd's and Manna's papers is not required for an understanding
of this paper. However, it is clear that the spirit of Manna's thesis permeates
this paper, which is an extension of his work.
The second idea goes back to Ianov (see Rutledge 1964) and it is used in a

form due to Luckham, Park and Paterson (1967). (See also Paterson 1967 and
Paterson 1968.) In this approach it is recognized that for many of the prop-
erties to be proved the full detail of the precise functions used in the program
is irrelevant. For example, one may only need to use the fact that a particular
part of the program does not alter the contents of certain registers. One is
then led to consider program schemes in which in place of actual functions and
tests pure names are used. Two program schemes are then, for example,
defined to be equivalent if and only if, whatever actual functions and tests are
substituted for the names, the resulting programs are equivalent.
The program schemes of this paper are the same as those defined in Pater-

son's papers except for one inessential difference: in this paper the result of a
program scheme will be regarded as the values in all (or some) of the registers
rather than just 'yes' or 'no'.

PROGRAM SCHEMES

In a program scheme we have a set of registers L1, L2, . . L„, a set of function
names ft, ,f2, • . fp, and a set of test names ti, t2,. . tg, all these sets being
finite. The function names may take several arguments, but without loss of
generality the tests will be assumed to have only one argument. A program
scheme consists of a series of statements each of which is either:

(a) an assignment statement, e.g. L34—f(La6)
or (b) a test statement, e.g. t (L6) 3,4
or (c) the halt statement
or (d) a goto statement, e.g. goto 6.

Any statement may be labelled with an integer, e.g. (1) L3 i-f (L1). In the test
statement control goes to the statement with the first label if the predicate is
false, otherwise to the statement with the second label.
Two examples follow, in which the predicates before the bar I may initially

be ignored:
Psi

L=a I
A(L)I (1) ti(L) 1,2

(2) Li—f(L)
(3) t2(L) 1,4

PS2
L=a
B(L)1 (1) ti(L) 1,2

(2) Li—f(L)
(3) t2(L) 4,7
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PSI PS2
Z(L)1 (4) halt C(L)I (4) ti (L) 4,5

(5) L4—f(L)
(6) t2(L) 4,7

Z(L)I (7) halt

These are both program schemes with one register (L), one function (f) and
two tests (ti and t2). The first is a simple loop within a loop, while the second
is the same except that the outer loop has been unwound once (as can be seen
from a flowchart). They are clearly equivalent, being a special case of the
equivalence-preserving transformation figure 3 (Iv) of Paterson (1968) in
which program scheme P1 has itself been taken to be a loop. (It will be proved
later that equivalence of PSI and PS2 proves equivalence of Paterson's
schemes for any P1; this is why these examples with their unnatural 'loop
stops' are used.) This example will be used to illustrate the technique.
By an interpretation of a program scheme we mean some universe of objects

and some assignment of functions and predicates over this universe to the
function and test names of the program scheme, and also a set of n objects
from the universe to be taken as the initial values of the n registers. Thus, an
interpretation of a program scheme gives a program in an obvious way
together with a set of starting values for that program. The value of the
program scheme under an interpretation is either undefined (if the program
never terminates) or is the set of values of the registers when the program
halts.
Two program schemes are equivalent if for every interpretation either both

values are undefined or both are defined and equal. This equivalence problem
is shown to be undecidable by Luckham, Park and Paterson (1967). Further-
more, they show that equivalence is not even partially decidable, that is, we
cannot enumerate all pairs of equivalent program schemes (or, alternatively,
even if we know two schemes are equivalent we cannot mechanically produce
a proof). This is in contrast to the proving of theorems of the first-order predi-
cate calculus.
A control path of a program scheme is a sequence of instructions of the

program such that if one member of the sequence is an assignment statement
then the next member is the next instruction of the program sequence; if one
member is a test statement then the next member is one of the instructions
with a label occurring in the test statement; if one member is a goto statement
then the next member is that instruction with the label named in the goto
statement; and halt can only be the last member of the sequence.
These notions are treated more formally by Paterson (1967). Another

definition we need is PSI extends PS2, where PSI and PS2 are program

schemes. By this is meant that under any interpretation for which the value
of PS2 is defined, the value of PSI is also defined and is equal to the value of
PS2. Clearly PSI extends PS2 and PS2 extends PSI if and only if PSI and PS2
are equivalent.

5
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DEFINITION OF PREDICATES

Predicate names are associated with some (or all) of the instructions of a
program scheme in such a way that every loop includes at least one such
name; these are to be n-ary predicates for an n-register scheme. Intuitively,
they represent conditions which will be satisfied just before that instruction is
obeyed. With halt statements associate the special name Z. Such names have
been indicated in the column before the bar of the above examples.
Now consider any control path of a program scheme which starts and ends

at statements with associated predicate names, and which has no intermediate
statement with an associated predicate. Consider also control paths which
start at an additional 'initialising' statement before the first instruction with
which is associated the predicate L1= & L2= & . . . & L=a. For P.St
all possible such sequences are 0-1, 1-1, 1-2-3-1, 1-2-3-4 and for PS2 they
are 0-1, 1-1, 1-2-3-4, 1-2-3-7, 4-4, 4-5-6-4, 4-5-6-7, where 0 refers to the
extra initialising statement while other statements are referred to by their
labels.
For each of these control paths let P1 be the predicate on the first statement

and pi the predicate on the last statement. Let Oii({L}) be the condition for
this control path to be traversed and let ifru({L}) be the final set of values of
the registers, {L} being the set of values at the start of this control path. Both
(ku and ql will be defined in terms of the function names and test names
occurring on the control path in an obvious way. Define Cu by:

Cis (VL,1)(VL2) . . . (VL„)[Pi ( {L}) & (h({L})-+Pi Oku({L}))],

where we assume & is more binding than
For example, for the path 4-5-6-7 of PS2 we have

Cu is (VL)[ C(L) & (L) & t2 (f(L))-+Z(f(L))],

and for the path 0-1 of PS2 we have

Cu is (V L)[L,--- (L)] (or the logically equivalent B (a)).

Let C be the conjunction of all possible Cu (there can only be a finite number
of Cu because of the restriction that every loop includes a statement with an
associated predicate).

Finally define

PS does Z by (3P1)(3P2) . (3Pk) C,

where Pi, .P2, . . Pi, are all the predicate names associated with statements,
excepting the predicate on the halt statement, Z.
The predicate PS does Z depends on Z, on the test and function names

occurring in the program scheme and on the initial values; that is, given an
interpretation and a predicate Z, PS does Z is completely defined and will be
either true or false. This is the relation to be investigated.
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For the previously defined program schemes we have:
PSI does Z is
(3A)(L)[A(oc) &

A(L) &-iti(L)-+A(L) &
A(L) & h(L) &--it2(f(L))-+A(AL)) &
A(L) & ti(L) & t2(f(L)).- Z(AL))] 1 

PS2 does Z is
(3B)(3C)(L)[B(a) &

B(L) &-iti(L)-*B(L) &
B(L) & ti(L) &-ita(L))-+C(AL)) &
B(L) & ti(L) & ta(L))--+Z(f(L)) &
C(L) &-iti(L)-4C(L) &
C(L) & ti(L) &-it2(f(L))--0C(f(L)) &
C(L) & ti(L) & t2(f(L))-4Z(fKL))] 2

COOPER

THE PS 'DOES' Z RELATION

PS does Z is a well-formed formula of second-order logic (as it involves
quantification over predicates). The existentially quantified predicates
correspond to the predicates which Floyd (1967a, 1967b) and Manna (1968)
associate with points in a program. Once these have been guessed, PS does Z
becomes a formula of first-order logic; and if for some particular Z it can be
proved true then it has been shown that if the program terminates Z is true.
This is the principle of the verifying compiler (Floyd 1967b) and is expressed
by Theorem 1 below. In this paper only a trivial kind of programming
language is being considered, whereas Floyd also deals with more sophisti-
cated constructs. Manna (1968) introduced the notion of taking Z to be the
constant predicate false, in order to prove results about non-termination;
these results may be deduced from Theorem 2 below. One may then consider
what the relation between two program schemes must be if PS does Z is the
same for both. Theorem 4 states that in fact such program schemes are
equivalent.
Given a particular interpretation of a program scheme we have:

Theorem 1 If the scheme terminates with value L, L,. . Lf,:, then
PS does Z,---2(Lf, Lf, . . g) is true for any Z.
and

Theorem 2 The scheme loops if and only if PS does false is true. (An
alternative form of Theorem 2 is: The scheme loops if and only
if P does Z is true for all predicates Z.)

Relations between two program schemes are expressed by:

Theorem 3 PSI extends PS2 if and only if PSI does Z-+PS2 does Z is a
theorem of second-order logic.

with the obvious corollary:

Theorem 4 PSI EPS2 if and only if PSI does Z---iPS2 does Z is a theorem.

7



MATHEMATICAL FOUNDATIONS

These theorems relate the looping and equivalence of program schemes (or
programs) to second-order logic, while Manna (1968) relates these issues to
first-order logic. The difference is that Manna assumes one already has
available the condition for the program not to loop. If this condition is
expressible in first-order logic and is known, then proof of non-looping, of
equivalence or of satisfaction of given conditions on termination are all
reduced to first-order logic problems by Manna. With actual programs the
properties of the functions and tests occurring may well only be expressible in
second-order logic, or only more clumsily or incompletely in first-order logic.
However, if one can express these relations in first-order logic and if, as is
often the case, the condition for non-looping is known and easily expressible,
then Manna's approach is very attractive.
The fact that equivalence of program schemes is not partially decidable

shows that this problem cannot be reduced to the proving of a theorem of
first-order logic, as this is partially decidable.

PROOF OF THEOREMS

Theorem 1. Given an interpretation of a program scheme, PS, which causes
the scheme to terminate with value {LF}, then, with this interpretation,

PS does ZmZ({LF1).

({L} denotes the set of registers of the program scheme,
{LF} their final values.)

Proof (a) Assume PS does Z is true.
Take the predicates, which exist by definition of PS does Z, and consider the
control path of the scheme under the given interpretation. By the definition
of the Cy (see definition of PS does Z) as we follow the control path all
predicates will take the value true and in particular Z will be true at the end.

(b) Assume Z({LF}) is true.
Suppose with the given interpretation control reaches a node p times with
{L} = {L1}, {L2}, . . {L,,}. Associate with this node the predicate

{L} = {L1} V {L} ={L2} V .. . V {L} = {4}.

We show with this choice for Pi) P2, • • Pk, PS does Z is true.
Consider Cy, defined as

(VL1)(VL2) . . . (V L„)[P i({L}) & h({L})-+P.10fr ii({L}))].

If {L) is a set of values of the registers on the control path at the ith node,
and if with this set control does then go to the jth node, then all three
terms of the quantifier-free part of Cif are true, and therefore so is the
implication. If {L} is such a set and control does not then go to the jth node,
then the çb, term is false; if {L} is not such a set then the Pi term is false. In
either case the implication is true and so we have proved Cy to be true; the
argument is also valid if i is the start node or j the terminating node.

8
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Hence C, the conjunction of the Cu is true, and hence PS does Z is true.

Theorem 2. Given an interpretation of a program scheme, PS, the scheme
loops if and only if in that interpretation PS does false is true.

Proof (a) Assume the scheme loops.
The proof is exactly the same as for Theorem 1, part (b). The predicates are
defined as before, but now for some node or nodes the disjunction will be
infinite, these predicates being still well defined but in a non-constructive
manner. As control never reaches the final node the truth value of Z will never
be needed in proving PS does Z true.

(b) Assume the scheme terminates with Z({L}) = {LF}.
Use Theorem 1 with Z replaced by false.
Minor variants of these proofs also prove the alternative formulation of

Theorem 2, that the scheme loops if and only if PS does Z is true for all
predicates Z.

Theorem 3. PSi extends PS2 if and only if PSI does Z—*PS2 does Z is a theorem.

Proof (a) Assume PSi extends PS2.
Take any interpretation and any predicate Z. Suppose under this interpreta-
tion PS2 terminates with {L} = {LF}, then so does PSi by the definition of
extension. Then PSI does Z --- PS2 does Z, as by Theorem 1 both are equivalent
to Z({LF}). This is a stronger result than required. Suppose under this
interpretation PS2 does not terminate, then by the alternative Theorem 2 PS2
does Z is true, and trivially PSI does Z—>PS2 does Z.

(b) Assume PSI. does Z--PS2 does Z is a theorem.
Take any interpretation under which PS2 converges, to {L22}, say. By
Theorem 2 PS2 does false is false; the hypothesis then shows that PSI does
false is false and by Theorem 2 again PSI converges, to {Ln.} , say.
Now take Z({L}) to be {L} = {LFI}. With this Z, PSi does Z is true, and

by hypothesis PS2 does Z is true. Theorem 1 then gives {L F1} = 
{L.F2),

hence proving PSI extends PS2.

Theorem 4. PSI is equivalent to PS2 if and only if PS1 does Za- PS2 does Z is a
theorem. The proof of this is immediate by Theorem 3.

PROVING EQUIVALENCE OF PROGRAM SCHEMES

To prove two program schemes, PSI and PS2, equivalent one can proceed by
proving both PSI extends PS2 and its converse. By Theorem 3 this is equivalent
to proving PSI does Z—q)S2 does Z. This is a formula of second-order logic.
Theoremhood in second-order logic is not even partially decidable; however,
in particular cases this theoremhood is provable within first-order logic.
The formula PSI does Z.—q'52 does Z is of the form:

(3/31)(3P2) C—*(30)(3Q2) D,

9
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or equivalently

(VP1)(VP2) • • • ( 3 Q1)( 3 Q2) • • . {C-4D}.

If we can guess the predicates Qi, Q2, . . ., (in terms of the predicates Pi,
P2, . . ., the test and function names of the program schemes, Z and the initial
values), then with this guess we have eliminated the existential quantifiers on
the predicates, the initial universal quantifiers may be dropped, and we have a
formula of first-order logic.

In the previous example, equations 1 and 2, we first have to guess B and C,
then drop all existential quantifiers and prove formula 2 follows from
formula 1. Then the process is repeated guessing A and proving 1 follows
from 2. In this case the guessing is trivial; for the first proof take both B and
C to be A. Each of the conjuncts of 2 is then a conjunct of 1 and so 2 follows
from 1. For the second proof take A to be the disjunct B V C, each of the
conjuncts of 1 may then be proved true by using the conjuncts of 2. It has
therefore been proved that the program schemes PSI and PS2 are equivalent;
more complex examples will follow later. ,
Paterson (1967) considers the problem of finding 'adequate rule books' for

proving equivalences or for simplification of schemes by successive transform-
ations. Under a very weak hypothesis these rule books cannot exist. The fact
that equivalences are not even partially decidable is the stumbling block.
However, if we consider restricted definitions of equivalence and if this
restricted equivalence is partially decidable, then perhaps one can find rule
books or produce mechanical equivalence-provers. Suppose the predicates
to be guessed in the above technique are chosen from some recursively
enumerable set, for example all those which may be defined by well-formed
formulae of first-order logic using the given predicates, test and function
names. Then, with this choice, a theorem of first-order logic has to be proved
and this itself is partially solvable. The set of pairs of programs which can be
proved equivalent by this method is then recursively enumerable and mech-
anical provers or adequate rule books can be looked for. Such equivalent
program schemes will be equivalent in a strong sense; intuitively, the condi-
tions for being at a particular place in one scheme can be stated in terms of the
conditions of the other scheme.

GIVEN RELATIONS

Suppose in the program schemes there are given relations between the tests
and functions, and equivalence has to be proved only on the assumption that
the relations are satisfied. The previous theorems may be easily extended to
cover this case. Let Q denote all the given conditions; define PSI extends PS2
over Q by restricting the interpretations to those for which Q is true. Theorem
3, for example, may then be generalised to:

Theorem 3A. PSI, extends PS2 over Q if and only if
Q & PSi does Z--+PS2 does Z

10
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In the limit, if Q contains sufficient restrictions completely to define the
functions and tests then equivalence of programs themselves is being consid-
ered.

SUB-PROGRAM SCHEMES

Suppose, as in figure 3 ( iv ) of Paterson (1968), we have two program schemes
each with an unspecified sub-program scheme, and it is desired to prove
equivalence whatever particular sub-program scheme is substituted into the
two schemes. The following theorem shows that we need then only consider
one particular substitution. Suppose the program schemes have one register:

Theorem 5. Let PSI (P) and PS2(P) be two program schemes each with an
unspecified sub-program scheme P. Then PSI PS2(P) for all P if and
only if PSI( Q)---;.:PS2(Q), where Q is the particular program scheme

(1) t(L) 1,2
( 2) L4—f(L)

and it is assumed that labels (1) and (2), test name t and function name f do
not occur in the given schemes.
Proof. Assume PSi(Q):-=-PS2(Q), where Q is the given particular program
scheme, and take any program scheme P.

Consider any interpretation and starting value for PSI (P) and PS2(P).
If the t and/or f of program scheme Q occur in P, rename them to get a new Q
and still have PSI( Q) _=P52( Q). Now consider the interpretation of PSI( Q)
and PS2( Q), which is the chosen interpretation, extended by letting t be the
condition for P to loop and f the function relating P's final value to its initial
value if it does not loop (this test and function will, of course, depend on the
interpretation already given to the tests and functions of P). It is clear that
PSI( Q) and PS1(P) must behave the same way in this interpretation, and
PS2( Q) and PS2(P) similarly. But PSI( PS2(Q), hence PSi(P) and
PS2(P) must also both loop or both have the same value. Since we chose
any interpretation it follows that PSI (P) _PS2(P).
The converse is trivial.
The extension to many-register schemes or to the occurrence of several

sub-program schemes in one or both given schemes is easy.
Thus our previous equivalence proof and this theorem prove that the trans-

formation of Paterson is valid for any program sheme

A RESTRICTED SET OF ANSWERS

It may be that only the final value in some of the registers is relevant, so that
one must prove of two program schemes that the final values of registers in a
specified set are the same. The previous technique can be easily extended to
this case, the final predicate Z being taken to depend only on the chosen
registers. As an example, consider:

11
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PS3 PS4
L=a & M=fl 1 L= & M= fl 1

A14--.AM) P(L,M) 1(3) t(L) 1,2
L4-g(L) (1) L4--f(L)

Z(M) I halt goto 3
(2) M4-f(M)

Z(M) I halt

Clearly PS3 extends PS3 so long as M alone is regarded as the answer, the
final L values being different. This is also an example of an extension which
is not an equivalence.

PS3 does Z is
(VL)(VM)(L & M= fl-+Z(f(M))].

PS4 does Z is
(3P)(VL)(VM)[P(oc,13) &

P(L,M) & --It(L)-+P(f(L),M) &
P(L,M) & t(L)-4Z(f(M))].

If P(L,M) is 'guessed' to be M=/3 then PS4 does Z may easily be deduced
from PS3 does Z.

FURTHER EXAMPLES

As a more complex example consider the following three program schemes.
They are all two-register and consist of two independent loops, one working
on one register (L) and the other on the other (M). In PS5 the L loop is first;
in PS6 the M loop is first; and in PS7 operations in the two registers are inter-
mingled (as may be seen by drawing flowcharts). They are all equivalent; the
predicates to be guessed will be exhibited later. The letters t and s are test
names, f and g function names.

PS5 PS6
L=a & M= )31 L=a & M=fl 1
A(L,M) 1(1) t(L) 2,4 V(L,M) 1(1) s(M) 2,4

(2) Li-f(L) (2) M±-g(M)
(3) goto 1 (3) goto 1

B(L,M) 1 (4) s(M) 5,7 U(L,M) I (41 t(L) 5,7
(5) M4--g(M) (5) L+-f(L)
(6) goto 4 (6) goto 4

Z(L,M) 1 (7) halt Z(L,M) 1 (7) halt

PS7
L=a & M=111
C(L,M) 1 (1) t(L) 2,6

(2) s(M) 3,9
(3) L4-f(L)
(4) M4-g(M)
(5) goto 1
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E(L,M) I (6) s(M) 7,12
(7) M4-g(M)
(8) goto 6

D(L,M) I (9) t(L) 10,12
(10) 1,4--f(L)
(11) goto 9

Z(L,M) I (12) halt

The following are easily produced:

PS5 does Z is

(3A)(3B)(VL)(VM)[A (a,fl) &
A(L,M) & -4A(f(L),M) &
A(L,M) & t(L) -B(L,M) &
B(L,M) & --is(M)--013(L,g(M)) &
B(L,M) & s(M) -+Z(L,M)].

PS6 does Z is
(3 V)(3 U)(VL)(V M)[V(cc,$) &

V(L,M) & --is(M)-V(L,g(M)) &
V(L,M) & s(M) --+U(L,M) &
U(L,M) & -+U(f(L),M) &
U(L,M) & t(L) -0Z(L,M)].

PS7 does Z is
(9C)(3D)(3E)(VL)(V M)[C(a,f3) &

C(L,M) &-it(L) &-is(M)-4C(f(L),g(M))&
C(L,M) & & s(M) -+ D(L,M) &
C(L,M) & t(L) -+E(L,M) &
D(L,M) & 7t(L) D (f(L),M) &
D(L,M) & t(L) -+Z(L,M) &
E(L,M) & -is(M) .-E(L,g(M)) &
E(L,M) & s(M) -4Z(L,M)].

To prove equivalence we need to prove:

1. PS5 does Z-÷PS6 does Z.
'Guess' V and U to be
V(L,M) is L=a & (VL')[B(L',fl)---013(L',M)]
U(L,M) is A (L,fl) & (VL')[B(L',13)-+Z(L',M)].

With the aid of this substitution the fact that PS5 does Z--PS6 does Z is a
theorem may be proved within first-order logic. This is left to the reader to
verify.

2. PS6 does Z-.PS5 does Z.
This follows from 1. by symmetry.
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3. PS5 does Z-*PS7 does Z.
With V and U defined as in 1. guess C, D, and E to be:
C(L,M): A(L,fl) & V(a,M)
D(L,M): U(L,M)
E(L,M): B(L,M)
The theorem follows.

4. PS7 does Z--*PS5 does Z.
This is a difficult proof, as there seems no way to express the predicates ofPS5
in terms of those of PS7 by definitions of the type considered so far, that is, by
a formula of first-order logic. However, assuming the existence of predicates
expressing the condition that control is in the C, D, and E loops of PS7, and
assuming some obvious properties of these predicates, 4 may be proved true.
Use a superscript to denote functional composition, e.g. f2(a) stands for

f(f(a)) and in general fn (a) for n compositions (fo(a) is defined to be a).
Let p and q be the smallest integers such that t(fP (a)) and s(gq(P)) are

true (or oo if there is not such an integer).

Define: 4)(L,M) is (3n)[np & n<q & L=fn (a) & M =gn
ifr(L,M) is q<p & M=gq(fi) & (3n)[L=fn(a) & q<n<p]
F (L,M) is p.<q & L=fP(a) & (3n)[M=gn(13) & p<n<q]
x(L,M) is (3n)[L=fa(a) & n<p] & (3n)[M=gn(fl) & n<q]

so that 4), tfr and F are the conditions on Land M when control of PS7 is in the
C, D, and E loops respectively, and x is the condition that the L and M are
both possible values in PS7.
Now guess:

A is x(L,M) & M= 13 & (V M')[0(L,M')-+C(L,M') &
(L,M')-+D(L,M')].

B is x(L,M) & (V M')[0(L,M')-4E(L,M') &
(L,M1)->Z(L,M1)]

& (V L')[0(L',M)--0 C(L',M) &
r(LI,M)--4E(L',M)]

& t(L).

These guesses enable the proof of 4 to be carried out. This proof will require
several properties of 0, 4/, r and x to be used, for example

(a,M)-4M= fl and g(M)0 fl & (L,g(M))---)(3L')[L=f (L') &
& & 0(L',M)].

A complete list will not be given here (with the author's approach sixteen
such properties were required), but it is clear that the above-defined 4), 4/, r,
and x have all the required properties. Another way of putting this is that
{ ( 2 )( 34/)( 3F) (3) all these properties} is a theorem of second-order logic.
On this assumption, 4 can then be proved within first-order logic.

It is discouraging that a simple example seems to need such complex
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treatment. If our proof techniques do not work easily on simple examples,
how shall we ever deal with real programs? The 0, etc., introduced, implied
some knowledge about the program scheme; they are very like the predicates
which have to be supplied by the user in Floyd's verifying compiler. However,
1, 2, and 3 did not need such guesses, and proof of these extensions fell into
the partially solvable class in which the predicates were expressible by formu-
lae of first-order logic.
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1. INTRODUCTION

In this paper we try to show how an algebraic point of view can be helpful
in the discussion of computer programs and their correctness proofs. There
are a number of instances where algebraic concepts fit naturally on to pro-
gramming phenomena and they bring a certain conciseness and uniformity
to the treatment of programming matters. We have made an effort to under-
stand some of these concepts and discover their connection with program-
ming. Here we present the results of a preliminary skirmish in this field,
namely an algebraic treatment of the proof of correctness of a simple compiler
for expressions.
Programming is essentially about certain 'data structures' and functions

between them. Algebra is essentially about certain 'algebraic structures' and
functions between them. Starting with such familiar algebraic structures as
groups and rings algebraists have developed a wider notion of algebraic
structure (or 'algebra') which includes these as examples and also includes
many of the entities which in the computer context are thought of as data
structures.
Almost any branch of mathematics faces the problem of 'multum in

parvo', how to describe an infinite set of arbitrarily long calculations or
arbitrarily large structures using only a finite description. Programming
manages this by the device of iteration (loops in programs, stars in regular
expressions) or alternatively by recursion (recursive definitions of functions,
recursive syntax definitions).
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Algebra seems to rely on different methods of description, largely the

notion of homomorphism between algebras and the notion of the closure
of a set under certain operations. The method of description is closely related

to the methods of proving theorems about the objects described. The algebraic
frame of discourse lends itself to certain kinds of inductive proof and some-

times enables one to 'wrap up' the conclusions of certain fundamental induc-

tive arguments in convenient and very general lemmas.

Our business then is to define some useful algebraic concepts, indicate their

points of contact with programming and illustrate their application in a

simple correctness proof. We aim to be rigorous but not formal. Naturally,
correctness proofs are more attractive if they can be formalised so as to make

them susceptible to computer checking and even computer discovery. The
reasoning here can appropriately be formalised in a higher-order logic rather

than a first-order one, and one may hope that such logics will soon be
mechanised.

2. NOTATION

When we speak of a function (or mapping)f we associate with it a domain X
and a co-domain Y, writing f: X—, Y. This means that f is defined for each x

in land takes a value y in Y. We write for the set of all functions from

X to Y. Thus f: X—Yis short for f (X-. Y).
We write fx for the result of applying f to x, instead of the commoner but

cumbersome f(x). Function applications associate to the left thus f x y=

(f x)y#f(x y), that is, f x applied to y. For functions of two or more argu-

ments we write f(x,y), etc.
The image off, written im f, is the set of all y in Y such that y=f x for

some x in X. Plainly, im lc_ Y; if im f= Y we say that f is onto Y. If for each y
there is at most one x in X such that y=f x, we say that f is one-one (it may or

may not be onto Y).
If f:X-4 Y and Y and I'd and and for each x hi X' fx=g x then we

say that g is a restriction off and f is an extension of g.
The composition of two functions f:X-+ Y and g:Y—■Z is denoted by fog,

that is, fog:X-+Z and (fog)x=g(f x). Note the inversion of order.

We say that a diagram such as the one below commutes if fog=h ok

We denote n-tuples or lists by (xi, . • x)
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The following symbols denote special sets.

N+: the set of positive integers
N : the set of non-negative integers
Z : the set of integers
R : the set of reals.

3. BASIC ALGEBRAIC CONCEPTS

Those familiar with algebraic ideas may wish to skip this section, referring
back later to clarify points of terminology. Others may find the definitions
lacking in motivation until they have read the applications which follow.
Our treatment is largely derived from that of Cohn (1965), which may be
consulted for proofs omitted here.

Algebras

By an operator set with arity shall we mean a set SI of objects called operators
with a function from operators to non-negative integers, arity:
indicating how many arguments each operator needs, that is, whether it is
nullary, unary, binary, etc. Let On be the subset of f2 containing operators of
arity n.
By an SI-algebra An we mean an operator set f2 with arity and a set A,

called the carrier of the algebra, together with a function for each n in N
assigning to each operation co in On a function from n-tuples of elements of
A to A, that is, a function in if"-+A. Call this function opn„: (A"-- A).
Example. Any group is an algebra with operator set f2= {cd,co",col and
arity, arity co'=2, arity co" =1, arity co" =O. We take co' to mean multiplica-
tion, co" to mean inversion and co" to mean the constant identity. The set
f2 and the function arity are common to all groups. A particular group, say
the cyclic group of order 4 with elements {1,ebe2,e3} , is specified by defining
particular functions opn2, opni, opno as follows:

opn2 co' =m, where m(/,/)./, m(1,e1) =el, m(ebei) =e2,
ni(ebe2)=e3, etc.

opni co" =inv, where inv 1=1, inv ei=e3, etc.
opno co' =id, where id( )=I.

Abbreviation. We habitually write co instead of opn„co, for example co' (1,ei)
instead of m(1,e1). This causes no confusion so long as the algebra being
referred to is understood.
By the closure of a set X with respect to we mean the least set A containing

X such that for each co of arity n inn and each an all in A, . .
a„) is in A. Note that if f10 is non-null then so is the closure of {
We say that a set X generates an algebra An if A is the closure of X with

respect to 0.
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Example. {I,e3} generates the group G22.
If Xis any subset of A then the algebra Aki generated by Xis said to be a

subalgebra of AEI.
Example. {I,e2) generates a subalgebra of Gti whose carrier is just those two
elements.

Homomorphisms

By a homomorphism from An to .130, where An and Bn are algebras with the
same operator set n and the same arity, we mean a function from the carrier
of An to the carrier of Bn, A-*13, such that for each co in S2 of arity n

0(0)(a1, .., an)) =c0(0 al, ..., an)

We write such a homomorphism as 0: A0-4/30.
Example. If G is the cyclic group of order 4 defined above and GI, is the
cyclic group of order 2, with elements gel, then there is a homomorphism
0: GA-*GA defined by 01=4 0 ei=e, e2=1, o e3=e. It is easy to verify
that 0 preserves multiplication, inversion and identity in the sense of the
equality just given.

Certain kinds of homorphisms are dignified with special names.

If 0: A0-4B0 is one-one then 0 is a monomorphism.

If 0: A0-+B0 is onto B then 0 is an epimorphism.

If 0: A11-B0 is one-one and onto then 0 is an isomorphism.

If 4): A0-A0 then 4) is an endomorphism.

We consider a set A as an algebra with an empty set S2 of operators, so that
formally any function is a homomorphism, if only of sets. We shall usually
use Greek letters for homomorphisms of algebras other than sets.
We now note some fundamental properties of homomorphisms and explain

a convenient means of defining them. The proofs are by straightforward
induction and we omit them.
Product of homomorphisms lemma. If 0: A0--d3n and 0: B0-+ C0 are homo-
morphisms then so is their composition c/:, 0 0: A0--*C0.
Unique extension lemma. If X generates An and Ya B then for any function
f: X-+ Y there is at most one homomorphism 4): A0-B0 such that for all
x in X, Ox=f x. We say that 0, if it exists, is the extension off to a homo-
morphism. Note that f might usefully be the null function if 00 is non-null.
Definition of homomorphisms. Since 0 is uniquely determined by f, given An
and Bn we may define a partial function 'Extend' such that

=Extend(An,Bn)f

We shall frequently define a homomorphism 4) by writing
0: /10--*B0 and 0x=E(x) for x in X
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where E(x) is some expression involving x. This is an elliptic way of saying

=Extend(An,Bn)f where f: X-4 Y is defined by f x=E(x)
We note that

(i) Such a definition must be justified by a proof that a homomorphism
0 does indeed exist.

(ii) Such a definition specifies a unique 0, if one exists, but it gives us no
means of computing ck a for an arbitrary a in A. We shall see
later that to compute a we also need a rule for deriving any a
from the elements of X in terms of the operations of SI

Extension of composition lemma. Given algebras An, Bn and C'n with X
generating An, and Y generating B0, Z.c_C and functions f: X-4 Y and
g: Y-4Z, then

Extend (An,Cn)(fog)=(Extend(An,Bn)f). (Extend(Bn,C11)g)

Free algebras and word algebras

If (e. is any class of 11-algebras for a fixed f2, then An in ' is said to be a
free algebra on a generating set X with respect to if any function f: X-4 Y,
where Yc B, the carrier of some Bn in W, can be extended to a homomorphism
: 440—*B0.
A class does not necessarily have a free algebra on X. However, if <8 is

the class of all groups there is a free group on any set X; similarly for semi-
groups (one associative binary operation) and some other common kinds of
algebra. For example, the free semigroup on Xis isomorphic with the set of
all strings on the alphabet X. We shall discuss semigroups further below.
In particular, if ' is the class of all SI-algebras for a given operator set n

with given arity, then the free algebra on X with respect to <6' is called the
fl-word algebra on X and is denoted by Wn(X).
The word algebra always exists; so any function f: X-4 Y, where Yg_

the carrier of An, can be extended to a homomorphism 0: W0(X)-421n.
One way of representing the word algebra is to associate an object w' with

each word w in W0( X) thus

(i) w'=w, if w is in X
(ii) w'-= (co, w;, an n+ 1-tuple, if w= co (wi,

and associate with each co in f2 an operation co' defined by

(Awl, • • 14'0 = (a), wi, • • W).
Programmers will recognise this as a common kind of data structure (plex,
record, structure) with n components and a marker co to indicate what kind
of structure is intended. In LISP, for example, there is only one co in C, say
'cons', with arity 2, and Xis the set of all 'atoms'. Thus, LISP lists, in pure
LISP without assignment, are W{cons}(atoms); with assignment, more complex
structures occur, e.g. circular lists.
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Derived operations

We can define new operations by composition and the use of constants.
If An is any LI-algebra and Xis an infinite set of 'variables' we may associate

a derived operation, say co' of arity n, with an ordered set xi, . . x„ and a
word win Wn (A u . . x.}) as follows:

co' (al, a„) = (Extend(Wn(x),An)f)w, where f: Au {xi, . •
x„} -*A is defined byf xi= al and f a= a. In 2-calculus notation
co' = 2(xi, x„). w.

For example, if An is a group with operations m and inv then c (x,y)=
m(inv y,m(x,y)), that is, rl.x.y, is a binary derived operation and
cox = a-1 . x. a a unary derived operation. A set a of derived operations forms
an algebra An, with carrier A. Such an algebra is said to be a restriction of An.
We note the following useful lemma.

Homomorphism of restrictions lemma

Given An and Bn and 4): A0-4Bn, suppose that An,, is a restriction of An and
Bn,, a restriction of Bn, where the operations of Bn, are derived in the same
way as those of An, replacing a by 4) a, then 0 is a homomorphism :An,-+Bir.
For example if 0 is a homomorphism of groups with 0 a= b, then it is also

a homomorphism from the algebra with unary operations cax = a-1 . x . a
to that with unary operations ebx =b-1 . x. b.

Semigroups

A semigroup is an algebra with one binary associative operator, which we
shall denote by an infixed ̀ .' rather than a prefixed co.

Examples
(i) N:t, the semigroup of positive integers under addition.

A semigroup with identity, also called a monoid, has an extra nullary operator
1, the identity. For any element a we have a .1=1 . a=a.

Examples
(i) N.1., the monoid of non-negative integers under addition with the

number zero as identity.
(ii) n„ the semigroup with identity of truth values, ( true,false} under

logical or, with false as identity. We have false V a=a V false= a.
(iii) 71„d, the same replacing or by and and interchanging true and false.

A semigroup with identity and a zero, has in addition to ̀ .' and 1 a nullary
operator 0, the zero. For any a we have a. 0 = 0 . a= 0. A semigroup can have
only one zero, and we can always add a zero to a semigroup without one.

Examples
(i) Nx the semigroup with identity and zero of non-negative integers

under multiplication, with the number one as identity and the number
zero as zero (hence the nomenclature).
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(ii) The semigroup with identity Tot can be made into one with identity and
zero 719 by taking zero to be true. We have true V a=a V true =true.

(iii) Similarly for

We shall denote the free semigroup on the set X by X. Recall that any
function f: X--)Carrier of S, where S is another semigroup defines a unique
homomorphism : EX--S. We shall often define 0 by just saying

'0 :

x=E(x) for x in X',

using implicitly the justification that EX is free so that exists.
The free semigroup EX can be represented by the set of all finite sequences

of elements of X under concatenation.
• Programmers will note that many list-processing operations act on lists
considered as a semigroup rather than as a word algebra, that is, the word
algebra is being used to represent a semigroup. This is even more apparent
in string processing languages such as SNOBOL.
We sometimes need the free semigroup with identity, which we shall

denote by (EX)1, and the free semigroup with both identity and zero, which
we shall denote by (EX)10.
A particularly important kind of semigroup is a mapping semigroup over a

set X, that is, a set of functions in (X--0X) with composition as operation and
closed under composition. Thus if f: X-4 X and g: X—)X then f.g=f 0 g. We
denote this semigroup of all functions from X to X under composition by
FR(I) (Functions under Right multiplication). We write (FR (X))1 for the
semigroup with identity of all functions from X to X with the identity
function as identity.
We shall see that an automaton can be characterised by a homomorphism

from a free semigroup of 'inputs' to a mapping semigroup of 'state transform-
ations'. A treatment of semigroups and their application to automata may
be found in Arbib (1968).

4. ELEMENTARY EXAMPLES IN PROGRAMMING

Let us take a look at a few functions commonly met with in programming
and express them as homomorphisms. Our examples are mostly taken from
list-processing (considering single-level lists rather than list-structures') and
involve homomorphisms of semigroups. Many simple list functions, written
as, say, LISP recursive functions, show a repetitive pattern of conditionals and
recursion. This pattern makes them easy to write once it is recognised.
Expressing the functions as homomorphisms abstracts this pattern as a
mathematical entity.
We shall use land Y for arbitrary sets. In the examples we shall often take

these to be integers or reals. We recall the following names for semigroups.
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(EX)1, the free semigroup with identity over X (lists over X, including
nil)

N+, the semigroup with identity of non-negative integers under
addition

n, the semigroup with identity of truth values under logical or
FR (I), the semigroup of functions in X.-X under composition

(FR(X))1, the semigroup with identity of functions X.-* X under
composition with the identity function as identity.

We define each of our functions first informally, then as a recursive function
in the notation of Landin (1966), then as a homomorphism using the notation
described in section 3. We shall presently exhibit a more explicit notation
suitable for presenting the definitions to a compiler.

(a) map, which applies a function/ to each member of a list, for example
map(sqrt, (1,2,3,4)) = (1.00, 1.41, 1.73, 2.00)
let recursive map (f,x) = if null x then nil

else cons(f(hd x),map(f,t1 x))
Homomorphism. Iff : Y, the unary function mapf is
map f : (EX)1--+ (EY)1
map 1x =f x for x in X

(b) sub, which selects all elements of a list which satisfy a predicate p,
for example
sub(prime, (3,2,4,7,8)) = (3,2,7)
let recursive sub(p,x) = if null x then nil

else ifp(hd x) then cons(hd x,sub(p, tl x))
else sub (p, tl x)

Homomorphism. The function subp of one argument is
sub,,: (EX)1-4 (EX)1
subpx = if p x then x else 1 for x in X
(1 being the empty list, nil)

(c) sigma, which applies a given function f to each member of a list of
integers and adds the results, for example

sigma(square, (1,2,3,4)) =30
Recursive definition. Obvious.
Homomorphism.
sigmaf: (EN)1--)N+
sigma/ n=f n for n in N

Now if we define a function sum so that, e.g., sum ((1,4,9,16)) =30
sum: (EN)1-+N+
sum n=n for n in N,

we see that sigmaf = map f 0 sum. Proof: For any n in N, sigmaf n=
(map f o sum)n, and therefore sigmaf=mapf 0 sum for any element in
(EN)1 by the 'extension of composition lemma'. It is worth re-
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marking that this little proof involves inspection of the effect on the
generator set, and then avoids any inductive argument by appealing
to a standard lemma.

(d) exists, which tests whether any member of a set satisfies a given
predicate, for example exists (prime, (4,5,6,8)) = true
Recursive definition. Obvious.
Homomorphism.

exists: (EX)1-0T„ir
existsp x=p x for x in X

The function all can be defined similarly using 71,„d.

(e) exec, a function which takes a list of elements (xi,x2, . • •• xn)
together with a function f which turns each element x into a function
f x, producing as its result the composition of these functions,
fx1 0 fx2 o . . . ofx. For example, if add ij=i+j, so that add us a
unary function, then exec(add, (1,2,3)) 0= (add! 0 add 2 o add 3)
0=3+ (2+ (1+0))
Suppose that f: X-0 Y and /is the identity function in Y-0 Y.

let recursive exec(f,x)=
if null x then /

else f(hd x) o exec(f, tl x)
Homomorphism.
exec1: (FR( Y))1
exec 1x =f x

(f) Functions of integers. Primitive recursive functions of integers can be
expressed using homomorphisms. We let Nno be the algebra of non-
negative integers with a nullary operation, 0, and a unary operation,
successor. A restricted form of the primitive recursion schema,
equivalent to the usual schema given primitive functions to manipulate
pairs, can be written with y as a parameter thus

f,0= a, fp (successor x)=hp(fp x)

Let Nilo be the algebra of integers with a nullary operation a and a
unary operation hp. Then fy is

fy: No-0 Nha
This defines fy since NA is generated by the empty set.

It is a fundamental property of non-negative integers that Nso is a
free algebra and hence this always defines a homomorphismfy for
any hy and a.

(g) Substitution in expressions. In symbol manipulation tasks, such as
theorem-proving, we often deal with a set of 'expressions' involving a
set f of operators and a set X of variables, that is, a word algebra
MI (X). Consider a function to substitute expressions for variables
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in a given expression, for example to put col (y,y) for x and co2x for y
in co i (co2x2,co1y) giving col (co2(0)1(y,y)), co1(c02x)).

Suppose f : X--*carrier of W0(X) is the function specifying the
substitutions to be made, then the function to perform them on a
given expression is

: wax)-+ wax)
x=f x.

that is, the extension off to a homomorphism of Wn ( X)
These examples suggest that definitions by homomorphisms are quite versatile,
indeed it is possible to do quite a lot of programming without resorting
to recursive definitions or iteration, as we shall show in our expression
compiler.

5. PROGRAMMING IN TERMS OF HOMOMORPHISMS

We remarked earlier that, given algebras An and 130 and a set X which
generates An, a function f: X--q3 can be extended to a homomorphism 0 in
at most one way, and that this enables us to define a partial function Extend
such that Extendf=0, if the homomorphism exists. We have just shown how
a number of common functions can be defined as the extensions of simpler
functions to homomorphisms. We now show how to make these definitions
more explicit, indeed suitable for presentation to a computer, by giving an
algorithmic definition of the function Extend.
We shall start by programming a less general function than Extend, one

which deals only with homomorphisms of semigroups. We hope in this way
to make the definition of Extend easier to follow.

Recall the function map defined in the last section by

let recursive map(f,x)= if null x then nil
else cons(f(hd x), map (ftl x))

If we generalise this by making null, hd, ti, nil and cons parameters we get a
more general function:

let genmap (gnull,ghd,gtl,gnil,gcons)= gmap
where recursive gmap(f,x). if gnull x then gnil

else gcons(f(ghd x), gmap(f,gt1 x))

Now genmap(null,hd,t1,nil,cons) is simply map. The reader can verify that
genmap(null,hd,t1,false,or) is exists and that genmap(null,hd,11,0,-F ) is sigma.
Thus genmap is capable of producing a wide class of functions.
However, we want the still more general function Extend, which can be used

to produce any homomorphism of f'-algebras, with the semigroup homomor-
phisms produced by genmap as a special case.
We want Extend(An,Bn)f to be 0, the unique extension off to a homomor-

phism. How are we to represent the algebras An and B0?
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To compute 4, a for a in A we need to decompose a into a construction in
terms of fi and Xthe generating set of A. For this we may use a decomposition
function dAx to produce from any a in A but not in X an operator co and an
n-tuple . a.) such that a=co(ai, . • an)
dAx: A — X--° Union (n. x An)

n0 to

dAx a= (co,(ai, . a.)) such that a= co(ai, . a.)
We also need a predicate px to test a for membership of X

px: {true,false}
Px a= true iff a in X.

These two functions, dAx and px, suffice to represent An. To represent Bn we
just need the function opnB which takes any operator co in II of arity n into the
corresponding operation of Bn, that is, into a function from B" to B.
opnB:S1-+Union(B"-4B)

n= 0 to co

We may as well represent each of the algebras An and Bn by a triple (d,p,opn)
even though we do not use all the components.
Now we define Extend and give an example of its use. *
let Extend (An,Ba)f=

let (dAx,px,opnA).
and (dBy,py,opnB)=Ba
4 where recursive 0 a=if px a then fa

else let (co,(ai, . a„))=dAxa
(opnBco)(0 al, • • Oan)

For example, since lists of atoms are (E atoms)' we could define the function
map as Extend ((Eatoms)1, (Eatoms)0 since it extends a function from
atoms to atoms to a function from lists to lists. We represent (E atoms)' by
(d,p,opn), where

d a=if null a then ("NIL ",( ))
else (if CONCAT", (hd a, tl a))

p a= atom a
opn a= if a=" NIL" then nilf

else if a=" C 0 NC AT" then concat
where nilf()=nil and concat joins lists, concata1,2), (3,4)) = (1,2,3,4)
Extend((d,p,opn),(d,p,opn)) square applied to a, which is a list of numerical
atoms or an atom or nil, first tests a with p to see whether it is an atom. If not
it decomposes a with d obtaining either the operator NIL and no elements
of a or the operator CONCAT and two shorter lists al and az. If NIL
then nilf is applied to produce nil, if CO NCAT and (abaz) then (that is,
map) is applied recursively to al and az and concat is applied to the results.
* Note added in proof: We have tested Extend by translating and running it in Pop-2(Durstall & Popplestone 1968).
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We have demanded only that the decomposition function d satisfy

d=co(ai, an), where (o.),(ai, . • an)) =d a

Provided that f really is extendable to a homomorphism it does not matter
which function d we use, so long as it satisfies this relationship and con-
verges, that is, repeated applications of d eventually produce elements in X.
An example may make this clearer.

Consider logarithm which is a homomorphism from the semigroup of
positive reals under multiplication to the semigroup of reals under addition,
since log(x x y) = log x + log y. Suppose we know a function logtable which
gives log x for x<2. Then we write

let log x=if x<2 then logtable(x)
else let (y,z)=factors(x)
log y +log z

It does not matter which function factors we use so long as y x z=x and the
computation terminates, for example it does not matter whether factors
(12) = (3,4) or factors (12)=(2,6).

In general for any a define two decomposition functions d and d'

d a= (a),(cii, a„)) and d' a= (cd,(ai, a„))
Then a=co(ai, a„)=co'(ai, ..,a)

But since 0 is a homomorphism

co(0 ., 4, a)=4,a=co'(4, a, ...,4, a)

These are precisely the expressions occurring in Extend when we supply d
or d' as parameter; since they are equal the result of Extend is unaffected.
In general it may be difficult or impossible to find a function d which

converges for any element of a (see the discussion of the word problem in
Cohn 1965). What is a sufficient condition for d to converge?

If X generates An, there is a unique homomorphism from Wn (X) to An,
cc: Wn(X)-- An. Consider any function h which is a left inverse of cc, that is,
h cc=IA, the identity function on A. Now let 13 be the unique extension off
to a homomorphism from Wn(X) to Bn. Then a 0 0 =/), and hence h o 13.
hocco4)=IA ock= 4,, the required homomorphism.

ALI
--->

CC I

‘1:1)

Bn
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This gives us a way of computing 0 which avoids problems about convergence
by using the word algebra. Suppose that given h we choose d so that
h a=co(h h a„) where (co, (ai, a„))=d a,

a sufficient condition for d to converge. Since a has in general more than one h
there is more than one possible d, and any such d is guaranteed to converge.

6. CORRECTNESS OF A SIMPLE COMPILER

As an illustration of the use of an algebraic point of view we shall prove the
correctness of a simple compiler for expressions, comparable to the one whose
correctness was proved by McCarthy and Painter (1967) using the
method of recursion induction. For other research on correctness proofs see
Painter (1967), Kaplan (1967), Floyd (1967), Burstall (1969) and Cooper
(1969), with the references therein. We shall do this proof in several stages by
proving the correctness of compilers for various intermediate machines.
Table 1 shows an example of the action of these machines. The problem

is to evaluate expressions composed of variables from a set X and operators
from a set S/ (Table la). We assume that the expressions have already been
syntactically analysed into their operator-operand structure. The operators
may include nullary operators, that is, constants. We are given the value for
each variable. In general we consider the expressions as elements of some
II-word algebra and the values as the elements of an arbitrary a-algebra.

Table 1. Example of various methods of evaluating an expression.

(a) Set of operators = +, x, 0, 1, 2, 3, etc.
Set of variables X= u, v, etc.
Values of variables: value u=5, value v = 4, etc.

(b) Expression= u+ (6 x v)
Value =5+(6 x 4) =29

(c) Stack machine (d) Store-pointer machine
Program Stack sequence Program Store-pointer sequence

empty ({(I,*),(2,*),(3,*), • • 4,0)

5 g(1,5),(2,*),(3,*), ...),l)
6 6

5 . 6 ({(1,5),(2,6),(3,*),. .},2)

5.6.4 ({(l,5),(2,6),(3,4),...},3)

5.24 Q(l,5),(2,24),(3,4), . . .},2)

29 W1,29),(2,24),(3,4), 4,1)
result = 29 result = 29
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(e) Address-program machine

Program Store sequence

.}
(u,0)

.}
(6,1)

(v,2)
{(1,5),(2,6),(3,4),. .}

( x ,3)
{(1,5),(2,24),(3,4),...}

( +,2)
{(1,29),(2,24),(3,4), .}

result = 29

(f) Conventional machine

Program Store-accumulator sequence

({(1,*),(2,*),(3,*),
cla u

({(1,*) ,(2,*) ,(3,*) ,
sto 1

({(1,5),(2,*),(3,*), 4,5)
cla 6

({(1,5),(2,*),(3,*), • • • },6)
sto 2

({(1,5),(2,6),(3,*),. .},6)
etc.

Table 1 (contd.) Note: * means an arbitrary value

The simplest method (Table lb) is to use the evaluation rule directly, that
is, to use an 'interpreter'. The evaluation rule is specified as a homomorphism
between the expressions and the values.
The next method (Table lc) is to compile a 'reversed Polish' program for

a machine with a 'stack' (sometimes called a nest or pushdown). The stack is
a finite sequence of values, considered as an element of the free semigroup
over the values. Execution of an instruction in this program transforms the
stack, affecting the right-hand end of it by either loading the value of a
variable or performing a k-argument operation on the last k elements and
replacing them by the single element which results; if k =0 the effect is to
load the value of a constant.
The third method (Table 1d) is to compile the same 'reversed Polish'

program, but to execute it on a machine with a 'virtual' stack represented by
some area of addressable store (we choose locations 1 onwards) and a
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pointer, that is, a register containing at any time the serial number of the last
location used for the stack. In Table id this is shown as a pair consisting of a
store and a pointer; the store itself is a set of pairs each consisting of an
address (a positive integer) and its contents (a value). The store is thought
of as a function from addresses (positive integers) to values. It is used only to
represent the stack.
The fourth method (Table le) is to compile an 'address-program' for a

machine whose instructions consist of a variable or an operation together
with an address showing where in the store the value of the variable is to be
loaded or the operation performed. The address is the value, now computed
at compile-time, of an imaginary pointer. Thus '(v,2)' causes the value of v to
be loaded into the store at address 2+1. The essential difference is that com-
putation of the value of the pointer is now done at compile-time, saving work
at execute-time. This is an example of the general technique used in efficient
compilers of computing as much as possible at compile-time, for example
determining the types of expressions at compile-time rather than testing them
at execute-time.
The fifth method (Table if) is to compile for a 'conventional' machine

with an accumulator and instructions such as 'cla u' to load the value of u
into the accumulator, ̀ sto 3' to store the contents of the accumulator in
address 3, 'add 2' to add the contents of address 2 to the accumulator. This
machine only differs in a rather trivial way from the previous one. The
instructions of the address-program machine may be thought of as 'macros'
which have to be expanded to obtain the program for the conventional
machine.
Our final aim is to develop a compiler for evaluating expressions on this

conventional machine. This compiler uses the compilers for the intermediate
machines as components and the proof of its correctness depends on the
proofs of correctness for the intermediate compilers.
To effect the transition from interpretation of expressions to execution of a

reversed Polish program on a stack machine we shall need some elementary
algebraic results about embedding 0-algebras in semi-groups. To use a
store-pointer machine to simulate the stack machine we need a simple
induction lemma about homomorphisms of semigroups which we can
conveniently state in the language of automata theory. To go over to the
address-program machine we need a further result about semigroups, again
expressed in automata terms. In each case we develop the abstract theory
first and then apply the result to the compilation problem. This shows up the
generality of the treatment and leaves us free to apply the lemmas to more
than one problem in the area of programming.

Transition to a stack machine

Let us consider the transition from expressions and values (Table lb) to reversed
Polish program and stack transformations (Table lc) in an algebraic context.
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Expressions and their corresponding value algebra are fl-algebras with
some arbitrary set LI of operators. We wish to represent them using sequences
of instructions (for expressions) and sequences of state transformations (for
the value algebra). These are both semigroups and so there can be no homo-
morphism to them from the SI-algebras. The device used to obtain an CI-
algebra is to define some derived operations over the corresponding semi-
group, one operation for each co in D. We can then get a homomorphism
from the original SI-algebra to the fl-algebra constructed out of the semigroup.
What is more, the homomorphism from the expression algebra to the value
algebra can be mirrored by a homomorphism between the corresponding
algebras constructed from semigroups. This homomorphism of the con-
structed algebras is itself a restriction of a homomorphism of the underlying
semigroups.

SI-algebra  
of expressions

0-algebra
.P of programs

r.

0-algebra __________ -algebra of
of values —÷ state transformations

S.

restriction

semigroup
of programs

restriction

semigroup of
state transformations

Embedding an SI-algebra in a semigroup

In this section we develop the algebraic results needed for the transition to a
stack machine. Suppose that S is a semigroup, Y a subset of its carrier, fl a
set of operators and that there is a function f :11—* Carrier of S. Then we can
define a derived algebra of S which is an 0-algebra, say En (S, Y,f), as follows.
Take Y as the set of generators of the fl-algebra and let its operations be
defined by derived operations of the semigroup, thus:

(s1, S2,. . sk) = s1. s2. . . . sk fco, where si e Sand k= arity co

Here fco is the semigroup element corresponding to co. In choosing f we
determine which 0-algebra we get.
Looking at it from another point of view we might ask whether given any

0-algebra we can find a means of constructing an algebra isomorphic to it from
a semigroup; that is, given an fl-algebra An can we find a semigroup S, a
subset Y of its carrier and a function f such that E0 (S, Y,f) has a sub-algebra
isomorphic to An, that is, there is a monomorphism

: An—)En(S, Y,f)
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We shall call this embedding An in the semigroup and show that it is always
possible (cf. Cohn 1965, Section tv.4).

Consider first the special case where An is the word algebra Wn (X).
Then we can use the semigroup sw=E( Xua), and put fwo.)= co, fwx = X.
From these we define En(Sw,X,fw) as above. Now put

Wil(X)-0En(Sw,X,fw)

(x) =x for x in X

Since W0(X) is a word algebra with generator set X the definition of
fv(x) serves to define as a homomorphism. Cohn shows that it is an

isomorphism, but we shall not need this fact here.
Consider now the general case where we are given any S2-algebra An. To

embed this in a semigroup we need a slightly more elaborate construction,
using a semigroup of state transformations.
Let A be the carrier of An. We choose as our semigroup for the embedding

SA, the semigroup of transformations of sequences of elements of A. We
include in the sequences the empty sequence 1 and a zero element 0. The
zero may be thought of as an 'error' indication signifying that an operation
co has been applied to too few arguments. Thus we put

SA=FR((EA)10)

that is, the mapping semigroup over the carrier of the free semigroup with
identity and zero.
To construct the a-algebra we choose as generators Y AgS A the set of

transformations pa

Pa: (EA)10 (EA)io

Pa t4 . a for each a in A and u in (EA)10

and define a function ft, giving a semigroup element for each co.

fAco =
where ccuu = if u = a1 . a2. . . . .a„_k . . . . .a„

then ai . a2. . • • •a„--k • co(aa-k+1, • • an)
otherwise 0.

The 1-algebra is En(SA,YA,fA).
We shall now show that there is a monomorphism

An—''En(SA,YAJA)

defined by

Aa= Pa

This is a homomorphism because

A(o.)(ai, . ak))= Poz(ai..•••ak)
co (Lai, • • •, Aak)-=°)(Pai, ' • •' Pak)

= Pa, Pak aw
P (o(a . ak)

and
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A is a monomorphism because to each p„ there corresponds a unique a,
namely P4 1, where 1 is the empty sequence. So there is an isomorphism

1A: im A-- A iM A being a subalgebra of Efi(Sv,Y f-

11APa= Pal

We shall need to make use of one further fact: a homomorphism of semi-
groups induces a homomorphism of the 0-algebras constructed from them
(by the homomorphism of restrictions lemma), that is, if SI and S2 are semi-
groups then a homomorphism of semigroups : S1-0S2 can be restricted to
a homomorphism of 0-algebras : E0(S1,1 bfi) -E0 (S2, Y2,f2), provided
that 0 maps Yi into 1'2.

Compiling expressions for a stack machine

We now use these techniques to prove the correctness of a compiler for evalu-
ating expressions using a stack machine (see Table 1c).
We regard the expressions as elements of a word algebra Wn(X) with a

set of operators 0 and a set of variables X. We call W0(X) the expression
algebra and assume that the value of an expression is given by a homomor-
phism

a : Wn( X) —0 Vn,

where Vn, which we shall call the 'value algebra', has as its carrier V, the
set of all values of expressions. For any variable x in X, a x is the value
of x.

Direct computation of the value of an expression using this homomorphism
may be thought of as interpreting the expression. We now show how to
compile it into a reversed Polish program, and then execute the instructions
in this program by carrying out appropriate transformations of the stack.
We first embed Wn(X), the expression algebra, in the free semigroup

STy.E(xun), as explained in the last section. The elements of this semi-
group are programs, that is, sequences of instructions of two kinds, namely
'x' to load the value of the variable x on the stack and 'co' to perform the
operation co on the top elements of the stack. The algebra En(Sw,X,fw) has
as elements a subset of these programs, the 'well-formed programs', but its
operations are not simple concatenation. They are the appropriate compiling
operations corresponding to concatenating a number of programs represent-
ing subexpressions and concatenating the appropriate operator, for example,
if '+' is in 0 then the corresponding derived operation of the semigroup is
`compileplue, where compileplus (ui,u2)=ui u2 • + •
Next we embed VD, the value algebra, in the semigroup Sv=FR((EV)10)

as explained above. EV is the set of all stacks, that is, sequences of values, 1
is the empty stack and 0 is the error state, that is, 'stack underflow'. Thus Sy
is the semigroup of stack transformations under functional composition.
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Yv and fv are formed in the same way as YA and fA in the previous section,
that is, Yv is the set of 'load value v on the stack' transformations (p,Iv e V}
and fvco= a., the ̀ do co to the top of the stack' transformation. The algebra
En(Sv, Yv,fv) has as elements a subset of these stack transformations, the
'well-formed' transformations, but its operations are not simple composi-
tion. They are the operations of composing transformations and then com-
posing the result with aca.
The situation so far may be pictured thus

Wn ( X) w  En(SW,X,JW) Sw=E(Xu0)

fwco=o)

Vi) En (SY, YV9fV) Sv = FR ((E V)1°)

YV {Py I v e V}

fv0)=

To complete the diagram we define a homomorphism of semigroups from
Sw to Si.., knowing that this will induce a homomorphism of the correspond-
ing 0-algebras.

: Sw-04

(Pc= p„x and OCO=Cfco
Since S. is the free semigroup on Xu0 this does define a homomorphism.
We now restrict 0 to a function n from the carrier of En(Sw,X,fw), a

subset of the carrier of SW, to the carrier of En (Sv,Yv,fv). We showed in the
last section that I/ is a homomorphism of the 0-algebras. This gives the
diagram

Wn( X) 

tx I interpret

Vn

compile

load

To show that this diagram commutes, that is, that W 0 n =a we need
only verify that this holds for the generators X. Both o n and a o take
X to pccx. Hence the diagram commutes.

This is the required correctness result except that the homomorphism
really goes in the wrong direction for our purpose. However, we showed in the
last section that is a monomorphism and hence there is an isomorphism,
say Cv: Vn. Now we may assume that a is an epimorphism (onto V0)

> En(Sw X' fw)

execute

> (Sv, Yv,fv)
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and hence im tv=im (a 0 gly n). In fact it is easy to show that
im tv= En(Sv, Yv,fv). We obtain the commutative diagram

G,
Wn ( X) > En(Sw,X,fw)

I 

compile

cc interpret execute 77

unload
Vii <  ing V g_ En(Sv,l'av)

Cv

This expresses the correctness of compilation, execution and unloading for the
stack machine.

Simulating one state machine by another

In order to describe the transition from a stack machine to a machine with a
store and a pointer, it will be convenient to introduce some terminology and
definitions from the algebraic theory of automata and prove a simple lemma.
This apparatus will continue to be useful later on when we consider the
transitions to an address-program machine and to a conventional machine.

First we define a state machine as a set of inputs each of which causes a
specified transformation of states. Given an input and the current state we
know the following state. The initial state of the machine is specified and we
are interested in the final state after supplying a sequence of inputs. Express-
ing this algebraically:
A state machine M is a set Q of states with a distinguished initial state

go, a set I of inputs and a homomorphism : EI-+FR(Q). Schematically:

We shall call 4) the execution homomorphism since it tells us the action of
each instruction and hence the action of each sequence of instructions.

Given a machine M we perform computations by giving it a sequence of
inputs t in E/ and looking at the resulting state q= Otqo. We may wish to
perform the same computations using some other machine M' to simulate M.
We use Q', q01, I' and 0' to denote the components of M'. M' can simulate M
if we have a function 0 to translate a sequence of inputs t for M into a sequence
t' for M'. We also need a function h to translate the resulting state q'=(fIt'q6
of M' into a resulting state q of M. This leads to the definition:
A machine M can be simulated by a machine M' if there is a homomor-
phism 0 :EI-+Er and a function h: gi-+Q, onto Q, where Q' is the
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subset of Q' consisting of O' (00q6 for all tin I, such that

(i) h q6=q0
(ii) q0. h(O' (00q6) for any tin EL

We now consider the conditions under which one state machine can be
simulated by another. First we note that if M' simulates the action of indi-
vidual inputs to M then it simulates the action of sequences of inputs.
Lemma. If h o 42i=0'(0i) oh for all i in I, then h o 4t=4'(00 oh for all t
in I, that is, the following diagram commutes:

0'(00

Proof. If t= i, the result is immediate.
Assume as induction hypothesis that h a q5t= (00 0 h.
Then h o 4(t. 0=12 0 Oto (Pi= 0' (00 oh a Oi= O' (00 0 41(00 oh

=0'(0(t i)) o h, as required.
Corollary. If h a 44=0' (00 o h, then M can be simulated by M'
Proof. By the lemma h o Ot =0' (00 oh, therefore- 0t(h q0)=h(0/ (0t)q6)
We make two remarks, which are easy to prove. Although we shall not

need these results they may serve to clarify the situation.
Remark. If M can be simulated by M' then h o 421= 01(00 o h
Remark. If S is the subsemigroup of FR(Q) whose carrier is im 0 and S'
is the subsemigroup of FR(Q') whose carrier is im (0 a 01) then if M can
be simulated by M' there is a homomorphism : S--+ S.

This last remark suggests an analogy between the homomorphisms G, and
used in embedding a-algebras in semigroups and the homomorphisms 0 and
cfr used in simulating one semigroup state machine by another.

Transition from the stack machine to the store-pointer machine

We now use the corollary established in the last section to move from the
stack machine (Table lc) to the store-pointer machine (Table Id). We must
define these machines as state machines and then show how the first can be
simulated by the second.
The stack machine. This machine has already been described when we showed
how to evaluate expressions by embedding them in semigroups. In state
machine terms it is as follows:
Input set: 1=fluX
. (Evpo, q0.1State set: Q (that is, all stacks and an error state, the

identity 1 being the empty stack)
Execution homomorphism: 0 defined by

=0)',
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where co'(vi . v2. .v„_k • . . v„) =
v1. v2. . . • •Vn—k • 0)(V n—k+1, • • Vn))

or 0 if n<k
where k=arity co

Ox(vi, . v.) =v1 . V2. . . . .V n ccx

The store-pointer machine. This machine has a store, that is, an infinite set of
locations numbered from 1 upwards, and a pointer, that is, the number of
one of these locations.

First we need to define stores as members of a set S=(N-F-+V), regarded
as a function from positive integers to values. Thus, ifs is in S, the contents
of location number n is s n. We define a function to perform assignment of the
value to a store location with a given number

assign: N+ x V—>(S-4S)

that is, an integer and a value specify a store transformation

assign(n,v)s =s' where s'n'=if n' =n then v else s n'.

For example, assign(2, 3.14) applied to a store whose function table is
{(1, 5.41), (2, 0.01), (3, 6.77), ...} is {(1, 5.41), (2, 3.14), (3, 6.77), ...}
The pointer initially has a zero value, thereafter positive values. We allow

an error value e, analogous to the zero element of the stack semigroup, in
case the program tries to take more things off the stack than are on it.
In state machine terms we describe the store-pointer machine by

Input set: /=Slu X
State set: Q= S x (Nu (e}) (that is, the set of all store and pointer pairs)

Execution homomorphism: 0 defined by

Oco(s,n)= (s',n')
where s' =assign(n +1—k, co(s(n +1—k), . . s n))s

or s if either n<k or n=e
and n' k or e if either n<k or n=e
where k= arity co

ckx(s,n)=(scn') where s' =assign(n,a x) and n' =n +1

Simulating the stack machine by the store-pointer machine

Lemma. The stack machine can be simulated by the store-pointer machine,
using as homomorphism 0 the identity function and as function h

h(s,n)=s 1. s 2. . . . .s n or ct• if n=e
Proof. For simulation it is sufficient to show that h 0 Oi=4,' (00 o h where h,
(/), ck' and 0 have the appropriate values for the two machines in question.

First if i= co EQ. put k= arity co. If n<k then both expressions have value
zero when applied to (s,n). Otherwise
(ho Oco)(s,n)=Oco(s 1. s 2. . . . .s n)

=s 1. s 2. . . . .s(n—k). co(s(n— k +1), . s n)
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(0' (Ow) o h)(s,n) = h(assign(n +1 — k, co(s (n + 1 — k), s n))s,
n+1—k)

=s I. s 2. . . . .s(n—k). co(s(n—k +1), . s n)
=(h . Oco)(s,n)

If i=xEX
(h o ckx)(s,n)= ckx(s 1. s 2. . . . .s n)

=s1.s2.....sn.ax
(0' (0x) o h)(s,n)=h(assign(n, ax), n+1)

=s 1. s 2. . .s n. ax
= (h o ckx)(s,n)

Cascade of two state machines

We shall now see how one machine can sometimes be replaced by a pair of
interconnected machines, and thus develop a lemma about state machines
which will enable us to effect the transition from a store-pointer machine to
an address-program machine. The replacement can take place if the state q
has two components qi and q2 such that qi affects q2 but q2 does not affect qi
(cf. the Krohn-Rhodes decomposition into a semidirect product, Arbib, 1968).

Consider machines M1 and M2 where 12=11 x Qi. We can connect them 'in
cascade' to define a machine M as follows:

Put 1=11, Q= Q2 X Qi and 4i(q2,q1).(02(1,q1)q2, 0iiqi). Schematically:

I= II

2=11X QI Q2

Qi

Conversely, consider a machine M whose state set Q can be expressed as a
direct product Q2 x Qi in such a way that there are a pair of functionsf2 and
.fi with 0i(q2,D) = (f2i(q2,qi), fliqi). That is, the new value of the second
component of the state depends only on the previous value of the second
component and not on the previous value of the first component. Then we can
always define homomorphisms 02 and 01 by

2 ( i41) q2=f2i (q2,qi ) and 01 =11
This enables the machine M to be represented as a cascade of two simpler
machines.
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Since 0 is a homomorphism and we are given 0i for each i we can evaluate
01(q2,q1). However, if 0 has the special property just mentioned we can
obtain another expression for t(q2,471) which enables us to separate the q2
computation and the qi computation into two distinct phases, a 'translation'
involving only qi followed by 'execution' involving only q2.

Lemma. Suppose that 0i(q2,q1)= (02(40 q2,0141) •
Put '2 =Ii X Qj and define a 'translation' homomorphism T

T EI-+FR((E12)1 X Q1)

Ti(h)q1)= (12 (4q1), Ciqi)
Then 0t(q2,q1) = (02/2q2, qI) where (t2,q1)= rt(1,q2),

that is, we translate t into 12 using qi and 01, then execute 12 on initial state q2
using (fr2.
Proof. First, if t=i, then

ti(141) = ((i,q1), 0140

The right-hand side= (02(140,12, 01191)

=01(q2,q2) as required.

To complete the induction we put

(t2,q)= Tt(1,qi) and (ttql*). ..r(t i)(1,q1)

From the definition of T we get

tt=t2 (i,q1) and qi*=0liqj

Now we assume that 01(q2,q1)= (021292, qi), then

( t • i)(q2,q1) = (q2, qi))
= 04021'2.72, qi)
= (02(i,q1)(952t2q2), 0iiqj )
= (42(t2. (1141))q2, (MC)
= (024q2, q1*), as required.

Replacing the store-pointer machine by a cascade involving the address-
program machine

We now show how the store-pointer machine (Table Id) can be replaced by
an address-program machine (Table le). This transition involves computing
the current value of the pointer at compile-time and including it as the address
of the next address instruction. We express this in state machine terms.
• The execution homomorphism for the store-pointer machine has the form

cki(s,n)= (f2i(s,n), n)

where ficon=n +1—k, ore if n<k or n=e, where k=arity co
x n=n+1 ore if n=e

and f2co(s,n). assign(n +1— k, co(s(n +1— k), . s n))s or s if either
n<k or n=e.

f2x(s,n) =assign(n +1, cc x) or s if n=e.
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This is the appropriate form for a cascade decomposition into M1 and M2
where

MI has h =SI X
Qi=Nu {e}, qoi=0
(1)

M2 has /2=(S/uX)x (Nu(e))
Q2=5, q0 2=S0 where so is an arbitrary store

02(i,n)s=f2i(s,n)

Then we may define

Ti(t2,n)= (t2 (i,n), in)

We know from the lemma proved about cascades that Ot(s,n)= (02t2s,n'),
where (t2,121)=Tt(1,n), and 1 is the null address program.
Note that is a homomorphism which translates from a reversed Polish

program t to an address program t2. It carries along as an extra result n', the
value of the pointer which would result from running that program. Applying

02t2 I0 s corresponds to executing the address program starting with store s.

Using a conventional machine instead of the address-program machine

We defined a conventional machine (Table if) whose state comprises an
accumulator as well as a store and a pointer, and whose instruction code has
instructions like 'load contents"of n into accumulator', 'add contents of n to
accumulator', 'store accumulator in n'. The address-program machine is
easily seen to be simulated by the conventional machine, using the expansion
of one 'macro' instruction into several accumulator instructions as input
homomorphism, and using the function which simply ignores the accumu-
lator to examine the resulting states. This follows immediately from the
corollary about simulation.

7. CONCLUSION

We have shown how instead of evaluating an expression by direct interpreta-
tion we can compile it, through various intermediate stages, into a program
for a 'conventional' machine. We specify the method of execution for this
machine and show how to use the resulting state to obtain the value of the
expression, again through several intermediate stages (a rather trivial process).
Each stage involves 'representing' an algebra in some other algebra. The
correctness of our procedure follows from the correctness of each stage. For
reference we have collected the various stages and written out the whole
compiler in the Appendix.
The proof involves some general lemmas about algebra and algebraic

machine theory. These are proved by appeal to standard lemmas of algebra
or by easy induction. We then apply them to the compilation situation with
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no more ado than some substitutions to verify that the computing machines
and the transitions between them satisfy the conditions specified in the lemmas.

This exercise is offered as an example of what we hope will be a wider range
of applications of algebraic techniques to programming problems.
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APPENDIX: SUMMARY OF THE COMPILER

It may be helpful to collect the whole compiler on to a single page. The
instruction sets are

h=nu X (reversed Polish instructions)
/2= (flu X) x (Nu {e}) (address-instructions, 'macros')
/3= (STuX) x (Nu{ e}) (conventional accumulator instructions)

The algebras needed are

A1= Wn(X), A2=E(SwAfw), A3=E/1, /14=FR((E/2)1 x N),
A5=E12, A6=V3

where f,,, co= 0), fw x=x.

Define a translation function from expressions to transformations of address-
programs and pointers.

trans=[Extend (A1, A2)fw] o h 0 [Extend (A3, A4)..r]

where h is the identity function from the carrier of A2 into that of A3.

and Ti (t2, n)= . (i,n), in)
where fi Co n=n+1 —k, or e if n <k or n =e, where k=arity co
and fi x n=n+1 or e if n=e

Obtain an address program t2 by applying this to the given expression w

(t2,n1) = trans w (1,0)

Translate this to a conventional accumulator program t3:

t3= Extend (As, A6) g t2
where g(i,n) is the expansion of the macro (i,n) to a sequence of conventional
instructions.

Execute the program 13 on an arbitrary store so, using çb the execution
homomorphism of the conventional machine to get a final store s'.
s' = Ot3 so
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Extract the result (making the obvious simplification of the chain of
trivial functions which extracts the value v)

v =s'n'
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Towards the Unique Decomposition of
Graphs

C. R. Snow and
H. I..Scoins
Computing Laboratory
University of Newcastle-upon-Tyne

INTRODUCTION

This paper describes part of a research project which attempts to define an
indexing system for linear graphs. Such an indexing system ideally would
eliminate the necessity of examining large numbers of permutations of the
labels of a graph to find a canonical form for any given graph. In practice it
may be permissible to look at a small subset of the set of all permutations,
provided this subset is not too large. What is meant by 'too large' is not
defined, but presumably this is dependent on the comparative effort involved
in reducing the number of permutations and in looking at all permutations.
An indexing system for graphs implies that an ordering can be imposed

upon graphs so that if the index of any particular graph G 'is less than' or
'comes before' that of another graph G', then the statement G<G' is meaning-
ful.
The graphs under consideration may be defined in terms of a vertex set V,

together with a set F of pairs (a,b) where a, b e V. The possibility of a pair
(a,a) (which represents a simple loop) is excluded, and only one pair can
consist of the elements a and b in either order, so that only one undirected line
may join a pair of nodes.
An attempt is being made to split any graph uniquely into two subgraphs in

such a way that if G can be split into g1 and g2, and G' can be split into gi and
g then an ordering may be defined recursively by saying that G< G' if gi<gi
or (g1= gi and g2<gD. We also require that g1 <G and g2 < G.
This definition is not complete without a starting point for the recursion.

This can simply be the relation Go G for all graphs G where Go is the trivial
graph with one node and no lines.

Consideration has been given primarily to connected graphs, since in a
general graph the connected components may be considered as separate
entities.
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Scoins (1968) has described a system of indexing trees of various types, and
because we have gained some facility in the manipulation of trees, we have
decided that g1 is to be a tree, and in particular a spanning tree of G. A
spanning tree of a graph is any partial graph of G which is a tree, and for
which the vertex set is the same as the vertex set for G.

INDEXING TREES

The ordering of trees described by Scoins (1968) depends on the height
representation of the tree. Ordered rooted trees may be described in terms
of a sequence of small integers, provided the order in which the nodes are
numbered is canonical in the following sense:
Number the root first and then proceed up the tree taking the leftmost

branch whenever possible, labelling each node passed. Having reached the
top of a branch, move across to the positive neighbour of the topmost node,
number that node, and again continue up the tree and to the left. If at any
stage a node has neither an 'above left node' (not already labelled) nor a
positive neighbour, then move to the 'below' of that node and try again to
move to the positive neighbour. When the root is reached again, the process
terminates, as all of the tree has then been covered. The tree being thus
labelled, it may be represented by a vector h= (hi, h2, . . h.), where the value
of hi is equal to the distance of the node i from the root of the tree.

5 8

• 3 • 4 • 7. • 9.

\l/

\*/ \•7

Figure 1

Figure 1 illustrates this method of labelling uniquely an ordered rooted
tree, the example having nine nodes and height vector

h=(0 1 2 2 3 1 2 2 2).
The action of drawing the tree on paper imposes an ordering on the tree

(even if it had none before), and for the sequence to represent an unordered
rooted tree, certain restrictions must be placed on the sequence. A canonical

form for rooted trees is defined as follows. If a tree T consists of a number of
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subtrees T1, 2'2, . . Tk all planted at the root of T as shown in figure 2, then
7' is in canonical form if Ti T2 >, Tk.T1, . . 11 are themselves
assumed to be in canonical form. In the vector h, any substring of integers
starting with a '1' and going up to but not including the next '1' represents one

Figure 2.T

Figure 3

of these planted subtrees. Thus the comparison of subsequences is very straight-
forward. Now, given two trees T and T' represented by h= (h1,. . h) and

14), the ordering T<T' can be defined by

T<Tc:.>111<h' for some 4

and hf=h; j= 1, . i —1.

In previous work, a free tree has been made into a rooted tree by forcing a
root on to the tree at its centre, if the tree has a centre, or at one end of the bi-
centre. This operation is effected unambiguously by positing that if a tree T
which has a bi-centre may be drawn as shown in figure 3, then T1 ‹. T2, where
Ti and T2 are rooted trees in canonical form. Using these rules, any free tree
may be transformed uniquely into an ordered rooted tree.

THE CO-TREE

In decomposition of a graph G, the two 'parts' into which the graph is sub-
divided are both partial graphs over the vertex set of G. The sets of lines of the
two parts are disjoint and their union is the set of lines of G.
The decomposition process must terminate since an index will be given to a

graph by virtue of the spanning tree and the index of the co-tree. This co-tree
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will in general be a disconnected graph, and some of its components may be
isolated points. The co-tree will also have fewer lines than the original graph.

11'

9 8

10.
fr3

.

6 

16\

.4

\ 9 8

71
3

6V3
11\/\/ 

9 
..- 11 

/ 

(b)

Figure 4

In the comparison of disconnected graphs, we adopt the convention that the
'largest' component is to be inspected first; since the graph Go is the earliest
graph, all those components of a graph which are isolated points are con-
sidered after all other components. In other words, given two disconnected
graphs G and G' whose connected components are C1, Ck and Ci,...,
respectively, we have

G<G'Ci<C7 for some i< min (k,k')
and C./ = CI for j= 1, . i— 1,
or Cf. C3 for j= 1, . ., min (k,ki)
and k<le.
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There is, however, a difficulty as regards the largest component of a graph;
'largest' should refer to the index of the component, but to find the largest
index all components must be decomposed to find their indices, so that ex-
tremely complex recursions may be required. Assuming that this difficulty can
be overcome, we may confine our attention to connected graphs.

Figure 4 gives an example of the splitting process. It shows two methods of
decomposing the same graph using two different spanning trees. In case (a)
the co-tree consists of three components, one of which is a tree, one a graph,
and one an isolated point; and in case (b) the co-tree has two components,
one a tree, and one the graph Go.

CENTRE OF GRAPH

A major problem in carrying out a decomposition process is the question of
uniqueness. Some method of determining a single unique point in a graph
would be a start to any method for finding a unique spanning tree. From it we
might hope to grow a unique tree. Since spanning trees of a general graph are
essentially free, a root must be forced on to such a tree, as has been men-
tioned already. We would like to put the root at the centre (or one end of the
bi-centre) of the spanning tree.
The ideal definition of the centre of a graph might therefore be: the centre

of a graph is the centre of an 'optimal' spanning tree, that is, a unique
spanning tree is defined in some way and has its centre or root at the centre
of the graph.
The tree which is to span the graph will have a centre at the mid-point of

one of the max-min paths of the graph. A max-min path is the maximum of
the shortest paths between any two nodes of the graph. However, there are in
general a number of max-min paths, and the set of mid-points contains more
than one point. Also, difficulties may arise when the length of the max-min
path is odd.
A rather better definition of the centre of a graph G is given by Sabidussi

(1966):
If d(x,y) is the shortest distance between the points x and y in a graph, and

V is the vertex set of G, then define s(x)=max(c1(x,y)). Now define the
ye

centres of the graph to be all those nodes c for which

s(c)<s(x) x e V.

The set { c} is included in the set of mid-points of max-min paths, but in
general has less elements, as the reader can see by examining the example of
figure 4. The problem of finding a unique point is still not solved.
One method of deciding which member of the set ={c}Cf is to be the

unique point is to look at the number of its first neighbours, second neigh-
bours, etc. For each c ET', define the p-vector (p =s(c)) vc=(vi, v2, • • vp)

where vi is the number of points x for which d(x,c)=i. Clearly vi = n —1,
i-t
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where n is the number of points in the graph. Then a point Kis centre of the
graph if vie< vc for all c e (by v <v) we mean vi< vi for some i<p and
v./ = v; for j= 1,. . 1 ). Even this does not necessarily yield a unique point.
The graph in figure 4 has a unique centre, if one considers only the values of

s(x). s(6)=2, s(i) >3 for all i&6. The graph in figure 5 has two centres, even
though the number of candidates for centre has been reduced by considering
the vectors v. s(x)=2 for x=2,3,4; s(x)3 for x=1, 5,6,. . ., 10. v2=(5,4),
v3=(4,5) and v4=(5,4). Thus we are unable by this method to differentiate
between node 2 and node 4.

Figure 5

The method just described is similar to the first step in an algorithm due to
Read (1966) for the partial classification of the nodes of a graph. This
algorithm begins by placing the nodes in equivalence classes according to
some rule, such as the degree of each node (the degree of a node is the number
of lines that are incident to that node), and then an iteration cycle is carried
out, refining the classification of each node, so that the number of equivalence
classes is increased and the number of nodes in each class is decreased. The
algorithm is terminated when either the number of equivalence classes is the
same as the number of nodes in the graph, that is, each class consists of just
one node, or when one cycle of the iteration fails to produce any new classes.
The actual refinement is carried out by inspecting the class of each node

together with the classes of all its first neighbours. Thus after k iterations, the
class of each node depends on the class of all nodes of the graph within a
distance of k of that node. Since at each stage the refinement depends on the
class of each node, the number of classes cannot decrease, and so one of the
stopping criteria must be reached. We then expect the algorithm to finish after
at most n iterations, where n is the length of the max-min path, but in practice
only about half this number of iterations is required.
A version of this algorithm has been programmed for the KDF 9 computer

in ALGOL and appears to work satisfactorily.
The initial classification of the nodes is at our disposal, and if the nodes are

classified according to their values s(x) a more satisfactory method of finding
the centre of a graph seems likely to develop, but no definite conclusions have
yet been reached.

50



SNOW AND SCOINS

This method may or may not produce a unique point, which we may call
the centre of the graph, but since all our previous methods for looking for a
centre depended in some way on a distance property, as also does the indexing
of trees, it would seem disadvantageous to begin to think in terms of an
algorithm which uses the degree of each node.
The best way of deciding on the centre of a graph is perhaps to use a mix-

ture of these two methods, that is to form the initial set of centres by the values
of the s(x), reduce the size of this set by using the vector v, and finally, using
Read's algorithm, to decide which member of the reduced set is to be the
centre of the graph. If after all these steps there is still a choice, then spanning
trees must be grown from each of the candidate points.
Thus, returning to the example in figure 5, the algorithm of Read gives

after 2 refinements:

node 1 2 3 4 5 6 7 8 9 10
class 4 9 7 8 6 5 3 3 1 2

The fact that nodes 7 and 8 are still in the same equivalence class is a reflection
of the obvious symmetry of the situation.
The distances s(2) and s(4) were the same, and the vectors v2 and v4 also

were both (5,4), but the algorithm has given them different classifications,
and so we are now able to distinguish between them.

THE SPANNING TREE

In the construction of the spanning tree itself, grown from the centre of the
graph, the object has been to construct the 'smallest' spanning tree possible.
By 'smallest' tree is meant the earliest tree in the sequence generated by the
height representation as described in an earlier section.
There are clearly a number of trees which could have been chosen as

optimal, but this use of the height representation seems to be the most
convenient method.
There is at least one method of counting the spanning trees of a graph

which can be developed into an algorithm for generating all these trees
(Percival 1950), so one could simply generate them all, give them all roots,
and then pick out the earliest; but this would involve inspecting an imprac-
ticably large number of trees. The method of choosing the centre of the
graph was designed with the idea of finding the optimal tree by a 'growing'
technique.
Obruca (1964) published an algorithm for finding a minimal spanning

tree. This algorithm, however, was concerned with spanning a weighted
graph, in which each line had a cost or weight associated with it. If some
method can be found for using the structure of the graph to impose a 'cost' on
each line, the Obruca algorithm automatically finds the spanning tree we
need. Later, Obruca (1966) gave a proof that this tree is unique provided the
costs on the graph are distinct.
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Obruca (1966) also attempted to find the most efficient method of storing
a graph, both in terms of actual computer storage used, and in terms of the
work involved in representing a graph in the most convenient form for any
particular operation which might be performed on that graph. In the present
work, no such attempt has been made; the graph has normally been repre-
sented in terms of an n x n binary matrix H=(hu), called the adjacency
matrix (where the graph has n points), such that hij= 1 if node i is adjacent to
node j and 0 otherwise. From this, by use of a rather primitive shortest
distance algorithm, a matrix SD (with typical element du) can be constructed,
where (4,= length of the shortest path from node i to node]. Since the graphs
are all undirected and have no loops, both the matrices Hand SD are sym-
metric with zero diagonal elements.
The ith row ( or column) of the matrix SD is a vector 1.1 which holds the

distance of each node from the node i (we may notice here that s (0= largest
element of ri). In particular we have a vector I., for the centre, c, of the graph.
Since the height representation of a tree gives the distance of each node from
the root, it merely remains to re-order the elements of the vector rc to gen-
erate the height representation for some spanning tree.
As an example, consider the graph in figure 4. With the labelling on the

graph we have

SD= 'O 1 1 2 3 2
1 0 2 1 2 2
1 2 0 1 2 1
2 1 1 0 1 1
3 2 2 1 0 1
2 2 1 1 1 0
2 3 1 2 2 1
1 2 1 2 3 2
2 3 2 3 3 2
3 4 2 3 2 2
4 3 3 2 1 2

2 1 2 3 4
3 2 3 4 3
1 1 2 2 3
2 2 3 3 2
2 3 3 2 1
1 2 2 2 2
0 1 1 1 2
1 0 1 2 3
1 1 0 1 2
1 2 1 0 1
2 3 2 1 0

Now if we take the node 6 to be the centre, the rc vector is

2 2 1 1 1 0 1 2 2 2 2

This may be arranged in a number of different orders to form height sequences
for spanning trees, e.g.

0 1

with permutation

11 2
k 63

corresponds to the tree T1 in figure 6.

2 2 1 2 2 1 2 1 2

3 4 5 6 7 8 9 10 11 \
1 8 7 910 4 2 511
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0 1 2 2 2 1 2 1 2 1 2

with permutation

(1 2 3 4 5 6 7 8 9 10 11\
\ 6 78 9103 1 42 5 11)

corresponding to the tree T2 in figure 7.

Figure 6.7'2

Figure 7.7.2

Of these two examples of spanning trees, T1 is nearer to the optimum tree
since Ti < T2.

Since the lexicographical ordering of height sequences generates the tree of
height 1 first, then the trees of height 2 and so on, one would expect that
keeping the numbers in the height sequence as small as possible would help to
produce the least spanning tree. Thus one attempts to construct a spanning
tree in which the distance from any node to the root is as small as possible,
that is, it is the same as the shortest distance between these two nodes in the
graph itself. Thus, for each node i,

h(I)=d(i, root).
Spanning trees with this property are called mushrooming trees by Obruca
(1966).
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METHODS OF OBTAINING THE LEAST SPANNING TREE

Two methods of finding the optimal spanning tree are currently being investi-
gated. The first method takes any spanning tree, but preferably a mushroom-
ing tree, and operates on it, trying to improve the tree, that is, iteratively
looking for a tree with an earlier height sequence. The second method attempts
to find the best tree directly.
A partial specification of an optimal spanning tree is given by the I., vector

obtained from the SD matrix; however, the problem is to convert this into the
correct form of the optimal spanning tree. One can construct the least vector
at one's disposal by re-ordering the r vector, and thus form a 'target' at which
to aim when forming the optimum height sequence.
The vector

2 2 1 1 1 0 1 2 2 2 2
has 1 zero, 4 ones and 6 twos, and thus no sequence can be obtained in
canonical form which is better than

0 1 2 2 1 2 2 1 2 1 2.

It is, however, an entirely different matter to form an actual spanning tree
which fits this vector. As it turns out, one such tree has been found (see
figure 6), but this is by no means always feasible.
The improvement algorithm takes any spanning tree as a starting value. It

then tries to make a better spanning tree by considering each line in the co-
tree as a candidate for insertion into the tree. Suppose the starting tree were the
tree shown in figure 7. Then attempting to place the line (3,8) in the tree would
yield an improved tree (figure 6). When a line is placed in the spanning tree,
another line has to be removed to retain the tree structure. In the example
given, the line removed is the line (1,8), and a number of short-cuts have been
devised to prove that this line is the only line which may be removed to
maintain the mushrooming property of the spanning tree.
One can show without difficulty that this method will converge, but we are

unable to say definitely that the method converges to the optimal tree. In
fact, one of the greatest problems in this work is the inability to recognize the
optimum when one finds it. The other major difficulty is that of generating
all the optimum trees. It is likely that there is more than one optimum tree,
in which case one must look at the co-trees to decide between decompositions
which give the same tree.
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Advances and Problems in Mechanical
Proof Procedures

D. Prawitz
Unive'rsity of Stockholm

Abstract

In this paper, I first give a simplified description of the method proposed in
my earlier paper 'An improved proof procedure'. This method is then further
developed in order to diminish the work of finding a substitution that makes
a given formula inconsistent. Finally, the possibility of developing the method
in another direction is discussed.
By a proof procedure (or proof method) I understand in this connection an

algorithm a with the property: for any valid formula F in the predicate
calculus, SI (F) (i.e., the result of applying a to F) is a proof of F. Equi-
valently, one may consider algorithms a with the property: if F is not
satisfiable, then d(F) is a refutation of F. Following a tradition, I shall use
this latter formulation. (It is of course immaterial which formulation one
chooses, and when it comes to programming the procedure, all differences
disappear completely.)

1. THE PRIMITIVE METHOD

Introduction

To have a convenient reference for the following discussion, I start by
giving a description of the original method developed by Skolem (1928) and
the main theorem on which this method is based. The necessary logical
apparatus can be kept remarkably simple.
We use a formulation of predicate logic containing individual constants

and function symbols. To simplify the description of the method, it is con-
venient to restrict the formulae F to which the method is applicable. Firstly,
it is supposed that F is closed and in prenex normal form. Secondly, it is
supposed that all existential quantifiers are eliminated. To see how this can

The main part of this paper was also presented in lectures at the University of
Stockholm and the Technische Hochschule of Hanover in the spring of 1967.
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be done, consider the formula Vx3yF(x,y). If this formula is true in some
model, we may for each value of x choose a particular value of y so that
these values satisfy the formula F(x,y); in other words, there exists a so-
called Skolem-function that satisfies the formula VxF( x,f(x )) in the given
model. It follows that if V x3yF(x,y) is satisfiable, then so is V xF(x,f(x));
the converse of this is, of course, also true.
Given a closed formula F in prenex normal form, I shall say that F* is

a Skolem-transformation of F (and that F* is Skolem-transformed), if F*
is obtained from F by eliminating every existential quantifier, and by replacing
the corresponding variable in the formula by a term fn(xl,x2,. . ., xn), where
xi,x2, • • *9 xi: are exactly the variables that are quantified by the universal
quantifiers which precede the eliminated existential quantifier in question;
for different existential quantifiers, different function symbols not occurring
in F are to be chosen. A function symbol with zero arguments is the same as
an individual constant and will sometimes be denoted by the letter a (ao is to
denote a particular individual constant). By the same reasoning as in the
example above, it is seen that F is satisfiable if and only if the Skolem-
transform F* is also satisfiable.

Further example. Given a formula 3xVy3zVv3wF(x,y,z,v,w), where
F(x,y,z,v,w) is a formula without quantifiers, we replace it by a Skolem-
transform VyVvF(a,y,f(y),v,g(y,v)).

Let F be a Skolem-transformed formula. We define the so-called Herbrand-
universe for F, denoted Hp, as the set of individual terms that can be built
up using the individual constants and function symbols of F; in case there is
no individual constant in F, we may use the constant ao. In other words,
Fp is recursively defined by:

1. All individual constants in F belong to HF; if there is no such constant,
ao belongs to Hp.

2. If t1,t2,. tn belong to Hp and fn occurs in F, thenfn(t1,t2,
belongs to Hp. 

tn)

Main theorem

A formula F of the form V xiV x2 ...V x„M(x1,x2, za) where M(xi,
X2,.. xn) contains no quantifier, is satisfiable if and only if every finite subset
of the set

{M(t1,t2, tn): ti e HF, for every i<n} (1)

is satisfiable.
Proof. Since VxiVx2 • • • VxnAl(xix2, • • xn) logically implies M(ti,t2, • •
tn) one half of the theorem is trivial. The proof of the other half is con-
veniently divided into two parts, proving

1. If (1) is satisfiable then so is F.

2. If K is a set of quantifier-free formulae and every finite subset of K
is satisfiable, then so is K.
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The proof of 1 is easy: given a model of the set (1) we eliminate every
individual from the domain of the model that is not a value of a term in H.
The substructure obtained in this way is a model of F.
The proof of 2 is slightly more complex and seems first to have been given

by Skolem (1929). In summary, the argument is: let K = .} be
an infinite set of quantifier-free formulae, and let I'„ be the set of the truth-
value assignments to the atomic formulae occurring in FI,F2, .., or F,„ that
satisfy the set {FI,F2, F.}. The following facts are easily seen to be true.
(i) r„ is not empty (by assumption in 2). (ii) f„ is finite. (iii) Each member of
r„, 1 is an extension of some member of I",,. (i)—(iii) imply that there exists
an infinite sequence T1,7'2, ... such that T„ c r„ and T„.1.1 is an extension of T„
(the argument is the same as in Konig's Unendlichkeitslemma: an infinite
tree where each branching is finite contains an infinite branch). The union
of all the assignments in this sequence is a truth-value assignment that
satisfies K.

The method

Since one can decide the question whether a finite set of quantifier-free lines
is satisfiable or, in other words, consistent, the theorem immediately gives
rise to a method of the kind sought: searching through the finite subsets of
(1) and testing for consistency, one will sooner or later find an inconsistent
set if F is not satisfiable; this inconsistent set can be taken as the refutation
of F.

Instead of considering all the subsets of (1), one may fix some order
. . . among the formulae in (1), henceforth called the instances of F,

and then restrict attention to the sets M" = {Mi,M2, • • ., M„,}. This is
sufficient, since if there is an inconsistent subset of (1), then this subset is
contained in some Mm, and, hence, /Um is also inconsistent. The algorithm
for showing that F is not satisfiable is then:

For successively larger m, form the set {Mi,M2, • • M„,) and test for
consistency, until an inconsistent set is found.

This method was first stated by Skolem (1928) and is the core of all known
methods that do not simply enumerate all proofs. (Many later methods
differ in no essential respect from Skolem's.) The first attempts to program
Skolem's method for computers were made independently by Gilmore (1959
and 1960), Prawitz, Prawitz, and Voghera (1959 and 1960), and Wang
(1960). These three programs are all rather similar, one difference being that
the formulae are not required to be in prenex normal form in the programs
proposed by Prawitz et al., and by Wang (cf. the remark in section 4 below).

Problematic features in Skolem's method

There are two main problems involved in Skolem's method. The first concerns
the question of deciding whether a quantifier-free formula is consistent. This
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may of course be done by considering all the 2" different assignme nt of truth-
values to the n atomic formulae in the formula. A less tedious method is to
develop the formula into disjunctive normal form and see whether every
clause contains a contradiction. This method is the one used in all the three
programs mentioned above. (Wang uses the technique of simplifying Gentzen-
sequents — developed especially by Kanger (1957) — which essentially only
accomplishes the task of transforming a formula to conjunctive normal form.
Prawitz, Prawitz, and Voghera use the technique of semantic tableaux
developed in Beth (1955), which accomplishes the same task but gives a more
economical, tree-formed presentation of the required normal form.) However,
this method is still very laborious. If one obtains k conjunctive clauses when
transforming M1 to disjunctive normal form (in the usual way by multi-
plication), one will obtain km clauses when similarly transforming M1 & M2 &
. . . &

The second problem and the main weakness of Skolem's method may be
illustrated in the following way. Suppose that F is inconsistent and let
WM2, . . . be some ordering of the instances of F. Then the least inconsistent
set of instances is probably much smaller than the least inconsistent set among
the sets {MI,M2, M„,}. The set { M5,M61,Mioo } may, for example, be
inconsistent, but the first inconsistent set among the sets { . • Mns
may well be {Mbilf2, • • Mioo }. While it would have been an easy task to
refute F if the instances had been generated in the order M5, M61, M100 a
machine might be exhausted by trying to decide that M1 & M2 & & M100
is inconsistent.
The problem thus concerns the order in which the instances of the formula

F are generated. One would like to have a method for generating these
instances in such an order that a minimal inconsistent set of instances is
found (i.e., there is to be no smaller inconsistent set of instances).
More efficient procedures for dealing with the first problem were developed

by Dunham, Fridsal, and Sward (1959) and by Davis and Putnam (1960).
A method for dealing with the second problem was proposed by Prawitz
(1960), by which a minimal inconsistent set of instances is always found
for every inconsistent formula.1

2.THE IMPROVED METHOD

Introduction

In this section, I give a somewhat simplified presentation of the method
proposed in Prawitz (1960). The main idea is that instead of generating the
instances of the given formula Vxidx2 • • • Vxn31(xi,x2, • • xn) in some
arbitrarily defined order, one should find by calculations the values which sub-
stituted for xi,x2, • xn give an inconsistent set of instances. (One may
compare the situation with that of solving ordinary equations like x+ 17 = 32;

I For a survey of the development in this area up to 1964, see Cooper (1966).
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one may, of course, solve the equation by enumerating the natural numbers,
but a more efficient procedure is to use the ordinary subtraction algorithm.)
The basic procedure is first to decide whether any substitution for xi,x2, . • .,
makes M(xl,x2, x2n) inconsistent. If this is not the case, one asks whether
any substitution for xi,x2, xi,, makes M(xl,x2, xn) & M(xn+i,xn+2,

Xn+n) inconsistent; and so on.
One thus requires some method for calculating whether there is any

substitution for the variables that makes the formula

M(xi,x2, . . xn) & M(Xn+1)Xn+2) • • •) xn+n) &
. . . & M(Xkn+1)Xkn+2, • • •) Xkn+n) (k = 0,1, . .) (2)

inconsistent (other than simply trying the different possibilities).1

Definitions

Instead of dealing with actual substitutions, I shall consider different sub-
stitution conditions, which will be built up from equations t = u, where t and
u are terms (not necessarily in the Herbrand-universe), by using conjunction
and disjunction. For instance, f(x) = f(g(y)) is an (atomic) substitution
condition. A substitution of terms from HF for the variables in t and u are
said to satisfy the atomic substitution condition t = u, if t and u are trans-
formed into two occurrences of the same term by the substitution. For
instance, the substitution of a for y and g(a) for x satisfies the condition
f(x) = f(g(y)), but there is no substitution that satisfies the condition
x = f(x) or f(x) = g(y). A substitution satisfies a conjunction (disjunction)
of substitution conditions, if every (some) condition in the conjunction
(disjunction) is satisfied by the substitution. Example: the condition f(x) =
f(g(y)) V y = f(x) is satisfied by the substitution considered above, but
the conditionf(x) = f(g(y)) &y = f(x) is not satisfied by any substitution;
to satisfy the first equation, we must satisfy x = g(y), and to satisfy both
this condition and y = f(x), we must satisfy x = g(f(x)), which is im-
possible.

It is obviously not difficult to set up an algorithm for deciding whether a
substitution condition is satisfiable or not.
A pair of atomic formulae P(t1,t2, tn) and —P(ui,u2, un) such

that the substitution condition

= & t2 = U2 &, • • •, & tn Un (3)

is satisfiable is said to be a possible contradiction. The condition (3) is said
to be the corresponding substitution condition to this possible contradiction.

1 In simple cases, the question whether (2) is inconsistent may be answered by developing
the formula into disjunctive normal form and then 'looking' at the formula. This is essen-
tially the procedure used by Kanger (1959 and 1963), which was developed independently
of my method.
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The method

A systematic method for deciding whether any substitution turns a formula of
the form (2) into a contradiction is now as follows:

1. Develop the formula (2) into disjunctive normal form.

2. For each clause i in the disjunction obtained by step 1, form the
condition txi V c2... V cxj„ called C, where abc(2, • • aj, are all the
substitution conditions that correspond to possible contradictions
among formulae occurring in the clause I.

' 3. Form the condition C1 & C2 & • • • & Cm, where CI,C2, ., Cm are
all the conditions obtained in step 2.

4. Decide whether the condition formed in step 3 is satisfiable.

A necessary and sufficient condition for a substitution to turn the formula (2)
into a contradiction is obviously that it satisfies the condition formed in step

3. The method for refuting a formula Vx1Vx2 VxnM(xi,x2, xn) is

thus to form (2) for successively larger k and go through the steps 1-4 above.
The procedure is continued until the question in step 4 is answered by 'yes',

which means that the given formula is not satisfiable. To get a set of in-

consistent instances of the given formula, one may then take any substitution

that satisfies the condition formed in step 3 and carry out this substitution on

the last formed formula (2).

3. FURTHER DEVELOPMENTS OF THE IMPROVED
METHOD

Introduction

The method described obviously finds a minimal inconsistent set of instances

if an inconsistent set of instances exists. As described above, the method uses

the technique of developing formulae of propositional logic into disjunctive
normal form. Since we now have to deal only with a minimum number of

instances of the given formula, this is not a drawback as serious as the one

noted in connection with the primitive method, but it is, of course, desirable

to develop the method further. One may try, therefore, to combine this

method with the methods for deciding whether a formula of propositional

logic is inconsistent that were developed by Dunham, Fridsal and Sward

and Davis and Putnam, but there is no obvious way of doing that. Attempts

to combine the two methods have been made, however, by Davis (1963),

and this work has been continued by Chinlund, Davis, Hinman, and McIlroy

(1967) and by Loveland (1968). Robinson (1965), whose work has been

continued by several authors, has used some of the ideas of the improved

method but has developed them in another direction. Davis's method

sacrifices some of the strength of the improved method in not finding a

minimal inconsistent set of instances (cf. footnote, p. 65). Robinson's method

cannot immediately be compared in this respect. It avoids the use of
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disjunctive normal form but uses instead another method that seems rather
inefficient (cf. footnote, p. 67).

Matrices

The form given to the method as described above was intended to facilitate
understanding. When carrying out the procedure in practice, it is, for example,
not necessary actually to develop the formula (2) into disjunctive normal
form, or to form the whole condition mentioned in step 3. To discuss some
questions of this kind I shall now reformulate the method.
Let M(xt,x2, x„) be written in conjunctive normal form, and let us

represent it by the following matrix

*A1,1 ,A1,2, • • •, Al,n,

A2,1,A2,2, • • A2,n2

Am.1,Am.2, • • •, Ammtn,

where we have left out the disjunction signs between the formulae on the same
line and the conjunction signs between the different lines. By a path in the
matrix, is meant a sequence At,i,,A2a2, • • ., Anb.b.; i.e., a path is obtained by
taking exactly one literal from each line. The disjunctive normal form of the
formula is thus obtained by forming a conjunction of all the literals of a path
and then taking the disjunction of all these conjunctions.
We now formulate a necessary and sufficient condition for the existence of

a substitution that turns the matrix (4) into a contradiction:
The matrix (4) is made inconsistent by some substitution for the variables iff

there exists a set S of atomic subsitution conditions with these properties:

1. Each path of the matrix (4) contains at least one possible contradiction
such that the atomic parts of the corresponding substitution condition
belong to S.

2. The substitution conditions in S are simultaneously satisfiable.

A set S of substitution conditions that satisfies 1 and 2 will be called a
refutation set for the matrix (4).

Various methods besides the one described in section 2 may be used to find
a set S that satisfies 1 and 2. For instance, one may go through the different
paths of the matrix in some order, picking out a possible contradiction for
each path and forming the corresponding substitution condition. In this way,
one successively builds up a set S of substitution conditions. One has to make
sure that each new substitution condition is satisfiable simultaneously with
the conditions already in S. If one comes to a path where no such substitution
condition can be formed, one has to go back to the last path which has some
possible contradiction that has not yet been tried.1 Erasing the substitution

(4)

1 The method developed by Davis et al. differs from the one discussed here in that one
does not try all different possible contradictions; some choices of possible contradictions
are never reconsidered, and instead one enlarges the matrix.
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conditions that were formed at that and later paths, one then starts anew
from that path. If one comes to a path where no substitution condition can be
combined with the already formed conditions and there remains no untried
possible contradictions in the preceding paths, the procedure ends with a
negative result. One has then to form a new matrix by making an alphabetic
change of variables and enlarge the old matrix by writing the new one below.
The whole procedure can then be repeated.1

Matrix reduction

The method outlined in the preceding paragraph has some advantages as
compared with that described in section 2. The outlined procedure will
usually decide whether there is a substitution that makes a given matrix
inconsistent in a shorter time. The method is also more economical with
respect to space. One need not store the development into disjunctive normal
form (the development into conjunctive normal form being a much more
straightforward matter); in fact, the information that has to be stored at any
one moment is not essentially more extensive than that contained in the
minimal refutation itself.
However, the method is still rather time-consuming. When there is a

substitution that makes a given matrix inconsistent, one must, with the pro-
cedure above, consider all the paths of the matrix in order to find the refuta-
tion set. The main problem, it would seem, is to find a faster procedure for
building up the refutation set. Such a procedure is also possible to construct;
in fact, it is not at all necessary to consider all the paths of the matrix when
building up the refutation set (a point already made in Prawitz, 1960,
p. 118).

It may be noted that a possible contradiction in a path of a matrix usually
belongs to several other paths in the matrix as well. Hence, when we pick out
a possible contradiction from one path and introduce the corresponding
substitution condition in the set S in order to arrange that this path be in
accordance with clause 1 in the definition of refutation set, we have then
guaranteed that a number of other paths to which the possible contradiction
belongs also conform to clause 1. Therefore, these other paths need not be
considered, and one would like to have a procedure that automatically
disregards paths that already conform to clause 1. A method of accomplishing
this is embodied in the following principle:

Principle of matrix reduction

Let M be a matrix of the form (4) above, let a be the substitution condition that
corresponds to a possible contradiction (Ai,J,Ak,p), where i k and none of

1 The account given above (and some of the improvements in the next paragraphs) are
on the whole identical with ideas included in a report written by the author in 1960 and
presented to Statens Tekniska Forskningsrld, which supported these researches at that
time.
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and Ak,p stand alone on their lines (i.e., n i,n k> 1) , and let S be a substitution
that satisfies cc. Then, S turns M into a contradiction if and only if it turns both
M' and M" into contradictions, where
M' is obtained from M by striking out Ak,p and all literals on the
line i except Ai,j, and
M" is obtainedfrom M by striking out Aid and all literals on the line k
except Ak,p.

The problem of finding a refutation set for the matrix M is thus reduced to
the problem of finding a set containing cc that is a refutation set of both M'
and M". In this way, we cut out not only the paths containing the possible
contradiction (A i,i,Ak,p) but also all paths in the matrix M* that are obtained
from M by striking out Aid and Ak,p. To see the validity of the principle,
we note that every path in M that does not contain both A,,1 and Ak,p is also
a path in one of the matrices M', M" and M*. But if every path in M' and M"
contains a contradiction, then so does every path in M*. Hence, it is sufficient
to consider the paths in M' and M". This is equivalent to showing the validity
of the equivalence

(A V B) &(—'A V C) & D m. (A & C & D)V (B & A &D).

Example. Having formed the substitution condition x = a, we may replace
the matrix M below by the two matrices M' and M" and try to find a refuta-
tion set for them that contains x = a:

M' M"
Qx,f (x), Px Qx,f (x), Px Qx,f(x), P(x)
Pa, Qa,f (a), Px Pa Qa,f (a), Px

Qx,y, Qa,f (a) Qx,y, Qa,f (a) —Px
Pz, Qx,f (a) —'Pz, Qx,f (a) -'Pz, Qx, f(x)

While M contains 36 paths, M' and M" contain together only 16 paths.
When applying the principle of matrix reduction to a matrix, we shall say

that the matrix is split into the two simple matrices. We also have the follow-
ing simpler case of reduction:

Addition to the principle of matrix reductions. Let M, cc, (A i,i,Ak,p), and S be
as in the principle above except that either A id or Ak,p but not both stands alone
on its line. Then, S turns M into a contradiction if and only if it turns M' or M",
respectively, into a contradiction.

Applications of this additional principle are called simple reductions.1
Example continued. If we always use a possible contradiction in the leftmost
path when applying the principle of matrix reduction, we see that three simple

1 This method has some similarities to Robinson's method. However, instead of the
principle of matrix reduction, Robinson uses a method that he calls the principle of
resolution, which seems less efficient. The principle of resolution is based on the fact that
(A V B) & (~A V C) implies B V C. By replacing the former formula with the latter
one, one looses much information. In contrast, matrix reduction reduces the formula to
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reductions of M' turn M" into a matrix containing a possible contradiction
between literals that both stand alone on their lines. Similarly, one splitting
of M" gives two inconsistent matrices.

Trees of matrices

The principle of matrix reduction may be used thus: given a matrix M, we
build up a set S of substitution conditions and a tree structure of matrices
in successive steps. The given matrix M is placed at the initial node of the
tree. A possible contradiction is located in its leftmost path and the corres-
ponding substitution condition is introduced into S. The principle of matrix
reduction is now applied to this possible contradiction. If the matrix is split
into two matrices M' and M", the tree branches at the node of M, and at the
immediately succeeding nodes we place M' and M"; if we have a simple
reduction, the matrix obtained is placed at the unique node that immediately
succeeds the node of M. We then apply the same procedure to the matrix
(matrices) obtained by the reduction. If we choose a possible contradiction
between two literals that are alone on their lines, the corresponding node is
to be an end-node. The procedure terminates with S as a refutation set for M
when each branch ends with an end-node.
Before introducing a substitution condition into S, we make sure that the

condition is satisfiable simultaneously with S. If at some point we come to a
matrix where no such substitution condition compatible with S corresponds

to a possible contradiction in the leftmost path, we have to go back to a
preceding matrix where an untried possible contradiction remains in the left-

most path, and start anew from this matrix (erasing the matrices at succeeding
nodes and the corresponding substitution conditions in S). If there is no
such preceding matrix, the matrix at the initial node has to be enlarged as
before and the whole process started anew.

4. CONCLUDING REMARKS

Individual variables

The more the variables in a matrix are distinct and the more the individual
constants and function symbols are similar, the easier it is to find a sub-
stitution that makes the matrix inconsistent. The operation of Skolem-

(A & B)V &C). The two methods have also many other differences, which are not

so easy to compare. The above procedure has also some features in common with a pro-
cedure proposed by Hans Karlgren.

Simple reductions and matrix splitting bear some resemblance to the rules 1 and 3
respectively, in Davis and Putnam (1960). These rules are applied to formulae that are

instances of the given formula. The present reduction principles may be said to be an
application of these rules to the situation where the formulae still contain free
variables, and, in a way, we have thus combined the ideas in Davis and Putnam (1960)

and Prawitz (1960); this combination however is quite different from the one in Davis
(1963).
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transformation was defined for formulae in prenex normal form but the
operation can obviously be extended to formulae in general; the details are
left to the reader. One can then often diminish the number of arguments of
the function symbols that replaced the existential quantifiers. Furthermore,
one can arrange for no variable to have occurrences in two different lines of
the matrix (4). (It is also possible, but less important, to replace two different
function symbols that have the same number of arguments by the same
symbol, if they occur in exactly one line of the matrix (4).) These possibilities
are useful especially when applying the procedure to axiomatic theories. They
amount essentially to the possibility of treating the axioms separately in the
steps preparatory to the main procedure. The number of instances of the
matrix that are needed to find an inconsistency can often be diminished
in this way.

Alphabetic change of individual variables can also be made when splitting
a matrix M into two matrices M' and M": such a change can be made for the
occurrences of a variable occurring in M" in lines not affected by the reduction
so that they become distinct from the variable occurrences in M'. (This idea
was already incorporated in Prawitz (1960) in the form of the so-called
interval index.) That this does not invalidate the procedure is seen by realizing
the equivalence between the formula

VxVyVzVv((Px V Qy)&(—Px V Rz)&Sv)

and the formula

VxVyVzVvVw((Px & Rz & Sv)V (Qy & —Px &Sw)).

Strong minimal procedures

Although the various algorithmic procedures that we have considered
in sections 2 and 3 never construct more instances of the initial matrix (4)
than are needed for finding an inconsistency, it is possible that some of the
matrices constructed are only partially needed. In other words, one may
find an inconsistent matrix by choosing different numbers of instances of
different lines, a situation which is common when proving theorems in
axiomatic theories, where different axioms are not usually invoked the same
number of times. Davis (1963) has considered the possibility of guessing the
proportion between the number of times different lines of the initial matrix
have to be used in order to find an inconsistent matrix.
However, one may also contemplate a procedure that finds an inconsistent

matrix which is minimal in the strong sense that no matrix with fewer lines
is inconsistent. Starting with a given matrix of the form (4), one may try
different possibilities of building up an inconsistent matrix by choosing lines
from the given matrix. First, one may consider all matrices containing only
two different lines. Only lines that contain literals which together form a
possible contradiction need to be considered. If one is to prove theorems
in an axiomatic theory and if one is not interested in trying to find an
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inconsistency among the axioms, one may also require that one line comes from
a theorem. By applying the principle of matrix reduction, one then investigates
whether any one of these matrices can be made inconsistent. If the result is
negative, all matrices obtained by different reductions are stored for later use.
Instead of forming substitution conditions, however, one may carry out a
corresponding substitution. One then considers all possibilities of enlarging
the stored matrices by adding a third line containing a literal which forms
a possible contradiction together with some literal from the matrix. One then
considers all possibilities of reducing these matrices, and so on.
A procedure of this kind requires the storage of much more information,

but may have other advantages. By successively enlarging the matrices
obtained by different previous applications of the principle of matrix re-
duction, one utilizes the information from previous attempts to find an
inconsistent matrix. Furthermore, two matrices that have been obtained by
splitting may now be continued in different ways, that is, by the addition of
different lines — and this is an obvious advantage.

It seems difficult to decide which one of these two procedures is the best —
the one considered in section 3, or the one now outlined — if this question
can be made at all precise. In any case, it seems worthwhile to work out the
outlined procedure in more detail and then try both methods.
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Theorem-provers Combining Model
Elimination and Resolution

D. W. Loveland
Carnegie-Mellon University

ABSTRACT

A new format for the Model Elimination procedure simpler in structure than
the original is presented here. In this form the Model Elimination procedure
exhibits a compatibility with the Resolution procedure. Two ways in which
this compatibility can be used to design improved theorem-provers are
considered, including a strategy designed for problems too complex to be
completely solved before memory is filled using either of the procedures
mentioned above.

§1. In section 2 we present a new format for the Model Elimination procedure
introduced in Loveland (1968). Proofs of the soundness and completeness of
the procedure in terms of the new format are given in Loveland (to be pub-
lished). The structure of the format presented here reveals a kinship between the
Model Elimination procedure and the Resolution procedure of J. A. Robinson
(see 1965, 1967). In section 3 two classes of strategies that mix resolution and
model elimination techniques are discussed. Primary attention is given to a
strategy which alternates the use of the Resolution and Model Elimination
procedures in an attempt to handle problems too complex to be solved by
either procedure in a single 'run'. This paper is not dependent upon knowledge
of Loveland (1968), to which we leave the general discussion of the possible
advantages of Model Elimination and the notion of 'partially contradictory'
set. An appendix to this paper does include some discussion of the operation
of the Model Elimination procedure as well as two examples using the format
presented here.
By a standard process a closed well-formed formula A of the first-order

predicate calculus may be transformed into a well-formed formula (wff) 0 in
Skolem functional form (for satisfiability) so that 0 is satisfiable if and only
if A is satisfiable. Q has only universal quantifiers, all of which precede the
matrix, which is assumed to be in conjunctive normal form. In general,
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functions and constant terms will appear in 2. Herbrand's Theorem states
that a wff of form I) is unsatisfiable if and only if a finite number of clause
instances of LI form a contradictory conjunction. By a clause instance we
mean a substitution instance over one of the conjuncts (clauses) of the matrix
where the terms of the substitution come from the Herbrand universe U.
Here U is formed from the variables of the logic and the constants of a
according to the standard inductive definition, function symbols of C2 only
being employed. If E is an expression, EU denotes the expression instance
under the substitution O. In particular, we let g, the x-instance of E, denote
the simultaneous replacement of all n variables of E by the variables xi, . .
x„. Likewise, Et/ the y-instance of E, denotes the simultaneous replacement
of all n variables of E by the variables yi, . . yn.
Let Ai and A2 be two atomic formulae (atoms). Following the notation of

Robinson (1965, 1967) we say that the set {A1,412} is unifiable if there is a
substitution 0 such that A10 = A20. Then 0 is said to unify {AbA2} • If {Abil2}
is unifiable, Robinson (1965) shows that there is a most general unifier a such
that Ala =A2a and, moreover, for any unifier 0 of { A1,A2} there is a substitu-
tion such that A10. (Aia)2 (the Unification Theorem). If Li and L2 are
literals we shall say that a match exists for Li and L2 with atoms Ai and A2
respectively, if there is a most general unifier a such that Ala = A2a and
precisely one of Li or L2 has one negation sign preceding the atom. (We
assume throughout that no literal contains more than one negation sign.)
Two literals are called complementary if their atoms are identical and precisely
one of the literals has a negation sign preceding the atom.
§2. The basic structure used in the new format is the chain, a finite ordered list
of literals. Two types of literals may occur in a chain, the class A literals
(A-literals) and class B literals (B-literals). The most basic chain structure
is the elementary chain, a list of literals determined by assigning an ordering
to the literals of a clause. All literals of an elementary chain are B-literals.
An important class of elementary chains will be a certain subclass of matrix
chains; a matrix chain is formed by ordering the set of literals of a clause
of the matrix of the given wff SI. We define the empty chain 0 as a chain having
no members. New chains are formed from existing chains by means of three
operations to be defined shortly.
We define two useful classes of chains. A chain is pre-admissible if the

following three conditions are met:

1. if two B-literals are complementary they must be separated by an
A-literal;

2. if a B-literal is identical to an A-literal the B-literal must precede the
A-literal in the chain;

3. no two A-literals have identical atoms.

A pre-admissible chain whose last literal of the chain is a B-literal is termed
an admissible chain.
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Each of the three operations has a parent chain as input and a derived chain
as output. (The Extension operation also has a second input, an elementary
chain chosen from an auxiliary set of chains.) If a literal appears in the derived
chain because it is a substitution instance (perhaps under the null substitution)
of a literal in the parent clause it is termed a derived literal from the corres-
ponding parent literal of the parent chain. A sequence of chains Ko,Ki, . • Kn
is called a deduction of K„ relative to the wff2 if Ko and the initial auxiliary
set (see below) are matrix chains obtained from n, and Ki is a derived chain
from parent chain Ki_1, 1<i <n. We shall usually omit the phrase 'relative to
the wff f/' for convenience.
In defining the initial auxiliary set Mo of matrix chains, which represents in

a certain, sense a sufficient set of matrix chains, it is not required that all
possible matrix chains that can be created from matrix clauses of S/ be used.
Rather, for each literal L of each matrix clause of SI there is one chain in Mo
whose first literal is L and whose remainder consists of the remaining literals
of the matrix clause ordered according to some convenient rule. In the pro-
cessing of the wff SI by the procedure certain elementary chains called lemmas
are developed (which play the identical role of the lemmas in Loveland,
1968). These chains may then be used in the same manner as matrix chains
for the remainder of the process. We let M„ denote the set consisting of the
members of M,,1 plus the nth lemma created by the process. We only retain
new lemmas which are not substitution instances of previous lemmas or
matrix chains. Let M be a variable ranging over the sequence {M.}. The set
variable M will always be regarded as instantiated and thus regarded as a set;
we label M the auxiliary set (relative to SI) .
The scope is a counter associated with each A-literal of each chain. It is

used in the construction of lemmas.
We now define the three operations:

Extension. Given as input are admissible chain K1 (the parent chain) and
elementary chain K2 from the auxiliary set M. The x-instance Kg and the
y-instance K2/ are formed. A match is sought between the last literal Lg of
Kg and the first literal of K2/7. If a match does not exist, the Extension
operation terminates with no derived chain. If a match exists, let a represent
the most general unifier associated with the match. The derived chain K3
consists of Kga with K2ria minus its first literal appended (in original order)
after Lga (so that the last literal of K2na is the last literal of K3 unless KW'
is a one-literal chain). Lga is designated an A-literal with scope 0. Literals
of K3 whose parent literals are A-literals in K1 are designated A-literals with
the same scope as their parent literals. All other literals of K3 are B-literals.
Reduction. The parent chain is an admissible chain K with a designated A-
literal L1 and a designated B-literal L2 which occurs later in the ordering of K
than LI. If a match does not exist for L1 and L2 the Reduction operation
terminates with no derived chain. If a match exists, let a be the associated
most general unifier. The derived chain K' is Ka with the B-literal L2a

75



THEOREM PROVING

deleted. All literals of K' have their parent's classification, and all literals but
possibly Lia have the parent's scope. Let m be the scope of Li in K. If the
number n of A-literals (strictly) between Li and L2 is greater than m, then the
scope of Lia in K' is n, otherwise it is m.
Contraction. The parent chain is a pre-admissible chain K. The derived chain
K' is an admissible chain formed by deleting all A-literals beyond the last
B-literal. Each A-literal L in K' has the same scope as its parent A-literal in K
unless the scope exceeds the number n of A-literals in K' beyond the A-literal
L. If this occurs the scope is reduced to n. Lemmas are formed during this
operation; for this purpose the A-literals are regarded as removed one at a
time. As an A-literal Li is removed, a lemma is formed consisting of the com-
plement of Li and the complement of any preceding A-literal L2 of K such that
the number of A-literals (strictly) between L2 and Li is less than the scope
of L2. The complement of Li is the first literal of the lemma; the remaining
literals of the lemma may be ordered by any convenient rule.
Example. Let K be the (non-elementary) chain

P(xi,f(xi)) Nxbx2),

where underlining denotes an A-literal and ordering is left to right. Let the
auxiliary set contain the chain

— Q(xi,f(xi)) —P(xi,x2).

We give a deduction of 0 from K where steps 2, 3, and 4 are obtained by
Extension, Reduction and Contraction respectively.

I. P(xoxi)) Nxi,x2) given parent chain,

2. P(xi,f(xi)) Q(xi,f(xi)) —P(xi,y1) by Extension,

3. Pazi,f(x)) Q(xi,f(xi)) by Reduction,

4. 0 by Contraction.

The lemmas created in passing from step 3 to step 4 are

—Q(xi,f(xi)) —P(xlifixi))
and —P(xi,f(xi)).

The first lemma is an instance of the given elementary chain. That the second
lemma is not a valid inference from the two chains viewed as clauses reflects
the fact that chain K cannot be obtained from the two given chains viewed as
elementary chains.
The Appendix contains two further examples of the use of this procedure.
Let Wo(n) = Mo

and ce,,(n) = {KI there exists a deduction of K relative to wff n containing
at most n A-literals in any chain K', where M(K') is the
auxiliary set employed } .

The set M (K') is that M. with largest index m such that all members of M.
have been already determined before K' is deduced. The order in which the
lemmas are defined (which determines the sequence MI,M2•M3, • . .) need
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not be specified here, except that we assume that M(K') includes the lemmas
formed in the deduction of K'.
The soundness and completeness of the procedure outlined is established

by the following
Theorem. The wff CI in Skolem functional form (for satisfiability) is unsatis-
fiable 4-0 there exists an N such that WN (SI) contains the empty chain.
A procedure of the above nature designed to develop chains in the order

outlined by the sequence {w„(G)} is called a Model Elimination procedure.
That this is in behaviour an extension of the Model Elimination procedure in
Loveland (1968) is readily seen if one notes that the role of A-literal here
is taken by the S-list member in the procedure given in the former paper.
The procedure presented in the present paper extends that of the former in that
lemmas may be used as matrix clauses for purposes of adding to a chain (a
branch in the system given in Loveland, 1968). The proof of the above theo-
rem in the old format appears in Loveland (1968) and in the present format
in Loveland (to be published). The definition of the W„( SI) classes provides the
specialized pursuit of the 'partially contradictory sets of clauses' as discussed
in Loveland (1968), which is such an important part of the Model Elimina-
tion strategy.
§3. In Loveland (to be published) it is established that each lemma of the
Model Elimination procedure determines a clause deducible by the Resolution
procedure from the same matrix clauses. Given a lemma of Model Elimination
the corresponding clause is simply the set of literals comprising the lemma. (A
clause is sometimes treated as a set of literals as well rather than as a disjunction
of them. We shall use both notions with little danger of confusion.) Likewise,
any clause formed by resolution from a given set of initial clauses may, upon
assigning an ordering to the literals of the clause thus forming an elementary
chain, be added to the auxiliary set without affecting the soundness of the
Model Elimination procedure. The theory of Resolution (see Robinson
1965, 1967) assures us that adding the clause to the original set gives a set
unsatisfiable if and only if the original is unsatisfiable. Thus the soundness
of the Model Elimination procedure is unaffected by such additions to the
initial auxiliary set. Adding the chain to the auxiliary set at a later point in
processing, instead of adding the chain initially, only restricts the chains that
can be produced.
These remarks are the basis for two classes of strategies for the interaction

of resolution and model elimination. (For convenience we sometimes use
the term 'model elimination', no capital letters, to denote any essential part
of, or the total, process of the Model Elimination procedure in the same man-
ner as the term 'resolution' serves for the Resolution procedure.) We shall
merely outline the classes of strategies. The strategies considered first, use of
the Resolution and Model Elimination procedures in iterated sequence,
introduce some simple concepts which may be of interest. The second class of
strategies involves use of resolution within the model elimination process.
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Although computers are approaching their theoretical speed barrier, the
cost-per-operation barrier is nowhere in sight. The physical components that
promise to cut computer cost of operation drastically are well into the develop-
ment stage. The widespread adoption of time-sharing also seems inevitable.
The result for mechanical theorem-proving is that theorem-provers will be per-
mitted to run hours rather than minutes, and will work overnight on a theo-
rem for the cost of a mathematician to puzzle over it during the day. The
computers and time-sharing equipment to allow this may not be far in the
future, especially if our memory requirements are not too demanding. The
problem this presents for theorem-proving programs is: how do we design
theorem-provers that operate effectively for longer than the capacity cutoff
point of their normal procedures? One way to push back this barrier is to
run until memory is exhausted, then split the existing data (such as clauses or
chains) into segments, probably in such a way that deductions are preserved,
retain only one segment and with the newly released storage space continue
the deductions a few more levels. The other segments, which have either been
stored on tape or are recomputed when wanted, are each extended several
levels in turn. This is then repeated with the new results of each calculation;
a new segment is recalled or recomputed and then extended. One is confronted
with a ̀paging' type programming problem with all its inherent problems of
data transfer. If recomputation is chosen, the problem of segment description
must be faced. The ̀segmenting' approach does have the questionable virtue
of theoretical completeness.
Another approach is severe trimming with no explicit intent of retrieving

the data deleted. The trimming done when capacity is approached differs in
quality from the better known trimming heuristics suggested for the Resolu-
tion procedure, for example. The latter type heuristic deletes clauses deemed
unnecessary for some specific reason. These might be called procedure
heuristics. For convenience we shall label the other kinds of heuristics capacity
heuristics. In order to allow the problem to progress at all from the point
where memory capacity is reached, the capacity heuristics must cut drastically,
aiming more at salvaging the few pieces of data most likely to be useful than
discarding only the unnecessary. The question of capacity heuristics preserv-
ing completeness is almost irrelevant. Capacity heuristics exist because of a
physical upper bound only. Such physical upper bounds convert every
complete procedure into an incomplete procedure.
We wish to outline one class of procedure that uses a capacity heuristic.

One reason for the interest in this approach as opposed to ̀ segmenting' is the
reduced programming requirement. We believe, however, that many theo-
rems will yield to this approach; one reason for optimism is the observed fact
that a set of clauses that is refutable usually has many paths to the establish-
ment of this fact. Many paths may be blocked yet a solution still be found.
Let us consider possible measures of 'interest' for clauses created by the

Resolution procedure and for lemmas created by the Model Elimination
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procedure. One possible measure of 'interest' of a clause is proportional to
the order of the first level at which the clause is generated and inversely
proportional to the number of literals in the clause and to the depth of func-
tion nesting of its most complex term. For lemmas we first need the concept
of deficit of a chain. The deficit of a chain K is the non-negative integer n —

where Ke ,,(0) — (II) and m is the number of A-literals in K. As n
measures the maximum number of A-literals needed in any chain in the
deduction of K, the deficit D(K) measures in a sense the amount of collapse
towards the empty chain that K represents relative to the 'longest' chain in the
deduction of K. We shall call D (K) n the value of K. The value of the empty
chain is 1 and for every non-empty chain K, the value V(K) satisfies 0 V(K)
<1. The measure of interest for a lemma is the value of the derived chain of
the Contraction operation which creates the lemma. If several deductions of
the lemma exist, we choose the least of the values associated with the lemma.
A similar notion of value for a clause C is easily defined. The deficit D(C)

of a clause is the non-negative integer n — in, where n is the total number of
literal instances that appear in the deduction of C, and in is the number of
literals of C. The value V(C) of Cis given by D(C) n and satisfies 0 < V( C)
1 with only the empty clause achieving value 1. Another measure of interest
for a clause is its value.
We now outline a particular theorem-prover using capacity heuristics,

which utilizes both Resolution and Model Elimination. Let S denote the set
of given clauses. First, the Resolution procedure (with appropriate heuristics)
is run over S with no restricted set of support. If the empty clause is not
realized, a few sufficiently scattered clauses of highest interest are added to the
set S. Call this set Si.. By a 'sufficiently scattered' set we mean that no clause
in the set can be derived from another clause with only a few resolutions. We
do not envisage an exhaustive test for this property, but as clauses of high
interest generate like clauses as immediate resolvents, the wasteful retention
of two clauses, one easily derivable from the other, should be avoided when
convenient.
As a second step, the clauses of S1 are converted to chains and the Model

Elimination process is run to capacity. Then a few lemmas (rather, their
associated clauses) of highest interest and sufficiently scattered are added to
S1 to define set S2. The Resolution procedure is applied to 52. We limit the
set of support (see Wos et al. 1965) to the new clauses. This leads to S3, to
which Model Elimination is applied. This pattern is continued until successful
or manually halted.
There are obviously many possible modifications; we mention one point.

It seems desirable to keep the number of chains produced at any given depth
as small as possible (see the discussion below). Some non-matrix chains might
be restricted so that they are not free for arbitrary use by the Extension oper-
ator. A way of handling the two classes of chains is discussed later in this
section.
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Why may such a mixture of procedures be preferable to iterations of either
procedure alone? The reasons stem from the tendency of the two procedures
to complement each other in certain aspects; each tends to offset relative
weaknesses of the other. We consider two such complementary properties.

Resolution combines clauses at a rapid rate. It is particularly effective when
a fair number of these recombine several times or more to yield the empty
clause. (This does not imply the Model Elimination procedure is necessarily
inferior for such problems; see example 2 of the Appendix.) Moreover, just
as matrix clauses are used more than once in general, so are certain derived
clauses. If these are available for direct use instead of having to be implicitly
rederived, an often substantial saving is realized. The repeated use of certain
clauses (actually chains) is exhibited in the Model Elimination proof of
example 2 of the Appendix. Remember that any direct use of a lemma in
deriving the empty chain is a (successful) second use. The first use occurs
in the chain leading to the definition of the lemma. The Resolution procedure
is used to generate such useful clauses (hopefully). For example, clauses of
high interest which are combinations of the axioms of a theorem may often
be useful 'lemmas' (in the general sense) such as useful reductions of several
applications of associativity in group theory. Certain 'promising' clauses of
this type should be unrestricted for the Extension operator in the subsequent
Model Elimination run.
Some solutions do not make much use of the resolved clauses created 'in

advance'. Their proofs by resolution show almost all clauses with one parent
clause a matrix clause. For such situations the Model Elimination procedure
is often quite desirable if there are clauses containing more than two literals.
(If no clause contains more than two literals, the length of the longest chain in
the derivation of the empty chain may often be close to n, where n is the
number of clauses in the underlying contradictory set. The Resolution pro-
cedure should find the empty clause at a considerably lower level.) If the
auxiliary set is kept small (remember that only the matrix chains are required
for completeness), the growth rate of the W„ (CI) is relatively slow, and a
fair depth should be reached before cutoff. This, plus the need to locate
'partially contradictory sets' (see Loveland 1968) only within any one chain,
gives Model Elimination considerable ability to handle problems requiring
extensive combining of elementary parts. In this setting some of the 'element-
ary' parts may be clauses derived after considerable processing. A crude
summary of this polarization is 'Resolution constructs the building blocks,
Model Elimination manipulates them.'

Resolution and Model Elimination also complement each other in the way
each deals with its working unit, the clause and chain, respectively. The
distinction is well exhibited in the different measure of length for clause
and chain. Clause length is simply the number of literals in the clause. Chain
length is the number of A-literals in the chain. A matrix clause with many
literals is an undesirable parent clause because the resolvent is almost certainly
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a long clause. In contrast, any matrix chain adds only a unit length to any
chain to which it is attached. Moreover, a contradictory set of clauses with
many long clauses is more easily found by model elimination than a contra-
dictory set of the same size but with shorter clauses, for longer clauses lead
to the creation of more chains but of shorter average length. As the main
parameter of computation time is the length of the longest chain, an overall
benefit is realized from the longer clauses. Example 1 of the Appendix illus-
trates how long matrix clauses result in numerous short chains with subse-
quent benefit to ease of processing.
We plan to evaluate the proposed theorem-prover using a program being

written for the CDC 6600 to implement the Model Elimination procedure.
We anticipate relatively little programming trouble to implement the Resolu-
tion procedure once the first program is complete. (The addition of Model
Elimination given a Resolution program should also be easy.) Because the
operating system used with the CDC 6600 (located at New York University)
runs seven programs 'simultaneously', we expect to do most of our experi-
mentation with about one-seventh of the machine capacity available to us.
This served as motivation for considering techniques for extending the
'machine capacity' in some artificial way. We expect to obtain some solutions
that cannot be obtained (with our program) within a single 'run' to capacity.
However, we also expect any such solution to come within a very low number
of iterations of the cycle described above. Hard problems (perhaps by
definition) undoubtedly have long clauses (or chains) in the initial stages of
processing which do not begin to reduce in length until a level well beyond
that obtainable with reasonable memory capacity. The proposed measures of
interest clearly will not retain the appropriate clause or chain for further
development in this case. Problem-oriented measures of interest will have
to be developed to tackle such situations or the 'blunderbuss' approach of
segmentation outlined earlier may have to be employed.
We consider now the second class of strategies for mixing resolution and

model elimination techniques. This concerns the use of resolution within the
framework of model elimination. At the beginning of this section it was
remarked that the lemmas of model elimination may be treated as clauses. In
particular they may be resolved with other lemmas or with matrix clauses.
The question of when this is useful is not easily answered except when two
unit clauses can be resolved to obtain the empty clause. The set of matrix
chains forms a sufficient auxiliary set to guarantee completeness; adding
chains to the auxiliary set should be done only when concrete heuristic
justification can be given. The reason is clear: any addition to the auxiliary
set yields another elementary chain which the Extension operator can use to
extend chains. The size of ( f2) grows substantially (for fixed n) with each
addition even for small n.

This argument concerning addition of chains to the auxiliary set affects
the addition of lemmas also, of course. Limited experience of several
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hand-computed examples shows the lemmas to be useful chiefly when the re-
sulting chain can subsequently be reduced to a pre-admissible chain. It seems
desirable to introduce the heuristic of a split auxiliary set which contains two
classes of chains. The first class of chains can be used freely for extension of
any chain. Matrix chains generally belong to this class. The second class of
chains may only be used for extension when this leads to contraction (pos-
sibly after suitable reductions). Lemmas will in general belong to this class.
This limitation, incidentally, is 'built in' in the format of Loveland (1968).

Chains entered in the second class of the auxiliary set do not expand the
growth rate of the sets W„(a). The criteria for adding chains to this class are
clearly less stringent. Here one might enter chains from clauses which are
resolvents of two clauses from two existing lemmas, for example.
One other observation should be made. Every chain corresponds to a clause

formed from the set of B-literals of the chain. It is not at all clear that this
fact yields a useful modification of the Model Elimination procedure. It
might be useful if in the middle of a solution using the Model Elimination
procedure the machine decides to 'throw in the towel' and convert entirely to
a Resolution procedure.

APPENDIX

This appendix gives two examples of the use of the Model Elimination
procedure in the present format. Both examples appear in the literature,
where they illustrate specific heuristics added to Resolution. Each illustrates a
characteristic of the Model Elimination procedure that is of some interest.
As a compromise between ease of reading and ease of reporting, we adopt

the following conventions in listing the deduction of the empty chain in the
following examples. The matrix clauses are numbered and the literals of
each clause are regarded as consecutively lettered by the first letters of the
alphabet. A particular matrix chain is indicated by the clause number and
letter of the first literal. (The order of the remaining literals of the chain is
apparent from context.) The consecutive chains listed in an example represent
progressive 'snapshots' of the deduction, determined as follows. Successive
extensions are entered on the same line until a substitution in a literal already
recorded occurs, or a reduction or contraction is required. A new chain is
used to record any of the situations just listed. (A new chain is sometimes
also written to break up an otherwise lengthy chain.) The A-literals are
underlined. Negations are indicated by minus signs. The notation. . . n. .
where n is an integer indicates that the first n literals of the previous chain
appear unchanged as the first n literals of the present chain.
Example 1. This example appears as Example 2 in Wos et al. (1964) and as
Example 4 in Luckham (1968). It represents the negation of the following
theorem: in an associative system with an identity element, if the square of
every element is the identity, the system is commutative. The predicate
P(x,y,z) is to be interpreted as 'x. y=z'. The wff ft to be refuted is the

82



LOVELAND

universal closure of the conjunction of the following clauses. (The dis-
junction symbol between literals is suppressed.)

1. P(x,e,x)

2. P(e,x,x)

3. —P(x,y,u)—P(y,z,v)—P(u,z,w)P(x,v,w)

4. —P(x,y,u)—P(y,z,v)—P(x,v,w)P(u,z,w)

5. P(x,x,e)

6. P(a,b,c)

7. —P(b,a,c)

The last two clauses come from the negation of the conclusion of the theorem.
The derivation given below has depth 2, i.e., has the empty chain in re,(n).

One starts with matrix chain 3a, which is one-half the statement of the
associative law. Starting with chain 7, part of the negation of the conclusion,
the empty chain 0 is derived at depth 4. (As these examples are hand-computed
the author cannot be sure the optimal result is achieved, but here it seems
likely.)

This situation is interesting for the following reason. The Model Elimination
procedure satisfies a 'set of support' strategy (see Wos et al. 1964 or 1965)
which here may be stated: if a matrix clause has an instance in a contra-
dictory set then there is a deduction of 0 having a matrix chain from that
clause as the first chain of the derivation. A clause from the negation of the
conclusion is quite a safe bet as an initial clause of a deduction of 0. It would
seem reasonable to limit the W„(S/) to chains with derivations from chains
6 or 7 only as the size of W„( SI) is reduced with no loss of completeness.
Here the judgement is costly, however, for 0 is achieved earlier with another
initial chain.
There are reasons to believe this phenomenon may occur frequently,

particularly in considerably more complex examples. One is that multiliteral
clauses which should occur frequently in various instances in a derivation
(such as associativity in group theory) should have an instance located so as
best to balance the lengths of the longer chains of the derivation, often avoid-
ing the occurrence of one long chain with many shorter chains. As the length
of the longest chain almost entirely determines the difficulty of deriving 4), a
'balancing' of longer chains is clearly desirable. This situation is best under-
stood by use of the notion of proof tree as given in Loveland (1968), with
Which the effects of balancing chain length are easily pictured. We leave to the
Interested reader as an exercise the further pursuit of this point.

It is interesting to note that the empty clause was realized at level 5 using
Resolution as exhibited by the two proofs given in Wos et al. (1964) (and
levels 6 and 10 in Luckham 1968). Thus, even with the good strategies of
Wos et al. and Luckham keeping the number of clauses generated by level 5
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(6 resp.) to a small number, the Model Elimination procedure with no

further heuristics should produce fewer chains in deriving (/) at depth 2.

elementary

chain chains used

1. —P(x,y,u)—P(y,z,v)— P(u,z,w)P(x,v,w) 3a

2. . . . 3 . . . P(x,v,w)—P(v,s,t)—P(x,t,r)P(w,s,r) 4a

3. . . . 2. . . —P(u,z,b)P(x,v,b)—P(v,a,t)—P(x,t,c)P(b,a,c) 7

4. —P(c,y,u)—P(y,z,v)—P(u,z,b)P(c,v,b)—P(v,a,e)—P(c,e,c) 1

5. — P(c ,y,u) — P(y,z,a)—P(u,z,b)P(c,a,b)—P(a,a,e) 5

new lemma formed: —P(c,a,b)

6. —P(c,y,e)—P(y,b,a)—P(e,b,b) 2

7. —P(c,y,e)—P(y,b,a)—P(x,s,y)—P(s,b,v)—P(x,v,a) 4d

8. . . . 2. . . —P(a,s,y)—P(s,b,e)—P(a,e,a) 1

9. . . . 2 . . . —P(a,b,y)— P(b,b,e) 5

10. —P(c,c,e)—P(c,b,a)—P(a,b,c) 6

new lemma formed: P(c,b,a)

11. —P(c,c,e) 5

12. 0.

Example 2. This example appears as Example 7 of Luckham (1968). It

represents the negation of the following theorem: any number greater than 1

has a prime divisor. The predicates D(x,y),L(x,y) and P(x) are interpreted

as 'x divides y', ̀ x<y' and 'x is a prime' respectively. The value g(x) repre-

sents a non-trivial divisor of x, if x is composite and a is the least counter-

example to the theorem. (The value f(x) represents the prime divisor of

every x such that 1 <x<a.) The wff fI to be refuted is the conjunction of

the following clauses.

1. D(x,x)

2. — D(x,y)— D(y,z)D(x,z)

3. P(x)D(g(x),x)

4, P(x)L(1,g(x))

5. P(x)L(g(x),x)

6. L(1,a)

7. —P(x)— D(x,a)

8. — L(1,x)— L(x,a)P(f(x))

9. —L(1,x)—L(x,a)D(f(x),x)

We include for comparison the shorter of two Resolution proofs given in

Luckham (1968). The empty clause is achieved at level 5. We present a

derivation of the empty chain from 0, which has depth 5.
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This example illustrates the use of lemmas, which are used here only when
they are immediately followed by contractions. It also shows that even on
examples where Resolution performs quite efficiently the Model Elimination

procedure can perform competitively. This is not a claim that Model Elimin-
ation always is at least as efficient as Resolution; it often is not. Resolution is
often more efficient when no matrix clause contains more than two literals,
or when the deduction of the empty clause contains a number of resolutions
where both parent clauses were formed themselves just a few levels earlier
(such as in this example). The latter situation cannot in general be ascertained
by inspection of the set of matrix clauses. Even if either of the above cases
hold, it does not seem predictable when Resolution will be more efficient
than Model Elimination. Model Elimination is in general more efficient than
Resolution when at least one matrix clause contains more than two literals
and the deduction of the empty clause via Resolution uses a matrix clause in
(almost) every resolution. Again, the latter property cannot generally be
determined by inspection of the matrix clauses. Of course, the heuristics that
can be brought to bear on each procedure will greatly influence their relative
efficiencies.

elementary
chain chains used

1. —L(1,g(a))D(f(g(a)),g(a))—L(g(a),a)P(a) 9a, 5b
2. . . . 3 . . . P(a)— D(a,a) 7a, 1

new lemmas formed: —P(a) and L(g(a),a)
3. —L(1,g(a))D(f(g(a)),g(a))— D(g(a),a)D(f(g(a)),a) 2a, 7b

—P(f(g(a)))—L(1,g(a))—L(g(a),a) 8c, lemma
4. . . . 5 . . . —L(1,g(a))P(a) 4b, lemma

new lemmas formed: L(1,g(a)),P(f(g(a))) and
— D(f(g(a)),a)

5. —L(1,g(a))D(f(g(a)),g(a))— D(g(a),a)P(a) 3b, lemma
new lemmas formed: D(g(a),a) and — D(f(g(a)),g(a))

6. —L(1,g(a)) lemma

7. 4.

Note that the initial chain 9a has the last two literals reversed from the
'natural' ordering given in the listing of clause 9. Though perfectly permissible
it can be argued with reason that this interchange requires insight. Without
this interchange, the deduction of 0 requires depth 6 for the lemma
L(g(a),a) then is not available as in the given proof. If Model Elimination
is more efficient than Resolution in this example, it is because about the same
depth is required as for Resolution and only matrix chains need to be used to
extend chains (that do not immediately contract). Resolution apparently
cannot realize a level 5 deduction with use only of resolutions involving
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matrix clauses for one parent. In any case, it is conservative to estimate that
Model Elimination is as efficient here as Resolution in a case where the deduc-
tion by Resolution given below suggests Resolution has been reasonably
efficient.
We present the proof by Resolution given in Luckham (1968).

clause source

10. P(a)D(f(g(a)),g(a))—L(1,g(a)) from 9, 5

11. P(a)P(f(g(a)))—L(1,g(a)) from 8, 5

12. D(f(g(a)),g(a))P(a) , from 4, 10

13. D(z,x)—D(z,g(x))P(x) from 3,2

14. P(f(g(a)))P(a) from 4, 11

15. D(f(g(a)),a)P(a) from 13, 12

16. P(a)--D(f(g(a)),a) from 7,14

17. P(a) from 15, 16

18. —P(a) from 7, 1

19. Empty clause from 17, 18
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INTRODUCTION

We investigate in this paper the application of a modified version of semantic
trees (Robinson 1968) to the problem of finding efficient rules of proof for
mechanical theorem-proving. It is not our purpose to develop the general
theory of these trees. We concentrate instead on those cases of semantic tree
construction where we have found improvements of existing proof strategies.
The paper is virtually self-contained and to the extent that it is not, Robinson's
review paper (1967) contains a clear exposition of the necessary preliminaries.

After dealing with notational matters we define a notion of semantic tree
for the predicate calculus without equality. A version of Herbrand's theorem
is then proved. The completeness of clash resolution ( Robinson 1967) is
proved and it is shown that restrictions may be placed upon the generation of
all factors when resolving a latent clash. The completeness of binary resolution
is proved by specializing the notion of clash, and an ordering principle is
shown to be complete when used in conjunction with it. Slagle's AM-clashes
(1967) are shown to be complete by another specialization, and some
clarification is presented of the role of Slagle's model M at the general level.
A further specialization of AM-clashes is then made to the case of hyper-
resolution (Robinson 1965a) and renaming (Meltzer 1966). It is shown in
this case how the restrictions on generating factors and Slagle's A-ordering
can be combined to give a highly efficient refutation procedure. Moreover,
additional restrictions on the generation of factors are obtained for all cases
of AM-clashes by employing throughout a modified notion of A-ordering.
In the last section we report on attempts to apply the methods of semantic trees
to the construction of inference systems for the predicate calculus with
equality.
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PRELIMINARIES

Familiarity is assumed with the reduction of sentences to clausal form.
Atomic formulae are sometimes referred to simply as atoms. Literals are
atoms or their negations; clauses are disjunctions of literals. Disjunctions and
conjunctions will often be identified with the sets of their disjuncts and
conjuncts respectively. Thus one may speak of a literal L occurring in a clause
C and write L e C. The null disjunct 0 is always false and therefore identical

to the truth value false.
The result of applying a substitution a to an expression E is denoted by Ea.

If Ea =F for some a, then F is said to be an instance of E. In case F contains
no variables F is a ground expression and a ground instance of E. If F is an
instance of E and E of F, then E and F are variants. If expressions E and F
have a common instance G, then E and F are unifiable and there is a most
general common instance Ea =Fa, where a is the most general unifier (m.g.u.)
of E and F. The m.g.u. a of E and F is such that if it is any unifier of E and F
then there is a A such that p.=

Constants are functions of zero arguments. The Herbrand universe H of a
set S of clauses is the set of all terms constructible from the function letters
appearing in S (augmented by a single constant symbol if S contains no
constant symbols). The Herbrand base fi is the set of all ground instances
over H of atoms occurring in S. If K is a set of ground atoms, then by a
complete assignment to the set K we mean a set a such that for every atom
A e K exactly one of the literals A or A occurs in a' and a contains no other
members. If a is a complete assignment to some subset K' c K, then .91 is
called a partial assignment to K. Given a set S and its Herbrand base fl any
complete assignment a to fl can be considered as a possible interpretation of
S (i.e., the universe of the interpretation is H; the definition of the functions
over H is incorporated in the definition of H; and an n-place predicate P
holds for Oh t,,), tjellifand only if P( . . t) ed).
Every tree is a partially ordered set T whose elements are its nodes. We

shall use < to refer to the partial ordering of the nodes. The unique node
N eT such that N> N' for every node N' is the root of the tree. Trees will be
considered as growing downward. Thus the root of a tree is the highest node
in the tree, and if there are at most finitely many nodes immediately below
any node then the tree is finitely branching. A tip of a tree T is a node N
which is above no other node. A branch of T is a sequence of nodes beginning
with the root and such that each other node in the sequence lies immediately
below the preceding node in that sequence. A branch of T is complete if either
it is infinite or else it is finite and ends in a tip.

SEMANTIC TREES FOR THE PREDICATE CALCULUS
WITHOUT EQUALITY

Definitions

Let K be a set of atoms. A finitely-branching tree T is a semantic tree for K
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when finite sets of atoms or negations of atoms from K are attached to the
nodes of Tin such a way that

(i) the empty set is attached to the root and to no other node;

(ii) if nodes Arn lie immediately below some node N and the sets

of literals 2i are attached to the nodes N1, then 9B1 V. . . V -2„ is a

tautology, where .41 is the conjunction of the literals in i;

(iii) the union of the sets of literals attached to the nodes of a complete
branch of T is a complete assignment to K.

Given a set S of clauses and a semantic tree T for ft (the Herbrand base of
S), then the union of all the sets attached to any complete branch of T is a
complete assignment to 11 and therefore a possible interpretation of S.
Indeed it can be easily shown from condition (ii) of the definition that every
complete assignment xi to ft can be obtained in this way.
The partial assignment which is the union of all the sets of literals attached

to the nodes of a branch ending in a node N is written .9IN and is termed the
assignment at N. In this notation the set al attached to N, referred to in (ii)
above, is just am —sIN•
The only case of an infinite semantic tree that we shall consider in this

paper is that of a simple binary tree, which is used in the proof of the version of
Herbrand's theorem necessary for our applications. In this tree if N1 and N2
lie immediately below the node N, then MI and 22 are just {A} and {A}
respectively for some ground atom A in K. Every other semantic tree consid-
ered will be a finite clash tree. If T is a clash tree, N e T and Ari, . • ., Arlo Nk+1
lie immediately below N, then the set 2/i attached to N1 for 1 < i<k is just
{Li} and the set ak+1 attached to Nk+1 is {E1, . Lk}, where {Li, • • Lk}
is a partial assignment to K disjoint from the partial assignment an. The
nodes NI, Nk are termed satellite nodes and the node Nk+1, a nucleus node.

Failure

If S is a set of clauses and Ta semantic tree for ft, then T is in some sense an
exhaustive survey of all possible interpretations of S. If S is in addition
unsatisfiable, then S fails to hold in each of these interpretations. These
considerations motivate the definitions given below.
Let T be a semantic tree and C a clause. We say that C fails at a node Ne T

when C has a ground instance Ccr such that siN logically implies (Ca).
(We also write .saiNk (Ca), using the symbol k to denote logical implica-
tion). Note that if C fails at N then saiNk --IC. The converse, however, is not
in general true. For if aN= {P(a), P(f(f(a)))} and C=P(x)V P(f(x))
then aNk —IC, but C does not fail at N.
Let T be a semantic tree and S a set of clauses. A node Ne T is a failure

Point for S when some clause C e S fails at N but no clause in S fails at any
node M> N. If N is a failure point for S and M> N, then M is a free node for
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S. Note that if Nis free for S then any node M>N is also free for Sand both

M and N are free for any subset of S. Also if N is a failure point for S, then
no node M<N is free for S and both M and N are not free for any superset

of S.
A semantic tree every branch of which contains a failure point for S is

said to be closed (for S).

Herbrand's Theorem

The following is easily shown to be equivalent to Herbrand's Theorem.

Theorem 1. If S is an unsatisfiable set of clauses then there is a finite subset

n such that every semantic tree T for K is closed for S.
Proof. Let (A1,. . An,. . .) be an enumeration of the Herbrand base of S
and let T' be a simple binary tree for 11 constructed as follows: the empty set
4) is attached to the root of T'; the sets {A1} and { Aj } are attached to the two
nodes immediately below the root; and if either { An } or {An} is attached to
the node N, then the sets {An+1} and {An+1} are attached to the nodes immed-
iately below N. Any complete branch through T' represents a complete

assignment d to ft and therefore is a possible interpretation of S. Since S is
unsatisfiable, d fails to be a model of S and some clause C e S must be false

in a. It follows that some ground instance Co of C must be false in a. But
for this to happen the complement of each literal in C must occur in a, and
since there are only finitely many such literals they must occur already in

some partial assignment AIN with Co false in sr/N. Thus, some MN is a

failure point for S and T' is closed for S.
The number of nodes of T'free for S is finite, for otherwise, by Konig's lemma

we could find an infinite branch of free nodes containing no failure point. Let

k be the length of the longest branch of T' which ends in a failure point and

let K= {A1, . . AO. Then every branch of T' corresponding to a complete
assignment to K already contains a failure point for S. Now if T is any

semantic tree for K then every complete branch corresponds to a complete

assignment to K and must also contain a failure point for S. Therefore T is
closed for S. Q.E.D.
Note that Robinson (1967) uses essentially the same tree T' in his proof of

Herbrand's theorem. The semantic trees of this paper differ, however, from

those of Robinson (1968). Robinson defines failure of a clause at a node of a

semantic tree for ground clauses and establishes his main results for ground

clauses first. These results are then 'lifted' to the general level by applying

Herbrand's Theorem. By generalizing the definition of failure and by applying

Herbrand's Theorem in the form above, we establish our results for the gen-

eral level directly. A principal advantage of this modification is that it be-

comes clear how to restrict the generation of factors of clauses.

Inference node

The concept of inference node makes it possible to transfer from the semantics

of semantic trees to the syntax of inference systems. A node N of a semantic
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tree T is an inference node for a set of clauses S if N is free for Sand the nodes
immediately below N are failure points for S. Note that if T is closed for S
and E] S. then T contains an inference node. For if 0 e S, then 0 fails at
the root of T, and T contains neither free nodes nor inference nodes; otherwise,
if T contains no inference node, then it contains free nodes and since every
free node lies above another free node, we can construct a complete branch
all of whose nodes are free for S, contradicting the assumption that T is
closed for S.

If a denotes a system of valid inference rules for clauses, then by .R(S) we
denote the union of the set S with the set of all clauses which can be obtained
from S by one application of one of the inference rules in a to clauses in the
set S. Setting ao(S) =S we define a '1+1 (S) = (an (S)).
The following theorem provides the foundation for our use of semantic

trees in automatic theorem-proving.
Theorem 2. Let a be a system of valid inference rules and let there be given a
particular way of associating with every unsatisfiable set of clauses S a
finite semantic tree T for S such that

(*) there is an inference node Ne T, and for some subset S' c S of the set
of clauses which fail immediately below N there is a clause Ce (S')
such that C fails at N.

Then 0 e an (S) for some n 0, and consequently a is a complete system
of refutation.
Proof: Let S be unsatisfiable, T the semantic tree associated with S. Let n be
the number of nodes of T free for S (n is finite since T is finite). If 0 e S,
then 0 e ao(5). Otherwise, by (*), there is an inference node Ne T and a
clause C (S) such that C fails at N. Therefore the number of nodes of T
free for a (S) is less than or equal to n-1. Similarly, since Tis a closed sem-
antic tree for Mm-1(S), m>l, (*) applies to am-1(S); and consequently the
number of nodes of T free for .2m(S) is less than or equal to n—m. No node
of Tis free for an (S), and therefore the root of Tis a failure point for a" (S) .
But then e gn(S), for no other clause fails at the root of a semantic tree.
Q.E.D.

Theorem 1 has been used implicitly in the statement and proof of Theorem
2, because ai(S) unsatisfiable implies, by Theorem 1, that T is closed, and
thus T has an inference node for each ai(S), I> O.

Deletion strategies
A clause is a tautology if it contains complementary literals. A clause C
subsumes a clause D if it has an instance Ca which is a subclause of D (i.e.
Co gD),If If. is a system of inference whose completeness can be justified by
Theorem 2, then a remains a complete inference system when we allow in a
the deletion of tautologies and of subsumed clauses.

If C is a tautology then Ca contains complementary literals for every a.
But no siN contains complementary literals and C cannot fail on any semantic
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tree. If arc D and D fails at some node N of a semantic tree, then some
ground instance Ig of D fails at N, but then Cat also fails at N. Thus taut-
ologies and subsumed clauses need never occur in a proof of 0 in the system
a, for in the proof of Theorem 2 it is clear that only clauses which fail at
nodes of the semantic tree T associated with the original unsatisfiable set S
need ever occur in such a proof. (If S is any unsatisfiable set of clauses, then
certainly S remains unsatisfiable after deleting tautologies and subsumed
clauses. However, such a demonstration does not provide a proof of the
compatibility of these strategies with a system of inference.)

CLASH TREES

The Latent Clash Rule

All our applications of Theorem 2 will be to inference systems a which consist
of just one rule of inference that is in each case a specialization of Robinson's
(1967) latent clash resolution rule. The corresponding tree T associated with
an unsatisfiable set S will similarly be a specialization of a clash tree.

If clauses Bli . . Bk fail at the satellite nodes immediately below some
inference node N, then we term them satellite clauses. If A fails at the cor-
responding nucleus node, then A is a nucleus clause.
The following theorem and its proof provide the general setting for sub-

sequent specializations.
Theorem 3. Let a finite clash tree T be associated with every unsatisfiable
set of clauses S (where Tdepends on S) and let g consist of the single rule of
inference (latent clash resolution):

(**) From the 'nucleus clause' A= A0 V D1 V. . . V Dm, and the 'satellite
clauses' Bi=Boi V Ei,1<i<m, where the complements of the literals
in Ei are unifiable with the literals in D1, and is the most general
simultaneous unifier of these sets of literals for all 1 <im (the vari-
ables occurring in the clauses A, B1, B„, being standardized apart),

infer the 'resolvent' C=A0 V B01c V • . • V Bong.
(Moreover we may insist that the clash condition be satisfied, namely
that no Eg or complement of Eg occurs in any of the clauses

B„4 except in Bg itself and in ig as pg).
Then, if any clauses A, B1,.. Bk fail immediately below an inference node N
in T, A has the form of the nucleus clause in (**) and corresponding to A we
have satellite clauses B1, . . B,„, m<k, having the form of the satellite
clauses in (**) such that the resolvent C in (**) fails at N.
Remarks. (a) Theorems 2 and 3 combine to yield the completeness of latent
clash resolution; for the conclusion of Theorem 3 satisfies the hypothesis of
Theorem 2 and therefore the conclusion of Theorem 2 holds, namely that
(**) is complete.
(b) The rule (" ) is stated without reference to unifiable partitions and lends

itself naturally to a statement in terms of factors. In either case the number
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of unifiable partitions or of factors which need be generated is in general
less than the total number possible. We shall return to this point after the
proof of Theorem 3.
(e) Later we shall specialize in various ways the form of the clash tree T

associated with an unsatisfiable set S. The corresponding specializations of
(**) and of the proof of Theorem 3 will provide proofs of completeness for
these inference systems when combined with Theorem 2.
Proof of Theorem 3. Let T be a clash tree, N e Tan inference node, NI, Nk
the satellite nodes immediately below N, and Nk+i the corresponding nucleus
node. Let sir/ be the partial assignment at N, the singleton {Li}, where Li is
a ground literal, the set attached to the satellite node Ni, 1:5i<k, and
{L„...,Ek} the set attached to Nk-vi. Suppose A fails at Nk÷i and that Bi
fails at N1,1<i<k.

First we show that each Bi has the form of a satellite clause in (**).
Since Bi fails at Ni but not at N there is a ground instance Bio-i which is false
at Ni but not at N. Thus the complements of the literals in Biai all occur in
dN U {Li} but not in .safN. So B la i= Boia V Li, where Bi=Boi V E,, Eia i= L „
and Boicri is false in siN.

Now, to show that A has the form of a nucleus clause in (**) we note
that similarly, as above, A fails at Nk+i but not at N. Therefore some ground
instance Au is false at Nk+i but not at N, and consequently the complements
of the literals in Aa all occur in siNu {L1, . . Lk} but not in a,. Thus
Aa=i100- V L1 V. . . V L., where for simplicity the nodes N,,. . Nk have
been reordered if necessary so that the literals L,, 1 <m, which occur in Aa,
will be an initial segment of Li,. . L. Thus A=A0 V DI V. . . V D., where
Aoa is false in JIN and D ia =Li.

It only remains now to show that the inferred clause C fails at N and that
the clash condition may be imposed upon the clash rule. We have already
shown that the clause C'=A0a V Boiai V. . . V Boman, fails at N since each
of Aocr and Boiai are false in sIN. We shall show that C fails at N by showing
that C' is an instance of C. But because is the most general unifier which
transforms all of the literals 'resolved upon' in the inference into single
literals, and because A, .131, . B. have been standardized apart, there is a
substitution such that C'= CA., and therefore C fails at N.
Suppose that the clash condition is violated and that some Eg or comple-

ment of Eg occurs in C. Then EiV,=Li or Ekl.=Li occurs in C' which fails
at siN. But then fi or Li would have to occur already in .safN, and this is
impossible. The only other possibility is for Eg or its complement to be
identical to E.4 or D.4 forj0 i, But then Li would be identical to Li or L to Li
for JO i, which is likewise impossible. Q.E.D.

Factoring

When applying the latent clash rule (**) or some specialization of it to prove
a set of clauses unsatisfiable, a single clause will normally occur as a premiss
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of an application of the rule many times. To avoid the duplication involved in
repeatedly unifying the same groups of literals within a clause we may employ
the device of factoring. The single most general simultaneous unifier (m.g.s.u.)
of (**), can be decomposed into a sequence of components ti, . .•

and such that is the m.g.u. of Ei, 1 <i<m, „,.f.1 the m.g.s.u. of

D1, . . D,„, and the m.g.s.u. of Egi with Dg„,.+1, 1 i<m. Then in (**)
the resolvent C= Ag V Bog V. . . V Bong equals (Aotm+i V Bogi V. . . V
Bong.) where the unifiers I < i< m +1, perform the necessary unifica-
tions within a single clause and only mates simultaneously single literals in
the satellite clauses with the corresponding single literals in the nucleus
clause. The unifier must be constructed separately for each application of
the inference rule; but the unifiers need only be constructed once when a
clause is first produced, and this same substitution may be associated with its
clause whenever the literals E in case 1 < i<m, or the literals Di, D„„ in
case i=m +1, are the literals unified and resolved upon in an inference.
These considerations motivate replacing (**) by two independent opera-

tions, factoring and the resolution of factored clauses. A factor of a clause C
is a clause CO, where 0 is the m.g.u. of a single subset of literals in C in case
CO is to be used as a satellite clause, or a clause CO where 0 is the m.g.s.u. of
subsets DI, . . D„, of literals in C in case CO is to be used as a nucleus
clause. In addition we require that the literals in CO which have been deliber-
ately unified by 0 be somehow distinguished from those which have not (this
may be accomplished for programming purposes, for instance, by storing CO
with its distinguished literal or literals occurring first in CO and separated in
some way from those literals which follow and are not distinguished). The
operation of factoring then consists of replacing each clause C which is not a
factor by the set of all its factors. The clash rule for factored clauses then
amounts to resolving a clash on its distinguished literals.
The notion of factoring defined above is an improvement on the notion one

obtains by straightforward translation of unifiable partitions into terms of
factors. Firstly, only the literals which are to be resolved upon are deliberately
unified in a factor. Conversely, only literals deliberately unified need be
resolved upon. For the case of binary resolution this version of factoring is
equivalent to Robinson's (1965a) notion of 'key triple'. The remarks about
factoring above are however completely general and apply to any inference
rule which is a specialization of latent clash resolution.

Binary resolution and A-ordering

Given a set of clauses S we define an A-ordering for S to be a total ordering <
defined on some subset of the set of literals {LaIL e C for some clause Ce
such that

(i) if L1<L2 then Lia <L2a for all a;
(ii) if L1 and L2 are alphabetic variants or complements then L1 <L2

and L2 L1.
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This definition is similar to Slagle's (1967) but has the advantage of allowing
a finer discrimination between literals.
Now let S be an unsatisfiable set of clauses and Ka CI a finite subset such

that any semantic tree for K is closed. Let < be an A-ordering for S and
(A1, . . An) =K be an enumeration of K compatible with < ; i.e., if Ai< Af
then i<j. We associate with S the simple binary tree T for K obtained by
attaching 0 to the root of T, the sets {Ai } and (A1) immediately below the
root and the sets {A1+1} and {710.1} immediately below any node to which
(A,) or (Ai) has been attached.

Referring to the proof of Theorem 3 and using the notion of factor, we see
that if a clause C fails at a failure point Ne T, then the distinguished literal Li
of some factor CO fails properly at N, while the remaining literals in CO fail
at nodes above N. Since the enumeration ( Ali . . An) is compatible with <
it follows that L1<L2 for no L2 e Ca, where L10L2. For otherwise, if L1 <Lz
and (CO)cr is the ground instance of CO which is false at N, then Lia <L2a by
(i) and yet, by the construction of T, L2o. is Ai or Ai, and Liu is Ai or 21:i,
where i<j; so by (ii) Lia <L2a cannot occur.
Taking into consideration the remarks above, specializing Theorem 3

appropriately and applying Theorem 2 we obtain completeness of the follow-
ing version of binary resolution:

Given a set of clauses Sand an A-ordering < for S, infer from the
factors El V Ao and LI V Bo with distinguished literals L1 and L'1
respectively, the clause (A0 V Bo) where is the m.g.u. of L1 and Li,
and where neither L1 <L2 nor L1' <L2 for any literal L2 in either Ao or Bo.

As an example of the use of an A-ordering in conjunction with this rule, let
the A-ordering < be determined for some set of clauses by the conditions
P(f(x))a. <P(g(y))cr and P (x)a < Q(y)a for all a. Then the unfactored
clause C=P(g(a))V P(f(x)) V Q(b) has only one factor CO, where 0 is the
identity substitution and P(f(x)) is the distinguished literal. In this case the
A-ordering < has eliminated the need to consider two of the three possible
factors. If C= Q (f(a)) V P(x)V P(f(a)) then there are three factors of C
compatible with < and only one of the four possible factors need not be
generated.
The following example shows that the rule above is compatible with neither

set of support (Wos, Carson and Robinson 1965) nor Pi-deduction (Robinson
1965b): let S be the set {L1 V L2, L1 V E21 El V L2, E1 V E2), and let < be
determined by L1<L2. Then, although S is unsatisfiable, 0 can be deduced
with neither P1-deduction nor with set of support if we take (Li V L2) as the
set of support.
In the next sections we shall see that a weaker version of the A-ordering

restriction applies to M-clashes, and that in the particular case of Pp-deduction
(P1-deduction with renaming) a more restrictive ordering principle based on
A-ordering is complete.
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M-clashes

We have been unable to construct binary semantic trees to justify either the
set of support strategy or P1-deduction. However, the M-clash trees which
we introduce below can be used to prove completeness of M-clashes, and by
suitably choosing the interpretation M and by decomposing the corresponding
M-clash rules we obtain, following Slagle (1967), the completeness of these
inference systems.

Let S be a set of clauses. Define a Herbrand interpretation of S to be any
complete assignment to It, the Herbrand base of S (we have already seen
how any complete assignment to It can be regarded as a possible interpreta-
tion of S). Assume for the moment that M is a Herbrand interpretation of S.
Let S be unsatisfiable and Kg.fl a finite subset such that any semantic tree for

K is closed. Let M= . . A4} be M restricted to K, where A1 € fi and
A= A1 if AieM and A;=Ai if 71i e M, so that Mg M and M is a complete
assignment to K. We associate with S the M-clash tree T defined as follows:

(i) 0 is attached to the root of T;

(ii) the root of T has n +1 immediate descendants with {Ai} assigned
to the ith satellite node, 1 < i<n, and {AI, AO to the nucleus
node;

(iii) let Ne T, .54'N not a complete assignment to K, SiNgAI and M—.9,141

= A}; then N has k+ 1 immediate descendants, with
the singletons {A'ii} , ...,{A} attached to the k satellite nodes
and the set{A';„ . . A} to the nucleus node.

Note that the assignment at any nucleus node is a complete assignment to K
and therefore every nucleus node of Tis a tip of T. Note, too, that the assign-
ment at any satellite node is always a subset of M, and that for any such assign-
ment containing m<n literals there is a total of exactly m! satellite nodes with
the same assignment.

Suppose the clause B fails at a satellite node which is a failure point. Then
some ground instance Ba of B is false in M and therefore in M. Thus B itself

is false in the Herbrand interpretation M.
Suppose A fails at a failure point N which is a nucleus node. Some ground

instance Aa of A must fail at Nand some literals A 1,. A"1„„ for some m<k,

must fail properly at N. But since these literals belong to Mg M and therefore
are true in M it follows that Ao- is true in M. Thus A has an instance which is
true in M.
Note that, since the resolvent C of a clash fails at a satellite node, C must

be false in M. Note also that a nucleus clause is never a resolvent and therefore

must belong to the original set of clauses S.
Specializing Theorem 3 to the M-clash tree, keeping in mind the consider-

ations above and applying Theorem 2, we obtain the completeness of M-clash
resolution:
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Given a set of clauses S and a Herbrand interpretation M of the Herbrand
base H of S, from a factored nucleus clause A =LI V . . . V L„ V A0 and
factored satellites V B0i, 1 < i<m, where t is the most general
unifier such that L, =L simultaneously for all 1 <1<m,

infer the resolvent C= (A0 V B01 V . . . V Born),
when the clash conditions are satisfied; here each satellite Bi is false in M,
C is false in M, and A has an instance true in M.

Remarks. (a) Slagle (1967) has remarked that if Ta S and T— S is satisfiable
then it is satisfied by a Herbrand interpretation M. It follows that no clause in
T— S can be a satellite of an M-clash. Decomposing the resulting M-clashes
into sequences of binary resolutions we see that no two clauses are resolved
which both come from T — S. But this is just the defining condition of the set
of support strategy.
(b) Complications arise if we wish to use an interpretation M explicitly

when in an application of the M-clash rule we need to decide the truth or
falsity of clauses and their instances. Firstly, if M is not a Herbrand inter-
pretation then we must extend M to an interpretation in which all the Skolem
functions which actually occur in S are defined in some way. To M extended in
this way there will then correspond a Herbrand interpretation which will justify
the use of this extended M. Otherwise questions of truth or falsity for clauses
whose vocabularies are not fully interpreted in M are literally meaningless.
A much more serious restriction on the explicit use of an interpretation M

is that it actually admit of an algorithm for deciding truth and falsity of
clauses and their instances. Otherwise there is no way in which its use can be
mechanized for a computer. Interpretations containing only a finite number
of elements are effective in this sense. But unless they possess other special
properties the exhaustive instantiation of each clause over the domain of the
interpretation for the purpose of testing it for false or true instances is likely
to be prohibitive. These same considerations apply to model partitions
(Luckham 1968), which can be justified as a special case of M-clashes.
(c) Slagle has also shown that hyper-resolution may be regarded as the

special case of M-clashes where all instances of positive literals are regarded
as false in M and all instances of negative literals as true. Then all satellites
and resolvents contain only positive literals, and all the negative literals of the
nucleus clause are resolved upon in the clash. The resulting clash is maximal
in the sense that no subclash need ever be generated. This highly desirable
property can be extended by the device of renaming. We shall show in a later
section how advantage can be taken of maximality to yield a particularly
efficient version of P1-deduction.

AM-clashes

Let < be an A-ordering and M a Herbrand interpretation for a set of clauses
— then the following ordering principle may be imposed upon the M-clash
rule:
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Given the factored nucleus A =LI V. . V L;„ V Ao and the factored
satellites 131. Li V B01, 1 < i<m, with resolvent C = (A0 V B01 V . . . V
Bo.) satisfying the M-clash conditions, we may insist that for no literal
Lie Boi do we have .Li<L' for any 1 < i<m.

This restriction improves upon Slagle's ordering principle, for the notion of
A-ordering defined above is generally more restrictive. The proof that follows
of the compatibility of the ordering principle above with the M-clash rule is
essentially an adaptation of Slagle's argument.
Given a closed M-clash tree T and an A-ordering < for the unsatisfiable

set S, we shall show that there is in T an inference node N such that the
factored clauses A and Bi,1‘,P4m, which fail below the inference node and
their resolvent C, satisfy the AM-clash conditions. It will then follow by
Theorem 2 that the AM-clash rule is complete. We note that it is in fact only
necessary to show that the satellites B satisfy the ordering principle above
since we have already seen that the M-clash conditions are satisfied.
As before let McM be defined as the set {Al, A„}, where the ordering

of the Al is compatible with the A-ordering <, i.e. if Al <Aj, then i<j. We
construct a subset M' of M, as follows:

(i) M6=0-
(ii) If some factored clause Bi+1=Loi V Bo 1+1 of some clause in S has

a ground instance Bi.Fia false in {A;+1 u MI but no clause in S fails
in Ail, then Mi+1=M; ; otherwise Mi+i= {Ai-F1} u MI. In the
former case we may choose the factor Bi+1 so that Li_Fic = A;+i, and
we say that Bi+i is associated with 211+1.

(iii) M'=Mn.

M' is a partial assignment to K and there is some node N such that AIN= pr.
We claim that Nis an inference node. Note that the factor Bi associated with
AI fails at the satellite node Ni immediately below N. Some nucleus clause
fails at the nucleus node and no clause in S fails at N, by the construction of
M'. A resolvent C from the nucleus clause and from some subset of the satel-
lite clauses fails at N.
Suppose now that the A-ordering restriction is violated and that therefore

for some i the distinguished literal Li in the factor Bi=Li V B0i associated
with Al is less than some literal e Bob i.e.,Li<L7. Then, if B ja is the ground
instance of Bi which fails at N we have L icr <47 . But L,= A; and Era = Aj
for some j< i, and since it is not true that A;<Aj by the compatibility of the
enumeration of the A; with <, it follows that L a does not hold;
consequently it is not true that Li <4.

Hyper-resolution and P1-deduction

Until other more efficient and mechanizable applications are found for AM-
clash resolution, the two most likely candidates for an efficient proof strategy
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seem to be set of support and hyper-resolution both supplemented by factor-
ing and A-ordering. Meltzer (1968) has shown that renaming and P1-deduc-
tion can often be used to sharpen a set of support strategy. Luckham
(1968) has given examples of proofs obtained by what is essentially Pr
deduction with renaming, and these proofs are no less efficient than those
obtained with set of support. The version of P1-deduction stated below seems
to us a distinct improvement over the existing strategy. Preliminary results
obtained by programming this strategy in ATLAS-AUTOCODE on the
KDF 9 support this view.
Hyper-resolution has the advantage over P1-deduction that it avoids

generating the (2n)! resolvents that are produced by resolving in all possible
ways among n-factored satellite clauses and a given factored nucleus clause
(where each distinguished literal in the nucleus is associated with only one of
the satellites). It has the disadvantage of not saving the partial hyper-resol-
vents that are generated on the way to producing the maximal hyper-resolvent.
These partial hyper-resolvents need to be recomputed each time any of them
is completed in a distinct way. In addition, the problem of searching for
hyper-resolvents is more complicated than the corresponding problem for
Pi-deduction. The following version of P1-deduction incorporates the advan-
tages of hyper-resolution over PI-deduction- without suffering from its
disadvantages.
Given a set of clauses S and an A-ordering -.5 and after a renaming (if

desired),

(i) replace each non-positive clause in S by the set of its factors (a
non-positive clause is factored as a nucleus clause). Choose any
total ordering of the distinguished literals in such a factor A (the
ordering may be chosen independently for each A). Let A=Ei
V. . V L,, V Ao, where we agree to write negative literals Li in order
and before positive literals and where Ao is the positive subclause
of A.

(ii) replace each positive clause in S and, later, each positive resolvent
by the set of its factors (positive clauses are factored as satellite
clauses). We may insist that the A-ordering restriction is satisfied
for each such factor.

(iii) resolve positive factors on their distinguished literal against the first
negative literal of non-positive factors. If the resolvent is negative it
is not factored, but a new ordering of its distinguished literals may
be chosen if desired. If a resolvent is positive it is factored as in
(ii) above.

It is easily seen that every hyper-resolvent is obtainable exactly once by a
sequence of resolutions satisfying restriction (iii). It follows that this infer-
ence system is complete and that it satisfies the properties claimed above.
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Condition (i) may be improved and replaced by

(i') replace each non-positive clause A by its factor 440 = A; where 0 is
the identity substitution. Choose any total ordering of the
distinguished literals . . ., etc.

Condition (i') states in effect that non-positive clauses are not factored at
all. The proof that completeness is preserved when (i) is replaced by (i') is
somewhat complicated and does not lie within the scope of this paper.

Darlington (1969) shows how to exploit renaming, A-ordering, and the
ordering of negative literals in non-positive clauses to avoid performing
most of the resolutions excluded by set of support. He does this for the case
of applications of theorem-proving to large-scale information retrieval sys-
tems where a set of support strategy seems to be highly desirable.

Other applications of semantic trees

The notion of semantic trees employed in this paper can easily be extended
to the predicate calculus with equality. Indeed, Robinson's (1968) original
formulation of the semantic tree construction was for this logic. None the
less, we have been unable to find any binary semantic trees which yield
reasonably mechanizable inference systems. It is easy to show that assignment
trees (Sibert 1967) can be constructed as semantic clash trees. In this case, by
exploiting the generalized notion of failure, it has been possible to impose
additional restrictions on the generation of unifiable partitions. However, the
basic system of three inference rules corresponding to inference nodes re-
mains essentially that of Sibert's thesis. We are pessimistic about the possi-
bilities of finding other semantic tree constructions which yield efficient
inference systems for the predicate calculus with equality.
Hayes (1969) has applied the semantic tree method to obtain a simple

mechanizable inference system for J. McCarthy's three-valued predicate
calculus.
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A Machine-Oriented Logic incorporating
the Equality Relation

E.. E. Sibert, Jnr.
Rice University

1. INTRODUCTION

A major source of inefficiency in complete proof procedures for first-order
logic has been the lack of a satisfactory way of handling the equality relation
(Wang 1965, Robinson 1967). In almost all methods previously studied it
has been necessary to treat equality as simply another binary relation, and
to introduce a number of axioms so that this relation has the desired pro-
perties. Such an approach not only lengthens the statement of the problem,
but also tends to cause the generation of numerous redundant inferences.
Here we present a system of first-order logic which is machine-oriented,

in the sense that single inferences usually require a substantial amount of
information processing, and which is specifically intended to provide a
theoretical basis for proof procedures capable of handling equality in an
efficient manner.
As has commonly been the case with machine-oriented formalisms, the

system is organized around the concepts of unsatisfiability and refutation,
instead of validity and proof; and the sentence to be refuted is taken to be in
prenex form, with no existential quantifiers in the prefix, and the matrix in
conjunctive normal form.
The plan of the paper is as follows: section 2 is devoted to an account of

the syntax and semantics used, and to a discussion of Herbrand's theorem
in this formalism. In the third and fourth sections the three rules of inference
are described, and the main completeness theorem is established. Section 3
discusses the case in which no variables are present, and section 4 treats the
general case.

Section 5 develops an improved form of one of the rules of inference,
making use of a recent result on resolution given by J. R. Slagle. Section
6 treats some devices for increasing the efficiency of refutation pro-
cedures, concluding with a discussion of the subsumption principle, a
technique for detecting superfluous clauses, and a thorough analysis of its
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relation to completeness. An example is presented which illustrates the
application of these results.

2. FORMAL PRELIMINARIES

The syntax used here is an extension of that described in Robinson (1965a),
with some additional notation for equality. In order to keep the presentation
reasonably self-contained, we give here a brief description of that syntax,
borrowing freely from Robinson's account
We assume an infinite supply of variables, function symbols of each degree,

and predicate symbols of each degree. The usual conventions are used in the
choice of letters for these symbols. We use one logical symbol, that of
negation: . An ordering, called the alphabetical order, is supposed to well-
order the collection of symbols, with the negation symbol preceded by all
the others.
Terms. A variable is a term, and a string of symbols consisting of a function
symbol of degree n 0 followed by n terms is a term.
Atomic formulae. A string of symbols consisting of a predicate letter of
degree n0 followed by n terms is an atomic formula (atom).
Literals. An atomic formula is a literal; and if A is an atomic formula then
A is a literal.

Clauses. A finite set (possibly empty) of literals is termed a clause. The
empty clause is denoted by: 0.
Ground literals. A literal which contains no variable is termed a ground literal.
Ground clauses. A clause containing only ground literals is a ground clause.
In particular, 0 is a ground clause.
The set of all terms and literals is well-ordered in the lexical order by the

rule that A precedes B if A is shorter than B or, if A and B have the same
length, then A has the alphabetically earlier symbol in the first position at
which A and B differ.
When writing out terms and literals we shall use parentheses in the custom-

ary fashion, so it will not be necessary to show explicitly the degrees of the
function and predicate symbols.
The following definitions concerning instantiation, while not actually

part of the syntax of our logical system, may conveniently be given here.
A substitution component is any expression of the form T V. where V is a

variable and T is any term different from V. V is called the variable of the
component T/ V, and T is called the term of TI V. A substitution is a finite set
(possibly empty) of substitution components, no two of which have the
same variable. The empty substitution is denoted by a.

If E is a finite string of symbols and 0 is a substitution, then the instance of E
by 0 (denoted by E0) is the string obtained by replacing each occurrence in E
of a variable which is the variable of a component in 0 by an occurrence of
the term of that component. If C is a set of strings, we denote by CO the set
{EO: EEC}.
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The composition of two substitutions, 0 = {Ti V1,. T k I Vk) and 2,
is the substitution 0' u A', where is the set of all components of 2 whose
variables are not among VI, . . Vk, and 0' = {T121 Vi: I = 1, . . k). It is
shown in Robinson (1965a) that, for any substitutions 2, 0, it, c0 = Oc = 0;
(20)11 = 2(0p); and, if E is any string, then E(20) = (E2)0.
We now return to the development of the syntax. As special forms for

equality we allow two additional kinds of literals. First, we allow equations
having the form

= {cc,/1} (2.1)
or = (2.2)
where a and la are any terms. Second, we allow inequalities having the form

0 tab • an}, n 1, (2.3)

where ., an are any terms. The negation symbol is never used with
either of these forms.

Expressions of the form (2.1) will be interpreted as the equation

cc = p, (2.4)

and we shall commonly use this more usual form to represent (2.1). The
'labelled set' notation is introduced because it emphasizes that the order in
which a and fl are written in (2.1) is immaterial. (2.2) is equivalent to the
trivial equation a = a.
The inequality (2.3) will be interpreted as 'ai, ., an are not all equal'. As

for equations, when n = 2 we shall commonly write al 0 az instead of (2.3).
The case n = 1 represents the trivial inequality ai ai.
We shall not use literals of the form = {ai, ..., an} even though it would

seem a natural extension of the notation already adopted. The reason for this
will appear later.
The special expressions for equality do not fall within the Polish syntax

described in Robinson (1965a), and we shall not consider that either = or 0
is a predicate letter. To distinguish the two sorts of literals in our syntax, we
shall refer to literals formed in the usual way with predicate letters as type
literals, equations and inequalities will be termed type it literals.
We shall denote the set appearing in a type II literal L by Ls. If, for example,

L is the literal = {a,/3} then Ls is {x,/J}, and if M is 0 {a,/3,y } then Ms is
{;Ay).

Let S be a finite set of clauses, and let T be a set of ground terms such that

(a) If T e T and T' is a subterm of T then T' e T.
(b) If T1,. T,, e T (n 0) and F is any n-ary function symbol appearing

in S then F(Ti, T;)e T.
(c) T contains at least one constant (function symbol of degree 0).

We shall be particularly interested in the case that T is the Herbrand universe
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of S, i.e., the set of all terms that can be formed by using the function letters
appearing in S (and the constant a if S has no constants).

Let U denote the set of all ground atoms which are instances over T of
type I atoms occurring in S, and let E denote the set of all (ground) equations
and inequalities which can be formed with the terms in T.
Note that if A, Be TuU and A is a proper subexpression of B, then A has

fewer letters than B, so that A precedes B in the lexical ordering. Henceforth,
if we refer to an ordering of T or T uU the lexical ordering is always under-
stood.
The set of all clauses which are instances of clauses in S by terms of T

will be denoted by T(S). It is obvious that T(S)cUu U uE.
Ordinarily, an interpretation of a sentence S is just an arbitrary assignment

of truth-values to the ground atoms arising from S. In the present system
something more elaborate is required. An interpretation should specify the
equality relation on the terms and assign truth-values to the atoms in a
manner consistent with the equality relation it specifies. Accordingly, we
make the following definition:
By an interpretation (over T) of S we mean a function

V: T uU u {True, False}

with the following properties:

(0) V(T)cT, V(U uE) { True, False).

(i) If Tj e T and V(Ti) = Tk, then Tk does not succeed Ti (in the
lexical ordering).

(ii) If Xis an n-ary predicate or function letter, al.0 • • •) z,fib • • •t fl.
are terms in T, and

V( 1)= V(fl i), i= 1, . . .,n,

then

V(X(ai, an)) = V(X(fli, 
provided that X(ai, • ., an) and X(fli, • • fin) occur in Tu U.

(iii) If a, /3e T,
'True if V(a) = V(I3),

V(= l} = ',False otherwise.

If al, • • n> 1,

True if V(ai) V(ak),
V(0 tab ., an)) / some j,k,

False otherwise.

The function V will also be referred to as an assignment (function), and V(x)

will be termed the value of x. We define Vfor literals of the form —L,L e U, by

(iv) V(—L) = V(L).

The semantics here is obvious. The function V specifies which terms are

'equal' by giving the same value to equal terms. Property (ii) is simply the
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universal substitution property of equality, and (iii) ensures that statements
about equality have their normal meaning. In particular, trivial equations are
always true, and trivial inequalities are always false. (iv), of course, is just
the usual meaning of negation.
Note that the definition of V on T completely determines the values of V

on E, independently of the values of Von U.
We shall sometimes represent a list of terms oci, . • an by the symbol a,

and write X(Ci) for X(ali ..., an), where it is always understood that if X
is an n-ary..symbol, then a has n entries. In this context 'IV) = V(-fi)'
means that a and have the same number of entries, say n, and that

V(c) = V(fli), i = 1, ...,n.

We shall also use this notation to denote sets of literals, e.g. {a— 0 TO denotes

{cti 0 • • •, 0 Pn}.
An interpretation V is said to satisfy a ground clause Cc Uu UuE if at
least one literal of C has the value True under V, otherwise Vis said to falsify
C. V is said to satisfy the system S if V satisfies every ground clause which is
an instance of a clause in S by terms in T. If there is no choice of the set T
and interpretation V which satisfies S, then we say that S is unsatisfiable;
if there is, we say S is satisfiable.

If LeUu —U then, for any interpretation V, exactly one of L, —L is true
under V. Thus any clause which contains such a 'complementary pair' of
literals is satisfied by any interpretation (i.e., every ground instance of it is
satisfied by any interpretation).
Suppose that L is a ground equation and M a ground inequality such that

LSC MS. If, for some interpretation V, V(L) = False then L has the form
a = 13, where V(a) V(13). But then M has the form 0 y } , so
V(M) = True. Thus at least one of L, M is true in any interpretation. This
fact motivates the following definition.
Two literals of type ii, L and M, are said to be complementary if one of

them, say L, is an equation, the other (M) is an inequality, and LscMs.
Complementarity for type II literals as thus defined is a weaker notion than

for type i literals, but, what is most important, we still have the property that
any clause which contains a complementary pair of literals is satisfied by
every interpretation.
We now state Herbrand's Theorem for the logical system just described.

Let TH be the Herbrand Universe of S, and T11(S) denote the set of all ground
instances of clauses in S by terms in T. Herbrand's Theorem: If S is un-
satisfiable then there is a finite subset of T11(S) which is unsatisfiable, and
conversely.
The argument given in Robinson (1967) is readily adapted to the present

case.
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3. GROUND .REFUTATIONS

We shall now formulate the ground forms of the rules of inference and
establish the completeness of these rules; but first we need to define
a restricted type of interpretation suitable for use with ground systems and
derive its relation to the general interpretations defined earlier.
Let S be a finite set of ground clauses. Let

T ={Ti, ,T}

be all of the terms appearing in S (including those appearing only as sub-
expressions), ordered as before. Let E denote the set of all equations and
inequalities involving only terms in T, and denote by U the collection of all
type i atoms which appear (or whose negations appear) in S. The sets T,E,U
are, of course, all finite.
By a ground interpretation of S we mean a function V defined just as

before, but on the restricted sets T, E, U, and satisfying the requirements for
general interpretations.
Now let S' be some set of clauses (with variables), and let T' be a set of

terms satisfying properties (a), (b), (c) for S'. Let U', E' be the corresponding
sets of literals. Suppose that the ground sentence S consists of clauses in
T'(S'). Clearly T cT', UcU', EcE' . Any ground interpretation of S is the
restriction of an interpretation of S' to T uU uE. The restriction of an
arbitrary interpretation V' of 5' to T uUuE will not, in general, be a ground
interpretation of S, for it need not be the case that V' (T)c T. The following
lemma shows, however, that there is a ground interpretation of S which is not
essentially different from V'.
Lemma. In the above notation, if V' is any interpretation over T' of SI,
then there is a ground interpretation of S, V which coincides with V' on
UuE. Conversely, if V is a ground interpretation of S, there is an interpreta-
tion V' over T' which coincides with Von Tu UuE.
Proof Let V' be an interpretation over T'. Define a ground interpretation V
of Sas follows: For Xe UuE, V(X) = V' (X). For Te T, let Ti be the earliest
term in T such that V1(T1) = V'(T), and put V(T) = T1. Clearly, for
Tie T, T2 e T we have

V(Ti) = V(T2) iff V'(Ti) = V'(T2)

and it follows trivially that V is the required interpretation.
The converse follows easily; a straightforward induction argument can

be used to extend V to the required interpretation.
From this lemma it follows at once that there is a ground interpretation

which satisfies S if there is a (general) interpretation of S' which satisfies
S. Thus, in considering the satisfiability or unsatisfiability of ground systems
we may restrict our attention to ground interpretations. In view of this fact,
we shall henceforth simply say 'interpretation' instead of 'ground inter-
pretation'.
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In the subsequent discussion it will frequently be necessary to consider
assignments which are defined on only a part of T u U uE, and it is convenient
to adopt some conventions specifying just what subsets may be the domain
of such a partial assignment. If an assignment is given for all of T (and
hence all of E), it induces a natural partition of the set U, corresponding to

the equivalence relation P(a) P(13) if V(a) = V(/3); and, because of
property (ii), any extension of the assignment must give the same value to all
members of a class of the partition. Any partial assignment considered here
will either be defined on (a) an initial segment of T, together with those
literals in E to which it can be extended by (iii), or else on (b) T t..)E and the
union of some of the classes of the partition induced on U.
A partial assignment V is said to falsify a clause Ce S if Vis defined and

has the value False for every literal in C. V is said to satisfy C if V is defined
and has the value True for at least one literal of C.

If V is a partial assignment and T is a term for which V is not defined, then
V is said to force the value of T if, for some function letter F, T =
V(a) = V() (V being defined on -A), and there is a term T' = F(%3*) for
which V is defined. The significance of this concept is, of course, that if V*
is an extension of V to a set which includes T, then V* (T) = V(T').

If a partial assignment V defined on { T1, Tk} forces the value of a
later term T„„ it may be the case that there is a clause C which is falsified by
every extension of V which is defined at T,„, because of the forced assignment
of T.. One could then say that V already falsified C in such circumstances.
However, the definitions we have made specifically exclude any look-ahead'
of this sort, and we shall not say that such a partial assignment falsifies C. The
approach used instead will greatly simplify the ensuing arguments.
Given a finite set S of clauses, form a set S' by (a) deleting from S any

clause which contains a trivial equation or which contains a complementary
pair of literals, and (b) deleting from the remaining clauses any trivial
inequalities. Certainly S is satisfiable if S' is satisfiable, for every clause
deleted in (a) is true in every interpretation, and each literal deleted in (b) is
false in every interpretation. Note that in (b) we may obtain the empty
clause, in which case S is clearly unsatisfiable.

Henceforth we shall suppose that these reduction processes have been
applied to any clauses we consider. A clause is said to be trivially satisfied if
it can be eliminated by (a) above.

Since any instance of a trivial equation or inequality is also trivial, any
set of clauses (not necessarily ground clauses) may be reduced in this way
without affecting satisfiability.
A term a is said to be maximal in a clause C if a is not a proper sub-

expression of any term appearing in C. This definition also is not restricted
to ground clauses. Note that we do not require that a appear in C.
We are now in a position to state three rules of inference (for ground

systems) and establish their completeness. In the following A and B denote
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sets of literals, {A V B} = A uB, and, if L is a literal, {A VL} = Au (L}.

Rule I. Let P be a predicate letter. Then from

{A V P(ai)V ...V Pia;)} (3.1)

and {B V —P(-11) V ... V ,--P( k)} (3.2)

infer {A V B V 0 {ai, ai, &}}. (3.3)

A and B may also contain literals with predicate letter P. We require that
(3.1) and (3.2) be different clauses.

Rules 2 and 3 are to be applied only to clauses consisting entirely of
equations and inequalities.

Rule 2. Let

A = {A V a = fi V . . . V a = /3,4
and B1, . Br be clauses such that

1. a appears in, and is maximal in, each of the clauses A,Bi, ..., Br;

2. a does not appear in A.

Then from these infer

{A V Bi[th Ja] V .. . V B,113,1all. (3.4)

The notation Bi[fl I a] means 'replace each occurrence of a in Bi by
Note that, because of 1 above, (3.4) will contain no term which does not
already appear in A,Bi, Br. The clauses B1, . . B, need not all be distinct.
The deduction in this rule is simply that if all of the literals in A are false,

then at least one equation a = fli is true, hence Bi[f3ila] must be true. Note
that there are (at least) r! ways to apply this rule to A,Bi, ., Br.

Rule 3. Let A be a clause and F(a-') be a term which occurs in A and is maximal
in A. (F represents any function letter of positive degree.) Let F() be some
other term such that F(a-.) is not a subexpression of F(i). Then infer

•-■ •-•

{a y V A[F(y)I F(a)]}. (3.5)

In applying this rule to the clauses of a ground system S the term F(;) is
to be a term appearing in S.
The maximality restraint imposed in rules 2 and 3 is chosen because it

carries over to the case in which variables appear. The results we are about to
establish for ground systems could be strengthened slightly by requiring
'lexically largest' terms instead of maximal terms, but this condition could
not be retained in the general case.
The soundness of these rules follows readily.

For rule 1: Let V be an interpretation which satisfies (3.1) and (3.2). If V
satisfies any literal in A uB, then V satisfies (3.3). If not, then a literal P(r)
in (3.1) is true in V, and likewise a literal —P(A) in (3.2), whence V(a—,)

V( s). Thus V satisfies 0 {ai, . ., 73k .
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For rule 2: Suppose A,Bi, ...,B,. are clauses satisfying the requirements of
the rule. Let V be an interpretation which satisfies all of these clauses. If
every literal in A is false under V, then, for some 41<i<r, we have that
V(a) = V(fli), hence Bi[flacc] is also satisfied by V and V satisfies (3.4).

For rule 3: Let A, F(;), F(;) be a clause and terms as required by the rule,

and let V be an interpretation which satisfies A. If V(a) V(y) then (3.5)

holds. If not, then by property (ii) for interpretations, V(F(a-')) = V(F(i))
and V satisfies A[F(y)1(a)], whence, in any case, V satisfies (3.5).
The following theorem is the crucial part of the completeness argument.

Expansion theorem. Let S be a finite, unsatisfiable set of ground clauses
(reduced as above) which does not include 0. Then at least one of the rules 1,
2, 3, when applied to suitable clauses of S, will produce a clause which is not
in S and is not trivially satisfied.
Proof Let the sets T, U,E be defined as before.
Case 1: There is a partial assignment V defined on all of T (and all of E)
which does not falsify any clause in S.
Let { U1, . . UR} be the partition of Uinduced by V. Extend Vas follows:
Having defined V on Ui u u Uk so that no clause of S is falsified,

define V( X) for Xe Uk+1 to be
True, if no clause of S is thereby falsified; otherwise
False, if no clause of S is falsified by that choice; otherwise do not
assign V on Uk+1 and stop the extension process.

As S was assumed to be unsatisfiable, this extension procedure must halt with
V defined on TuEu U1 u... u Uk, where V does not falsify any clause of S,
but any extension of V to Uk+1 does falsify some clause in S.

Since the value False for the atoms in Uk+1 falsifies some clause, S must
contain a clause

{AV P(Z)V ...V P(af)}, (3.6)

where V already falsifies all of the literals in A, and P(ai)e Uk+1, i = 1, . j.
Likewise, the choice True for Uk+1 can only falsify a clause of the form

{BV ...V .--,P(ik)},

where B is also falsified by V and P(,) e +1.
Consider the clause

(3.7)

{AV BV {(xi, cep flk} } (3.8)

obtained by applying rule 1 to (3.6) and (3.7). Now all of the literals in

A uB are false in V, and since the atoms P(ai) and P(fli) belong to Uk+i,
we have

V(a1) = V(«2) = = V(a) = V($l) = = V(flk),
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so the clause (3.8) is false under V. Since V does not falsify any clause in S,

we conclude that (3.8) is not in S, and clearly (3.8) is not trivially satisfied.
Case 2: There is no partial assignment defined on all of T which does not
falsify some clause in S. Since we have assumed that S has no trivial literals
the (only possible) assignment V(71) = T1 does not falsify any clauses in S.

Consequently there is a non-empty partial assignment V defined, say, on

Ti,. Tn_1 (and by extension for those equations in E involving only terms
among T1, such that no clause in S is falsified by V. but any
extension of V to T,, does falsify some clause in S. We distinguish two sub-

cases:

Subcase (a): V does not force the value of T„.
Setting V(T„) = T,, falsifies only literals T,, = Tk,k<n, so S must contain

a clause A of the form

{A V T,, = V • • • V = fir},

where A is already falsified by V, and fly, are terms preceding T„.
Note that is maximal in A, being the latest term which appears in A,

and that, as V falsifies A, T,, does not appear in A.
Now setting V(T,,) = V(/J,), for i = 1, . . r, also falsifies a clause in S;

call it Bi. Tn therefore appears in Bi, and is maximal, for Bi can involve only
T,, and earlier terms. Thus we can apply rule 2 to A, B1, . . B, (with T,, as the

key term) to obtain

{A V BIM INV ...V BrUiriTnn • (3.9)

But V must falsify (3.9) since V falsifies A, and the clause Bi is falsified by

putting V(T„) = V(fli). Thus (3.9) is not in Sand is not trivially satisfied.
Subcase (b): V forces the value of T,,.

T,, has the form F(a) and there is an earlier term F(') with V(a) = V().

The only allowable choice V(T„) = V(F(F)) falsifies some clause A in S.
Since T,, is the latest term that can occur in A, T,, is maximal in A. Also, as

F(;) precedes F(C;), F(a) is not a subexpression of F(;). Thus we may
apply rule 3 to obtain

{a y V A[F(y)1F(a)]) (3.10)

Now by assumption, V(a) = VG), and the choice V(F(a-+)) =

falsifies A, hence V falsifies A[FG)IF()], hence V falsifies (3.10) so that
(3.10) is not in S and is not trivially satisfied. Q.E.D.

Notice that in each case of the proof of the expansion theorem we produced

a clause C and a partial interpretation V which falsified C but did not falsify

any clause in S. This point will be of considerable importance in section 6.
The motivation for the less natural developments in the earlier discussion

appear in the argument just given. The 'large' inequalities were introduced to

provide a natural and compact notation for rule 1. Correspondingly large
equations were precluded to avoid complications in rule 2. And the restricted '

112



SIBERT

viewpoint on partial interpretations (especially the avoidance of 'look-ahead'
for forced terms) was adopted in order to obtain a clear-cut distinction be-
tween subcase 2(a) and subcase 2(b).
We are now in a position to define a procedure for determining whether a

finite set of ground clauses is unsatisfiable. If S is such a set, let E(S) denote
the set S together with all of the clauses that can be deduced from S by
application of rules 1-3, with trivial clauses and literals eliminated as usual.
E(S) is a finite set of ground clauses, so we may (inductively) define
En(S)=E(En—l(S)) for all n> 0, where we define Eo(S) =S. Observe that
En—l(S)cEn(S).
Such a procedure is suggested by the following:

Theorem. Let S be a finite set of ground clauses not containing D. Then
either

1. for some n> 0, 0 E En (S) , in which case S is unsatisfiable, or else

2. none of the sets EJ(S) contains 0, but for some n>0,
En(s) = En-1 (S) , in which case S is satisfiable.

Note that if En(S) = En-1(S) and./ 0, then En+J(S) =En-1(S).

Proof If 1 holds, certainly S is unsatisfiable, since any interpretation which
satisfies S satisfies En(S), but no interpretatioti satisfies O.
Suppose then that 1 does not hold. Now there are only finitely many

literals which may appear in clauses of Ei(S), namely

(i) type i literals which already appear in S,

(ii) equations involving only terms already appearing in S, and

(iii) inequalities, again, involving only terms already present in S.

From this finite supply of literals only a finite number of clauses can be
generated, hence the sequence

S, E(S), . . En(S), (3.11)

cannot increase indefinitely, i.e., for some n, En(S) = En-1(S) . But En-1(S)
cannot be unsatisfiable, for it does not contain 0, so the expansion theorem
implies that if En-1(S) were unsatisfiable then En(S) would contain clauses
not already in En-1(S) . Thus En-1(S) is satisfiable, and, as ScEn—l(S), S
is satisfiable. Q.E.D.
Thus, if, for a given set S, we compute the sequence (3.11), then in a finite

number of steps we either deduce the empty clause or the sequence breaks
off, and in any case the question of the satisfiability of S is settled.

4. GENERAL COMPLETENESS THEORY

We now wish to extend the results of the preceding section to the general
case, i.e., to systems containing variables. To this end we require some pre-
liminary discussion of unification and the replacement of maximal terms.
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By a formula we mean a term or a literal of type I (not one of the equality
literals). Let A= {Ai, . . An} be a collection of finite, non-empty sets of
formulae. If there is a substitution 0 such that AiO,. . ., AO are all singletons,
then 0 is said to unify A, and A is said to be unifiable. The unification algor-
ithm, given in Robinson (1967), can be applied to any such collection. The
algorithm determines, first, whether the input collection is unifiable, and, if
it is, produces a substitution, the most general unifier (m.g.u.) of the input
set. This substitution has the property that if, say, a is the (m.g.u.) of a
unifiable collection A and 0 is any substitution which unifies A then there is a
substitution 2 such that 0 = a1.
If A is a disjoint collection and 0 unifies A, we say that 0 contracts A if

there are A e A, Be A such that A OB and AO =BO.
Lemma (4.1). If G is a clause, 0 a substitution, and T is any term such that
TO is maximal in GO, then T is maximal in G. (Briefly: the ancestors of a
maximal term are maximal.)
Proof. Suppose, to the contrary, that there is a term Uin G such that U= XTY,
where X and Y are some strings of letters, not both empty. Then U0=
(X0)(T0)(Y0), which contradicts the hypothesis that TO is maximal in GO.
A term T is said to be a primary term of a clause C if T appears in C as an

argument of a predicate letter or as a member of an equation or inequality.
As an example, in the clause

C= {P(x,f(y)) V 0 {x,y,f(z)}}

the terms x,f(y), f(z) are primary and maximal, y is a primary term but not
maximal, z appears but is neither maximal nor primary, and xi is maximal
over C but not a primary term of C.
We also need to establish some elementary lemmas relating ordinary

substitutions and the replacement of maximal terms.
Lemma. Let A and B be sets of terms with AO= B. Let cx0=13 where 13 is
maximal over B, and suppose that A contains no term other than cc which is
carried into fl by 0. Then, if y is any term, A[y 1 cd0 =B[y0 /f3].
Note. The hypotheses of the lemma do not require that a e A and /I e B.
Proof. Since A contains no ancestor of 13 other than cc, we have that a e A
if /3 e B. If cc A and /3 B, then A[y I cd= A and B[y0113]=B, and the
conclusion follows at once.

If, on the other hand, a E A and fi e B, we have that T* e A[y 1 oc]0. there
exists T' e A[y 0] such that TO =T*. Now either T'=y or T' 0y, but

=.y.T*=y0T* e B [y0 1 Pk since JO e B;

and T' e A &T' OccT* e B &T* e B[y0 113].

Thus A[y 1 a]l) cB[y0 113].
Also, let T* e B[y0 1 if3]. Either T* =y0 or T* 0y0, and a €4, soy e A [y /cc]

whence yO E A[y lad°. But

T* #y0T* e B & T* there exists T' e A such that
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T'O=T* &T'OocT' eA [y /a]T* eil[y/a]0.

Thus B[y0 IP] A [y /c]0, so A[y 1 oc]0 =B[y0
Corollary. A and B in the preceding lemma may be taken to be both equations
(or both inequalities). For an equation (inequality) is nothing more than a
set with a label, and the labels are not affected by the substitutions.
Corollary. The preceding lemma holds if A and B are taken to be type t
literals, rather than sets of terms.
Proof. Let T be the ith argument of A and T' be the ith argument of B. By
the lemma, {T}[y I a] 0= {T'}[y0 113], and the conclusion follows.
Lemma (4.2). Let A and B be clauses such that AO=B. Let cid). fl where 13
is maximal over B, and suppose that A contains no term other than a which
is carried into )3 by 0. Then, if y is any term, A [y /a] 0 = B[y0 13].
Proof. L* e A[y /a] Othere exists L e A such that

L[y 1 ce]0 =L*(L0)[y0 /13] e B[y0

But, from the preceding corollaries,

(L0)[y0 1 fl]=L[y 1 cc]0=L*,

so A[y 1 ay cB[y0 1,0].

L* e B[y //t]there exists L e A such that

(L0)[y0 1 fl]=L*L[y 140 e A[y /c]0.

But L[y 1 a]O=LO[y0 1 i0]=L*,

so A[y 1 a]On B[y0 113].

Thus A[y I c]0=B[y0 1 fil.

We shall now carry out the 'lifting' of rules 1-3 for ground clauses so as to
state more general rules which apply also to clauses with variables. For each
ground rule we shall formulate a corresponding general rule (called by the
same name) and justify the general rule by establishing that if, say, C' is
deduced by the application of the ground rule to reduced instances of clauses
C1,. . C,, then C' is a reduced instance of a clause C which may be deduced
by applying the general rule to C1, . . C,. The correspondence between the
general rule and the ground rule is shown diagrammatically in figure 1,
where the dashed arrows indicate instantiation followed by reduction, and
the solid arrows indicate application of the rule.
The soundness of the rules about to be presented follows at once, for each

rule consists of applying the inference made in the ground rule to suitable
instances of clauses already present.

Rules 1 and 2 are stated to be applicable only to input clauses which have
no variables in common. In general this restriction is met by standardizing
the input clauses apart.
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Again, we shall suppose that none of the input clauses is trivially satisfied
and that trivial inequalities have been removed. We denote by R(C) the
clause C with trivial inequalities deleted.

Figure 1. Correspondence of the general rule to the ground rule

Note that if a, p are substitutions such that no variable of a component of
a is the variable of a component of p, then a up is also a substitution.
Henceforth, whenever we write an expression a up we imply that a and p
are just such substitutions.
We shall frequently make use of the trivial fact that if A and B are sets of

formulae such that no variable of A is the variable of a component of p, and
no variable of B is the variable of a component of a, then

(A uB)(cr p)=(Aa uBp).

Whenever, in the course of a construction, we call for a substitution 0 such
that, say, CO has a certain property, it is understood that every variable of a
component of 0 actually appears in C. Clearly, if there is any substitution
at all which fulfils the requirement, then there is such a ̀ non-redundant'
substitution.
Rule 1 (general form). Let P be a predicate letter (not one of the special
forms for equality) and let

{A V P(a-.1) V ... V P(;)} (4.3)

and {B V —P(l3i)V ...V —P(fl k)} (4.4)

be clauses with no variables in common. Then infer

••■ -#

{AV BV tab xj, 130}. (4.5)
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As with ground clauses, A and B may also have literals with predicate letter

respectively. Note that ground rule 1 is a special case of this one.
The clause (4.4) may be a variant of (4.3), although in section 5 we shallestablish that this case can be eliminated.

A
8

eUcp

A

Figure 2. Diagram for the justification of rule 1

Justification of rule 1 (see figure 2). Let

A' = {A' V P(Z)V . . VP(;)}

and B'= {B' V —P(71) V ... V ,,,P(70)
be ground clauses which are reduced instances respectively of

A= {A* V AVP (al) V . . V P(cj))

and B= {B* V BV ,P(131)V ...V P(fik))
by the substitutions 0 and 0. A* represents those inequalities in A which areunified by 0, P(a1), . . P(&.') are all of the literals in A which are carriedinto P(i ), P() by 0, and A represents the remaining literals. Similarlyfor B.
Now, applying ground rule 1 to A' and B' gives

C' ={A' V B' V 0 {cq, 73;)).
Applying general rule 1 to A, B gives

C= {A* V B* VA VBV {ai, • • ”fik}},

but C(0 u0)--.- {A*0 V B*0 V A' V B' V 0 {c71, 
which reduces to C', since A*0 and B*0 consist of trivial inequalities.
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Rule 2 (general form). Let A, B1, . B, be clauses with no variables in

common, and such that Bi0 A, i=1, . . .,r. Let M be the set of all terms which

are primary terms of any of the clauses A, B1, . . B. Let be a unifiable

partition of M with m.g.u. a, where a does not contract 9, and put

A* =M(Aa),

Bi* =.2(Bia), 1=1, r.

Require that A* have the form

(A* V a*=flt V ... V a*fl;:),

where

1. a* appears in, and is maximal in, each of A*, Br,. .

2. a* does not appear in A*.

3. none of the clauses A*, Br, V is trivially satisfied.

Then infer

{A* V Bt[fit /a41] V ... V Bnfl I .

Justification of rule 2 (see figure 3). Let

Ai= {A' V cc' =fli V . . . V ce./3;}

and Bk,. . B; be ground clauses as required for the application of ground

rule 2 (with a' denoting the key term). Suppose that

= R(B i01), i=1, . . r,

where we assume that A, B1, . • Br have no variables in common. Put

u0,..
Let M be the set of all primary terms of A, B1, . . B, and let 9 be the

partition of M induced by 0 (i.e., the partition of M determined by the

equivalence relation XL' Yiff X0= YO). 9 is unifiable and is not contracted

by its m.g.u. a. Thus put

B= (Ba), i=1, . . r.

There is a substitution such that 0 =aA. Moreover, does not unify any

pair of primary terms occurring in A*, Br, . . , since a already unifies the

partition 9 induced on M by 0; so

A' =A*A.,

V=B,1. i= 1, . r.

Let a* be the (unique) term in A* such that a').= cc'. Since cc' appears and is

maximal in each clause A', Bi, . . Be', it follows by lemma (4.1) that cc*

appears and is maximal in each clause A*, Br,.

Let fl', . /3: be the terms in A* which are the ancestors of g . )3;

respectively by 1 Then A* has the form

{A* V a*=flt V ... V a*./3;},

where a* does not appear in A*, since cc' does not appear in A'.
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Figure 3. Diagram for the justification of rule 2

Also, since none of A, B1, . . B; is trivially satisfied, it must be the case
that none of A*, Br,. B: is trivially satisfied. Hence general rule 2 applies
and by it we deduce

C*={A* V Bt[fit /al V . .. V BniVict*i}•Ground rule 2 applied to A', Bi, B; yields
C'={A' V Bi [fli /al V . . V B4/3;/a']).

But now
C*2= {A*A V HMI' /celA V. . . V /37[Ana*]2}
= {Ai V B1 [fl1 V ... V BO; /all
=C"

for, by lemma (4.2), B7[/3? /a*N=Bi[/3; /a].
Rule 3 (general form). Let A be a clause and let M be the set consisting of all
the primary terms of A. Let g be a unifiable partition of M which is not
contracted by its m.g.u. a. Set

where we require that A* not be trivially satisfied. Let a* be a maximal term
of A*, appearing in A*, which is not a constant. We distinguish two cases:
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Case 1. a* is a variable. Let n be the maximum of the degrees of the function
letters appearing in the problem at hand, and let X1, Xn, 1'1,..., Yn be
variables not appearing in A*. Then infer

{ XO Y V A* },
■•■

where X= Xi, X,, and Y= . • ., Yn•
N.B. We shall show in section 6 that no deduction whatever is required in
this case. The justification of the rule, however, is vastly simplified if we retain
this rather trivial inference for the present.

Case 2: a* begins with a function letter of degree n > O. Let Xi, . • ., Xn
be variables which do not appear in A*, and set 51. xn. Let F denote

the initial letter of a* and write a* =F(73*). Infer

{X* V A*[F(;)I .

Justification of rule 3. Let A' be a ground clause and let a' be a maximal

term appearing in A', a' =F(13), where F is a function letter of positive degree.

Let F(y) be some other ground term which does not contain a'. Applying
the ground form of rule 3 we obtain

C'= {y0fl V A'[F(y)I al} .

Now suppose that A' = (AO). Let M be the set of all primary terms of A,
and let g be the partition of M induced by 0. As for rule 2, g is unifiable and
is not contracted by its m.g.u., a.
Put A* =R(Arr) and let be a substitution such that a)=0. ). does not

unify any pair of primary terms occurring in A*, since a unifies g and g is
the partition induced by 0. Thus

A' = A*A,

and there is a unique term cc* appearing in A* such that a*A= a' . a* is maxi-
mal in A* and, since A' is not trivially satisfied, A* is not trivially satisfied.
Moreover, cc* is not a constant, since a* A=F(13) and F has positive degree.
Consider each of the cases in the rule.

Case 1. a* is a variable. Let n, 2, be as in the statement of the rule and
deduce

C*= {X0 Y V A*}.

Let k be the degree of F, so k <n, and set

(1)= {fli /X1,71/ )1, • • fik /Xk, 7k / Yk, XI,+1/ Yk+i, • • ., Xn/ Yn, F(7)1a*).
Then

C*0= {/30Y V Xici-1# Xk+1 V . . V X„0 X,, V A* [F(y)/al },
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which, after partial reduction, becomes
•-■

D=00 y V A*[F(y)I ,
•■■

but 1312= {13 y V A'[F(y)Ice]}

so (C*0A) = C' .

A

•■■■•

cpUX

e

Figure 4. Diagram for the justification of rule 3 (case 2)

Case 2. a* begins with a function letter of positive degree (see figure 4).
That letter must be F, since a*A= F(/J). Let 71 be the degree of F and apply
the general rule to deduce

C*=tirOl* V A*[F(i;)1 ,

where 2= X1, . . consists of variables not appearing in A* and a*=
F(*). Let

{yi/Xli yn/X„).

Then

C*(4) u)) = {y-'073 V A*2[F(X)0 la* An

071 V AJF(;)1cen

General rules 1-3 are to be applied to the clauses of a set S as follows.
Rule 1. For each pair of clauses A, B e S (not necessarily distinct) form
variants A', B' which have no variables in common and apply the rule stated
above in all possible ways to A', B'.
Rule 2. For each clause A e S containing k equations (and no type r literals)
and for each sequence B1, . . of clauses in S,j<k, (Bi contains only type II
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literals), form variants A',.131, . . B.; having no variables in common and
apply the rule in all possible ways to A', Bk,.
Rule 3. Apply the rule in all possible ways to each clause of S which consists
entirely of type II literals. In case 1 of the rule, n is to be the maximum of the
degrees of the function letters appearing in S.

Clearly, we can deduce only a finite number of clauses by applying rules
1-3 to the clauses of a finite set S.
The main completeness theorem now follows. For any finite set of clauses

S let E,„ (S) denote the set consisting of S together with all of the clauses
that can be deduced by applying general rules 1-3 to clauses of S, reduced
as always. J2 (S) will also be a finite set of clauses, so we may recursively
define E(S) = E,(Erl (S)), (S) =S.
Now any instance of a trivial equation is also a trivial equation, and

likewise for trivial inequalities, hence, in view of the justifications given, we
have established the following.
Theorem. Let S be any set of clauses and let S' be any set of reduced ground
instances of S, then all of the clauses in En (S') are reduced instances of
clauses in E(S).
By a terminal clause we mean a clause which has an instance which reduces

to O. It is clear that a clause Cis terminal iff C= 0 or C= {L1 V. . VL},
where the literals Li are all inequalities and {g, . L„} is unifiable.
Now suppose that S is unsatisfiable. By Herbrand's Theorem there is a

finite set of (reduced) instances of clauses of S over the Herbrand universe
of S which is unsatisfiable. Call this set of ground clauses S'. From section
2 we see that for some integer n, 0 e E" (S'), hence we have proved the
following:

Completeness theorem. Let S be an unsatisfiable set of clauses, then for some
integer n, E(S) contains a terminal clause.

5. APPLICATION OF A RESULT ON RESOLUTION

Rule 1 is essentially resolution (Robinson 1965a) applied to equivalence
classes of literals, instead of identical instances. As such, it would seem likely
that some of the stronger results about resolution could be adapted to the
present situation (Wos et al. 1965, Robinson 1965b, Slagle 1967). This is
indeed the case.
Let us consider again the expansion theorem of section 3, and particularly

case 1 of the proof of that theorem. Given an unsatisfiable set S of ground
clauses we suppose that V is a partial assignment defined on all of T (hence
all of E) which does not falsify any clause of S, and take g = . UR}
to be the partition of U induced by V.

Writing 1/1 for the set { X e U1}, we define the representation of a
clause C to be the set

C'= { W: (We gl or We) & Wn C044.
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If we now regard the sets U1,..., UR as ground atoms, then the representations
become clauses, and if we denote by S' the set consisting of the representations
of the clauses in S which are not satisfied by V, then the hypothesis that S is
unsatisfiable implies that S' is unsatisfiable. The argument in case 1 of the
expansion theorem consisted essentially of the application of the proof of the
ground resolution theorem of Robinson (1965a) to S'.
Perhaps the strongest result known at present which can be used here is the

the unresolved AM-clash theorem proved by J. R. Slagle (1967, theorem 6).
Let A be a linear ordering of the (finite) set g, and let M be a model of g.
An AM-clash is a finite collection of clauses {Eli Eq, C} satisfying the

following conditions:

(i) The nucleus C contains at least q literals L1,. . where q >1.

(ii) For each 1, 1 < i<q, the clause Ei contains the complement ,,‘Li of
the literal L,, but does not contain the complement of any literal
which occurs in any E, 1 <.j<q, nor the complement of any other
literal in C.

(iii) Each of the clauses Eli . Eq is false in M, thus Cis true in M.

(iv) 141 is the largest atom appearing in Ei (in the ordering A). ILI
denotes L with the negation symbol (if iiresent) removed.

If, in addition, L1,. Lq are the only literals in C which are true in M, then
Eq, C} is a maximal AM-clash.

The resolvent of {E1, . Eq, CI is the clause

which is implied by E1,. . Eq, C. These concepts are discussed in Robinson
(1967) and Slagle (1967).

The AM-clash theorem states that if S' is a finite, unsatisfiable collection of
non-empty clauses, A is an ordering of the atoms appearing in 5', and M is
an interpretation, then S' contains a maximal AM-clash whose resolvent is
not in 5'.
In constructing a rule based on this theorem we cannot, of course, refer

directly to the classes 111. To avoid this difficulty we shall use orderings and
interpretations defined solely in terms of the predicate letters, which will be
applicable to any partition g.
We define an equable set of literals to be a non-empty set of type i literals

which have the same sign and predicate letter. Let A be an ordering of the
predicate letters appearing in a ground system S, and let M be an interpreta-
tion defined for the type i literals of S which always assigns the same truth-
value to atoms which have the same predicate letter. An equable set is said
to be true in M if all of its literals are true in M, and false in M otherwise.
An AME-clash is a set of clauses

{Eli Eq, C) (5.1)
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satisfying the following requirements:

(i) The nucleus C contains at least 1 disjoint, equable sets of literals
21, . • ., 2'q.

(ii) For each 1,1<i<q, the clause Ei contains an equable set 2', whose
literals have the same predicate letter as those in 21, but with
opposite sign. Moreover, does not contain the complement
of any type ! literal in C— 29i, and El does not contain the comple-
ment of any type !literal in any clause E, 1 <jq

(iii) All of the type literals of E1, Eq are false in M.

(iv) The predicate letter appearing in 2 is maximal (in the ordering A)
among the predicate letters appearing in El.

The clauses are, of course, distinct. Strictly speaking, the clash consists of
the set (5.1) together with a specification of the sets 21, Yg, .
since there will, in general, be many ways to choose these.
The clash (5.1) is said to be maximal if 21— . . . —..rq contains no

type ! literals which are true in M.
If Xis an equable set of atoms, say {P(l), . P(an)} , then write 0{ X}

for the set of inequalities 0 { j, • . }. We define the E-resolvent of the
clash (5.1) to be the clause

{(E1-2i) V ... V (Eq— .T)V (C-21— . . .

V {WI 211} V ...V #{12'q u 2qI}} • (5.2)

The E-resolvent of an E-clash follows from the clauses in the clash; for sup-
pose that V is an interpretation which satisfies Eli . Eq, C but falsifies all
of the literals in the resolvent (5.2) except perhaps those in C— 21— . . .
—2'q. Then the inequalities indicated explicitly in (5.2) are all false, so, for
each i, the literals in 2's are all true, since E,-21 is false. Hence the literals
of Yi are all false under V, so at least one literal in C— 21— — .rq is true.
We shall now show that ground rule 1 of section 3 can be replaced by the

following rule, rule V, without changing the results obtained in that section.
Rule 1'. Infer the E-resolvent of any maximal AME-clash.
We need only re-argue case 1 of the expansion theorem. Let S' be the

unsatisfiable set of representations defined earlier. The model M is already
defined for the classes of since these are equable sets, and we may choose
a linear ordering A* which contains the given order A.
The unresolved AM-clash theorem assures us that S' contains a maximal

A*M-clash, say

. . .,E,C'} (5.3)

whose resolvent is not contained in S'. Let LI, . . Lq be literals (i.e., classes)
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of C' as in the definition, so that the resolvent of (5.3) is

{(E'IL — { —LO)V ...V(E' — { —LO)V(C'— {Li, „Le})} . (5.4)

Let El, . . Eq, C be clauses in S whose representations are El, E4, C'
respectively. These clauses must be distinct since their representations are
distinct. For each 1, 1 define

i=Lin C,

Clearly 21 and .rl are equable sets with the same predicate letter but
opposite sign, and the remaining requirements of conditions (ii)—(iv) in the
definition of an AME-clash follow at once from the corresponding require-
ments for the AM-clash (5.3). Thus

{Eli E'4, C) (5.5)

with the sets . . . . 2'4 is an AME-clash, and, in fact, is
maximal, since, as (5.3) is maximal, 2), t.) . . . u2q contains all the literals
in C which are true in M.
The E-resolvent of (5.5) is (5.2), which cannot already appear in S, for its

representation is just (5.4), which is not in
It is a straightforward matter now to extend rule 1' to the general case.

We define an AME-clash for clauses containing variables precisely as for
ground clauses, except for the additional proviso that the clauses Eli . E4,C
have no variables in common. It is allowed that some clause Et is a variant of
another clause EJ, but note that requirement (iii) precludes the possibility
that any clause Ei is a variant of the nucleus. The E-resolvent of a general
AME-clash is defined exactly as before, and the extended rule 1' is the same
as the ground rule.
We omit the details of the justification of the extension, since the argument

is not essentially different from that given for rule 1.

6. SEARCH PRINCIPLES

In the foregoing sections we have developed a special system of logic which
provides a theoretical basis for the design of theorem-proving programs with
the equality relation 'built in'. This alone, however, is not enough for the
development of an efficient procedure, and we shall now treat three techniques
for increasing the efficiency of refutation procedures. Two of these are
rather elementary devices based on the properties of equality. The third,
however, the subsumption principle, is a very powerful technique, both
computationally and theoretically, and we shall discuss it at some length.
Let C be a ground clause containing the inequalities L and M, where

Ls n Ms 0. Then C is equivalent to the clause

C'= {( C— {L,M}) V 0 (Ls u Ms)} .
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One can show by a straightforward argument that any interpretation which
satisfies C also satisfies C', and conversely. The expansion result of section 3
is not affected by combining inequalities in the clause produced there, so we
may combine intersecting inequalities without losing completeness.
There is a way in which a clause can be trivially satisfied which has not

previously been discussed. Suppose a ground clause A contains type I literals
P(), ,P(r3), where P represents some predicate letter of degree n> 0, and

a= {al, • . an), 73= Pi, • • fin). Suppose further that for each i, I< i<n,
either as= fi1, or there is an inequality Ali e A such that {as, fit} c Mf. Then
A is satisfied by every interpretation V; for suppose that V falsifies every
literal in A except perhaps for PCa) and ,,,P(f3.). Then V(o) = V(73), since
for each i, cri=fli or {a1,111}cMf, and V(Mi)=False. But then V(P(a)).
—V(— P(fj)) and V satisfies A.
We may drop the restriction to ground clauses, for if any clause A contains

type i literals and inequalities as above, then so does any ground instance of
A. Thus we may include such clauses in the class of trivially satisfied clauses
defined earlier without affecting any of the preceding results.
We come now to the subsumption principle. A clause C is said to subsume

the clause D (0 C) if there is a substitution 0 and a function t satisfying the
following conditions:

I. t: (C0)-4 D. (As before, a (CO) denotes CO with any trivial
inequalities deleted.)

2. If L e P(CO) and L is not an inequality, then t(L) =L.

3. If L e (CO) and L is an inequality, then t(L) is also an inequality
and Ls c (t(L))s.

This definition is a natural extension of that given by Robinson (1965a).
The following is also quite similar to a theorem proved by Robinson.

Subsumption theorem. If C subsumes D then C implies D.
Proof. Suppose that 0 and t are respectively the substitution and function in
the definition (see figure 5). Let D' =a(Dcr) be any ground instance of D
and put C* =R (CO), C' =a (C*a). Define a function t':C'—+D' as follows:
For each literal L' e C' choose one literal L* e C* such that L*0. =L', and
define t'(L') = t (L*) cr. If L' e C' is not an inequality then

t'(L')=t(L*)a=L*o.=L'.

If L' is an inequality we have that

(t' (1,1))s= (t(L*))scr= (L*)so-=(L')s.

Now C' is a ground clause, since every term in C* appears in D and D' is a
ground clause. If V is an interpretation which satisfies C then V also satisfies
C', so there is a literal L' e C' such that V(L')= True. But t' (L') e D' and
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clearly V(t1 (L')) = True. Thus V satisfies any ground instance of D, so V
satisfies D. Q.E.D.
Corollary (5.1). If C subsumes D and a is any substitution, then C subsumes
(Da).

Proof. The construction given in the first paragraph of the proof of the

subsumption theorem establishes the corollary. Note that the condition that
D' be a ground clause is only used to show that C' is a ground clause. It
is not necessary for the construction.

Figure Figure 5. Diagram for the proof of the subsumption theorem

Corollary (6.2). If B subsumes C and C subsumes D, then B subsumes D
(subsumption is transitive).
Proof. (see figure 6). Let 0', u be respectively the substitution and function
required by the definition of 'C subsumes D', and let C' = (C0'). By corollary
(5.1) B subsumes C'. Let 0, t be the substitution and function required by the
definition of 'B subsumes C", and put B' =M(B0). Consider the function
r:B'— D defined by r(L)=u(t(L)). If L e B' and L is not an inequality,
r(L) = u(t(L)) = u(L) =L. If L is an inequality,

(r(L)):=(u(t(L)))8= (t(L))s= Ls.

Thus 0, r satisfy the definition and B subsumes D.
An algorithm is given in Robinson (1965a) which can readily be modified

to obtain an effective test for determining whether a clause C subsumes a
clause D. We shall not, however, discuss this matter further here.

It is an immediate consequence of the subsumption theorem that if S is an
unsatisfiable set of clauses, and D e S is subsumed by some clause in S— {D),
then S— {D} is unsatisfiable. Thus we may contemplate including the sub-
sumption principle in refutation procedures for problems with equality,
namely: discard any clause D e S which is subsumed by a clause in S— { D}.
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We must, however, show that the procedure is still complete when sub-
sumption is included. This is by no means obvious, a point which seems to
have been overlooked in earlier discussions of the subject. It is entirely

conceivable that the subsumption principle might be too 'strong', i.e., that it
could cause deletion of clauses that were essential to the refutation which the

rules of inference would generate in its absence. Such is not the case, as we
shall now demonstrate.

Figure 6. Diagram for the proof of corollary (6.2)

Let S' be a finite, reduced, unsatisfiable set of non-empty ground clauses.

The clause constructed in the expansion theorem of section 3 (with either

rule 1 or rule 1') is called the expansion clause of S'.
Lemma. Let S' be a finite, reduced, unsatisfiable set of non-empty ground

clauses. Then the expansion clause of S' is not subsumed by any clause in

S'.
Proof. Let C' be the expansion clause of S'. If C' arises by the application of

rules 1, 2, or 3, then there is a partial interpretation V which falsifies C' but

does not falsify any clause in S', so C' is not subsumed by any clause in SI.
Suppose, then, that C' arises by an application of rule l', and let S" be the

set of representations of the clauses in S' which are not satisfied by the partial

interpretation V, defined on T (see the discussion at the beginning of section

5).
Let C" be the resolvent which is produced by the proof of the AM-clash

theorem (applied to S"). In that proof another interpretation N is defined,

and it is shown that C" is falsified by both M and N, while every clause in S"

is satisfied either by M or by N. This fact is used to show that C" S". (In

Slagle's argument the literals have been renamed so that the M-true literals

are just those with negation symbols.) It follows that no clause of 5" subsumes

C" (i.e., is a subset of C").
Consider the corresponding clause C' which is the E-resolvent of an E-clash

corresponding to the clash in S" whose resolvent is C". If B' is any clause in
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S' with a type I literal, then B' cannot subsume C', for, if it did, the set of
type i literals in B' would be contained in the set of type i literals of C'.
Thus, denoting the representation of B' by B", we would have B"c C". On
the other hand, if B' e S' has only type it literals, B' cannot subsume C', for
every type ii literal in C' is false in the partial interpretation V, but V does not
falsify any clause in S'.
We see from the lemma that subsumption does not destroy completeness at

the ground level. The general case requires some argument, though. Let S
be a finite, unsatisfiable set of clauses and S' a finite, unsatisfiable set of
ground instances of clauses in S. The difficulty is that if C, D E S, C subsumes
D, and D' e S' is an instance of D, it does not follow that there is a clause in
S' which subsumes D'; so if we simply apply subsumption to both S and S'
independently it may no longer be the case that the clauses remaining in S'
are all instances of clauses left in S. The natural remedy for this condition is
to enlarge S' by the addition of a suitable instance of C' which does subsume
D', and the argument about to be given consists mainly in the systematic
application of this construction.
For any finite set of clauses 5, let F(S) denote the set obtained by applying

rule 1 (or rule 1% rule 2, and rule 3 to Sin all possible ways, combining the
clauses so obtained with S, reducing as usual, and applying the subsumption
principle to the remainder. We define FO(S) —S, Fn (S) = F(F n-1 (S)) as
usual.
Modified completeness theorem. If S is a finite, unsatisfiable set of clauses
then for some integer nO, Fn(S) contains a terminal clause.
Proof. Let S' be a finite, unsatisfiable set of non-empty, reduced, ground
instances of clauses in S. (We suppose that S does not contain a terminal
clause, for otherwise the result is trivial.) Mark each clause of 5' which is
subsumed by another clause in S', and leave the remaining clauses in S'
unmarked. Denoting by U(S') the set of unmarked clauses in S', we have
that U(S') is unsatisfiable, and that the clauses in U(S') are instances of
clauses in S.
Denote by W' the set of all clauses which can be deduced from the clauses

of U(S') using the ground forms of the rules used in the operator F. Put
V'.W' —S'. V' is not empty, for let C' be the expansion clause of U(S').
Then C' e W', and C' U(S') by the expansion theorem, and C' 5'-.- U(S')
by the preceding lemma, since each clause in S' —U(S') is subsumed by a
clause in U(S'). Put T' =5' L., V' and mark each clause in T' which is subsumed
by another clause in T'. Clearly T' has more elements than S' and U(T') is
unsatisfiable.
From the justification of the rules of inference it follows that each clause

in U(T') is either an instance of a clause in F(S) or is an instance of a
clause which can be deduced from S and is subsumed by a clause in F(S).
Let us say that a set R of clauses covers a set R' of ground clauses (some of
which may be marked) Hf every marked clause in R' is subsumed by a clause
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in U(R') and each clause in U(R') is an instance of, or subsumed by, some

clause in R. When the clauses in U(R') are all instances of clauses in R
we say that R strictly covers R'. Thus F(S) covers T' and S strictly covers S'.

Define a sequence To, . as follows: To = T'. Having determined TO . . .

Tn so that F(S) covers Tn and U(T)" is unsatisfiable, proceed as follows:

If every clause of U(Tn) is an instance of a clause in F(S), terminate the
sequence. If not, let C' be the lexically earliest clause in U(Tn) which is not

an instance of a clause in F(S), and let C be a clause in F(S) which subsumes

C'. Let (1 be the substitution required by the definition, and put C"= 9 (CU).

Clearly C" is a ground clause which subsumes C', and C" involves only
terms appearing in C'. Obtain Tn+1 by adding C" to Tn and marking any

unmarked clauses which are subsumed by C"; in particular, C' is marked.

Note that F(S) covers Tn+1 and that U(Tn+1) is unsatisfiable. Also, Tn+1 has
more clauses than Tn.

The sequence must terminate after a finite number of steps, for at each
stage we either terminate or reduce by at least one the number of unmarked
clauses which are not instances of clauses in F(S).

Let G(S',S) denote the terminal set in the sequence To, . Then we have
established the following:

1. F(S) strictly covers G(S',S) and U(G(S',S)) is unsatisfiable.

2. G(S',S) contains more clauses than S'.

3. G(S',S) involves only terms appearing in S'.

The properties of S, S' that were used in constructing G(S',S) and establish-
ing 1 —3 were:

(1) S strictly covers S' and U(S') is unsatisfiable.

(2) it S'.

Thus, we may inductively define

Gn (ScS) = G(Gn-1(S', S), Fn-1(S))

provided that El Gn-1(ScS). Moreover, each of the sets Gn (S', S) satisfies
1 and 3 (with Gn instead of G, Fn instead of F) and satisfies

2' Gn (ScS) contains more clauses than Gn-1(S',S).

But by 3, there are only finitely many clauses which can ever appear in the
sets Gn(S',S). Thus for some integer k > 0, 0 e Gk(S',S), but 0 is not
subsumed by any clause, so 0 e U(Gk(S',S)) and Fk(S) contains a terminal
clause. Q.E.D.
We have now fulfilled our promise to eliminate the trivial deduction in

case 1 of rule 3, for the clause deduced there is obviously subsumed by the
clause from which it was deduced (the empty substitution and the identity
map satisfy the definition). The resulting form of the rule is not only more
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economical than the previous version, but it also makes no reference to the
system S, being entirely defined in terms of the clause to which it is applied.

7. AN EXAMPLE

To illustrate the use of rules 2 and 3 we present a refutation establishing the
elementary result that, in a ring, x .0=0. Here sxy denotes x+y, mx denotes
—x, andpxy denotes x .y. The initial unsatisfiable set of clauses is as follows:

Sl. {sxsyz=ssxyz}

S2. {sx0 =x}
S3. {sxmx=0}
D. {pxsyz=spxypxz}

T. {pa000}

(Associativity of +)

(Additive identity)

(Additive inverse)

(Distributive law)

(Denial of conclusion)

Rule 3 applied to the underlined term in SI yields
El. {tosxy V uoz V sxsyz=stu}.

Rule 3 applied to the underlined term in El gives
E2. {vx V wsyz V tOsxy V uz V svw=stu}.

Rule 2 applied to S3 {y/x} and E2{y/t, my I u, my 1 z}, the underlined
terms being unified and replaced, yields
E3. {vOxV woo V y0 sxy Vsvw=0}.

Rule 2 applied to D{u 1 x, x I y, y I z} and E3 {pux I x, puy I y} gives
E4. { v pux V w 00 V puy pusxy V svw =0} .

Rule 2 applied now to S2 { v/x} and E4 {0 / w} gives
ES. {v Opux V puy Opusxy V v=0} .

Rule 2 applied to ES {pao /v, a /u, 0 /x} and T yields
E6. {pay opasOy} .

Applying rule 3 to the underlined term of E6 gives
E7. {xo a V zOsOy V payOpxz}.

Applying rule 2 to S2 {0/x} and E7 {0 I y} we obtain
E8. {x0a V z00 V pa0Opxz},

which is terminal, as can be seen by applying the substitution {a lx, 0/z}.
The principal deficiency in the theory just developed is the lack of an

adequate device for 'steering' rules 2 and 3 toward the problem at hand.
It will be noted that in the example the clause T does not enter the refutation
until the deduction of E6, El—E5 being derived solely from the axioms. A
suitable adaptation of the set-of-support strategy (Wos et al. 1965), added
to the present system as a heuristic device, would probably yield a significant
improvement in this respect.
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APPENDIX

We present a simplified form of rule 2 in which only two clauses are used to
make the inference. The ground form of the rule is as follows: let

A= (A V oc=fli V .. • V ce=fir}

and B be clauses such that a appears in, and is maximal in, both A and B and
cc does not appear in A. Then from A and B infer

{A V a=132 V . . V a ---fir V B[flace]}.

The soundness of the inference is apparent. For completeness, we need to
reconsider subcase (a) of case 2 in the expansion theorem of section 3. We have
a partial assignment V defined on 7'1,. T„_1, which falsifies no clause in S;
V does not force the value of T, but any extension of V to T„ falsifies some
clause in S.
As before, setting V(Tn)=Tn must falsify a clause A of the form

{A V T„=/31 V ... V Tn=fir},

where A is already falsified by V. Moreover, we may choose A to be a clause
in S which contains the minimum number of equations involving Tn that any
clause in S contains which is falsified by putting V(T) = T.
Now setting V(T) = V(131) must falsify some other clause B e S. Certainly

A and B satisfy the requirements of the rule, so we may deduce the clause

C= {A V T=fi2 V ... V Tn=fi, V B[fii /Tnil•

But C is falsified if we put V(Tn)=Tn, and C contains only r— 1 equations

involving T, thus C is not in S and is not trivially satisfied.
A general form of the simplified rule 2 can be established in a manner

entirely analogous to the generalization of the 'clash' form of rule 2 discussed

in section 4.
In order that the results of section 6 hold when using the two-clause form

of rule 2 it is only necessary to show that the ground clause C constructed

above cannot be subsumed by any clause in S. Suppose that C were subsumed

by a clause D e S. Then putting V(Tn)=Tn would also falsify D, but D

could contain at most r-1 equations involving T,„ which contradicts the

hypothesis on A.
Certainly the simplified rule is much easier to implement than the form

discussed earlier. One should note that application of the rule can be further

restricted, since, for a particular clause A and term cc, one may choose the

term hi in any way whatever, provided only that the manner of choosing Pi

can be 'lifted' appropriately in the general rule.
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INTRODUCTION

A term is an individual constant or variable or an n-adic function letter
followed by n terms. An atomic formula is an n-adic predicate letter followed
by n terms. A literal is an atomic formula or the negation thereof. A clause
is a set of literals and is thought of as representing the universally-quantified
disjunction of its members. It will sometimes be notationally convenientl to
distinguish between the empty clause 0, viewed as a clause, and 'other'
empty sets such as the empty set of clauses, even though all these empty sets
are the same set-theoretic object 4). A ground clause (term, literal) is one with
no variables. A clause C' (literal, term) is an instance of another clause C
(literal, term) if there is a uniform replacement of the variables in C by
terms that transform C into C'.
The Herbrand universe Hs of a set S of clauses is the set of all terms that

can be formed from the function letters and individual constants occurring
in S (with the proviso that if S contains no individual constant, the constant
a is used). An interpretation I of a set S of clauses is a set of ground literals
such that for each atomic formula F that can be formed from an n-adic
predicate letter occurring in S and n terms from Hs, exactly one of the
literals F or F (the negation of F) is in I.
For any set.! of literals, .7 is the set of negations of members of.!. The set J

satisfies a ground clause C if ./nCO ck and condemns Cif C — J = J satisfies
a non-ground clause C if it satisfies every instance of C and condemns C if it
condemns some instance of C. A clause (possibly ground) that is neither

1 Note, for example, that the empty set is a satisfiable set of clauses but at the same time
is an unsatisfiable clause.
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satisfied nor condemned by J is said to be undefined for J; otherwise it is
defined for .1. .1 satisfies a set S of clauses if it satisfies every clause in S and
condemns S if it condemns some clause in S.
An R-Interpretation of a set S of clauses is an interpretation / of S having

the following properties: Let a, [3, and y be any terms in Ifs and L any literal
in I. Then

1. (a=a)e/
2. If (a= )3) e /then (I3=a) e /
3. If (a=p)e /and (13=y) L then (a=y) e L
4. If L' is the result of replacing some one occurrence of a in L by ,6 and
(a =/3) e /, then L' EI.

An (R-)model of S is an (R-)interpretation of S that satisfies S.
A set S of clauses is (R-)satisfiable if there is an (R-)model of S; otherwise it

is (R-)unsatisfiable.
If S is a set of clauses or a single clause and Tis a set of clauses or a single

clause, S(R-)implies T(abbreviation SW' or SRT) if no (R-)model of S
condemns 7'.
A deductive system W is (R-)deduction-complete if SI- wT(T is deducible

from S in the system W) whenever SW' (SkRT). W is (R-)refutation-
complete if SI- wEl whenever S is (R-)unsatisfiable.

EQUALITY IN AUTOMATIC THEOREM-PROVING

The methods for dealing with the concept of equality in theorem-proving can
be grouped roughly into three classes: (1) those which employ a set of first-
order axioms for equality, for example, the following set (which we shall call
E(K), where K is the set of first-order sentences under study):

(i) (xi) (xi =xi)
(ii)

(j= 1, . . n)

(xi) • • • (x.)(xo)(xj0 xo V i(xi • • • xi • • • xn)=f(xi xo x.))
(j= 1, n)

where n axioms of the form (ii) are included for each n-adic (n >0) predicate
letter P occurring in K, and n axioms of the form (iii) are included for each
n-adic (n >0) function letter in K'; (2) those which employ a smaller set of
second-order axioms for equality; and (3) those which employ a substitution
rule for equals as a rule of inference.

SOME DESIRABLE PROPERTIES FOR THEOREM-PROVING
ALGORITHMS

In addition to the logical properties of soundness and completeness, two sets
of somewhat more elusive properties are of interest in judging the usefulness
of the inference apparatus for automatic theorem-proving.

1 Note that an interpretation / of K is an R-interpretation of K iff it satisfies E(K).
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The first set, efficiency, brevity, and naturalness, are global properties in
that they deal with the entire proof or proof-search, and are of interest in
themselves. Efficiency refers to the ease or dispatch with which the search
procedure locates a proof. Brevity refers to the lengths of proofs found.
Naturalness refers to being in the spirit of what a human mathematician
might write in a proof. Other factors being equal, a briefer proof might be
considered more natural, but naturalness goes beyond this. For example,
among proofs of roughly the same length, a unit resolution proof' might be
considered more natural than a non-unit proof.
The second set, immediacy, convergence, and generality, are local properties

in that they focus on only a small part of the proof or proof-search and are of
interest primarily because they contribute to other properties such as effi-
ciency.

Figure 1

Immediacy is rather easily grasped. One inference apparatus a is said to be
more immediate than another apparatus .2 (at least for the case in question)
when a enables one to deduce a given conclusion from a given set of hypo-
theses in fewer steps than a. For example (see figure 1), if to infer F from D
and E by 2 one first had to infer G from D and only then infer F from E and
G, while a allowed the inference of F directly from D and E in one step
without recourse to G, then a would (for this case) be more immediate than

Convergence is a slightly subtler but, for automatic theorem-proving,
perhaps more important property. Consider the clause G in the example
above. Often such an intermediate result will seriously detract from proof-
search efficiency by interacting with other clauses to produce unnecessary
'noise' in the proof-search space, either by generating successive generations
of less than helpful clauses, or, somewhat less seriously, by requiring additional

1 In effect one that is free from simultaneous case-analysis type reasoning and which
prefers modus ponens to syllogism—formally, one in which non-unit clauses are never
resolved against each other.
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machine time to determine that no interesting clauses can be inferred from G.
Freedom from this generation of 'side-effect' clauses we call convergence.
Thus in the example, a is both more immediate and more convergent than a.

Generality refers to choosing to infer a clause C rather than a proper
instance of C, when either inference could be made from the premises without
loss of soundness. For example, inferring from f(xa)= g(x) and Qf(xa) the
conclusion Qg(b), although sound, would be less general than inferring
Qg(x).

It is not difficult to see the advantage of inferring a clause rather than a
proper instance of that clause, since the more general clause, being stronger,
has greater potential for future inferences. Perhaps even easier to see is the
problem of deciding which proper instance to select if a proper instance were
to be preferred to the more general clause. Usually there is an infinite set of
proper instances. For example, from h(xyy)=g(x) and Qh(zww)a, we can
infer Qg(x)a by substitution. There is, however, an infinite set of proper
instances of Qg(x)a which could also be legitimately inferred. Among these
are Qg(a)a, Qg(g(a))a, Qg(g(g(a)))a. . . . We shall apply the phrase most
general to a clause (or term) C with respect to some given condition when C
satisfies the condition and no clause (term) which satisfies the condition has
C as a proper instance.
Of the approaches to equality described above, approach 1 has three

obvious disadvantages. One has to do with length of deduction chains in the
proof. In order to infer from

(1) Qa and
(2) a=b

the result

(3) Qb

one must first infer from the axiom

(4) x0y V -0- x V Qy

and, say (1), the intermediate result

(5) a#y V Qy,

before passing from (5) and (2) to (3). By contrast, approach 3 would allow
us to go directly from (1) and (2) to (3) without ever inferring the inter-
mediate result (5). Thus approach 3 contributes to brevity of proofs. More
important for proof search, it contributes (by means of immediacy) to brevity
of deduction chains within proofs.
A second, and perhaps more serious disadvantage of approach 1 as com-

pared to approach 3, is that the intermediate debris such as step (5) tends
to spawn increasingly larger generations of generally useless offspring,
polluting the search space badly. We describe this difference by saying that
approach 3 tends to be more convergent than approach 1. (Presence of various
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subsidiary strategies, such as set-of-support, may possibly mitigate the
severity of such non-convergence effects.)
The third disadvantage of approach 1 is perhaps the least important,

although superficially the most obvious: the equality axioms E(K) must be
present. The clerical chore of writing them all down could be eliminated
merely by incorporating into the theorem-prover a program to generate
them. Alternatively they may be specified by means of a schema (we shall
call this variation approach lb), or in approach 2 by means of a few second-
order axioms. We feel that this third disadvantage is so superficial and trivial
(since one can simply place E(K) outside the set of support as is done in the
standard set-of-support variant of approach 1) as to be quite spurious.
The method given by Darlington (1968), whether it be classed as approach

lb or as approach 2, can be taken as typical of methods which avoid the
third disadvantage (greater number of explicit axioms) but fail to dent the
first and second disadvantages (longer deduction chains and non-conver-
gence). In effect Darlington infers (5) from (1) and

(4') x0y V co (x)V (y),

which is thought of either as a schema defining a set of first-order axioms
including (4), or as a single second-order axiom having (4) as an instance.

4_

PARAMODULATION

Since our automatic theorem-proving environment consists exclusively of
clauses, we should like our rule of inference for equality to operate on two
clauses and yield a clause. Furthermore, we should like it to apply to units and
non-units alike1 and to yield a most general clause that can be R-soundly
inferred. We shall now describe the inference rule for paramodulation, which
is asserted to have these properties. Examples of paramodulation are given in
figure 2.2
Paramodulation: Given clauses A and a' = /1' V B (or 13' =a' V B) having no

variable in common and such that A contains a term 6, with 3 and a' having a
most general common instance a identical to a' [si/ ui] and to 6[0 wj], form
A' by replacing in A[tilivi] some single occurrence of a (resulting from an
occurrence of 3)3 by )6" [si /ui], and infer A' V B[s 1 ui].4

1 Consider for example the set S=(c=d V Qc, g(c)Og (d ) V b V Qc,
g(a) g(b) V Qc, x= x). If the rule applied only to units, it would not be possible to
this R-unsatisfiable set.
2 These examples are primarily to give an intuitive idea of how paramodulation works.
A comparison of the length and complexity of paramodulation proofs against resolution
proofs can be obtained by considering the proofs of the theorem from group theory to the
effect that x3= e implies ((x,y),y)=e. The resolution proof is 136 steps long while the
paramodulation proof is 47 steps long. These proofs appear in the appendix.
3 Without this restriction one could infer from a= b and Qxa V Px the clause Qab V Pa
(a proper instance of the paramodulant Qxb V Px) , resulting in a loss of generality.
4 Since every non-trivial immediate modulant (see Wos et al., 1967b) of a clause is a
paramodulant, any clause obtained by demodulation can be obtained by repeated
paramodulation.
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Example 1
1. a=b
2. Qa
3. .• .Qb

Example 5
1. x=h(x)
2. Qg(y)
3. ...Qh(g(y))

Example 2 Example 3 Example 4
I. a=b I. a=b 1. a=b
2. Qx 2. Qx V Px 2. Qx V Px
3. .*.Qb 3. .* .Qb V Pa 3. .* .Qa V Pb

Example 6 Example 7
1. a=b 1. f(xg(x))=e
2. Qf(g(h(j(a)))) 2. Pyf(g(y)z)z
3. .. Qf(g(h(j(b)))) 3. ...Pyeg(g(y))

Example 8. If x2= e for all
1. f(ex)=x
2. f(xe)= x
3. f(xf(yz))=f(f(xy)z)
4. f(xx)=e
5. f(ab)= c
6. c0f(ba)
7. f(xe)=f(f(xy)y)
8. ‘x=f(f(xy)y)
9. a=f(cb)
10. f(yflyz))=f(ez)
11. f(yf(yz))=z
12. f(ca)=b
13. c=f(ba)
14.0

Figure 2

x in a group, the group is commutative.

4 into 3 with (5: f(yz)
2 into 7 on f(xe)
5 into 8 on f(xy)
4 into 3 on f(xy)
1 into 10 on f(ez)
9 into 11 on f(yz)
12 into 8 on f(xy)
13 resolved with 6

From a superficial point of view, paramodulation might be described as 'a
substitution rule for equality'. Indeed, the motivation given above for study-
ing the rule has dwelt principally on that aspect of paramodulation. But to
consider it as only substitution of equals for equals would be to make a
mistake analogous to characterizing resolution as merely syllogistic infer-
ence akin to that employed by Davis and Putnam (1960). The property of
maximum generality provided by paramodulation must not be overlooked if
the process is to be fully understood. Consider the following example:

From f(xg(x))=e V Qx and Pyf(g(y)z)z V Wz one can infer
Pyeg(g(y)) V Qg(y) V Wg(g(y)) by paramodulating with
f(xg(x)) as a' and f(g(y)z) as S.

COMPLETENESS OF PARAMODULATION FOR BASIC
GROUP THEORY

Consider the following clauses from the first-order theory of groups:
Al Pxyf(xy)
A2 Pexx
A3 Pg(x)xe
A4 Pxyu V Fyn, V Puzw V Pxvw
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left identity
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associativity (case 1)



A5 Pxyz V Pxyu V z=u
A6 z Ou V Pxyz V Pxyu
A7 zOu V Pxzy V Pxuy
A8 zOu V PzxyV Puxy
A9 x=x
A10 x0yV y=x
All x0yV yOzV x=z
Al2 x0y V f(xz)=f(yz)
A13 x0y V f(zx)=f(zy)
A14 x0y V g(x)=g(y)

ROBINSON AND WOS

uniqueness of product
substitution (3rd position)
substitution (2nd position)
substitution (1st position)
reflexivity
symmetry
transitivity
f-substitution (1st position)
f-substitution (2nd position)
g-substitution

Let us define a basic set S of clauses of group theory to be a set over the
vocabulary of A1—A14 and such that SI-{A1, . . A5 } . We then have the
following completeness result for the special case of basic sets.
Theorem: If S is a satisfiable, fully paramodulated, fully factored, basic set

of clauses of group theory, then S is R-satisfiable.
Proof: Let M be a maximal modell of S. Suppose that a =13 and Pybcc are

both in M. By the maximality of M, there must be clauses A and B in S
having instances A':cx=fl V K and B' :Pyk VL with KnM=4)=LnM.
Then factors of A and B can be paramodulated on the arguments corres-
ponding to a to give a clause in S having PySfl-V K V L as an instance. Since
M satisfies S,(Pyofl V K V L)(01049. But (K V L)nM=0. Hence Py1313 e M.
Thus M satisfies A6. It can be shown2 that A1—A6I-A7—A14. Hence M satisfies
A6—A14 and is therefore an R-model of S.
This result is generalized to the case of what will be called functionally-

reflexive systems in the next section.

COMPLETENESS OF PARAMODULATION FOR
FUNCTIONALLY-REFLEXIVE SYSTEMS

Paramodulation is intended to be utilized, along with resolution, for theorem-
proving in first-order theories with equality.3
We first give an algorithm for generating a refutation (of a finite set of

clauses) employing paramodulation and resolution if such a refutation exists.
Full Search Algorithm (FSA): Let So be the set of all factors of the given

set S of clauses4. For odd i> 0 let Si be formed from Si_1 by adding all clauses

1 The concept of maximal model is defined and the pertinent existence theorem proved
in Wos and Robinson (1968a). For the present purpose a maximal model of S may be
thought of as a model M such that for each positive literal x in M there is an instance
C' of some C in S with C' M= {x}.
2 Robinson and Wos (1967c).
3 The earliest formulations of paramodulation were designed to operate without
resolution and could be shown to subsume resolution as a special case. It is felt,
however, that the processes can be better understood if the inference apparatus not
involving equality is isolated from the apparatus for equality, even if this means that
some of the completeness theorems cannot be stated in quite as pat a fashion.
4 Every clause is a factor of itself as in G. Robinson et al. (1964b). For further
definitions of factoring and resolution see Wos et al. (1964a) and J. Robinson (1965).
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that can be obtained by paramodulating two clauses in Si_i. For even 1>0
let Si be formed from Si_1 by adding all factors of clauses that can be obtained
by resolving two clauses in Si...1. Since each deduction from S is contained in
S„ for some n, each refutation of S must be contained in S„ for some n. Each
Si is finite. If Si contains 0, a refutation has been found, so stop. Otherwise
form S1 1.
Now, to prove that paramodulation and resolution are complete for

theorem-proving in first-order theories with equality, we would like to show
that FSA is a semi-decision procedure for R-unsatisfiability. The difficult
part is to show that, for R-unsatisfiable sets of clauses, there exists a refuta-
tion, namely, that paramodulation plus resolution is R-refutation complete.
It will suffice to show that an unsatisfiable set can be deduced from an
R-unsatisfiable set, since (due to the refutation-completeness of resolution)
FSA will generate a refutation if it ever generates an unsatisfiable set.
A functionally-reflexive system S is defined as one for which SI-xi =x1

and SI-f(xi, x„)=f(xi,.. x„) for every function letter f occurring in
the vocabulary of S, n being the degree off. There are h+ 1 such unit clauses,
where h is the number of function letters in the vocabulary of S. For such
systems refutation-completeness is proved in Wos and Robinson (1968c) .1
From that result one can obtain the following corollary: If S is a finite
functionally-reflexive set of clauses, FSA is a semidecision procedure for R-
unsatisfiability.
Even for theories that do not happen to be functionally reflexive, this

result shows that adding the h+1 functional-reflexivity unit clauses before
applying FSA gives a general semi-decision procedure for R-unsatisfiability.

FURTHER COMPLETENESS RESULTS FOR
PARAMODULATION

Since first-order theories are not usually functionally-reflexive when the only
rules are resolution and paramodulation, and since adding the functional-
reflexivity units to the theory may detract somewhat from proof-search
efficiency, one would wish to show that some weaker assumption than func-
tional-reflexivity will suffice for completeness. It seems that at least SI-x=x
will be needed. (Consider the case where S consists of {a#a}. S is R-
unsatisfiable but cannot be refuted without some sort of help from reflexiv-
ity.) This is not surprising, since the standard texts on logic that use the sub-
stitution rule or schema approach to equality consistently supply a separate
reflexivity axiom?
But is simple reflexivity (x.--x) enough? We think so,3 although a proof of

this is not yet available.

I A weaker version of this result was given in the earlier (1968b) paper.
2 see, e.g., Church (1956) or Quine (1963).
3 In the two years that paramodulation has been under study, no counterexample has
been found to the R-refutation completeness of paramodulation and resolution for
simply-reflexive systems.
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To see where the difficulty lies in generalizing the proof given in Wos and
Robinson (1968c) beyond the functionally-reflexive case, we examine the
relation between deductions and refutations based on a given set S and those
based on proper instances of clauses from S.

Capturing lemmal: Let S be a fully paramodulated and fully resolved set of
clauses such that SI-x = x, and let A' and B' be instances of clauses A and B
in S and let C' be the result of paramodulating from a term cc' in A' into an
occurrence 60 of a term in B'. Then

Strong subterm form: There is a clause C in S with C' as an instance.
Restricted subterm form: If B has a term in the same position as that of

bo in B', then there is a clause C in S with C' as an instance.
(Occurrences of terms in two literals are said to be in the same position
if each is the irst argument of the i2-nd argument of. . . of the i„-th
argument of its literal.)
Argument form: If 5 is an argument of B' (as opposed to a proper sub-
term of an argument), then there is a clause C in S with C' as an instance.

When the strong subterm form of the capturing lemma holds and SI-x=x,
every maximal model (with respect to positive literals) of S is an R-model,
and since every satisfiable set S has a maximal model, it follows that either
o e S or S is R-satisfiable. Thus the strong subterm form of the capturing
lemma and simple reflexivity imply R-refutation-completeness. The line of
proof given for R-refutation-completeness in functionally-reflexive systems
in (1968c) depends (at least indirectly) on the strong subterm form, which
happens to hold in such systems.2 The following example will suffice to show
however that the strong subterm form is not universally true:

S: {x=x, a=b, b=a, a=a, b=b, Qxg(x), Qag(a), Qbg(b),
Qag(b), Qbg(a)}

A: a=b
A': a=b
B: Qxg(x)
B': Qg(a)g(g(a))
C': Qg(b)g(g(a))

S is fully paramodulated and (vacuously) fully resolved. A' and B' para-
modulate on a into the first occurrence of a in B' to give C'. But C' is an
instance of no clause in S. (The restricted subterm form of the lemma is not
violated since B has no term in the same position as the first occurrence of a
in B'. Neither is the argument form of the lemma, since a is not an argument

1 The analogue of this capturing lemma for resolution alone plays a basic role in proving
the refutation-completeness of resolution (see J. Robinson, 1965 and Slagle, 1967) and
of set-of-support (Wos etal., 1965).
2 Alternatively, one can view the difficulty as resulting from the fact that it is not always
possible to satisfy the hypotheses of the restricted subterm form.
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of B'.) Functional-reflexivity of S, if present, would dispose of the difficulty,
since, if g(x) = g(x) were in S, so would g (a) = g(b) be in S if it were fully
paramodulated; and hence the result Qg(b)g(g(a)) of paramodulating
g(a)=g(b) and Qxg(x) would be in S and serve as C.

Weakening the strong subterm capturing lemma in a different fashion
leads to the

Refutation capturing lemma: If there exists a refutation of a set of instances
of clauses in a set S by means of paramodulation and resolution, then there
exists a refutation of S itself by means of paramodulation and resolution.
For functionally-reflexive S, this lemma may be proved by noting that the

refutability of a set of instances of Sand R-soundness of paramodulation and
resolution yield the R-unsatisfiability of S; so that the refutation-completeness
of paramodulation and resolution for functionally-reflexive systems estab-
lishes the refutability of S itself.

Given the refutation capturing lemma one could prove the following;
General refutation-completeness: If S is a fully paramodulated and fully

resolved R-unsatisfiable set and if SI-x=x, then 0 e S.
Corollary: FSA is a semi-decision procedure for R-unsatisfiability for

finite sets S of clauses such that SI-x = x.
Conversely, given general refutation-completeness, one can prove the

refutation capturing lemma (at least for systems S such that SI-x=x).

In view of this equivalence, proof of the refutation capturing lemma can be

considered the most pressing unsolved problem in the theory of paramodula-

tion. Alternatively, one might seek a proof of general refutation-completeness

based on the restricted subterm form of the capturing lemma, which holds

even when the assumption of functional reflexivity is suppressed.
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APPENDIX

Paramodulation versus resolution

Problem: x3=e implies ((x,y),y)=e where (x,y)
Reference: Group Theory by Marshall Hall, page 322, 18.2.8.

Refutation by Paramodulation

1. f(ex)=x
2. f(xe)=x
3. f(g(x)x)=e
4. f(xg(x))=e
5. f(xf(yz))=f(f(xy)z)
6. x=x
7. f(f(xx)x)=e
8. h(xy)=f(f(f(xy)g(x))g(y))
9. h(h(ab)b)Oe
10. f(xe)=f(f(xy)g(y)), f(xg(x)) of 4 into f(yz) of 5
11. x=f(f(xy)g(y)), f(xe) of 2 into f(xe) of 10
12. x=f(eg(g(x))), f(xg(x)) of 4 into f(xy) of 11
13. x=g(g(x)), f(ex) of 1 into f(eg(g(x))) of 12
14. f(f(xx)f(xz))=f(ez), f(f(xx)x) of 7 into f(xy) of 5
15. f(f(xx)f(xz))=z, f(ex) of 1 into f(ez) of 14
16. f(f(xx)e)=g(x), f(xg (x)) of 4 into f(xz) of 15
17. f(xx)=g(x), f(xe) of 2 into f (f(xx)e) of 16
18. f(f(xy)f(g(y)z))=f(xz), f(f(xy)g(y)) of 11 into f(xy) of 5
19. f(f(xy)f(g(y)g(x)))=e, f(xg(x)) of 4 into f(xz) of 18
20. f(we)= f(f(wf(xy))f(g(y)g(x))), f(f(xy)f(g(y)g(x))) of 19 into

f(yz) of 5
21. w=f(f(wf(xy)f(g(y)g(x))), f(xe) of 2 into f(we) of 20
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22. g(f(xy)) = f(ef(g(y)g(x))), f(g(x)x) of 3 into f(wf(xy)) of 21
23. g(f(xy))=f(g(y)g(x)), f(ex) of 1 into f(ef(g(y)g(x))) of 22
24. g(h(xy))= f(g(g(y))g(f(f(xy)g(x)))), f(f(f(xy)g(x))g(y)) of 8

into f(xy) of 23
25. g(h(xy))=f(yg(f(f(xy)g(x)))), g(g(x)) of 13 into g(g(y)) of 24
26. g(h(xy)) =f(yf(g(g(x)) g(f(x y)))), g(f(xy)) of 23 into

g(f(f(xy)g(x))) of 25
27. g(h(xy))=f(yf(xg(f(xy)))), g(g(x)) of 13 into g(g(x)) of 26
28. g(h(xy))=f(yf(xf(g(y)g(x)))), g(f(xy)) of 23 into g(f(xy)) of 27
29. f(f(f(h(ab)b)g(h(ab)))g(b)) 0e, h(xy) of 8 into h(h(ab)b) of 9
30. f(f(f(f(f(f(ab)g(a))g(b))b)g(h(ab)))g(b)) e, h(xy) of 8 into

h(ab) of 29
31. f(f(f(f(f(ab)g(a))f(g(b)b))g(h(ab)))g(b)) e, f(f(xy)z) of 5

into f(f(f(f(ab)g(a))g(b))b) of 30
32. f(f(f(f(f(ab)g(a))e)g(h(ab)))g(b)) e, f(g(x)x) of 3 into

f(g(b)b) of 31
33. f(f(f(f(ab)g(a))g(h(ab)))g(b))# e, f(xe) of 2 into

f(f(f(ab)g(a))e) of 32
34. f(f(f(f(ab)g(a))f(bf(af(g(b)g(a)))))g(b))0e, g(h(xy)) of 28

into g(h(ab)) of 33
35. f(f(f(f(ab)f(aa))f(bf(af(g(b)g(a)))))g(b)) 0e, g(x) of 17 into g(a)

of 34
36. f(f(f(f(f(ab)f(aa))b)f(af(g(b)g(a))))g(b)) e, f(xf(yz)) of 5

into f(f(f(ab)f(aa))/(bf(af(g(b)g(a))))) of 35
37. f(f(f(f(f(f(ab)f(aa))b)a)f(g(b)g(a)))g(b)) e, f(xf(yz)) of 5 into

f(f(f(f(ab)f(aa))b)f(af(g(b)g(a)))) of 36
38. f(f(f(f(f(f(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) 0e, f(xf(yz)) of 5 into

f(f(ab)f(aa)) of 37
39. f(f(f(f(f(f(ab)a)f (ab))a)f(g(b)g(a)))g(b))0 e, f(f(xy))z) of 5

into f(f(f(f(ab)a)a)b) of 38
40. f(f(f(f(f(ab)a)f(f(ab)a))f(g(b)g(a)))g(b))0 e, f(f(xy)z) of 5

into f(f(f(f(ab)a)f(ab))a) of 39
41. f(f(f(f(ab)a)f(f(ab)a))f(f(g(b)g(a))g(b))) 0e, f(f(xy)z) of 5

into f(f(f(f(f(ab)a)f(f(ab)a))/(g(b)g(a)))g(b)) of 40
42. f(f(f(f(ab)a)f(f(ab)a))f(g(f(ab)))g(b))#e, f(g(y)g(x)) of 23

into f(g(b)g(a)) of 41
43. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)f(ab))g(b)))#e, g(x) of 17

into g(f(ab)) of 42
44. f(f(f(f(ab)a)f(f(ab)a))f(f(f(f(ab)a)b)g(b))) e, f(xf(yz)) of 5

into f(f(ab)f(ab)) of 43
45. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)f(bg(b)))) 0e, f(f(xy)z) of 5

into f(f(f(f(ab)a)b)g(b)) of 44 .
46. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)e)) e, f(xg(x)) of 4 into

f(bg(b)) of 45
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47. f(f(f(f(ab)a)f(f(ab)a))f(f(ab)a)) e, f(xe) of 2 intof(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)e)) of 467 contradicts 47.

Paramodulation versus resolution
Problem: x3=e implies ((x,y),y)=e.
Refutation by Resolution

1. f(ex)=x
2. f(xe)=x
3. f(e(x)x)=e
4. f(xg(x))=e
5. .1(x.i(Yz))=.1(f(xY)z)
6. x=x
7. x0y y=x
8. x0y YOz x=z
9. uOw f(ux)=f(wx)
10. uOw f(xu)=f(xw)
11. uow g(u)=g(w)
12. f(f(xx)x)=e
13. h(xy)=f(f(f(xy)g(x))g(y))
14. h(h(ab)b) Oe
15. x0f(ew) x=w, 1 and 82
16. f(f(xg(x))w) =flew), 4 and 91
17. f(f(xy)z) Ow f(xf(yz))=w, 5 and 81
18. f(xf(g(x)z))=f(ez), 16 and 171
19. f(xf(g(x)z))=z, 18 and 151
20. f(uf(yg(y)))=f(ue), 4 and 101
21. f(ue)=f(uf(yg(y))), 20 and 7122. f(uf(yg (y))) z f(ue)=z, 21 and 8123. f(xe). g(g(x)), 19 and 221
24. x=f(xe), 2 and 71
25. f(xe) z x=z, 24 and 81
26. x=g(g(x)), 23 and 251
27. f(f(f(uu)u)y)=f(ey), 12 and 9128. f(f(f(uu)u)y) =y, 27 and 'Si
29. f(f(xx)f(xy)) =y, 28 and 171
30. f(f(xx)e)=g(x), 29 and 221
31. f(xx)=g(x), 30 and 251
32. f(xe)=f(f(xy)g(y)), 5 and 221
33. x=f(f(xy)g(y)), 32 and 251
34. f(xz)=f(f(f(xy)g(y))z), 33 and 91
35. f(f(f(xy)g(y))z)=f(xz), 34 and 7136. f(f(xy)f(g(y)z))=f(xz), 35 and 171

147



THEOREM PROVING

37. x0f(ug(u)) x=e, 4 and 82

38. f(f(xy)f(g(y)g(x)))=e, 36 and 371

39. e=f(f(xy)f(g(y)g(x))), 38 and 71

40. f(we)=f(wf(f(xy)f(g(y)g(x)))), 39 and 101

41. u0f(xf(yz)) u =f(f(xy)z), 5 and 82

42. f(ue)=f(f(uf(xy))f(g(y)g(x))), 40 and 411

43. u=f(f(uf(xy))f(g(y)g(x))), 42 and 251

44. f(f(g(x)x)u)= f(eu), 3 and 91

45. z Of(f(g (x)x)u) z=f(eu), 44 and 82
46. g(f(xy))=f(ef(g(y)g(x))), 43 and 451
47. g(f(xy))=f(g(y)g(x)), 46 and 151

48. g(h(xy))=g(f(f(f(xy)g(x))g(y))), 13 and 111

49. uog(f(xy)) u= f(g(y)g(x)), 47 and 82

50. g(h(xy))=f(g(g(y))g(f(f(xy)g(x)))), 48 and 491

51. g(g(x))=x, 26 and 71
52. f(g(g(u))z)=f(uz), 51 and 91

53. x0f(g(g(u))z)=f(uz), 52 and 82

54. g(h(xy))=f(yg(f(f(xy)g(x)))), 50 and 531

55. f(zg(f(xy)))=f(zf(g(y)g(x))), 47 and 91

56. u0f(zg(f(xy))) u=f(zf(g(y)g(x))), 55 and 82

57. g(h(xy))=f(yf(g(g(x))g(f(xy)))), 54 and 561

58. f(yf(g(g(u))z))=f(yf(uz)), 52 and 101

59. x0f(yf(g(g(u))z)) x=f(yf(uz)), 58 and 82

60. g(h(xy))=f(yf(xg(f(xy)))), 57 and 591

61. f(uf(zg(f(xy))))=f(uf(zf(g(y)g(x)))), 55 and 101

62. w0f(uf(zg(f(xy)))) w=f(uf(zf(g(y)g(x)))), 61 and 82

63. g(h(xy))=f(yf(xf(g(y)g(x)))), 60 and 621

64. f(zg(h(xy)))= f(zf(yf(xf(g(y)g(x))))), 60 and 621

65. f(wf(zg(h(xy))))=f(wf(zf(yf(xf(g(y)g(x)))))), 64 and 101

66. f(uf(wf(zg(h(xy)))))=f(uf(wf(zf(yf(xf(g(y)g(x))))))), 65 and 101

67. f(uf(wf(zg (h(xy))))) =f(f(uw)f(zf(yf(xf(g (y)g (x)))))), 66 and 411

68. f(uf(wf(zg(h(xy)))))=f(f(f(uw)z)f(yf(xf(g(y)g(x))))), 67 and 411

69. f(f(xy)z)=f(xf(yz)), 5 and 71

70. .A.NAYz)) u .A.AxY)z)=u, 69 and 81

71. f(f(uw)f(zg(h(xy))))=f(f(f(uw)z)f(yf(xf(g(y)g(x))))), 68 and 701

72. f(f(f(uw)z)g(h(xy)))=f(f(f(uw)z)f(yf(xf(g(y)g(x)))))), 71 and

701
73. f(f(f(f(xy)z)g(h(xy)))u)=f(f(f(f(xy)z)f(yf(xf(g(y)g(x)))))u),

72 and 9i
74. f(h(xy)z)=f(f(f(f(xy)g(x))g(y))z),13 and 91

75. u0f(f(xy)z) u=f(xf(yz)), 69 and 82

76. f(h(xy)z)=f(f(f(xy)g(x))f(g(y)z)), 74 and 751

77. f(uf(g(x)x))=f(ue), 3 and 101

78. zOf(uf(g(x)x)) z=f(ue), 77 and 82
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79. f(h(xy)y) =f(f(f(xy)g(x))e), 76 and 781
80. u0f(xe) u= x, 2 and 82
81. f(h(xy)y) =f(f(xy)g(x)), 79 and 801
82. f(f(h(xy)y)z) =f(f(f(xy)g(x))z), 81 and 91
83. f(f(f(h(xy)y)z)w)=f(f(f(f(xy)g(x))z)w), 82 and 91
84. h(h(ab)b) y y e, 14 and 82
85. f(f(f(h(ab)b)g(h(ab)))g(b)) e, 13 and 841
86. f(f(f(h(ab)b)g(h(ab)))g(b)) y ye, 85 and 83
87. f(f(f(f(ab)g(a))g(h(ab)))g(b)) e, 83 and 861
88. f(f(f(f(ab)b(a))b(h(ab)))g(b)) y y e, 87 and 83
89. f(f(f(f(ab)g(a))f(bf(af(g(b)g(a))))g(b))# e, 73 and 881
90. g(x) =f(xx), 31 and 71
91. f(wg(x)) =f(wf(xx)), 90 and 101
92. f(uf(wg (x))) =f(uf(wf(xx))), 91 and 101
93. f(uAwg(x))) =f(f(uw)f(xx)), 92 and 411
94. f(f(uw)g(x)) =f(f(uw)f(xx)), 93 and 701
95. f(f(f(uw)g(x))y) =f(f(f(uw)f(xx))y), 94 and 91
96. Rf(ftf(uw)g(x))y)z) =f(f(f(f(uw)f(xx))y)z), 95 and 91
97. f(f(f(f(ab)g(a))f(bf(af(g(b)g(a)))))g(b)) y ye, 89 and 83
98. f(f(f(f(ab)f(aa))f(bf(af(g(b)g(a)))))-g(b)) e, 96 and 971
99. f(f(f(f(ab)f(aa))f(bf(af(g(b)g(a))))) &y y e, 98 and 83
100. f(f(xf(yz))u) =f(f(f(xy)z)u), 5 and 91
101. f(f(f(f(f(ab)f(aa))b)f(af(g(b)g(a))))g(b)) e, 100 and 991
102. f(f(f(f(f(ab)f(aa))b)f(af(g(b)g(a))))g(b)) y y0e, 101 and 83
103. Af(f(f(f(Rab)f(aa))b)a)f(g(b)g(a)))g(b)) e, 100 and 1021
104. f(f(f(xf(yz))u)v) =f(f(f(f(xy)z)u)v), 100 and 91
105. .f(f(f(f(xf(yz))u)v)w) =f(f(f(f(f(xy)z)u)v)w), 104 and 91
106. f(f(f(f(f(xf(yz))u)v)w)t) =f(f(f(f(J(f(xy)z)u)v)w)t), 105 and 91
107. f(f(f(f(f(f(ab)f(aa))b)a)f(g(b)g(a)))g(b)) y y e, 103 and 83
108. f(f(f(f(f(f(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) e, 106 and 1071
109. f(f(Af(f(xy)z)u)v)w) =f(f(f(f(xf(yz))u)v)w), 105 and 71
110. f(f(f(f(f(f(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) y y0 e, 108 and 83
111. f(f(f(f(f(f(ab)a)f(ab))a)f(g(b)g(a)))g(b)) e, 109 and 1101
112. f(f(f(f(xy)z)u)v) =f(f(f(xf(yz))u)v), 104 and 71
113. f(f(f(f(f(f(ab)a)f(ab))a)f(g(b)g(a)))g(b)) y y e, 111 and 83
114. f(f(f(f(f(ab)a)f(f(ab)a))f(g(b)g(a)))g(b)) e, 112 and 1131
115. f(f(f(f(ab)a)f(f(ab)a))f(f(g(b)g(a))g(b)) e, 114 and 702
116. fif(f(f(ab)a)f(f(ab)a))f(f(g(b)g(a))g(b)) y ye, 115 and 83
117. f(g(y)g(x))g(f(xy)), 47 and 71
118. f(f(g(y)g(x))z) =f(g(f(xy))z), 117 and 91
119. f(uf(f(g(y)g(x))z)) =f(uf(g(f(xy))z)), 118 and 101
120. f(f(f(f(ab)a)f(f(ab)a))f(g(f(ab))g(b))) e, 119 and 1161
121. f(g(x)z). f(f(xx)z), 90 and 91
122. f(uf(g (x)z)) =f(uf(f(xx)z)), 121 and 101
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123. f(f(f(f(ab)a)f(f(ab)a))f(g(f(ab))g(b))) y y0 e, 120 and 83
124. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)f(ab))g(b))) e, 122 and 1231
125. f(wf(f(xf(yz))u)) =f(wf(f(f(xy)z)u)), 100 and 101
126. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)f(ab))g(b))) iéy y e, 124 and 83
127. f(f(f(f(ab)a)f(f(ab)a))f(f(f(f(ab)a)b)g(b))) e, 125 and 1261
128. f(uf(f(xy)z))=f(uf(xf(yz))), 69 and 101
129. f(f(f(f(ab)a)f(f(ab)a))f(f(f(f(ab)a)b)g(b))) y y e, 127 and 83
130. f(f(f(f(ab)a)f(f(ab)a))f(J(f(ab)a)f(bg(b)))) e, 128 and 1291
131. f(zf(uf(yg(y)))) =f(zf(ue)), 20 and 101
132. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)f(bg(b)))) 5&y y e, 130 and 83
133. f(f(f(f(ab)a)f(f(ab)a))f(f(f(a)b)a)e)) e, 131 and 1321
134. f(uf(xe)) =f(ux), 2 and 101
135. f(f(f(f(ab)a)f(f(ab)a))f(f( f(a)b)a)e)) y y e, 133 and 83
136. f(f(f(f(ab)a)f(f(ab)a))f(f(ab)a)) e, 134 and 1351

12 contradicts 136

Notes added in proof

1. In this paper we intend fully resolved sets to be fully factored also.

2. The reader may wish to note that in subsequent work we reserve the
term general for clauses or terms and use conservative instead of general
for inference systems, in order to avoid possible confusion arising from
some misleading connotations of general when used in connection with
inference systems.

3. A critical difference between functional-reflexive systems defined here as
well as in Wos and Robinson (1968c) and those treated in Robinson and
Wos (1968b), is that only h+ 1 functional-reflexivity unit clauses are
required, where h is the number of function letters in the vocabulary of
S; whereas arbitrarily many instances of reflexivity may be required to
satisfy the earlier, weaker completeness result.
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Mechanizing Higher-Order Logic

J. A. Robinson
College of Liberal Arts
Syracuse University

The purpose of this paper is to describe a simple but extremely powerful
system of higher-order logic; to describe a proof procedure for this system;
and to discuss the implementation of the proof procedure on the computer.
The formalism of the system is essentially that of the lambda-calculus,

from which it derives two of its three basic principles. These two principles
are the application of a function to an object, and the abstraction of a function
from an expression describing an object. The third basic principle of the
system is the classification, into so-called types, of all objects in the universe
of discourse and all expressions in the system. The reason for this classification
is semantic. When the expressions of the system are interpreted so as to denote
objects, an expression A denotes an object B only if A and B are of the same
type. For example, it is not always meaningful to apply an expression F
(denoting a function) to an expression A (denoting an object) to form the
expression (FA). The expression (FA), when meaningful, denotes the object
yielded by applying the function denoted by F to the object denoted by A.
However, (FA) is meaningful only when the expressions F and A are of
appropriate types. In particular the expression (FF) is never meaningful.
The expression (2 XA ) is always meaningful whenever the expression
A is meaningful and the expression Xis an identifier. It denotes the function
whose value, at the object B, is 'the object denoted by A when X denotes B'.
(The remarks of this paragraph are entirely informal and intuitive, by way of
a brief introductory sketch.)
The proof procedure for this formalism is exceedingly transparent and easy

to program. It is put forward as a specific, concrete starting-point for future
investigations, and as an immediately useful computing scheme when
implemented in a man-machine interactive form such as that suggested in the
sequel.

SYNTAX

We begin by describing the syntax of the formalism. As shown in figure 1, the
formulae of the system fall into two categories; the type symbols and the
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expressions. We shall denote the set of all type symbols by T, and the set of
all expressions by E.
The role of the type symbols in the system is the purely auxiliary one of

serving as part of the machinery necessary for classifying the expressions and
the objects into types. This machinery is quite simple. There is a mapping L
defined for all expressions in E and all objects in the universe of discourse H,

formulae

type
symbols

expressions

-Z
basic type higher type identifiers
symbols symbols

Figure 1. Syntax.

special
identifiers

applications abstractions

non-special
identifiers

which takes its values in T. One thinks of L as a 'labelling' of the expressions
and the objects with 'labels' taken from the set T. If a is a type symbol, and A
is an object or an expression for which LA= cc, we say that A is 'of type a'. In
order to explain how L is defined, we must first describe the set T of type
symbols. Before we do so, we introduce a very convenient piece of notation.
For each type symbol cc, and each set S containing objects or expressions or
both, we write Sc to denote the set of things in S which are of type cc. Thus,
Ea is the set of expressions of type cc, and Ha is the set of objects of type a.

Type symbols

The type symbols are of two kinds; basic type symbols and higher type sym-
bols. The basic type symbols are simply identifiers, which can be freely
chosen for their mnemonic properties, e.g., truthvalue, real, integer. We shall
assume that the basic type symbols always include the first of these, truthvalue.
The higher type symbols are then all and only those inscriptions which can

be constructed by finitely many applications of the following rule, starting
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with the basic type symbols: if a and fl are both type symbols then (a-0)
is a type symbol.
For example, if the basic type symbols include truthvalue, real, and integer,

then the higher type symbols will include:

(truthvalue- + truthvalue)
(real---)integer)
((integer --+real)-truthvalue)
((real-)real)-> (real->real))

The intuitive significance of the type symbols is that an object of type (a-4/3)
is a function from objects of type cc to objects of type /3.
When a is a basic type symbol, the objects of type a are called individuals.
Objects of type truthvalue are truth values. There are always precisely two

of them, namely, true and false.
To illustrate these ideas: if Hreal is the set of real numbers and Hinteger

is the set of non-negative integers, and if, for each a and in T, H(a-4 fl) is
the set of all functions from Ha to HA then the individuals are the truth
values, the real numbers and the non-negative integers, and among the objects
of higher type there will be the closed unit interval, i.e., that object of type
(real-.-* truthvalue) whose value, at a real number x, is true if 0-4x‘. 1 and
false otherwise; the exponential series, i.e., that object of type (integer-■
(real-,real)) whose value, at a non-negative integer n, is the function
(At(tn/n!)); and the set of primes, i.e., that object of type (integer-'truth-
value) whose value, at a non-negative integer n, is true if n is prime and false
otherwise.

Expressions

There are three kinds of expressions; identifiers, abstractions and applications.
We define each of these kinds of expression as follows, simultaneously
specifying the type of each expression.
Identifiers. These are of two kinds, special and nonspecial. The nonspecial
identifiers constitute a denumerably infinite set of inscriptions which may be
freely chosen for their mnemonic properties, consistent with the constraint
that no nonspecial identifier can be mistaken for a special identifier, an
abstraction, or an application. The types of the nonspecial identifiers may be
assigned arbitrarily provided that for each type symbol a there are infinitely
many nonspecial identifiers which are of type cc.
The special identifiers, together with their types, are the following:

true, false: of type truthvalue,
not: of type (truthvalue-otruthvalue),

or, and, implies: of type (truthvalue-,(truthvalue-+truthvalue)),
equal cc: of type (a-+ (a-, truthvalue)),
choice cc: of type ((a-+truthvalue) cc) .
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The last two lines above are intended to mean that for each type symbol cc
there is a special identifier of the appearance and type shown.
The intuitive significance of the special identifiers is intended to be sug-

gested by their mnemonic properties. For each type symbol cc the identifier
choice cc will always denote a choice function for objects of type cc, namely, a
function whose value, at an object S of type (cc--,truthvalue), is an object B
of type cc having the property that, if there are any objects for which S takes
on the value true, then B is among those objects. Briefly, a choice function
for objects of type cc 'chooses' an object from each nonempty set of objects of
type cc, and assigns, to the empty set of objects of type cc, some object (it does
not matter which) of type cc.
Abstractions. If X is a nonspecial identifier of type cc and A is an expression
of type fi then (AA' A) is an expression of type (cc-+/3) and is an abstraction.
Applications. If F is an expression of type (cc-/3) and A is an expression of
type cc then (FA) is an expression of type /3 and is an application.

Parentheses may be omitted in nested applications, with the convention of
'association to the left'. Thus ((F A)B) may be written (FAB); and (((FA)
B)C) may be written (F A B C) and so on. However, the expression (F(A B))
must be written so, on pain of being otherwise misread as ((FA)B).
Parentheses may also be omitted in nested abstractions with the convention

of 'association to the right'. Thus (AX(AY A)) may be written (AXAY A);
(A. X (A Y(2 ZA))) may be written (2 XAY)Z A), and so on. Afurther abbre-
viation is then permitted, namely the omission of the repeated occurrences of
in the resulting inscription. Thus (AXAYA) may be written (it X YA);

(AXAYAZA) may be written (AXYZA), and so on.
In connection with these conventions about the omission and restoration

of parentheses, it may be remarked that the absence from our system of
functions taking more than one argument causes no inconvenience, and brings
much benefit in the form of greater simplicity. However, construing, for
example, (or AB) as the application of (or A) to B, and hence construing or
as a function from truth values to functions-from-truth-values-to-truth-
values, instead of construing it as a function from pairs of truth values to
truth values, does seem a little strange when it is first encountered. Fortunately,
as the lambda calculus is becoming more widely familiar, this particular
feature is likely to be strange to relatively few readers.
We may write (choice P) instead of (choice cc P), and (equal AB) instead of

(equal cc AB), since the types of P, A, B, and the assumption that the expres-
sions are well-formed, determine cc uniquely.
The reader may at this point be wondering how quantification is managed

in this system. The following explanation is intuitive and informal.
Expressions of type truthvalue are called sentences, and for each type

symbol cc the expressions of type (cc-+truthvalue) are called predicates (of
objects of type cc). One would expect to find in a system of logic the ability to
write, e.g., (for all IA), (for some IA), where A is a sentence and Xis a
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nonspecial identifier (or ̀variable'), with the meanings that A is true for all,

or for at least one, respectively, of the objects which can be denoted by X. In
fact in our system these two assertions are exactly expressed by the two
expressions

((2X A) (choice (2X(not A))))
((2X A) (choice(AX A)))

respectively. The intuitive idea is this. The expression (for some X A) says that
(2 XA) is true of at least one object. However, (choice (AX A)) is certainly
such an object if there are any objects at all of which (A X A) is true, while if
there are no objects of which (). X A) is true, then (choice (2 X A)) is an object
of which (2 X A) is false. Hence (for some X A) and ((A X A) (choice (2 X A)))
are either both true, or else both false. And so they are equivalent.
A similar analysis shows the intuitive equivalence of (for all X A) with

((AXA)(choice(AX(not A)))).
In actual practice we write (for some X A), (for all X A) respectively as

abbreviations of ((2 X A)(choice (1 X A))), ((A X A)(choice(2 X(not A)))).
In the machine implementation to be described later, this abbreviation is
used both for input and output of expressions, while the unabbreviated
expressions are used internally. This is of course purely a matter of 'syntactic
sugar'.
As a further abbreviation we write, for example,

(for all X YZA)

instead of

(for all X(for all Y(for all Z A)))

and in general

(for all X1. . . X„A)

in place of

(for all X1( . . .(for all X„A) . . .)).

And similarly for nested existential quantifications.
The usual notion offree and bound occurrences of identifiers in expressions

prevails in the present system. Namely, for each identifier X and each expres-
sion A we classify each occurrence of X in A either as a free occurrence of X
in A or as abound occurrence of X in A, as follows:

if A is X, then the occurrence of X in A is free;
if A is an application (FB) then each occurrence of X in A is either an
occurrence of X in F or an occurrence of X in B, and it is a free, or a
bound, occurrence of X in A according as it is a free, or a bound,
occurrence, respectively, in F or in B;
if A is an abstraction (AY B) then if Xis Y, every occurrence of X in A
is a bound occurrence of X in A;
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while if Xis not Y then each occurrence of X in A is also an occurrence
of X in B, and is a free, or a bound, occurrence of X in A according as it
is a free, or a bound, occurrence of X in B.

The notion of free and bound occurrences within an expression A carries
over from occurrences of identifiers in A to occurrences in A of expressions
of any kind. An occurrence of the expression B within the expression A is a
bound occurrence of B in A if there is an identifier which has a bound occur-
rence in A that is a free occurrence in B. An occurrence of Bin A which is not
a bound occurrence of B in A is a free occurrence of B in A.
For example: (A X(A X)) occurs free in (A X(AX)), but (AX) occurs

bound in (A X(A X)).
If S is any set of expressions we define S* to be the set of all expressions

which havefree occurrences in expressions in S. Obviously S* is finite whenever
S is finite, and can easily be computed from S.
For example, if S is the set containing only (A X(A X)) then S* contains

the expressions: (A.X(A X)), A (assuming that A is an expression in which
there are no free occurrences of X).
We say that two expressions A, B are variants of each other, and we write:

A if A and B are 'identical up to within changes of bound identifiers'.
More precisely, A— B if and only if either A and B are both identifiers, and
A = B, or A and B are both applications (FC) and (GD) such that F-'G and
and D, or A and B are both abstractions, (2 X C) and (AY D) respectively,
such that X and Y are of the same type, and C",--D' ; here C', D' come res-
pectively from C, D, when each free occurrence of X in C, and of Yin D, is
replaced by an occurrence of Z,Z being an identifier of the same type as X
and Y which does not occur in either C or D.
From the above inductive definition of A— B it is straightforward to write a

machine program to determine, given two expressions A, B, whether or not
A—B.

Intuitively, two distinct expressions which are variants of each other are
not 'really' distinct at all. They are, so to speak, the same expression in two
different representations, and can be interchanged with one another within
any expression without changing the meaning of the expression in the slightest.
A more general equivalence relation between expressions arises when we

consider any partition K whose blocks are sets of expressions of the same
type (although different blocks may have expressions of different types).
For any such partition K and any two expressions A and B we say that A and
B are equivalent modulo K, and write

B (mod K),

when A and B are exactly like each other except for the fact that possibly,
in one or more places, A may have a free occurrence of one expression and B
may have a free occurrence of a different expression, provided that these
expressions lie in the same block of K.
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For example, (F ABC) is equivalent to (().XG)A(G D)C) modulo

UF(1% X G)][B(G D)]], but (2F(F(GF))) is not equivalent to (AFA ) modulo
[[A(F(GF))]].
(Here we have introduced a convenient notation for explicitly displaying

partitions of expressions. We write such a partition as [B1 . B,3], each block
Bj being written [A1 . . . Am], where A1, . . Am are the expressions in the
block B1. Of course the order of the blocks and the order of the expressions
within the blocks is immaterial.)
This notion of equivalence of expressions is a very natural and useful one.

We use it in contexts where the partition K has the intuitive interpretation
that expressions within any one block of K all denote the same object, so that
if A (mod K) then, intuitively, A and B also denote the same object.

It is straightforward to write a machine program to determine rapidly,
given A, B and K, whether or not B (mod K).

Finally, we define the operation of substitution. Let A and B be expressions
and let X be an identifier of the same type as B. Then we write A {B I X} to
represent the expression which results from the replacement of every free
occurrence of X in A' by an occurrence of B, where A' is the earliest variant of
A (in some canonical ordering of the expressions) which contains no bound
occurrences of any identifier occurring free in-B.
We write A {B1I X1, . . X,,} to represent the simultaneous replacement,

throughout A, of each free occurrence of each of the identifiers Xi,. • ., X„ in
A' by an occurrence of the corresponding one of the expressions B1, . • ., Bn;
where A' is the earliest variant of A which contains no bound occurrences of
any identifier occurring free in any of Bli B.

SEMANTICS

Many of the informal remarks made during the explanation of the syntax of
the system were semantical in character, intended to provide intuitive moti-
vations for syntactical features. It is hoped that thereby the reader has already
acquired some feel for what is intended in the semantical part of the system.
The following definition constitutes the 'official' semantic machinery.
Interpretations. An interpretation is a pair (g, H) satisfying the conditions:

(1) His a set of objects to each of which is assigned a type symbol from the
set T (by an extension to E u H of the mapping L already defined for E)
in such a way that every object in H(a—q3) is a function from Ha to Hi%
for all type symbols a and fl, and the only objects of type truthvalue are
the two truth values, true, false;
(2) g is a mapping of the nonspecial identifiers onto objects of H such
that for all X the object gX is of the same type as X (such mappings are
called assignments in H);
(3) every assignment m in His extendable to a denotation map m* in
H; that is, for every expression A there is an object m* A in H which
satisfies the appropriate one of the following conditions:
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(4) if A is a nonspecial identifier, then: m*A= mA;
(5) if A is a special identifier, then m* A is the object described on the
right-hand side of the appropriate equation among the following:

m* true = true

m*false =false

m*not =negation

m or =disjunction

m*and =conjunction

m*implies =implication

m*equal a =equality between objects of type a

m*choice a= a choice function for objects of type a

(Here it is understood that negation is the function n such that (n true) =false,
(n false) = true: that disjunction is the function d such that ((d true) true).
((d true) false) = ((d false) true) =true and ((d false) false) =false: that
conjunction is the function c such that ((c true) true) = true and ((c true) false)
= ((c false) true) = ((c false) false) =false: that implication is the function i
such that ((i true) false) =false and ((i true) true) = ((i false) true) = ((i false)
false) = true; that equality between objects of type a is the function e such that
((e a)b) = true when a is b, ((e a)b) =false when a is not b, for all objects a, b
of type a: and that a choice function for objects of type a is a function c such
that for all objects s of type (a-+truthvalue), either (s(es)) = true or (sb) =
false for all objects b of type a.)

(6) if A is an application (FB) then m*A is the object yielded when m*F
is applied to m*B;

(7) if A is an abstraction (A X B) then m* A is the function which yields
n*B when applied to nX, where n is any assignment in H which coincides
with m at all nonspecial identifiers, except possibly at X.

Intuitively, the conditions (5), (6) and (7) impose on the set H of objects the
constraint that whenever an object b can be defined in terms of (or constructed
out of) objects which are in H, then b must also be in H. Defining an object
'in terms of objects in H' is thus construed as choosing an assignment g in H
and an expression D, and then declaring that the object is g* D. The expression
D is then the definition of the object g* D. We are simply requiring that our
universes of discourse must be closed under the operation of defining objects
in terms of other objects.
Whenever (g, H) is an interpretation and A is an expression we say that A

denotes the object g* A in the interpretation (g, H). If A is a sentence and g* A
is true, or false, respectively, then we say that A is true, or A is false, respec-
tively, in the interpretation (g, H), or that the interpretation satisfies, or
falsifies, A.
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THE PROOF PROCEDURE

Our proof procedure is based on the notion of a semantic partition of a set of
expressions. If S is a set of expressions and Kis a partition of S we say that
K is a semantic partition of S if and only if there is an interpretation (g, H)
such that, for all expressions A, B in S:

[A]K=[B]K if and only if g*A=g*B.
Here we are using the notation [A]K to represent the block of K in which A
lies. It is straightforward to verify that the following semantic partition
conditions are necessary (but not sufficient) for K to be a semantic partition of
S. Each condition is assumed to be preceded by the hypothesis that each of the
expressions exhibited in the statement of the condition is in S.

(1) K is a refinement of the partition of S into types.

(2) [true]KO[false]K.

(3) [A]K=[true]K, or [A]K=[false]K, for all sentences A in S.
(4) [A]KS [(not A)]K.

(5)[(or AB)]K=[false]K if and only if [A]K=[B]K=[false]K.
(6) [(and AB)]K=[true]K if and only if [A]K=[B]K=[true]K.
(7)[(implies AB)]K=[false]K if and only if [A]K=[true]K and

[B]K=[false]K.

(8) [(equal AB)]K=[true]Kif and only if [A]K=[B]K.
(9) if (mod K) then [A]K=[B]K.

(10) if AB then [A]K=[B]K.

(11) if MAX A)(choice(AX A)))]K=[false]Kthen[((2X A)B)]K=
[false]K.

(12) if [((2 A)(choice(),X(not A))))]K=[true]K then [((2.1' A)B)]K
=[true]K.

(13) if [(for some Xi X„ A)]K=[false]K then [A{Bi I Xi, . •

• 

X„}]K=[false]K.

(14) if [(for all Xi X,, A)]K=[true]Kthen[A{Bi I
B I X„)]K=[true]K.

In condition (10), AA-JB means: if C comes from computing out A, and D
comes from computing out B, then C—D. Computing out an expression is
the process of persistently replacing subexpressions of the form ((2X1
Xk M)Ni Nk) by M NklXkl, and subexpressions of the form

Xk (F Xi. • • X1)), in which none of Xi, ..., .1k occur free in F, by
F, until no such subexpressions remain. It can be shown that every expression
can be computed out, and that different ways of computing it out will pro-
duce expressions which are at most variants of each other.

Mnemonically suitable names for these conditions are as follows:

(1) stratification
(2) noncontradiction
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(3) tertium exclusion

(4) negation

(5) disjunction

(6) conjunction

(7) implication

(8) equation

(9) conflation

(10) variation

(11) existential generalization

(12) universal instantiation

(13) strong existential generalization

(14) strong universal instantiation

Now for any given finite set S of expressions one can compute q(S), the
set of all partitions of S which satisfy the semantic partition conditions.

Furthermore, for any given partition D of a subset of S, we can check each
partition in q(S) to see whether or not D is a subpartition of it, i.e., whether
or not each block of D is wholly included in some block of it; and we can
therefore compute the set r(S,D) of partitions of S which satisfy the semantic
partition conditions and of which D is a subpart ition.
Our proof procedure exploits the fact that for any finite set S of expressions

and any partition D of a subset of S we can compute the set r(S,D).
The procedure is as follows, where Wo, W1, . . ., is some enumeration of the

set E of all expressions. The input to the procedure is a pair (S,D) in which S
is a finite set of expressions and D is a partition of S. The procedure then
consists of computing, for j=0, 1, . . ., the sets r(SI,D), where So =S, and

for all j0, S+ = { 147.1}. The reader will recall the definition of S*
as the set of all expressions which have free occurrences in expressions in S.
The procedure terminates after the computation of r(ST,D) if and only if

r(S,D) is empty.
The procedure just described is completely determined by the enumeration

Wo, W1, ., of expressions. However, it is not necessary, for the proof of the
fundamental theorem below, that this enumeration be uniformly the same
for each pair (S,D) to which the procedure is applied. For each (S,D) an
enumeration may be chosen which depends on the particular details of S and
D, or upon any other circumstances one chooses. The theorem is:

Henkin's Theorem. D is a semantic partition of S if and only if the procedure
does not terminate when it is applied to (S,D).

Consider now, in view of Henkin's Theorem, how the procedure can be used
directly as a proof procedure. Suppose one wishes to show that a sentence
B follows from the sentences A1, A. Then one wishes to show, in fact,
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that there is no interpretation which simultaneously satisfies each of Ali . An

but falsifies B. But this is the same as showing that the partition

D=[[441, A„, true][B, false]]

is not a semantic partition.
But if D is not in fact a semantic partition of

S= ., An, B, true, false}

then, by Henkin's Theorem, if the procedure is applied to (S,D) it will
terminate eventually.
Moreover, if the procedure eventually terminates when it is applied to

(S,D) then, by Henkin's Theorem, .D is not a semantic partition of S.
Therefore B follows from A1, A,, if and only if the procedure eventually

terminates when applied to (S,D), where S and D are as specified above.
Here follows a brief outline of the proof of Henkin's Theorem for the

benefit of readers who may wish to study Henkin's classic paper (1950). This
outline may be skipped without any loss of continuity in the present exposi-
tion.
To show that if D is a semantic partition ofS then the procedure does not

terminate when applied to (S,D), one shows that none of the sets r(S.7,D) is
empty because each, in fact, contains a semantic partition. D is in the set
r(S*,D) and is by hypothesis a semantic partition. So we show that, for all
j0, if r (SI,D) contains a semantic partition then so does r (44.1,D).
Assume then that r(SI,D) contains the semantic partition P. By definition of
r, D is a subpartition of P (written: DP). Let J be an interpretation which
induces P in Sr, and let Q be the partition induced by J in sy,i. Then Q is a
semantic partition which is in r(S1.1.1,D), because it satisfies the semantic
partition conditions and has D as a subpartition.
To show that if the procedure does not terminate when applied to (S,D)

then D is a semantic partition of S, one constructs an interpretation which
induces in the set E of all expressions a partition P such that D <1', and which
therefore induces D in S. This construction goes as follows.
If the procedure does not terminate when applied to (S,D), then none of

the sets r(SI,D) is empty. Since each partition in r(Sli.i,D) has exactly one
partition in r(Sr,D) as a subpartition, the sets r(S,D), r(ST,D), . . ., are
the successive layers of nodes in a tree which is infinite, but finitely branching.
Hence by Ki5nig's Lemma there is an infinite sequence Pli P2, ., of partitions
such that, for each j, Pi is in r(StD), and such that D<Pit4P2-.5 • • •
where P is that partition of the set E of all expressions such that, for any
expressions A, B: [A]P= [B].P if and only if for some j>. 1, [A ]P./ =
One then shows that P is a semantic partition by constructing an interpreta-

tion (g,H) which induces P in E. H is defined simultaneously with the
denotation map g* by induction over the set T of type symbols.
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For each basic type symbol a, the objects of type a are defined to be the
blocks B of P such that B<Ex. This determines the individuals in H. The
truth values true, false are identified with the blocks [true]P, [false]P res-
pectively. Then for each expression A of type a, g*A is defined to be [A]P.
For each higher type symbol (a-+13) the definition of the objects of type

(a—q), and of g* for all expressions of type (cc—* /3), is made on the inductive
assumption that the objects of types a and fi have already been defined, and
that g* has already been defined for all expressions of types a and fl.
With this assumption, for each expression F of type (a-013) g*F is defined

to be the function which yields g* (FA) when applied to g* A, for all expres-
sions A of type a. The function g* having been thus defined for all expressions
of type (a-0/3), the objects of type (cc-+/J) are then defined to be just the
objects g*F, as F runs through the expressions of type (a-3/3).

It can then be shown that (g,H) is an interpretation which induces P in E,
where g is the restriction of g* to the nonspecial identifiers.

IMPLEMENTING THE PROCEDURE AS A MAN-MACHINE
INTERACTIVE PROCESS

We envisage the following implementation of the procedure just described.
There is a keyboard at which the user can type expressions into the machine,

indicating as he does so, by pressing suitable control keys, whether the
expression being typed is the next in the sequence Wo, W1, . . ., or whether it is
to be entered into the partition D, and if so, into which block of D it is to be
placed.
When the process is initialized by the depression of the appropriate key,

there are created in the store of the machine the following objects:

the set S = {true, false} ,

the partition D =[[true][false]],

the set r(S*,D) -= {[[true] [false]]),

the partition M* =[[true][false]],

the partition M =[[true][false]].

Thereafter the computation proceeds by successive stages, each of which
consists of the entry of an expression from the keyboard followed by the
immediate updating of the objects S, D, r(S*,D), M* and M by the machine.
The partition M* is a partition of S*. The partition M is a partition of S. M*
is the meet of the partitions in the set of partitions r(S*,D). That is to say,
M* is the unique partition which is a subpartition of every partition in
r(S*,D) and which has the property that if K is any partition which is a
subpartition of every partition in r(S*,D) then KM*. M is simply the
restriction of M* to S. That is to say, M is that partition of S such that
[A]M= [B]M if and only if [A]M* =[B]M*, for all A and B in S. The
computation of the objects r(S*,D), M* and M from S and D is quite
straightforward.
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The entries from the keyboard are either W-entries or D-entries. The user
indicates which by pressing a suitable key. He then types in an expression A
(if he is making a W-entry) or an expression A followed by an expression B
(if he is making a D-entry).
When a W-entry has been made, the machine forms a new set S by adding

the expression A to the old set S. The new D is the same as the old D. The
machine then recomputes r(S*,D), M* and M. If r(S*,D) is empty, the
termination of the computation is signalled to the user. Otherwise the user is
given the signa' to begin the next stage by making another entry.
When a D-entry has been made, the machine forms a new set S by adding

the expression A to the old set S, just as in the case of a W-entry. However, it
now also forms a new partition D, in the following way: If the expression B
is in one of the blocks of D, then the expression A is added to that block to
form the new partition D. If the expression B is not in any of the blocks of D,
then the block [A] is added to D as a new block, to form the new partition D.
Once the new S and the new D have been formed in this way, the machine
then recomputes r(S*,D), M* and M, and completes the stage in just the
same way as was described above for the case of a W-entry.

It is of course an error for the user to make a D-en try in which th e expressions
A and B are both already in blocks of D, and [A]D0[B]D. It is otiose, but
not an error, if [A]D=[B]D. In either case the machine will detect the
anomaly and will output an appropriate message.
In the event that the computation stops as described, the user may correctly

conclude that the (current) partition D is not a semantic partition of that
subset of the (current) set S whose members are in its blocks. The complete-
ness of the procedure when implemented in this way depends, of course,
entirely on the sequence of expressions which are entered from the keyboard
into the set S. If this sequence is such as to exhaust E eventually (in the sense
that, for every expression A in E, there eventually comes a time when A
occurs in the sequence) then completeness is achieved.
The significance of the partition M is that it shows 'what immediately

follows from D' when D is construed as a body of assertions. The general
form of these assertions is that certain expressions denote the same object as
certain other expressions (namely, every expression in each block B of D
denotes the same object as every other expression in B); and the information
conveyed by M is construed similarly as a body of assertions about expres-
sions in S. When the block B is [true]M or [false]M the fact that an expres-
sion is in B means that it can be inferred to be true, or can be inferred to be
false, from the information in D.
As was mentioned earlier, we envisage the user typing in expressions using

the abbreviations made possible by the conventions concerning omission and
restoration of parentheses and by the notation for existential and universal
quantification which was explained earlier. Conversely, when the machine
displays the partition M to the user, or otherwise outputs expressions to him.

163



THEOREM PROVING

we envisage the performing of an 'ensugaring' process whereby the expres-
sions are abbreviated and otherwise made as readable as possible.

Naturally, the user is not prohibited from entering unabbreviated expres-
sions should he wish to do so.
The following example illustrates how the process works. It is to be shown

that the sentence

(for all P (implies (K P)(PM)))

follows from the two sentences

(for all R (implies (RQ)(RK)))

(for all S (implies (QS)(SM))).

We first initialize the process. The following is then the record of the compu-
tation as it actually appears on the keyboard transcript, part of which is typed'
by the machine and part by the user, as will be explained in a moment:

1. (for all S (implies (QS)(SM))) :true

2. (for all R (implies (RQ)(RK))) : true

3. (for all P (implies (KP)(PM))) : false

4. (implies ((A Q(for all S (implies (QS)(SM))))Q)
((2Q(for all S (implies (QS)(SM))))K)): [true]

5. ((A Q(for all S (implies (QS)(SM))))Q) : [true]

6. ((A Q(for all S (implies (QS)(SM))))K) : [true]

7. (for all S (implies (KS)(SM))) : STOP.

The numerals in the left-hand column are typed by the machine; that is, as a
signal to the user to begin the jth stage, the machine returns the carriage to
begin a new line and types: j. It also types the colon after the first expression
on each line, and in the case of the line being a TV-entry (as lines 4 through 7
are in the example) types also the material to the right of the colon, the signi-
ficance of which will shortly be explained, When the line is a D-entry (as are
the first three lines above) it is the user who types the material following the
colon. This consists of the expression B called for in a D-entry. The expression
on each line following the numeral and preceding the colon is the expression A
called for in the entry.
The explanation of the material typed by the machine to the right of the

colon in the case of a W-entry is as follows. As soon as the machine has
computed the new partition M it determines in which block of M the new
expression A lies. If A lies in either [true] M or [false] M, then the machine
types [true] or [false] after the colon, respectively. This immediately tells the
user that the sentence A which he has just typed in can be inferred to be true,
or to be false, respectively, from the information in D. If A lies in some other
block of M the machine types [kb • • k], where kl, Icn are the numbers of
the lines at which the expressions in that block were entered into the machine.
If n =1 then the only number thus typed by the machine is the number of the
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current line itself, signifying to the user that the new expression A lies in a block
all to itself in the newly computed M.
Note that the D-entries can be distinguished from the W-entries in the

transcript by the fact that the material after the colon on a D-entry line is
always an expression.
When the machine finds that the computation must terminate it types

STOP immediately after the colon.
To understand this particular example it helps to realise that lines 4

through 7 follow from earlier lines by familiar principles of inference. Line 4
follows from line 2 by virtue of being an instance of it. Line 5 follows from
line 1 by lambda-conversion. Line 6 follows from lines 4 and 5 by modus
ponens. Line 7 is a variant of line 3, and hence can be inferred to be false, but
also follows from line 6 by lambda-conversion, and hence can be inferred to
be true. Therefore contradiction has arisen, and the computation accordingly
terminates.
This example illustrates the way in which the record of a completed

computation can be read as a proof of the semantic impossibility of the parti-
tion D. Even though the computation does not terminate in the normal way
the record of the incomplete computation can still be read as a series of
inferences made on the basis of D as premiie. If D is in fact a semantic
partition (i.e., a consistent collection of information) then of course the
computation will not terminate in the normal way.
The intuitive feel of this process is that of a question-and-answer system.

The user inserts information into the system by means of D-entries, and asks
questions of the system by means of W-entries. In entering the expression A
by a W-entry, the user is in effect asking 'what can be immediately inferred
about this expression ?'. His answer is contained most directly in the material
typed by the machine immediately following his typing of A. A more detailed
answer is found in the full partition M, and a still more detailed answer in
the partition M*.
One need not necessarily follow the reductio ad absurdum pattern of argu-

ment with this system in order to make a proof. If, in our example, line 3 had
been omitted, and an eighth line added with the desired conclusion as the A
of a W-entry, the machine would have typed [true] immediately. The resulting
transcript would then have read as a deduction of the desired conclusion
from the two given premises.
The following example shows rather more of the machinery in operation.

The theorem to be proved is the proposition that, for all non-negative integers
71,

k=n

2 E k=n(n+1).
k=0

The proof is an elementary application of the principle of mathematical
induction. We give the essential part of the proof, interpolating comments
between entries:
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1. (for all n((An(equal(times two(summation identity n))(times n(plus n
one))))n)): false
The first entry is a D-entry stating the theorem and declaring it to be false
in preparation for a reductio ad absurdum proof. Now we set out to prove
the basis of the induction, which will be reached at line 16.

2. (times two(summation identity zero)) : [2]

3. (for all f(equal(summation f zero)(f zero))) : true
This is part of the definition of the summation operator.

4. (equal(summation identity zero)(identity zero)) : [true]
5. (times two(identity zero)) : [2,5]
6. (equal identity(Axx)) : true

This is simply a definition of the identity function.

7. (times two((Axx)zero)) : [2,5,7]
8. (times two zero) : [2,5,7,8]
9. (for all n(equal zero(times n zero))) : true

This is part of the definition of multiplication.

10. (equal zero(times two zero)) : [true]
11. zero : [2,5,7,8,11]

12. (times zero(plus zero one)) : [12]

13. (for all n(equal zero(times zero n))): true

14. (equal zero(times zero (plus zero one))) : [true]

15. (equal(times two(summation identity zero))(times zero (plus zero one))):
[true]

16. ((An(equal(times two(summation identity n))(times n(plus n one))))
zero) : [true]

Here we have deduced the sentence which serves as the basis of the
induction. Now we can appeal to the general principle of induction, stated
as follows:

17. (for all P(implies(and(P zero)(for all n(implies(Pn)(P(plus n one)))))
(for all n(Pn)))) : true
Then we introduce the appropriate instance of this principle:

18. (implies(and(Q zero)(for all n(implies(Qn)(Q(plus n one)))))(for
all n(Qn))) : [true]

Here we have used the identifier Q to shorten the expression. We must
therefore now say that Q is supposed to mean:

19. (equal Q(An(equal(times two(summation identity n))(times n(plus n
one))))) : true

In terms of this abbreviation we then have, from lines 1 and 16 respectively:

20. (for all n(Qn)) : [false]
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21. (Q zero) : [true]

Now lines 18, 20 and 21 allow us to infer:

22. (for all n(implies(Qn)(Q(plus n one)))) : [false]

If we now introduce the abbreviation:

23. (equal b(choice(An(not(implies(Qn)(Q(plus n one))))))) : true

we can immediately infer from line 22 the following:

24. (implies(Qb)(Q(plus b one))) : [false]

and therefore:

25. (Qb) : [true]
26. ( Q(plus b one)) : [false]

Whence, putting in the definition of Q:

27. (()n(equal(times two(summation identity n))(times n(plus n one))))b):
[true]

28. ((An(equal(times two(summation identity n))(times n(plus n one))))
(plus b one)) : [false]

and therefore, by lambda-conversion:

29. (equal(times two (summation identity b))(times b(plus b one))) :
[true]

30. (equal( (times two (summation identity (plus b one)))(times (plus bone)
(plus (plus b one) one))) : [false]

The remainder of the proof consists of deducing the left- and right-hand
sides of the equation in line 30 to be equal, using the distributivity of multi-
plication through addition, the associativity of addition, the definitions of
one, two and summation, together with the equation in line 29, which is the
premise for the induction step.
The introduction of the identifiers b and Q is entirely a matter of conven-

ience. This example shows how the choice expressions automatically play the
role of ̀Skolem functions' in the present system. The intuitive interpretation
of the choice expression in line 22 (unabbreviated) and line 23 is that its
successor is the least number n for which ( Qn) is false, as indeed lines 25 and
26 actually state explicitly.

Note that the D-entries (lines 1,3,6,9,13,17,19,23) are scattered through the
proof, wherever it is convenient to put them. They do not have to be at the
beginning. One can insert extra premises at any time, and in particular one
can at any time introduce abbreviations for expressions (as we did in lines
19 and 23 of the example) so as to avoid the need to form unduly long
expressions.

FURTHER DEVELOPMENTS OF THE SYSTEM

There are two main directions in which improvements can be made on the
present system. As it stands, it is simply (1) a pedagogical device intended to
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demonstrate the fundamental principles, and (2) an initial working system
designed to serve as the nucleus of later, stronger systems.
The first kind of improvement is the formulation of more and more

stringent sets of semantic conditions. The objective is, so to speak, to make
the sets r(S,D) as small as possible. The examples have illustrated how, in
effect, the semantic partition conditions operate as a set of inference prin-
ciples, providing the system with a certain immediate inference capability.
The present system has only a very limited immediate inference capability,
and systems having much more powerful ones are quite straightforward to
construct.
The second kind of improvement is to introduce mechanisms whereby

the machine, as well as the user, makes entries into the set S and the partition
D. One such mechanism is the practically useless, but theoretically interesting,
possibility of having the machine make all the entries except the D-entries, by
simply generating and entering all expressions, in some particular order. The
system would then be a complete, autonomous proof procedure. A less useless
mechanism of this sort would be to have the machine construct new expres-
sions systematically from the expressions in the set S*, forming instances of
universally quantified sentences by substituting expressions in S* for bound
identifiers; forming new abstractions from expressions in S* by binding each
free identifier in each expression; applying expressions to other expressions if
these applications are not already present; and so on. A further such mecha-
nism would be to have the machine introduce at appropriate times abbrevia-
tions for expressions which are too long. It would do this by equating a new
identifier to the expression to be abbreviated, via a D-entry. There is a great
variety of such mechanisms, and its is anticipated that most of the research
into the mechanization of higher-order logic will be the investigation and
development of suitable ones.
The two fundamental processes of our system are simply (1) the growing

of the set S of expressions and (2) the simultaneous formation of the 'immed-
iate inference partition' M of S. What we are saying, therefore, is that
improvements in the system will be mainly directed at the way in which (1)
and (2) are effected.

It is obviously desirable to make M as strong a partition of S as possible.
For any Sand D, let P(S,D) be the set of all semantic partitions of S, of which
D is a subpartition; and let M be the meet of the partitions in the set P(S,D).
Then we shall always have P (S,D)g_ r (S,D), and therefore MM, for all S
and D. Obviously we cannot have M=M for all Sand D, for then we would
have a decision procedure for higher-order logic. However, M is a useful
theoretical upper bound on M, to which we want M to approximate as
closely as possible consistent with a reasonable computation cost.
Not falling under either of these broad categories of improvements, but

extremely important from a practical point of view, are the possible improve-
ments of the 'syntactic sugar' kind. The goal should be to have as natural as
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possible a format for the input and output versions of expressions, and as

efficient as possible a format for the internal versions of expressions.
For example, wherever it is natural to have an infix notation, as in A or B,

A implies B, A. B, A+ B, the user should be able to write it thus if he wishes.
Far more drastic departures from the simple 'official' applicative and ab-

stractive appearance of expressions are possible than those explicitly mentioned
in the present account. In general, any natural mathematical notation is
usually quite easily construed as 'syntactic sugar' coating of expressions of
the present system. In this connection the reader would be well advised to
read the beautiful studies of Landin (e.g., 1964), revealing the deep and uni-
versal relationship between mathematical notations on the one hand and the
lambda-calculus on the other.

In our examples and the general description of the system to be implemented
we have left in the background the question of how it deals with the types of
identifiers. Within the general policy of making things feel natural for the
user, the policy concerning types ought to be that they should not obtrude
on the user's natural modes of writing and reading expressions. Evidently, the
type of each identifier, and therefore of each expression, must be known to the
user: this is part of what it means to say that he understands them. The
machine must also have this information. Hence there must be mechanisms
for specifying the types of identifiers when they are newly introduced. We
envisage that, roughly speaking, the machine will seek to determine the types
of all new identifiers by analyzing the context in which they are introduced,
which very frequently is such that the type of each new identifier can be
uniquely determined from the types of old identifiers, the types of special
identifiers, and the assumption that expressions are well formed unless they
can be proved not to be. If the machine's attempt to determine the type of a
new identifier fails, then, and only then, the user will be specifically requested
to state what its type is. The user may also of course volunteer redundant
type information if he so chooses (for example, in order to have it recorded
explicitly on the transcript of the computation).

Concluding remarks

It is hoped that this discussion will serve as a starting-point for the develop-
ment of useful man-machine interactive systems of the general sort we have
been discussing. There is obviously immense scope for research. Part of the
intention of the present discussion has been to try to indicate the scope, with
the aim of attracting people to the subject no matter how theoretical, or how
practical, their particular interests may be. It is important to recognise that it
is higher-order logic, and not first-order logic, which is the natural technical
framework for the 'mechanization of mathematics'. We have in fact attempted
here to pursue further an effort begun previously (Robinson 1968) to persuade
those engaged in mechanical theorem-proving research, and those proposing
to start such research, to focus their attention henceforth on mechanizing
higher-order logic.
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Any information retrieval or IR system that does more than merely search
files for stored facts must be able to perform logical inferences. These in-
ferences or deductions are similar in nature to those performed by theorem-
proving or question-answering programs, but the deductive systems currently
in operation cannot automatically be taken as the model of an IR system,
since they will prove theorems or answer questions efficiently only if they are
provided with small sets of premises known in advance to be relevant, while
the 'data base' of an IR system may be very large indeed, consisting possibly
of 105 or 106 statements (cf. Levien & Maron 1967). Of the total set of
premises in the data base, only a few may be relevant to any particular
deduction, but some recent refinements in theorem-proving techniques suggest
that IR systems may be able to make efficient deductions even in the presence
of large sets of irrelevant premises.
We may specify the nature of relevant and irrelevant premises in a deduc-

tive system more precisely, as follows: Let S be the total set of premises in the
data base, and T be the negation of some specific ̀ fact' or theorem T that one
is attempting to ̀retrieve' or prove by reductio ad absurdum. We shall assume
initially that T is a single (though possibly complex) fact, as opposed to a list
of possible answers to a question. We shall also assume that S is consistent
or 'satisfiable', and that S and Tare stated in the terminology of first-order
predicate calculus with equality, ̀ Skolemised' and in conjunctive normal
form, as required by resolution-type theorem-proving methods (Robinson
1965). Now for any given T, we may distinguish two subsets of S: S(R), the
(small) relevant set, and S(/), the (large) irrelevant set, though the composi-
tion of these two subsets is not generally known in advance of computation.
S(R) may conveniently be defined as the subset of S that appears in the
`proof set' printed out by the 'proof recovery section' of a theorem-proving
program. If there is more than one proof of T, that is, more than one way of

173



DEDUCTIVE INFORMATION RETRIEVAL

deriving the 'null clause' from Su T, then any premise that participates in any
of these derivations must be counted as relevant, but S(R) will still be quite
small in relation to S(/) in an IR system. The irrelevant set S(I) may in turn
be divided into 5(I1), which contains no predicates in common with S(R)u
T, and S(12), which shares one or more predicates with S(R)uT. S(I2) may
be further divided into 5(/21), which contains no literals that 'match' (in
the resolution sense) the negations of any literals in S(R)u T, and 5(/22),
which contains at least one literal that matches the negation of some literal
in S(R)uT. The entire set Su T, which one wishes to prove unsatisfiable, is
thus represented as the logical sum of five mutually exclusive and jointly
exhaustive subsets

S(MuS(/21)uS(/22)uS(R)uT

in which 5(I1), , S(R) are in order of increasing relevance to the proof
of T, and in which the irrelevant subsets S(/1 ), . . . , S(/22) range from 'most
irrelevant' to 'least irrelevant', the former being least likely, and the latter
most likely, to interfere with the retrieval of T from S. The 'least irrelevant'
subset 5(/22) in fact plays a crucial role in this classification, since it pro-
vides the link between the relevant and the irrelevant premises. If S(/22)
is null, or can somehow be neutralised, then the entire irrelevant set 5(1)
can also be neutralised merely by employing the 'set of support' strategy
(Wos et al. 1965), the essence of which is that no two clauses in the data base
or 'satisfiable set' S are resolved against each other. This strategy entails
that all resolvents produced in the first generation will result from

S(I22)uS(R)uT

with at least one parent in T. If S(/22) does not enter into any resolutions
with T or with any resolvents generated by 5(R) T, as would be the case if
for example 5(/22) were null, then S(I1) and 5(/21) will in effect be neutral-
ised, since no clause will be generated that can call them into play. But sup-
pose on the contrary that 5(/22) is not null and contains some clause

PG • •)V Q(• • .)

such that P(. .) is 'matchable' by some literal in S(R)u T and Q(.. .) is not,
then it can easily happen that some clause containing Q(. .) will be gener-
ated from S(122)uS(R)uT, and that this clause will resolve with one or
more clauses containing CC ) in S(I1)uS(I21), thereby generating more
irrelevant clauses.
The suppositions of the preceding paragraph were confirmed by a simple

experiment, designed to test the effect of adding irrelevant premises to sets
known in advance to contain only relevant premises. An existing theorem-
proving program (Darlington 1968, 1968a), employing set of support with
'unit preference' (Wos et al. 1964), was used to solve ten simple problems in
predicate calculus taken from pp. 140-1 of I. M. Copi's Symbolic Logic (1954),
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for example: ̀ Any book which is approved by all critics is read by every
literary person. Anyone who reads anything will talk about it. A critic will
approve any book written by any person who flatters him. Therefore if some-
one flatters every critic then any book he writes will be talked about by all
literary persons.' The premises and conclusions of the ten examples were
translated by hand from ordinary English into predicate calculus, though
computer programs exist for this purpose (Bohnert & Backer 1967; Darlington
1965), and were submitted to the program in two separate runs. In the first
run, each conclusion was proved just on the basis of its ̀ own' premises, that
is, S(/) for each T was null, while in the second run the premises were com-
bined, giving a total of 16 unit and 23 non-unit clauses, and each conclusion
had to be proved on the basis of all the premises. For rapid access the pre-
mises were stored in a ̀dictionary' and indexed by the predicates they con-
tained, so that if the program wished to resolve (say) a unit clause P(. . .)
against a set of non-unit clauses, it would read in from the dictionary just
those non-unit clauses containing P(...). A similar storage scheme is em-
ployed by Green and Raphael (1968). In six of the ten examples S(/22) was
null, and for these examples the proofs obtained by the second or ̀ all pre-
mises' run were no longer, in terms of time and of clauses generated, than
those obtained by the first or ̀ own premises'- run, but the remaining four
examples, in which S(122) was not null, took significantly longer in the
second run than in the first. It may be assumed in fact-retrieval problems
that S(/22) will not in general be null. It is therefore essential to investigate
ways of reducing or minimising the effects of S(/22) in such cases, and it is
to this problem that we now turn.
A recent strategy that seems to be particularly applicable to IR systems,

though it was designed mainly for other theorem-proving applications, is
Meltzer's (1968) ̀ P1-deduction with set of support'. The essence of P1-
deduction (Robinson 1965) is that at least one parent of each resolvent must
be a ̀positive' clause (containing no negated literals). Although P1-deduction
and set of support are both complete strategies, they cannot automatically be
combined without sacrificing completeness, unless all the positive clauses are
in the set of support. In order to bring this about, one may look for ways to
'rename' the predicates (i.e., replace one or more predicates throughout by
the negations of their complements) of the data base S so as to make all the
premises in S ̀nonpositive' (containing at least one negated literal). Any
positive clauses would then have to be supplied by the negation of the query
addressed to the system. Of course, some satisfiable sets have no nonpositive
renaming, e.g., {P(f(x)), P(g(x))), but there is in fact a strong possibility
of finding a nonpositive renaming for the data bases of most IR systems, as
the following considerations indicate.
The data bases of most IR systems, as opposed to most axiom sets used in

theorem-proving, contain a large diversity of predicates (the set of ten Copi
examples, though not strictly speaking an IR system, contains fifty distinct
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predicates and their negations, and the examples solved by Burstall's (1967)
question-answering program also contain many predicates); and the greater
the amount of predicate diversity in a system the greater the chances are of
finding a nonpositive renaming. Moreover, the vast majority of unit clauses
state positive facts about individuals, and these would all become non-
positive under a renaming of all predicates. Most or all non-unit clauses
would also come out nonpositive under a renaming of all predicates, since
they are almost all of 'mixed' type, containing some positive and some nega-
tive literals. The reason for this is that they result largely from statements of
logical implication or equivalence, such as definitions of terms, statements of
the form 'all A are B', statements of symmetry or transitivity of relations, etc.
In fact, the conjunctive normal forms of 'A implies B' and 'A if and only if B'
are always of mixed types so long as A and B are either positive literals or
compounds of positive literals containing only conjunction and disjunction
signs: in this case, the conjunctive normal form of the negation of A contains
only negative literals, and that of B contains only positive literals, so joining
the two and converting the result to conjunctive normal form gives mixed
clauses.
There are, to be sure, certain irreducible cases in which no renaming will

give a nonpositive set: for example, if S contains a positive clause R(a,b)
and a nonpositive clause stating that R is asymmetric (R(x,y) V R(y,x)) or
intransitive (R(x,y)V R(y,z) V R(x,z)); but there are also many cases in
which one may avoid resolving a positive against a nonpositive clause in the
data base and still preserve completeness. For example, one need not resolve
positive unit clauses against nonpositive units, since this could only produce
the null clause, contrary to the assumption that S is satisfiable. There is also a
large class of 'positive against nonpositive' resolutions that one may be
excused from performing by virtue of a method of inference described by
Kowalski and Hayes (1969), which is based on the fact that, under certain
conditions of order, resolving only on the first literals of clauses is complete.
Thus, if P(...) and P(...) do not both occur first in their respective clauses,
then these two literals need not be matched. Even if P(...) and P(...) do
both occur first, it is frequently possible to change the order of at least the
negative literals so that P(...) no longer occurs first. This may be done if the
clause containing P(...) contains at least one other negative literal, say

but there would be no advantage in this if there were also a clause
beginning with Q(...).
The Kowalski—Hayes method requires one to set up an 'A-ordering'

(Slagle 1967) for the literals. To do this, one in effect sets up a total
ordering of all the 'ground instances' (containing no free variables) of the
'general level' literals (which may contain free variables). This ordering
might for example be purely alphabetical, so that P(. . .) precedes Q(. .),

.) precedes P(g(.. .), .), P(a) precedes P(f (. . .), .),
etc. A general level literal L1 is said to precede another general level literal
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La in the A-ordering if all the ground instances of L1 precede all the ground
instances of Ly. Two general level literals, e.g., P(x) and P(f(a)), that cannot
be so ordered are said to be equal' with respect to the A-ordering.
Once an A-ordering has been set up, the Kowalski—Hayes method resolves

only on the first literal of each clause, in accordance with a set of conditions
that include the following (in addition to certain requirements about 'factor-
ing' of clauses):

(i) negative literals occur before positive ones;
(ii) the order for negative literals is fixed for each clause, but may vary

from one clause to another;
(iii) the order for positive literals must be fixed in advance and

maintained throughout; and
(iv) a positive clause whose first n literals are 'equal' with respect to

the A-ordering (see above) must be listed n times, with each of
these n literals in turn occurring first.

It may be noted that condition (i) and the 'first literal resolution' principle
automatically entail P1-deduction.

Condition (ii) allows a great deal of flexibility for those nonpositive
clauses that contain more than one negativeliteral. It means in particular
that one need not perform any resolution at all on a nonpositive clause
unless there actually is a positive clause beginning with some literal of the
form P(. .) for each negative literal P (. . .), since a negative literal that
does not have such a 'mate' may always be put first in the clause. One might,
of course, include a stronger condition, that each negative literal actually
have a match, in which case one is in effect doing 'hyper-resolution'
(Robinson 1965), but this procedure has the disadvantage of throwing away
partial results that might be useful later on. In order to obtain the maximum
advantage from condition (ii), it would be well to employ the most non-
positive renaming of the data base S that one can find. Thus, if a predicate P
occurs once negatively and ten times positively, then it is a good idea to
rename P and F, provided of course that S remains nonpositive under this
renaming.

Condition (iii) is best implemented by ordering the positive literals accord-
ing to increasing ease of matching, so that the positive literal hardest to
match occurs first. There are two considerations that determine how hard a
literal P(. ..) is to match: (a) the formal complexity of P(...), and (b) the
number of individuals in the extension of P(. . .). Condition (a) justifies
putting m-ary predicates ahead of n-ary (m>n), so that ̀ R(x,y,z)' (e.g.,
'x receives y from z') goes ahead of ̀ G(x)' (e.g., 'x is a gift') and ̀ P(x)'
(e.g., x is a person'), while condition (b) justifies putting G(x) ahead of
P(x) under these interpretations, and ̀ Ga (x)' (e.g., ̀ x is a great artist')
ahead of both of these. There are certain problems that would arise in imple-
menting conditions (a) and (b) together, such as deciding the relative order
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of Ga (x) and R(x, y, z) under these interpretations, but the basic principle of
putting the literal hardest to match first seems sound, and even if one makes a
few mistakes the resulting system is still complete. If the A-ordering for the
positive literals is in accordance with this basic principle, it reduces the
chances that any given positive clause Pi (. . .) V P2(...) V.. . V P„(. . .)
will participate in any resolutions, and also increases the chances that if Pi
is matched then the hitherto easier to match literals Pi+1(...), , P„(. .)
will be more fully instantiated and therefore harder to match than before.
The merits of the above ordering principles may be shown by applying

them to an example taken from Levien and Maron (1967), in which it is
deduced that Smith graduated from UCLA from a large data base that
includes the information (in its 'extensional file') that UCLA awarded Smith
a Ph.D. degree, and the definition (in its 'intensional file') that 'graduates
from' means 'is awarded a degree by'. Using ' D(x)' for 'x is a degree',
`G(x, yr for 'x graduates from y', and 'A (x, y, z)' for 'x awards y to z', the
relevant premises are:

(1) D(x) V A(y, x, z) V G(z, y)
(2) D(Ph.D.)
(3) A(ucLA, Ph.D., Smith)

and the negation of the fact to be retrieved is:

(4) G(Smith, UCLA).

If the premises are made nonpositive by implicitly renaming the three pre-
dicates, so that D(x)' is understood to mean 'x is not a degree', etc., and
if the literals in (1) are ordered by conditions (ii) and (iii), then the set
becomes:

(1') (z, y) V A (y, x, z) V D(x)
(2') .6 (Ph.D.)
(3') A(ucLA, Ph.D., Smith)
(4') G(Smith, UCLA)

and a contradiction may be deduced in three steps:

(5) A(ucLA, x, Smith) V D(x) (1')& (4')
(6) D(Ph.D.) (3')&(5)
(7) contradiction (2')& (6)

The reason for putting A before D in the A-ordering is obvious in terms of
clause (5), since A(ucLA, x, Smith) will be much more difficult for the other
statements in the data base to match than the highly vulnerable D(x).
To summarise the preceding discussion, the method of inference recom-

mended for information retrieval is a combination of Meltzer's 'P1-deduction
with set of support' and 'first literal resolution with A-ordering' of Kowalski
and Hayes, together with some empirical and logical criteria for choosing a
favourable A-ordering. The method is designed to minimise the effect of the
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'least irrelevant' set S(/22) on the proof or retrieval of some specific T, since a
clause C in S(/22) cannot participate in any resolutions unless for each
negative literal PG ..) of C there is a positive clause beginning with P(...).
Furthermore, supposing that a positive clause D is generated from S(/22),
the A-ordering chosen for the positive literals guarantees that D will generate
the minimum number of resolvents with the nonpositive clauses. By minimising
the effect of S(/22), we thereby minimise the effect of the entire irrelevant set
S(/), since S(/22) is the link between S(/) and the minimum unsatisfiable
set S(R)uT.
The ten examples mentioned earlier have been recomputed using the

new method. The machine generated a total of 52 clauses, with 100 per
cent relevance: each generated clause appeared in the proof set of one of the
ten examples. This result is very encouraging, but it will have to be con-
firmed by testing the new method on systems in which S(/) is much larger,
and not merely ten times larger, than S(R).
The preceding discussion was concerned with the retrieval of specific

facts from a data base S by reductio ad absurdum. This method is applicable
if one is trying to prove some particular fact T, so that the set SuT can be
formed and is inconsistent or 'unsatisfiable', but there are many cases in
information retrieval in which these conditions do not apply and in which
one may still obtain useful answers to questions. The following example,
based on those solved by Burstall's (1967) program, illustrates this point.

(1) R(x)VB(x)
(2) R(x)V E(x,w)
(3) il(x) V D(x,a)
(4) 13(x,y) V C(x,y)
(5) E(x,y) V C(x,y)
(6) C(x,y) V D(x,y) V E(x,y)}

'a robin is a bird'
'robins eat worms'
'horses drink water'

'consume means eat or drink'

Question: 'what do birds consume?' (i.e., give a list of things which are
consumed by some or all birds).
As a first approach, one might try to prove the assumption underlying the

question, 'there exist birds and there exist things that birds consume', in the
hope of generating at least one answer to the question, but if the negation of
this assumption, i.e.,

(7) .13(x)V C(x,y)

is added to (1)—(6), the resulting set is still satisfiable (by the P 1-deduction
theorem), since all clauses are nonpositive.
A more satisfactory approach is to formulate a set S(A) of clauses that

express the general conditions that any x has to meet in order to be an answer
to the question. Using the predicate Var introduced by Green and Raphael
(1968), S(A) for this example consists of the single clause

(7') 1-3(x) V e(x,y) V Var(y)
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where Var(y) means essentially that y is an answer. Clause (7') may itself be
regarded as an answer to the question, namely, the 'most general answer'.
One then treats S(A), or in this case (7') , exactly as if it were a set of support,
generating resolvents from SuS(A) but not from S alone, and these resol-
vents will all be in some sense answers to the question, ranging from the most

general answer (7') to the most specific answers, that is, fully instantiated
unit clauses beginning with Var. Even if, as in the present example, one
cannot generate unit Var-clauses, one may still obtain useful answers of

lesser specificity, e.g.

(8) R(x)V Var(w)

which may be interpreted as 'if robins exist then "worms" is an answer'.
Some additional examples of 'most general answers' are: B(x) V Var(x)

for 'what are birds?'; P(x) V C (y) V V(x,y)V Var(x) for 'what people vote
for some candidate ?' ; and P(x) V C(y) V V(x,y) V Var(x,y) for 'what
people vote for what candidates ?'. In the latter case, Var is taken as a binary
relation. This seems preferable to formulating S(A) twice, with Var(x) and
Var(y), since Var(x,y) specifies the order in which x and y must occur. Var
may actually be a function of any number of arguments, its degree being
determined by the particular system in which it is used.
There is an obvious parallelism between the set S(A) of most general

answers and the set T that expresses the negation of the assumptions under-

lying the question, to wit, each clause in S(A)is simply a clause in T with an
appropriate Var-literal tacked on the end. This is evident, for example, in the

case of (7) and (7'). In fact, the reductio ad absurdum method might be re-
garded as a special case of the most general answer method, in which each

clause in T has the null clause tacked on the end in place of a Var-literal: if
all the literals in some clause of T are 'cut', then the null clause provides a
negative answer to the question 'is SuT satisfiable ?'. Moreover, those cases

in which the null clause is generated from some clause in Tare precisely those
cases that provide maximally specific answers from S(A), since they are the
cases in which unit Var-clauses are generated, the difference, of course, being

that the program keeps on going when it gets to this point and generates more

Var-clauses instead of stopping at the first null clause. One would of course

like a guarantee that the program will generate all answers, but the fact that
resolution is not a complete method of forward deduction may complicate

the task of proving this for all cases.
There are further important differences between the most general answer

method and reductio ad absurdum. For example, restrictive strategies do not
apply, at least not in the same way, to the most general answer method, since

the point is to generate as many answers as possible, rather than to derive the

null clause in as few ways as possible. P1-deduction with set of support
cannot be applied to a nonpositive satisfiable set, and first literal resolution
with A-ordering does not apply either, since if the first literal in a most
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general answer cannot be cut (as with R(x) in the example), it may still be
possible to obtain a more specific answer by cutting some subsequent literals.
The strategy, then, should be geared to cutting as many literals from the most
general answers in as many ways as possible, but trying at the same time to
avoid deriving the same answer twice. If, however, one can assume that the
set is unsatisfiable except for the Var-literals, then the reductio ad absurdum
strategies become more applicable to the most general answer method. The
advantages in being able to apply these strategies are very considerable, par-
ticularly in IR systems with a large measure of predicate diversity, where
'P1-deduction with set of support' and 'first literal resolution with A-ordering'
offer a reasonable hope of obtaining efficient proofs from data bases con-
taining large sets of irrelevant premises.
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Theorem-Proving by Resolution as a
Basis for Question-Answering Systems

Cordell Green
Stanford Research Institute
Menlo Park, California

ABSTRACT

This paper shows how a question-answering system can be constructed using
first-order logic as its language and a resolution-type theorem-prover as its
deductive mechanism. A working computer-program, Q A3, based on these
ideas is described. The performance of the program compares favorably with
several other general question-answering systems.

1. QUESTION ANSWERING

A question-answering system accepts information about some subject areas
and answers questions by utilizing this information. The type of question-
answering system considered in this paper is ideally one having the following
features:

1. A language general enough to describe any reasonable question-
answering subjects and express desired questions and answers.

2. The ability to search efficiently the stored information and recognize
items that are relevant to a particular query.

3. The ability to derive an answer that is not stored explicitly, but that is
derivable by the use of moderate effort from the stored facts.

4. Interactions between subject areas; for example, if the system has
facts about Subject A and Subject B, then it should be able to answer a
question that requires the use of both sets of facts.

5. Capability of allowing the user to add new facts or replace old facts
conveniently.

This paper argues the case for formal methods to achieve such a system and
presents one particular approach in detail. A natural language facility is not
one of the properties sought after or discussed (although Coles, 1968, has
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added to the program described here a translator from a subset of English to
first-order logic).
The name 'question-answering system' requires clarification. The system

described above might be named an 'advice taker' or a 'multi-purpose prob-
lem-solving system' or 'general problem-solving system'. McCarthy (1958)
proposed using formal languages and deduction to construct such a system,
and suggested allowing the user to give hints or advice on how to answer a
question; he referred to the proposed system as an 'advice taker'. Research
on 'multi-purpose' or 'general problem-solving' tends to differ from question-
answering as described above by placing more emphasis on solving deeper,
more difficult problems and less emphasis on user interaction, formality, and
efficient retrieval of relevant facts from a large data base. The situation is
further confused by the use of 'question-answering' to refer sometimes to
natural language systems, sometimes to information retrieval systems having
little deductive ability, and sometimes to systems with deductive ability
limited to the propositional calculus.

It is important to emphasize the distinction between general versus special-
purpose question-answering. If the class of questions asked of a system is
small, completely specified in advance, and concerned with a particular
subject area, such as the question-answering system of Green, Wolf, Chomsky,
and Laughery (1963) concerned with baseball, or that of Lindsay (1963)
concerned with family relations, then we shall call such a system 'special-
purpose'. Frequently the goal in designing a special-purpose system is to
achieve good performance, measured in terms of running speed and memory
utilization. In this case the best approach may be first to construct a special
data base or memory that is optimized for that subject area and question
class, and then to write special question-answering subroutines that are
optimized for the particular data base and question class. On the other
hand, a 'general' question-answering system is one that allows arbitrary
subject areas, arbitrary questions, and arbitrary interactions between subject
areas during the process of answering a question. This taper describes a rather
formal approach to designing a general question-answering system. A precise
name for our system is 'a general, formal, deductive, question-answering
system.'

2. THEOREM-PROVING

The use of a theorem-prover as a question-answerer can be explained very
simply. The question-answerer's knowledge of the world is expressed as a set
of axioms, and the questions asked it are presented as theorems to be proved.
The process of proving the theorem is the process of deducing the answer to
the question. For example, the fact 'George is at home', is presented as the
axiom, AT(George, home). The question 'Is George at home?' is presented
as the conjectured theorem, AT(George, home). If this theorem is proved
true, the answer is yes. (In this simple example the theorem is obviously true
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since the axiom is the theorem.) The theorem-prover can also be used to find
or construct an object satisfying some specified conditions. For example, the
question 'Where is George?' requires finding the place x satisfying AT (George,
x). The theorem-prover is embedded in a system that controls the theorem-
prover, manages the data base, and interacts with the user. These ideas are
explained in more detail below.
Even though it is clear that theorem-proving can be used for question-

answering, why should one use these very formal methods? Theorem-proving
may be a good approach to the achievement of generality for several reasons:

1. The language is well defined, unambiguous, and rather general, so
that one may hope to describe many desired subjects, questions, or
answers.

2. The proof procedure used allows all possible interaction among the
axioms and is logically 'complete' that is, if a theorem is a logical
consequence of the axioms, then this procedure will find a proof,
given enough time and space. This completeness property is important
since several general question-answering programs have resulted in
incomplete deductive systems, even in the practical sense of being
unable to answer some simple types of questions that are short,
reasonable deductions from the stored facts — for example, the
author's Q Al (Green and Raphael 1968), Raphael's SIR (1964),
Slagle's DEDUCOM (1965), and Safier's SIMPLE SIMON (1965).
(However, the fact that we use a first-order logic theorem-prover
does impose certain important restrictions discussed in section 5.)

3. The theorem-prover is subject-independent, so that to describe a new
subject or modify a previous description of a subject, only the axioms
need to be changed, and it is not necessary to make any changes in the
program.

4. Formal techniques such as those developed here may be generally
valuable to the field of artificial intelligence. The use of a formal
framework can lead to insights and generalizations that are difficult to
develop while working with an ad hoc system. A common, well-
defined framework facilitates communication between researchers,
and helps to unify and relate diverse results that are difficult to compare.

5. Theorem-provers are becoming more efficient. Even though the
theorem-proving method used is theoretically complete, in practice its
ability to find proofs is limited by the availability of computer time
and storage space. However, the method of 'Resolution' (Robinson
1965), used by the program described here, has been developed to the
point of having several good heuristics. Further improvements in
theorem-proving are very likely, and, hopefully, the improvements
will carry over into corresponding improvements in question-answering.
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It should be possible to communicate precisely new theorem-proving
results to other researchers, and it is relatively easy to communicate
precisely particular formalizations or axiomatizations of subjects.

3. EXTENDING THEOREM-PROVING TO QUESTION-
ANSWERING

This section describes, in general, how questions can be asked in first-order
logic, and how answers can be generated. Examples illustrating these methods
are presented. The discussion in this section and the following two assumes
that the reader is somewhat familiar with logic and automatic theorem-
proving. An introduction to automatic theorem-proving is given in Cooper
(1966) and Davis (1963). The theorem-proving methods mentioned in this
paper use the Resolution Principle proposed by J. A. Robinson (1965 and
1967). Additional strategies for using the Resolution principle are presented
byWos etal. (1964,1965 and 1967). This last paper defines terms the 'Extended
Set of Support' strategy, 'degree', and 'singly connectedness', that are used
in section 4.
The explanation of question-answering given in this section will be illus-

trated primarily by the techniques used in a working question-answering
program called Q A3. It is programmed in LISP on the SDS 940 computer,
operating in the time-sharing mode. The user works at a teletype, entering
statements and questions, and receiving replies. The notation in this paper is
slightly different from the actual computer input and output, as the character
set available on the teletype does not contain the symbols we use here. Q A3
is an outgrowth of Q A2 (Green and Raphael 1968), an earlier system, but is
somewhat more sophisticated and practical, and is now being used for several
applications.

1. Types of questions and answers

Facts are presented as statements of first-order logic. The statement is pre-
ceded by STATEMENT to indicate to the program that it is a statement. These
statements (axioms) are automatically converted to clauses and stored in the
memory of the computer. The memory is a list structure indexed by the
predicate letters, function symbols, and constant symbols occurring in each
clause. A statement can be a very specific fact such as

STATEMENT: COLO R(book, red)

corresponding to the common attribute-object-value triple. A statement can
also be a more general description of relations, such as:

STATEMENT: (V x)(V A)(V B)[A gB A X E A=x e B]

meaning that if A is a subset of B and if x is an element of A, then x is an
element of B.

Questions are also presented as statements of first-order logic. QUESTION
is typed before the question. This question becomes a conjecture and Q A3
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attempts to prove the conjecture in order to answer YES. If the conjecture
is not proved, QA3 attempts to prove the negation of this question in order to
answer NO. The theorem-prover attempts a proof by refutation. During the
process of searching for a proof, clauses that may be relevant to a proof are
extracted from memory and utilized as axioms. If the question is neither
proved nor disproved, then a NO PROOF FOUND answer is returned.
ANSWER indicates an answer.
We now present a very simple dialogue with QA3. The dialogue illustrates a

'yes' answer, a 'no' answer, and an 'or' answer. Questions 4, 7, and 8 below
illustrate questions where the answer is a term generated by the proof
procedure. These kinds of answers will be called 'constructive' answers.

1. The first fact is 'Smith is a man.'

STATEMENT: MAN(Smith)

OK

The OK response from QA3 indicates that the statement is accepted, converted
to a clause, and stored in memory.

2. We ask the first question, 'Is Smith a man?'

QUESTION: MAN(Smith)

ANSWER: YES

3. We now state that 'Man is an animal,' or, more precisely, 'If x is a
man then x is an animal.'

STATEMENT: (Vx)[MAN(x)ANIMAL(x)]

OK

4. We now ask 'Who is an animal?' This question can be restated as
'Find some y that is an animal' or 'Does there exist a y such that y
is an animal? If so, exhibit such a y.'

QUESTION: (3y)ANIMAL(y)

ANSWER: YES, y=Smith

The YES answer indicates that the conjecture (3y)ANIMAL(y) has been
proved (from statements 1 and 3 above). 'y = Smith' indicates that 'Smith' is
an instance of y satisfying A NIMAL(y)—i.e., ANIMAL(Smith) is a
theorem.

5. Fact: A robot is a machine.

STATEMENT: (V.Ic)[ROBOT(x)MACHINE(x)]

OK

6. Fact: Rob is a robot.

STATEMENT: ROBOT(Rob)

OK
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7. Fact: No machine is an animal.

STATEMENT: (Vx)[MACHINE(x)ANIMAL(x)]
OK

8. The question 'Is everything an animal?' is answered NO.
A counterexample is exhibited — namely, Rob the robot.

QUESTION: (V x)ANIMAL(x)

ANSWER: NO, x= Rob

The answer indicates that A NI M AL(Rob) is a theorem. Note that a NO
answer produces a counterexample for the universally quantified variable x.
This is the dual of the construction of a satisfying instance for an existentially
quantified variable in a question answered YES.

9. Fact: Either Smith is at work or Jones is at work.

STATEMENT: AT (Smith,work)V AT (Jones,work)
OK

10. Question: 'Is any one at work?'

QUESTION: (3x)(AT(x,work))

ANSWER: YES, x= Smith

or x =Jones

From the previous statement it is possible to prove that someone is at work,
although it is not possible to specify a unique individual.

Statements, questions, and answers can be more complex so that their
corresponding English form is not so simple. Statements and questions can
have many quantifiers and can contain functions. The answer can also con-
tain functions. Consider the question 'Is it true that for all x there exists a y
such that P(x,y) is true ?', where P is some predicate letter. Suppose QA3 is
given the statement,

11. STATEMENT: (V z)P(z,f(z))

where .1 is some function. We ask the question

12. QUESTION: (V x)(3y)P(x,y)
ANSWER: YES, y=f(x)

Notice that the instance of y found to answer the question is a function of x,
indicating the dependence of y on x. Suppose that instead of statement 11
above, QA3 has other statements about P. An answer to question 12 might be

ANSWER: NO, x=a

where a is some instance of x that is a counterexample.
The term(s) that is the answer can be either a constant, a function, a

variable, or some combination thereof. If the answer is a constant or a known
function, then the meaning of the answer is clear. However, the answer may
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be a Skolem function generated by dropping existential quantifiers. In this

case, the answer is an object asserted to exist by the existential quantifier that

generated the Skolem function. To know the meaning of this Skolem function,

the system must exhibit the original input statement that caused the produc-

tion of the Skolem function. Free variables in clauses correspond to universally

quantified variables, so if the answer is a free variable, then any term satisfies

the formula and thus answers the question.
Two more types of answers are NO PROOF FOUND and INSUFFI-

CIENT INFORMATION. Suppose the theorem-prover fails to prove
some conjecture and also fails to disprove the conjecture. If the theorem-
prover runs out of time or space during either the attempted 'yes' proof or the

attempted 'no' proof, then there is the possibility that some proof is possible
if more time or space is available. The answer in this case is NO PROOF

FOUND.
Now suppose both proof attempts fail without exceeding any time or

space limitations. The theorem-proving strategy is complete so that if no

time or space limitation halts the search for a proof and the conjecture is a

logical consequence of the axioms, then a proof will be found. So we know

that neither a 'yes' nor a 'no' answer is possible from the given statements.

The answer returned is INSUFFICIENT INFORMATION. For

example, suppose QA3 has no statements containing the predicate letter 'R':

QUESTION: (3x)R(x)

The negated question is the clause { —R(x)}, and no other clauses in the

memory of QA3 can resolve with it. Thus the system will respond

ANSWER: INSUFFICIENT INFORMATION.

2. Constructing answers

The Resolution method of proving theorems allows us to produce correct

constructive answers. This means that if, for example, (3x)P(x)is a theorem

then the proof procedure can find terms t1, t2,. t„ such that P(t2) V P(t2) V

. . . V P(t,i)is a theorem.
First, we shall present some examples of answer construction. After these

examples we shall show how a proof by resolution can be used to generate an

answer.
Examples of answer construction will be explained by means of the

ANSWER predicate used by QA3 to keep track of instantiations. Consider

the question

QUESTION: (3y)ANIMAL(y)

which is negated to produce the clause

{—,ANIMAL(y)).

The special literal, ANSWER(y), is added to this clause to give

{— ANIMAL(y) V ANSWER(y)}.
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The proof process begins with this clause. When the literal ANIMAL(x) is
resolved against the literal ,,,ANIMAL(y), the term y is instantiated to
yield the term x. In the new clause resulting from this resolution, the argument
of ANSWER is then x. In the next resolution the argument of ANSWER
becomes Smith. We list the complete modified proof that terminates with the
clause

{ANSWER(Smith)}.

1. {—ANIMAL(y) V ANSWER(y)} Modified negation of the question.

2. { MAN(x)V ANIMAL(x)}

3. { MAN(x)V ANSWER(x)}

4. {MAN(Smith)}

5. {ANSWER(Smith)}

Axiom fetched from memory.

From resolving 1 and 2.

Axiom fetched from memory.

`Contradiction' from 3 and 4 for
y=Smith.

The argument of the ANSWER predicate is the instance of y — namely,
Smith— that answers the question. Q A3 returns

ANSWER: YES, y=Smith.

This answer means, as will be explained later, that

ANIMAL(Smith)

is a theorem.
The ANSWER literal is added to each clause in the negation of the

question. The arguments of ANSWER are the existentially quantified
variables in the question. When a new clause is created, each ANSWER
literal in the new clause is instantiated in the same manner as any other
literal from the parent clause. However, the ANSWER literal is treated
specially; it is considered to be invisible to resolution in the sense that no
literal is resolved against it and it does not contribute to the length (size) of

the clause containing it. We call a clause containing only ANSWER literals
an ̀ answer clause.' The search for an answer (proof) successfully terminates
when an answer clause is generated. The addition of the ANSWER
predicate to the clauses representing the negation of the theorem does not
affect the completeness of this modified proof procedure. The theorem-
prover generates the same clauses, except for the ANSWER predicate, as

the conventional theorem-prover. Thus in this system an answer clause is
equivalent to the empty clause that establishes a contradiction in a conven-

tional system.
An answer clause specifies the sets of values that the existentially quantified

variables in the question may take in order to preserve the provability of the
question. The precise meaning of the answer will be specified in terms of a

question Q that is proved from a set of axioms B={B1,B2,. .
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As an example illustrating some difficulties with Skolem functions, let the
axioms B consist of a single statement,

STATEMENT: (V z)(3w)P(z,w)

Suppose this is converted to the clause

IP(z,f(z))} ,

where f(z) is the Skolem function due to the elimination of the quantifier
(3w). We ask the question Q,

QUESTION: (V y)(3x)P(y,x).

The negation of the question is — Q,

(3y)(V

The clause representing — Q is

{—P(b,x)} ,

where b is the constant (function of no variables) introduced by the elimina-
tion of (3y). The proof, obtained by resolving these two clauses, yields the
answer clause

{ANS WE R(f(b))}

The Skolem Function b is replaced by y, and the answer printed out is

ANSWER: YES, x=f(y). ( 1 )

At present in QA 3 the Skolem function f(y) is left in the answer. To help
see the meaning of some Skolem function in the answer, the user can ask the
system to display the original statement that, when converted to clauses,
caused the generation of the Skolem function.
As an illustration, consider the following interpretation of the statement

and question of this example. Let P(u,v) be true if u is a person at work and v
is this person's desk. Then the statement (V z)(3w)P(z,w) asserts that every
person at work has a desk, but the statement does not name the desk. The
Skolem function f(z) is created internally by the program during the process
of converting the statement (Vz)( 3w)P(z,w) into the clause {P(z,f(z))} .
The function f(z) may be thought of as the program's internal name for z's
desk. (The term f(z) could perhaps be written more meaningfully in terms of
the descriptive operator i as `iw.P(z,w),' i.e., 'the w such that P(z,w)',
although w is not necessarily unique.)
The question (V y)(9x)P(y,x) asks if for every person y there exists a

correspondingdesk. The denial of the question, (3y)(Vx) -,P(y,x), postulates
that there exists a person such that for all x, it is not the case that x is his desk.
The Skolem function of no arguments, b, is also created internally by the
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program as it generates the clause { —P(b,x)} . The function b is thus the
program's internal name for the hypothetical person who has no desk.
The one-step proof merely finds that b does have a desk, namely f(b). The

user of the system does not normally see the internal clause representations
unless he specifically requests such information. If the term f(b) that appears
in the answer clause were given to the user as the answer, e.g. YES, x=f(b),
the symbols fand b would be meaningless to him. But the program remembers
that b corresponds toy, so b is replaced by y, yielding a slightly more meaning-
ful answer, YES, x=f(y). The user then knows that y is the same y he used
in the question. The significance of the Skolem function f is slightly more
difficult to express. The program must tell the user where f came from. This
is done by returning the original statement (V z)P(z,f(z)) to the user (alterna-
tively, the descriptive operator could be used to specify thatf(z)isiw.P(z,w)).
As a rule, the user remembers, or has before his eyes, the question, but the
specific form of the statements (axioms) is forgotten. In this very simple
example the meaning off is specified completely in terms of the question
predicate P, but in general the meanings of Skolem functions will be expressed
in terms of other predicates, constants, etc.
We will now show how to construct an 'answer statement', and then we will

prove that the answer statement is a logical consequence of the axiom clauses.
The user may require that an answer statement be exhibited, in order better
to understand a complicated answer.

Consider a proof of question Q from the set of axioms B. {B1,B2, BO •
B logically implies Q if and only if B A Q is unsatisfiable. The statement
B A Q can be written in prenex form P M(Y, X), where P is the quantifier
prefix, M(Y, X) is the matrix, Y= {y ,y2, . . y„} is the set of existentially
quantified variables in P, and X= {x1,x2, . . xe} is the set of universally
quantified variables in P.

Eliminating the quantifier prefix P by introducing Skolem functions to
replace existential quantifiers and dropping the universal quantifiers produces
the formula M(U, X). Here U is the set of terms { ti1,u2, . . uu}, such that
for each existentially quantified variable yi in P, ui is the corresponding
Skolem function applied to all the universally quantified variables in P
preceding yi. Let M(U, X) be called S. The statement B A Q is unsatisfiable
if and only if the corresponding statement S is unsatisfiable. Associated with
S is a Herbrand Universe of terms H that includes X, the set of free variables
of S. If = { tilxi, t242, . t„/x„ } represents a substitution of terms t1, t2,
t„ from H for the variables xi, x2, . x„, then SO denotes the instance of S
over H formed by substituting the terms ti, t2, t. from H for the corres-
ponding variables xi, x2, x„ in S.
Let Si represent a variant of S, i.e., a copy of S with the free variables

renamed. Let the free variables be renamed in such a way that no two variants
Si and Si have variables in common. By the Skolem-Lowenheim-Godel
theorem (Robinson 1967), S is unsatisfiable if and only if there exists an
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instance of a finite conjunction of variants of S that is truth-functionally
unsatisfiable. A resolution theorem prover can be interpreted as proving S
unsatisfiable by finding such a finite conjunction.
Suppose the proof of Q from B finds the conjunction Si A S2 A ... A Sk and

the substitution 0 such that

(Si A S2 A ... A Sk)0

is truth-functionally unsatisfiable. Let F0 denote the formula (S1 A S2 A...
A Sk) 0. Let L be the conjunction of variants of M(Y, X),

L=M( Yi.,XL) A M( Y2,X2) A ... A M( Yk,Xk)

and let A be the substitution of Skolem function terms for variables such that

LA= M(L11,14) A M( U2,X2) A . A M( Uk,Xk)

=Si A S2 A ... A Sk.

Thus L20 = F0.
Before constructing the answer statement, observe that the Skolem

functions of F0 can be removed as follows. Consider the set U= {141,u2, • •
tia} of Skolem-function terms in S. Find in F0 one instance, say WI, of a
term in U. Select a symbol, zi, that does not occur in F0. Replace every
occurrence of Uj in F0 by zi, producing statement Ft. Now again apply this
procedure to F1, substituting a new variable throughout F1 for each occurrence
of some remaining instance of a Skolem-function term in Ft, yielding F2.
This process can be continued until no further instances of terms from U
are left in F„, for some n.
The statement Fi for 0.4 i<n is also truth-functionally unsatisfiable for the

following reasons. Consider any two occurrences of atomic formulae, say
ma and mb, in F0. If ma and mb in F0 are identical, then the corresponding two
transformed atomic formulae mat and mbi in F2 are identical. If mo and Int•
are not identical, then mat and mu are not identical. Thus, F1 must have the
same truth table, hence truth value, as F0. This property holds at each step in
the construction, so F0, Ft, . . Fa must each be truth-functionally unsatis-
fiable.

This term replacement operation can be carried out directly on the sub-
stitutions, i.e., for each statement F„ 0 i<n, there exists a substitution cri
such that F1=Lai. We prove this by showing how such a ai is constructed.
Let a0= AO= t2/v2, • • •9 tplVp} •
By definition, Fo =Lao. Let ti denote the term formed by replacing every

occurrence of 1.41 in tj by zt. The substitution al= { t2'/v2, t;/v}
applied to L yields Ft, i.e., F1= Lai. Similarly one constructs al and shows, by
induction, Fi=La I, for 0:5 i<n.
Now let us examine some of the internal structure of F0. Assume that

S=M( U,X) is formed as follows. The axioms may be represented as
PBB( YB,KB), where Pg is the quantifier prefix, Irg is the set of universally-

193



DEDUCTIVE INFORMATION RETRIEVAL

quantified variables, and XB is the set of existentially-quantified variables.
These axioms are converted to a set of clauses denoted by B( Y8, UB), where
UB is the set of Skolem-function terms created by eliminating XB.
The question may be represented as PQQ(YQ,X0), where PQ is the quanti-

fier prefix, YQ is the set of universally-quantified variables, and X2 is the set of
existentially-quantified variables. Assume that the variables of the question
are distinct from the variables of the axioms. The negation of the question is
converted into a set of clauses denoted by — Q(UQ,;), where UQ is the set
of Skolem-function terms created by eliminating YQ. The function symbols in
UQ are distinct from the function symbols in UB. Thus M( U, X) = [B(YB,UB)
A — Q(UQ,XQ)]. Now let LB= [B(Y81,Xei) A B(YB2,XB2) A . . A
B(YBk,XBk)] and let —LQ = Q( YQI,X01) A — Q(YQ2,XQ2) A . .A

Q( 1■210X(2k)]. Thus L =LB A —LQ.
Observe that one can construct a sequence of statements F0, F, . .

similar to Fo, F1,. . F,, in which the only terms replaced by variables are
instances of terms in UQ. This construction terminates when for some m the
set of clauses F,;, contains no further instances of terms in UQ. By the same
argument given earlier for the formulas F, each formula Fi is truth-function-
ally unsatisfiable. Similarly one can construct a sequence of substitutions
a0, al,. . an', such that Lai = for O i m. Let a = a„',. Substitute a into LQ,
forming

Loa= [Q(YQ1,X0i)a V Q(YQ2,XQ2)a V. . . V Q(YQk,XQk)a].

Since a replaces the elements of YQJ by variables, let the set of variables ZQJ
denote Ywa. Thus

Locr .[Q(Zoi,Xma)V Q(42,Xer)V ...V Q(4k,Xcika)].

Now, let Z be the set of all variables occurring in Ler. The answer statement is
defined to be (VZ) Loa. In its expanded form the answer statement is

(VZ)[Q(Zoi,Xma)V Q(Z22,42a)V ... V Q(Zok,Xeka)]. (2)

We now prove that the answer statement is a logical consequence of the
axioms in their clausal form. Suppose not, then B( YB, UB) A ,(VZ)LQa is
satisfiable, thus B(UB,IB) A (3Z) —42a is satisfiable, implying that the
conjunction of its instances LBA A (3Z) —Lecr is satisfiable. Now drop the
existential quantifiers (3Z). Letting the elements of Z in "-Loa denote a set of
constant symbols or Skolem functions of no arguments, the resulting formula
LBA A — Loa is also satisfiable.

Note that LBa is an instance of LBA. To see this, let AB be the restriction of 1
to variables in LB. Thus, LBA=LBAB. Suppose 0= {rilwb r2/w2, • • rnIwn} •
Recall that a is formed from 20 by replacing in the terms of 20 occurrences of
instances 14 of 'question' Skolem terms by appropriate variables. (The
'axiom' Skolem functions are distinct from question Skolem functions and
occur only in the terms of AB.) Thus no such u4 is an instance of an axiom
Skolem term, therefore each occurrence of each such /44 in ABB must arise
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from an occurrence of //4 in some rj in 0. It follows then that LBa=LBABO
where 0= 1r r2'/w2, • • r'/w} is formed from 0 by replacing each u!, in
each rf by an appropriate variable. Since LBA=LBAB,LBA4)=LBa. Since the
only free variables of LB), A ,LQa occur in LEA, [Ld. A —Locr)4)=LBAO A

The formula LB) A —Le logically implies all of its instances, in particular
the instance LB20 A ,--,42cr. Thus, if LB). A —Le is satisfiable, its instance
L1310 A —LQcr is satisfiable. Since [L1120 A —Le] =[LEa A —Ler]. [LB A
—421a =La.--F„; for some m, F„', must be satisfiable. This contradicts our
earlier result that FA is truth-functionally unsatisfiable, and thus proves that
the answer statement is a logical consequence of the axioms.
We make one further refinement of the answer statement (2). It is un-

necessary to include the jth disjunct if Xwa= XQJ, i.e., if a does not instan-
tiate X2i. Without loss of generality, we can assume that for r ..4k, the last k—r
disjuncts are not instantiated, i.e.,

XQr+lcrXQr+1, 4.4.20-= 4+29 • • •, X(2ka X,2k•

Then the stronger answer statement

(VZ)[ Q(41,X2icr) V Q(Zcl1,X07)V ...V Q(Z(2„Xo.cr)] (3)
is logically equivalent to (2). (Since the matrix of (3) is a sub-disjunct of (2),
(3) implies (2). Ifj<r, the jth disjunct of (2) implies the jth disjunct of (3).
If r<j<k, the jth disjunct of (2) implies all of its instances, in particular all
disjuncts of (3).)
The ANS WE R predicate provides a simple means of finding the instances

of Q in (3). Before the proof attempt begins, the literal A NS WER(XQ) is
added to each clause in — Q(UQ,XQ). The normal resolution proof procedure
then has the effect of creating new variants of XQ as needed. The jth variant,
ANS WER(Xo), thus receives the instantiations of — Q(Uci,X0). When a
proof is found, the answer clause will be

{ANSWER(X00)V ANSWER(X(220) ...V ANSWER(40)}.

Variables are then substituted for the appropriate Skolem functions to yield

{ANSWER(Xwa)V A NSWER(42a). ..V ANS WER(4,7)).
Let XQJ. . • •, xj„,} •
Let a restricted to X0.1 be { ti2/xj2, . .• /unix:JO.

The answer terms printed out by QA3 are

[xii=t11 and x12= /12 . . . and xim= tin] (4)
or [x21 =t21 and x22=122 . . . and x2.= tzml

or [xd = tyi and Xr2tr2. . . and xrm = Gm] •
According to (3), all the free variables in the set Z that appear in the answer
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are universally quantified. Thus any two occurrences of some free variable in
two terms must take on the same value in any interpretation of the answer.
In the example given above, whose answer (1) had the single answer term

f(y), the complete answer statement is

(VY)P(Y,f(Y)).

In section 3.3 we present two more examples. The answer in the second
example has four answer terms, illustrating the subcase of (4),

[xij=tii and x12= t12]
or [ x2i= t2i and X22= t22 •

The answer statement proved can sometimes be simplified. For example,
consider

QUESTION: (3x)P(x)
ANSWER: YES, x=a

or x=b,

meaning that the answer statement proved is

[P(a)V P(b)].

Suppose it is possible to prove P(b) from other axioms. Then a simpler
answer is provable, namely

ANSWER: YES, x=a.

3. Processes described as a state transformation

In some of the applications of QA3 mentioned in section 5 it is necessary to
solve problems of the kind: 'Find a sequence of actions that will achieve
some goal.' One method for solving this type of problem is to use the notion
of transformations of states. We show here how processes involving changes
of state can be described in first-order logic and how this formalism is used.
The process of finding the values of existentially quantified variables by
theorem-proving can be used to find the sequence of actions necessary to reach
a goal.
The basic mechanism is very simple. A first-order logic function corres-

ponds to an action or operator. This function maps states into new states. An
axiom takes the following form:

P(sI) A (f(si)=s2)Q(s2)
where

Si is the initial state

P(3.1) is a predicate describing the initial state

f(si) is a function (corresponding to an action)

S2 is the value of the function, the new state

Q(s2) is a predicate describing the new state.
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The equality can be eliminated, giving

P(si)Q(Asi))•
As an example, consider how one might describe the movements of a robot
Each state will correspond to one possible position of the robot. Consider
the statement 'If the robot is at point a in some state Si, and performs the
action of moving from a to b, then the robot will be at position b in some
resulting state 52? The axiom is

(Vsi)(Vs2)[AT(a,si) A (move(a,b,s1)=s2) AT(b,s2)l•
The function move (a,b,si) is the action corresponding to moving from a to
b. The predicate AT(a,si) is true if and only if the robot is at point a in state
The predicate AT(b,s2) is true if and only if the robot is at point bin state 52.

start a

Figure I

 •
goal

Now consider an example showing how the theorem-prover can be used to
find a sequence of actions that reach a goal. The robot starts at position a in
initial state S. From a he can move either to b or d. From b he can move to C.
From d he can move to b. The allowed moves are shown in figure 1.
The axioms are:

Al. AT(a,s0)
A2. (Vsi)[AT(a,si) AT(b,move(a,b,si))]
A3

. (VS2)[AT(a,s2) AT(d,move(a,d,s2))]
A4. (VS3)[AT(b,s3)AT(c,move(b,c,s3))]
A5. (V s4)[AT(d,s4) AT(b,move(d,b,s4))]

Axiom A1 states that the robot starts at position a in State S. Axioms A2, A3
Ai, and A1 describe the allowed moves.
We now ask for a sequence of actions that will move the robot to position c.

We present this question in the form 'Does there exist a state in which the
robot is at position c?'

QUESTION: (3s)AT(c,$)
ANSWER: YES, s=move(b,c,move(a,b,s0))

By executing this resulting function move(b,c,move(a,b,s0)) our hypothetical
robot could effect the desired sequence of actions. The normal order of
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evaluating functions, starting with the innermost and working outward, gives
the order of performing the actions: move from a to b and then move from
b to c. In general, this technique of function composition can be used to
specify sequences of actions.
The proof of the answer by resolution is given below, with comments.

The negation of the question is (Vs) A T(c,$), and the refutation process
finds, by instantiation, the value of s that leads to a contradiction. The
successive instantiations of s appear as arguments of the special predicate,
ANS WE R. The constants area, b, c, and so. The free variables ares, si, 52, s3,
and 54.

Proof
1. {— AT(c,s V ANSWER(s))}

2. { A T(b,s3) VA T(c,move (b,c,s3))}

3. { — A T(b,s3) V A NS WE R(move(b,c,s3))}

4. { — A T(a,s1) VA T(b,move(a,b,si)))

5. A T(a,si) V A NS WE R(move(b,c,move(a,b,s3)))}

6. {AT(a,s0)}

7. {ANS WE R(move(b,c,move(a,b,

Negation of

question
Axiom A4

From resolving 1
and 2
Axiom A2
From resolving 3
and 4
Axiom Ai

From resolving 5
and 6

Note that the process of proving the theorem corresponds to starting at the
goal node c and finding a path back to the initial node a.

Consider a second example. Two players pi and p2 play a game. In some
state S, player pi is either at position a or position b.

Bl. A T(pi,a,s3)V A T(Plib,si)

If in state Si, player p2 can move anywhere.

B2. (Vy)AT(p2,y,move(p2,Y41))
The position of player pi is not affected by p2's movement.

B3. (Vx)(Vy)( s)[A T(pi,x,$) AT(plix,move (p2a,$))]

Does there exist some state (sequence) such that pi and p2 are together?

QUESTION: (3x)(3s)[AT(plix,$) V AT(p2,x,$)]
ANSWER: YES, [x= a and s=move(p2,a,si)]

or

[x=b and s=move(p2,b,s3)]

This answer indicates that two meeting possibilities exist; either (1) player

pi is at position a and player p2 moves to a, meeting pi at a, or (2) player pi
is at position b and player p2 moves to b, meeting pi at b. However, the 'or'

answer indicates that we do not know which one move will lead to a meeting.
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The 'or' answer is due to the fact that Axiom B1 did not specify player pi's
position. The answer statement that has been proved is

[A T(Plia,move (P2,a,si)) A AT(P2,a,move(p2,a,s1))]
V [A T(Pi,b,move(p2,b.si)) A A AP2,b,move(p2,b,s1))].

Proof
1. { A T(pi,x,$) V — A T(p2,x,$) V A NS WE R(x,$)} Negation of

question
2. { A T(p2,y,move (p2,Y,$))1 Axiom B2
3. { — A T(pi,x,move(P2,x,s1)) V A NS WE R(x,move(p2,x,s1))} From 1, 2
4. { A nplix ,$) V A T(pi,x,move (p2,y,$))} Axiom B3
5. { — A T(PhY vsi) V A NS WE R(y,move(p2,Y,s0)} From 3, 4
6. {AT(pba,si) V AT(pi,b,s1)} Axiom B1
7. (AT(pi,b,si) VANS WE R(a,move(p2,a,s1))} From 5, 6
8. (A NS WE R(a,move(p2,a,s1)) V

A NS WE R(b,move(p2,b,s1))) From 5, 7

It is possible to formalize other general problem-solving tasks in first-order
logic, so that theorem-proving methods can be used to produce solutions.
For a discussion of formalizations of several general concepts including
cause, 'can', knowledge, time, and situations, see McCarthy and Hayes (1969).

4. PROGRAM ORGANIZATION

The organization of the question-answering program IQ A3 differs from that
of a 'pure' theorem-proving program in some of the capabilities it emphasizes:
a proof strategy intended for the quick answering of easy questions even with
a large data base of axioms, a high level of interaction between the user and
both the question-answering program and the data base in a suitable command
language, and some flexibility in the question-answering process so that the
program can be fitted to various applications. In this section we describe the
principal features of the system.

1. Program control

The user can control the proof process in several ways.
1. The user can request a search for just a 'yes' answer, instead of both

'yes' and 'no'.
2. The user can request the program to keep trying, by increasing its

effort if no proof is found within preset limits. This lets Q A 3 search
for a more difficult proof.

3. When a proof is found it can be printed out. Included with the proof
are statistics on the search: the number of clauses generated, the
number of clauses subsumed out of the number attempted, the
number of successful resolutions out of the number attempted, and
the number of successful factors generated out of the number
attempted.
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4. The user can request that the course of the search be exhibited as it is
in progress by printing out each new clause as it is generated or
selected from memory, along with specified information about the
clause.

5. The user can request that existentially quantified variables in the
question be not traced.

6. The user can designate predicates and functions that are to be
evaluated by LISP programs. For example, the predicate 1 <2
might be evaluated by LISP to yield the truth value T. This feature
also allows the transfer of control to peripheral devices.

7. Parameters controlling the proof strategy, such as degree and set of
support are accessible to the more knowledgeable user.

8. A number of editing facilities on the clauses in memory are useful:
(a) A new axiom can be entered into memory,
(b) An axiom in memory can be deleted, and
(c) The axioms containing any predicate letter can be listed.

2. Special uses of the theorem-prover

'The theorem-prover' refers to a collection of LISP functions used during the
theorem-proving process — e.g. RESOLVE, FACTOR, PROVE, PRENEX,
cHEcKsussummoN, etc.
The management of the data in memory is aided by the theorem-prover.

A statement is stored in memory only if it is neither a tautology nor a con-
tradiction. A new clause is not stored in memory if there already exists in
memory another clause of equal length or shorter length that subsumes the
new clause. Two other acceptance tests are possible although they are not
now implemented. A statement given the system can be checked for con-
sistency with the current data base by attempting to prove the negation of the
statement. If the statement is proved inconsistent, it would not be stored.
As another possible test, the theorem-prover could attempt to prove a new
statement in only 1 or 2 steps. If the proof is sufficiently easy, the new state-
ment could be considered redundant and could be rejected.
The theorem-prover can also be used to simplify the answer, as described

in section 3.

3. Strategy

The theorem-proving strategy used in QA 3 is similar to the unit-preference
strategy, using an extended set-of-support and subsumption.
The principal modification for the purposes of the question-answering

system is to have two sets of clauses during an attempted proof. The first set,
called 'Memory', contains all the statements (axioms) given the system.
The second set, called 'Clauselist' is the active set of clauses containing only
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the axioms being used in the current proof attempt and the new clauses being
generated. Clauselist is intended to contain only the clauses most relevant to
the question.

There is a high cost, in computer time and space, for each clause actively
associated with the theorem-prover. The cost is due to the search time spent
when the clause is considered as a candidate for resolution, factoring, or
subsumption, and the extra space necessary for book-keeping on the clause.
Since most clauses in Memory are irrelevant to the current proof, it is un-
desirable to have them in Clauselist, unnecessarily consuming this time and
space. So the basic strategy is to work only on the clauses in Clauselist,
periodically transferring new, possibly relevant clauses from Memory into
Clauselist. If a clause that cannot lead to a proof is brought into Clauselist,
this clause can generate many unusable clauses. To help avoid this problem
the strategy is reluctant to enter a non-unit clause into Clauselist.
The proof strategy of the program is modified frequently, but we shall

present an approximate overview of the proof strategy. When a question is
asked, Clauselist will initially contain only the negation of the question,
which is the set-of-support. A modified unit preference strategy is followed
on Clauselist, using a bound on degree. As this strategy is being carried out,
clauses from Memory that resolve with clauses in Clauselist are added to
Clauselist. This strategy is carried out on Clauselist until no more resolutions
are possible for a given degree bound.

Finally, the bound is reached. Clauselist, with all of its book-keeping, is
temporarily saved. If the theorem-prover was attempting a 'yes' answer, it
now attempts a 'no' answer. If attempting a 'no' answer, it also saves the 'no'
Clauselist, and returns a NO PROOF FOUND answer. The user may then
continue the search requesting CONTINUE. If the bound is not reached in
either the yes or no case, the INSUFFICIENT INFORMATION
answer is returned. The strategy has the following refinements:

1. After a newly created unit fails to resolve with any units in Clauselist,
it is checked against the units in Memory for a contradiction. This
helps to find short proofs quickly.

2. Frequently, in the question-answering applications being studied, a
proof consists of a chain of applications of two-clauses, i.e., clauses
of length two. Semantically it usually means that set-membership of
some element is being found by chaining through successive supersets
or subsets. To speed up this process, a special fast section is included
that resolves units in Clauselist with two-clauses in Memory. Our
experience so far is that this heuristic is worthwhile.

3. Each new clause generated is checked to see if it is subsumed by
another shorter clause in Clauselist. All longer clauses in Clauselist
are checked to see if they are subsumed by the new clause. The longer
subsumed clauses are deleted.
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4. Hart's theorem (1965) shows how binary resolution can generate
redundant equivalent proofs. Equivalent proofs are eliminated from
the unit section. Wos terms this property, 'Singly-connectedness'.
Currently this has not yet been implemented for the non-unit section.

5. An extended set-of-support is used, allowing pairs of clauses in
Clauselist but not in the set-of-support to resolve with one another
up to a level of 2.

6. The sets, Memory and Clauselist, are indexed to facilitate search.
The clauses in Memory are indexed by predicate letters and, under
each predicate letter, by length. The clauses in Clauselist are indexed
by length.
In searching Memory for relevant clauses to add to Clauselist,

clauses already in Clauselist are not considered. The clauses of each
length are kept on a list, with new clauses being added at the end of
the list. Pointers, or place-keepers, are kept for these lists, and are
used to prevent reconsidering resolving two clauses and also to
prevent generating equivalent proofs.
The strategy is 'complete' in the sense that it will eventually find

any proof that exists within the degree and space bound.

5. PERFORMANCE OF CiA3

1. Applications

The program has been tested on several question sets used by earlier question-
answering programs. In addition, QA 3 is now being used in other applications.
The subjects for the first question set given Q A2, reported in Green and
Raphael (1968), consisted of some set-membership, set-inclusion, part-whole
relationship and similar problems.

Raphael's SIR (1964b) program gave a similar but larger problem set also
having the interesting feature of requiring facts or axioms from several
subjects to interact in answering a question. SIR used a different subroutine
to answer each type of question, and when a new relation was added to the
system, not only was a new subroutine required to deal with that relation
but also changes throughout the system were usually necessary to handle the
interaction of the new relation with the previous relations. This programming
difficulty was the basic obstacle in enlarging SIR. Raphael proposed a
'formalized question-answerer' as the solution. Q A 3 was tested on the SIR
problem set with the following results: in two hours of sitting at the teletype
all the facts programmed into or told to SIR were entered into the Q A3
memory as axioms of first-order logic and Q A3 answered essentially all the
questions answered by SIR. The questions skipped used the special SIR
heuristic, the 'exception principle'. It was possible to translate, as they were
read, questions and facts stated in SIR'S restricted English into first-order
logic.
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Slagle, in his paper on DEDUCOM, a question-answering system (1965),
presented a broader, though less interactive, problem set consisting of
gathered questions either answered by programs of, or else proposed by,
Raphael (1964a), Black (1964), Safier (1963), McCarthy (1963), Cooper
(1964), and Simon (1963). Included in this set were several examples of
sequential processes, including one of McCarthy's End Game Questions
(1963), Safier's Mikado Question (1963), McCarthy's Monkey-and-Bananas
Question (1963), and one of Simon's State Description Compiler Questions
(1963). Using the technique discussed in section 3.3 to describe processes, it
was possible to axiomatize all the facts and answer all the questions printed
in Slagle's paper. Furthermore, QA3 overcame some of the defects of
DEDUCOM: QA3 could answer all answerable questions, the order of pre-
senting the axioms did not affect its ability to answer questions, and no
redundant facts were required. QA3 was then tested on the entire set of
twenty-three questions presented in Cooper (1964). QA3 correctly answered
all the questions, including four not answered by Cooper's program and
sixteen not answered by DEDUCOM.
QA3 also solved the Wolf, Goat, and Cabbage puzzle in which a farmer

must transport the wolf, goat, and cabbage across the river in a boat that can

hold only himself and one other. The wolf cannot be left alone with the goat
and the goat cannot be left alone with the cabbage.
In all of the problems mentioned above, QA3 was given the facts and

questions in first-order logic. Raphael's program and Cooper's program

used a restricted English input.
Using the English-to-logic translator developed by Coles (1968), Coles and

Raphael have begun studying some medical question-answering applications

of QA3.
QA3 is being tested in the Stanford Research Institute Automaton (robot)

on problem-solving tasks.

2. Limitations

A few limitations should be emphasized. Firstly, QA3 is still not a finished
system. One very important feature that is missing is the automatic handling

of the equality relation, and this is not a trivial problem. Without an auto-

matic equality capability, QA3 is very awkward on certain problems that are
conveniently stated in terms of equality. The equality relation is but one

instance of other 'higher-order' concepts (e.g. set theory) that either (i) can-
not be described in first-order logic, or (ii) require some meta-level operations

such as an axiom schema, or (iii) are awkward and impractical in first-order

logic. However, it is not yet clear just what are the practical limitations of a

first-order logic system having suitable 'tricks'.
One of the virtues of QA3 is that relatively subject-independent heuristics

are used. All subject dependence comes from the particular axioms stored in

memory, the theorem being proved, and the particular representation chosen
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for each statement. This adds elegance and generality, yet yields a reasonably
powerful system. However, for harder problems it may be necessary to be
able to add subject-dependent search heuristics, or 'advice' for particular
problems. Such an advice-taking capability will require a flexible and easily
modifiable search strategy.
The particular heuristics used in QA 3 are experimental and have not been

thoroughly tested in question-answering applications (although the changes
and heuristics added appear to have improved the system). As each modifica-
tion of the strategy was added, the performance did improve on a particular
class of problems. To help remedy some of this uncertainty several measures
of performance are now automatically printed out after each question and
will be used to evaluate questionable heuristics.
Another qualification is that the questions and subjects investigated were

chosen from conjectured test problems or else from test problems used by
other question-answering or problem-solving systems. This facilitates com-
parison, but does not necessarily indicate performance on more practical
problems. •
The new and more difficult applications being considered might lead to a

better understanding of the exact limitations of Q A3, or of theorem-proving
techniques, for question-answering.

3. Performance

To answer any of the questions mentioned above, Q A3 requires from a few
seconds to a few minutes. We can roughly measure the problem-solving
capacity of QA 3 by giving the depth of search allowed and the free space
available for storing clauses produced in searching for a proof. The space
available for storing clauses produced during a proof typically allows a few
hundred clauses to be stored. The depth of search is given by degree bound,
normally set at 10. It is interesting to note that the many 'common sense'
reasoning problems mentioned herein were within these bounds of QA 3,
and thus were not difficult proofs, compared to some of the mathematical
proofs attempted by theorem-provers.
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HEURISTIC DENDRAL : a Program for
Generating Explanatory Hypotheses
in Organic Chemistry

B. Buchanan
Georgia Sutherland and
E. A. Feigenbaum
Computer Science Department, Stanford University

A computer program has been written which can formulate hypotheses from a
given set of scientific data. The data consist of the mass spectrum and the
empirical formula of an organic chemical compound. The hypotheses which
are produced describe molecular structures which are plausible explanations
of the data. The hypotheses are generated systematically within the program's
theory of chemical stability and within limiting constraints which are inferred
from the data by heuristic rules. The program excludes hypotheses inconsist-
ent with the data and lists its candidate explanatory hypotheses in order of
decreasing plausibility. The computer program is heuristic in that it searches
for plausible hypotheses in a small subset of the total hypothesis space
according to heuristic rules learned from chemists.

INTRODUCTION

The computer program described below resulted from an interest in studying
scientific hypothesis formation as a decision-making process. To make pro-
gress on this broad and general problem, it seemed useful to choose a particu-
lar scientific task involving inductive behaviour and to explore it in as much
detail as possible. The task chosen is in a well defined but relatively new and
complex area of organic chemistry, namely the analysis of mass spectra of
organic molecules. HEURISTIC DENDRAL is a computer program which
generates molecular 'graphs' (i.e., structures) as hypotheses to explain the
data produced by a mass spectrometer.
The data produced when a mass spectrometer fragments molecules of a

chemical sample can be interpreted as a list of masses of fragments paired
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Figure 1. The mass spectrum for 3-OCTANONE

with their relative abundances. An example of a mass spectrum is shown in
figure 1. By studying the resulting list of number pairs, chemists can infer the
molecular structure of the chemical sample. Some of the decision processes
which chemists use in making such inferences are incorporated into a com-
puter program along with a structure-generating algorithm which provides a
systematic approach to the problem of deducing the structure of a chemical
sample. The computer program is HEURISTIC DENDRAL; and it is now
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capable of making inferences from mass spectra to molecular structures in a
restricted domain.
The foundation for the HEURISTIC DENDRAL program is Lederberg's

(1964) DENDRA LAlgorithm (section 7 contains a summary of this algorithm).
The algorithm gives a way of representing and ordering chemical molecules
uniquely; thus it gives a method for generating all topologically possible
molecules of a given composition without redundancy. It is a systematic and
exhaustive topologist which can generate all non-cyclical graphs that can be
made with the atoms of the composition, knowing no chemistry other than
the valences of these atoms. The DENDRAL algorithm defines the hypothesis
space in much the same way as a legal move generator for a chess-playing
program defines the total move space within which good chess moves will be
sought.
The computer program is written in the LISP language on the PDP-6

computer at the Stanford University Artificial Intelligence Laboratory. It
occupies approximately eighty thousand words of memory. Working with
Professor Joshua Lederberg at Stanford, William Weiher and William White
developed the basic representation and wrote the initial program. The
program has also benefited greatly from the attention of members of the
Stanford Mass Spectrometry Laboratory: Piofessors Carl Djerassi, Alex
Robertson, Jerry Meinwald, and especially Dr Alan Duffield.
The program itself is segmented into five subprograms: the PRELIMINARY

INFERENCE MAKER, the DATA ADJUSTOR, the STRUCTURE GENERATOR,
the PREDICTOR, and the EVALUATION FUNCTION. The interrelation of
these subprograms is shown in figure 2.
The PRELIMINARY INFERENCE MAKER (described in section 1) examines

a spectrum and determines what general classes of chemical substructures
are confirmed or disconfirmed by the data. All hypothesized structures
generated later by HEURISTIC DENDRAL must contain all the indicated
substructures (all of which are put on a list called GOODLIST); and no
structure may contain any substructure which is disconfirmed by the spec-
trum. (All the forbidden substructures are put on a list called BADLIST.)
The DATA ADJUSTOR subprogram (described in section 2) chooses signi-

ficant spectral peaks for the STRUCTURE GENERATOR to use for its Zero
Order Theory. At present there are four independent ways of interpreting the
spectrum.
The STRUCTURE GENERATOR (see section 3) uses the information de-

duced by the PRELIMINARY INFERENCE MAKER and the DATA ADJUSTOR
to produce a list of all topologically possible chemical structures which are
consistent with the spectrum. The consistency criteria are the lists of 'good'
and 'bad' substructures and the Zero-Order Spectral Theory, described in
detail in section 3.2.
The PREDICTOR subprogram is a rough model of a mass spectrometer (see

section 4). It is used to predict significant features of the mass spectrum
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Figure 2. General design Of HEURISTIC D ENDA AL
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corresponding to each candidate structure output by the STRUCTURE
GENERATOR.

The EVALUATION FUNCTION (see section 5) compares each predicted
spectrum against the original spectral data and assigns a score representing
similarity of the two spectra. This enables the candidate hypotheses output
by the STRUCTURE GENERATOR to be listed in order of their 'plausibility'
or estimated degree of confirmation.
An ideal program for deducing the structure of a chemical sample would

output exactly one structure as the explanation for the spectral data. Up
to now the usual case has been that several different structures are suggested
as plausible explanations for the data. However, even a short list is a far
better result than was obtained by the original program, which listed all the
topologically possible structures and made no use of any real data at all.

Because the constraints which have been included in the program to limit
the search space are heuristic, nothing guarantees that the correct structure
will not be bypassed. When a test run does fail, however, the program is
modified after our chemist-informants study the output and analyze their
own decision procedures. The purpose of this report is merely to describe the
current state of HEURISTIC DENDRAL and to sketch some of our plans for
future program developments.

1. THE PRELIMINARY INFERENCE MAKER

The PRELIMINARY INFERENCE MAKER is conceptually very simple: it
looks for the presence or absence of sets of peaks in a mass spectrum and
updates GOODLIST Or BADLIST, thus constraining HEURISTIC DENDRAL
from generating large numbers of molecular structures as possible explana-
tions of a given mass spectrum. By looking for patterns of peaks in the spec-
trum which are characteristic of some structural fragment, such as the keto
group, this preliminary program can tell the STRUCTURE GENERATOR to
concentrate on some fragments and to avoid others. It does this by temporarily
putting desirable structures on GOODLIST (see section 3.5) and undesirable
ones on BADLIST (see Section 3.3).
The program has access to translations of Tables 1 and 2. As Table 1

indicates implicitly, this program knows the name, structure, valence, valence
locations, empirical formula, and symmetrical atoms, as well as some char-
acteristic peaks for several functional groups. It also recognizes priorities of
groups, as Table 2 indicates. Addition of new information is simplified by a
short routine (QUEST) which asks the chemist at the console for the essential
information — and explains what it wants if he does not understand. An
example is shown in Table 3.
In this example the function QUEST is called to prompt information about

identifying a new group, in this case the ester group. The lines preceded by
asterisks are messages from the machine. Lines following a machine prompt
(i.e., after a colon) were typed in from the console. This dialogue is much
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functional group and
characteristic subgraph

A. KETONE
0

II

B. METHYL-KETONE3
0 H

II I I
CH3-C-CH2-C-C-

I I

identifying conditions

I. There are 2 peaks at mass units xl &
x2 such that
a. xl i-x2=M+28
b. x1-28 is a high peak
c. x2-28 is a high peak
d. At least one of xl or x2 is high

1. Ketone conditions are satisfied
2. 43 is a high peak
3. 58 is a high peak
4. M-43 is a low peak
5. M-15 is low or possibly zero

C. ETHYL-KETONE3 1. Ketone conditions are satisfied
0 2. 57 is a high peak

II i 
}II 3. 72 is a high peak

CH3-CH2-C-CH2-C-C-- 4. M-29 is a high peak
I I 5. M-57 is a high peak

D. N-PROPYL-KETONE3 1. 71 is a high peak
0 2. 43 is a high peak

II I 
H 3. 86 is a high peak

CH3-CH2-CH2--C-CH2-C-6-- 4. 58 appears with any intensity
I I

E. ISO-PROPYL-KETONE3
CH3 0

I
H

I
CH-C-CH2-C-C--

I I
CH3

F. ALDEHYDE
0

I II,
-C-CH

G. ETHER

-C---0-C--
I I

H. ETHER2

I. METHYL-ETHER2
-CH2-0-CH3

J. ETHYL-ETHER2
-CH2-0-CH2--CH3

K. PRIMARY-AMINE2
-CH2--NH2

1. 71 is a high peak
2. 43 is a high peak
3. 86 is a high peak
4. There is no peak at 58

1. M-44 is a high peak
2. 44 is a high peak

1. M-17 is absent
2. M-18 is absent

1. Ether conditions are satisfied
2. There are 2 peaks at xl & x2 such

that
a. xl+x2=M+44
b. At least one of xl or x2 is high

1. Ether2 conditions are satisfied
2. 45 is a high peak
3. M-15 is low or possibly zero
4. M-1 appears (any intensity)

1. Ether2 conditions are satisfied
2. 59 is a high peak
3. M-15 appears (any intensity)

1. 30 is a high peak
2. No other peak is high

Table 1. Important chemical groups and their identifying conditions
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functional group and
characteristic subgraph

L. SECONDARY,kMINE2

111

M. TERTIARY•AMINE2

CH3

N. ISOPROPYL-2ARY•AMINE2
CH3

—CH2—N—CH
N

H CH3
O. ISOPROPYLAARY.-AMINE2

CH3

--CH2-N-CH

I \
CH3 CH3

P. ALCOHOL

—C—OH

Q. PRIMARY-ALCOHOL

R.

-CH2-OH

C.•2•ALC0H0L
OH

—CH—CH3

Table 1. (contd.)
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identifying conditions

1. There are 2 peaks at xl & x2 such
that
a. xl -Ex2=M+43
b. At least one of xl or x2 is high

2. 30 is a high peak

1. There are 2 peaks at xl & x2 such
that
a. xl -Ex2=M+71
b. At least one of xl or x2 is high

2. 44 is a high peak

1. 44 is a high peak
2. 72 is a high peak
3. M-15 is a high peak

1. 58 is a high peak
2. 86 is a high peak
3. M-15 is a high peak

1. M isTow or possibly zero
2. Either M-18 or M-17 appears (any

intensity)
3. M-46 appears (any intensity)

I. Alcohol conditions are satisfied
2. The 31 peak is approximately 10%

1. Alcohol conditions are satisfied
2. 45 is a high peak
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A. Family Trees: priorities within families

I. Ketone

2.

3.

Methyl-Ketones Ethyl-Ketones Propyl-Ketones

Ether

Ether 2

Methyl-Ether 2 Ethyl-Ether 2 Ether 5

Alcohol

Primary-Alcohol C-2-Alcohol

B. Hierarchies of families

Ketone >Ether

(i.e., check Ethers only if the Ketone tests fail).

Table 2. Family priorities

(QUEST)

*THIS PGM REQUESTS INFORMATION TO ALLOW THE INFERENCE MAKER TO PUT

RADICALS ON GOODLIST OR BADLIST ON THE STRENGTH OF THE APPEARANCE OR

NON-APPEARANCE OF A FEW SPECTRAL LINES. IF YOU DO NOT KNOW THE PROPER

FORM FOR YOUR ANSWER TO ANY REQUEST TYPE A QUESTION MARK. IF YOU MAKE A
MISTAKE IN A LINE YOU CAN CORRECT IT WHEN QUEST IS DONE BY CALLING THE

FUNCTION "CHGPROPS" OF ONE ARGUMENT, THE GROUP NAME. E.G., (CHGPROPS

(QUOTE KETONE))

*NAME OF FUNCTIONAL GROUP OR RADICAL:

*ANY ATOMIC NAME WILL SUFFICE:

ESTER

*PEAKS WHOSE ABSENCE INDICATES THE ABSENCE OF THIS GROUP:

?*THE PGM WANTS A LIST OF DOTTED PAIRS INDICATING MASS-INTENSITY PAIRS

IT SHOULD LOOK FOR. MASS UNITS MAY BE SPECIFIED AS

1. A NUMBER,

2. M (THE MOLECULAR WT), OR
3. A LIST OF THREE ELEMENTS:

3.1 THE LETTER M
3.2 SLASH AND MINUS (OR PLUS) SIGN
3.3 A NUMBER (TO BE SUBTRACTED OR ADDED TO THE M).

Table 3. Conveying information to the PRELIMINARY INFERENCE MAKER
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INTENSITY UNITS MAY BE SPECIFIED AS

1. A NUMBER BETWEEN 0 AND 100 INCLUSIVE,
2. THE WORD "ANY" (ANY INTENSITY ABOVE 0),
3. THE WORD "LOW" (INTEN BETWEEN 0 AND 5 INCL),
4. THE WORD "HIGH" (INTEN BTW 11 AND 100 INCL), OR
5. THE WORD "POSSO (INTEN LOW OR ZERO)

FOR EXAMPLE THIS LIST WOULD BE ACCEPTABLE:

((45 . HIGH) ((M / —45) . 0) . Low))

*PEAKS:

((45 0) (60 . 0))
*PEAKS SUFFICIENT TO INDICATE THIS GROUP:

?*TYPE "SAME" IF THE NECESSARY

CONDITIONS ARE ALSO SUFFICIENT, "NIL" IF THERE ARE

NO SLIFF CONDITNS, OR " ??" IF YOU WANT THE

CONDITION LIST EXPLAINED:

SAME

*STRUCTURE IN LIST NOTATION : ? *TYPE A LIST WHOSE FIRST ELMT IS 1 AND

INDICATE ALL HYDROGEN ATOMS. E.G., (1 C (1 H) (1 H) (1 H)) FOR THE METHYL

RADICAL.
*STRUCTURE: (1 c(2 0) (1 0(1 c)))
*VALENCE:? *IF ALL FREE BONDS ARE ON ONE ATOM, TYPE THIS NUMBER. OTHER-

WISE TYPE A LIST OF NUMBERS INDICATING HOW THE FREE BONDS ARE SPLIT UP,

READING THE STRUCTURE YOU TYPED FROM LEFT TO RIGHT, IGNORING ATOMS

WITH NO FREE VALENCE: (1 2)
*LIST OF SYMMETRIES:?

*TYPE A LIST OF THE FORM

((3 2 1)) TO INDICATE THAT THE FIRST & THIRD ATOMS WITH FREE VALENCE
ARE SYMMETRICAL:()

*PLACE OF GROUP IN ITS FAMILY:? *TYPE A LIST CONSISTING OF (1) THE NAME

OF THE NEXT HIGHER FAMILY MEMBER OR NIL

(2) THIS GROUP NAME

(3), (4), ... (N) NAMES OF ALL NEXT
LOWER MEMBERS. E.G., FOR ETHER2 :

(ETHER ETHER2 METHYL-ETHER2 ETHYL-ETHER2) *PLACE OF GROUP IN ITS

FAMILY :NIL

*THANKS CALL AGAIN

(CHGROPS (QUOTE ESTER))

*PROPERTY TO CHANGE:?

*PROPERTY NAME *DESCRIPTION

(TYPE ONE)

NESS LIST OF PEAKS WHOSE ABSENCE INDICATES ABSENCE OF GROUP

SUFF LIST OF PEAKS INDICATING THE PRESENCE OF THIS GROUP

FORM EMPIRICAL FORMULA AS A LIST OF DOTTED PAIRS

VALENCE A SINGLE NUMBER OR A VECTOR

STRUCT STRUCTURE IN LIST NOTATION

SYM LIST OF SYMMETRIES

*PROPERTY: VALENCE

*VALUE: (13)
*REPLACE (R) OR ADD (A)? R

(1 3)
*PROPERTY TO CHANGE: NIL

DONE

Table 3. (contd.)
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shorter when the user knows the correct form for his response (and does not
type a question mark). If the user calls QUEST! instead of QUEST, machine
begins with the first prompt, bypassing the initial descriptive sentences. If
the user wishes to change any information typed in previously, he calls the
function CHGPROPS.
The PRELIMINARY INFERENCE MAKER IS given as input the spectrum, the

empirical formula of the molecule, and a noise threshold to apply to the
spectrum.1 The LISP function INFER accepts this information and controls
the subsequent inferences about the presence or absence of the structural
groups. The program performs the following three tests for each structure:

1. Is the empirical formula of the structure compatible with the
empirical formula of the molecule? If not, get the next structure.

2. Is any necessary condition falsified by the spectrum? If so, put this
structure on BADLIST and get the next structure.

3. Are all sufficient conditions satisfied by the data? If so, put this
structure on GOODLIST and get the next structure. Note: at present
all sets of conditions are both necessary and sufficient.

The Family Trees shown in Table 2 reduce the effort of the PRELIMINARY
INFERENCE MAKER and eliminate redundant effort in the STRUCTURE
GENERATOR. When the spectral data indicate that a group is absent from the
structure (resulting in the addition of this group to BADLIST), no lower
members of the same family are even checked. On the other hand, if both a
higher and a lower member of a family are indicated by the data (resulting

in the addition of both groups to GOODLIST), only the lower, more specific,

group is used. For example, if both of the subgraphs named ETHER and

ETHER2 are on GOODLIST, the program deletes the more general one,
ETHER, since ETHER2 constrains structure generation more; that is, there

are fewer isomers of a given composition containing

-C112-0-CH2-*

than there are which contain

I

The family hierarchy list also reduces the effort of this program. If any
member of the first family is on GOODLIST, no members of the second family
are even checked.
In the cases of the general Ketone, Ether2, Secondary-Amine2, and

Tertiary-Amine2 subgraphs, the preliminary inference maker can, in fact,

isolate the position of the functional group as well as determine which

I Spectral peaks are deleted if their amplitudes are lower than the threshold. This option
has not yet been exercised since it may confuse the inference maker. A threshold value
of 1 bypasses this option.
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functional group is present. It can do this because of highly favourable alpha-

cleavage (cleavage of the bond between the carbon atom attached to the

heteroatom and the rest of the molecule) which is an identifying condition

for each of these subgraphs. For example, in the ketone shown below, the

program can tell that the keto radical (C==0) is between some C3H7 structure

and some C4H9 structure, even though it cannot specify terminal radicals

uniquely.
0

CH3 II ,CH3
CH—C—CH<

CH37 CH2—CH3

This positional information is passed to the STRUCTURE GENERATOR'S

partitioning routine which is discussed in section 3.4. The effect in this case

is that the only ketones which will be generated are those with the keto group

bounded by three carbon atoms on one side and four carbon atoms on the

other.

(INFER (QUOTE C8H160) S:09046 1)

*GOODLIST= (*ETHYL-KETONE3*)

*BADLIST=(*C-2-ALCOHOL* *PRIMARY-ALCOHOL"ETHYL-ETHER2* *METHYL-

ETHER2* *ETHER2* *ALDEHYDE* *ALCOHOL* *ISO.PROPYL-KETONE3* *N-PROPYL-

KETONE3* *METHYL-KETONE3*)

(Juty-4-1968 VERSION)
C2sETHYL-KETONE3*H8

MOLECULES NO DOUBLE BOND EQUIVS

1. cH2.. cH2.c3H7 c=.0 c2H5,
2. cH2.. cH..cH3 c2H5 c2H5,
3. cH2.. cH2.cH..cH3 cH3 c=r.o c2H5,

DONE

s : 09046
((41.. 18.)(42..7.)(43..100.) (44.. 3.) (53.. 3.) (54.. 1.)
(55.. 11.)(56..3.)(57..80.) (58.. 2.) (70.. 1.) (71.. 36.)
(72.. 44.)(73..5.)(81.. 1.) (85..6.) (86.. 2.) (99..31.)
(100.. 2.)(128.. 5.))

Table 4. Example from the PRELIMINARY INFERENCE MAKER

Although the chemical heuristics used in this program are more like

suggestions than rules, they have demonstrated their usefulness in a number

of trials. The results of one of these trials appear in Table 4. The dashed
line separates the lines printed by the PRELIMINARY INFERENCE MAKER

from the lines printed by the STRUCTURE GENERATOR. The complete output

for this example is discussed in detail in section 6. In this case, total output is

reduced from 698 isomers' to 3 isomers as a result of applying the PRELIM-
INARY INFERENCE MAKER.

'The number of chemically stable acyclic structures with empirical formula C811160

is 698; the total number of topologically possible graphs which satisfy just the valence

restrictions is 790. Section 3 discusses the program which generates these structures.
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The program was given the mass spectrum and empirical formula of 3-
octanone. S:09046 is the mass spectrum for the structure:

0

CCCCCCCC

The first output structure is the correct structure for this spectrum. The rest
of the output structures are other ethyl-ketones, because of GOOD LIST.

2. THE DATA ADJUSTOR

The DATA ADJUSTOR subprogram determines which mass points of a real
spectrum are significant enough to be used by later programs. This process is
separable into three steps:

1. Determine the mass of the molecular ion (M). If this number is not
in the real spectrum, insert it with large amplitude.

2. Delete peaks at impossible mass points. Specifically, delete peaks at
1, 2, . . ., 10, 11, 19, . . ., 23, M-1, M-2, . . M-23.

3. Delete all but the most significant peaks. Significance has to be decided
without knowledge of the molecular structure of the sample producing
the spectrum. Four methods of determining significance are included
at present, with the choice of method being left to the program user.
(i) The Threshold Method selects those mass points which have
amplitudes higher than a certain number.
(ii) The Biemann Method selects the two mass numbers with highest
amplitudes in each interval of 14 mass numbers.
(iii) The Lederberg Method selects the n mass numbers with highest
amplitudes. The number n depends upon the number of atoms in the
chemical composition.

12(count —1) 
—1n=-3-

(iv) The fourth method allows the user to specify the number of mass
points to be used (the n highest peaks).
Each of these four methods reduces the real spectrum to a set of mass
numbers judged to be the 'significant peaks' in the data. This revised
spectrum is then given to the STRUCTURE GENERATOR which treats
it as the data to guide the process of generating structures.

The data-adjusting routine is invoked by calling the function REALSPEC
with three arguments. The first two arguments specify the composition and
the spectrum. The third argument indicates which method to use. The four
possibilities for the third argument are:

(i) —m — use threshold m
(ii) T — use Bieman's method
(iii) NIL - use Lederberg's method •
(iv) n — take the n highest peaks.
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The relative merit of these methods has not been determined. In the examples
processed so far, it appears that the STRUCTURE GENERATOR needs only a
few of the mass points in a typical spectrum.

3. THE STRUCTURE GENERATOR

The DENDRAL Algorithm described in section 7 is a procedure for generating
all of the topologically possible acyclic structures (isomers) of a chemical
composition. This algorithm is based on a canonical notation for chemical
structures and an ordering procedure which determines which of two canon-
ical structures is 'higher'.
The STRUCTURE GENERATOR is a computer program implementing the

DENDRAL algorithm but with the inclusion of heuristic constraints to pre-
vent the program from generating structures which are incompatible with
chemical theory or mass spectral data. Applying these constraints in the course
of structure generation greatly increases the efficiency of the program, de-
creasing amount of output and total run time by several orders of magnitude.
The STRUCTURE GENERATOR is designed to solve the following problem:

GIVEN: a list of defined atoms with their valences and weights
a composition (empirical formula)
a spectrum (mass numbers only) —
a list of likely substructures
a list of impossible substructures

TASK: generate all structures compatible with the given data. If there are
no data-oriented lists of likely or impossible substructures and no
spectral data, the program generates all structural variants (iso-
mers) of the given composition.

INSTRUCTIONS:

1. Make certain that the composition is compatible with the
spectrum, if there is one.

2. Consider only those structures which have exactly the types and
amounts of atoms specified by the composition.

3. If certain substructures are required, remove their atoms from
the composition and insert the name of a ̀superatom' to repre-
sent that substructure. Be sure the superatom substructure is
compatible with the spectrum. After generating a structure
containing superatoms, translate superatoms into the original
substructures before printing the output.

4. If the partitioning option is to be exercised, consider all sub-
groupings (partitions) of the composition. Determine whether
a given partition is 'plausible'. Generate only those structures
which come from plausible partitions.

5. Generate substructures to combine into isomers. The isomers
must contain no forbidden substructures; and each substructure
must be compatible with the spectrum, if there is one.
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6. Provide the user of the program periodic opportunities to
observe and change the direction of structure generation.
(Optional)

7. Remember past work. (Optional)

The mechanisms for following these instructions are described in the following
sections.

3.1. Brief description of the structure-generating algorithm

The basic steps for generating chemical structures are to generate radicals
(structures with a free bond) and to connect radicals to make larger struc-
tures. Radicals are generated recursively from a composition list of atoms
by deciding on the first atom (apical node) and free bond (afferent link) and
then making one or more radicals out of the remaining composition. The
function GENRAD1 constructs a single radical by this method; MAKERADS
constructs two, three, or four radicals from a single composition; and
GENMOL determines the center of a molecular structure and causes two or
more radicals to be constructed to attach to the center.
The function UPRAD takes a radical and returns the next higher radical

which can be made from the same elements. UPMOL does the same for mole-
cules. The function ISOMERS causes all the structures for a given composition
to be generated and printed in ascending canonical order.
The program's constraints are controlled by a number of switches (global

variables) which are pre-set before calling ISOMERS. The switches are named:
SPECTRUM, GOODLIST, BADLIST, NOPARTS, DIALOG, DICTS WITCH, and
OUTCONTROL. Individual constraints may be bypassed at the discretion of
the user of the program. When all constraints are turned off, the STRUCTURE
GENERATOR becomes a routine graph maker, generating an exhaustive list of
all possible acyclic graph structures of n nodes, where different nodes may
have different numbers of links (valence). The switch settings for uncon-
strained program operation are:

(SETQ SPECTRUM NIL)

(SETQ GOOD LIST NIL)

(SETQ BADLIST NIL)

(SETQ NOPARTS T)

(SETQ DIALOG (QUOTE OFF))

(SETQ DICTSWITCH (QUOTE OFF))

(SETQ OUTCONTROL (QUOTE OFF))

I The LI s P functions which perform certain operations will be identified in this report.
To simplify the discussion, however, their arguments and operation will not be
discussed. A separate paper lists all LISP functions contained in the STRUCTURE
GENERATOR and outlines their use.
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3.2. The SPECTRUM and the Zero-Order Theory of Mass Spectrometry

The SPECTRUM of the STRUCTURE GENERATOR is a single list of numbers,
corresponding to significant mass numbers in the real spectrum. The DATA
ADJUSTOR sub-program provides the STRUCTURE GENERATOR with this
list of numbers, all of which have equal importance as far as the STRUCTURE
GENERATOR is concerned.
The SPECTRUM is consulted to confirm the presence of compositions and

radicals. The first reference to SPECTRUM is by the function ISOMERS which
must make certain that the mass of the input composition is present. If it is
not, then no structures can be generated for that composition. Any smaller
composition can be made into structures if it is not inconsistent with the Zero-
Order Theory described below. This constrains the program to consider only
those sub-compositions which have some promise of leading to structures
compatible with the SPECTRUM.
The Zero-Order Theory assumes that every bond of a structure to which it

applies will break (one bond at a time) and that at least one of each pair of
substructures obtained from a single break will contribute its mass to the
spectrum. The Zero-Order Theory does not apply to double bonds, triple
bonds, or bonds leading to certain small structures. That is, in order for a
structure to be consistent with the Zero-Order Theory, at least one of the
following conditions must be met;

1. The structure contains exactly one atom other than hydrogen.
2. The afferent link is greater than 1.
3. The mass of the structure is less than 30.
4. The mass of the structure is in the SPECTRUM list.
5. The complement mass of the structure is in the SPECTRUM list.

This Zero-Order Theory of Mass Spectrometry is crude but easily imple-
mented. A more elaborate spectral theory is contained in the PREDICTOR
(section 4), but obtaining such a spectrum for an arbitrary structure con-
sumes more computer time than would be practical in a program such as the
STRUCTURE GENERATOR. The Zero-Order Theory is sufficient to limit the
output of the STRUCTURE GENERATOR to a small class of hypotheses, but
it will need major revisions before it can be classed as a 'smart' limiting
heuristic.
To make use of spectral information in the STRUCTURE GENERATOR it

is merely necessary to execute (SETQ SPECTRUM L) where L is a list of
integers, corresponding to the desired mass numbers. To terminate use of
spectral information, execute (SETQ SPECTRUM NIL).
When structure generation is proceeding in the presence of a SPECTRUM,

the work that is remembered for future reference (see section 3.7 describing
the dictionary) is independent of the spectral data, so it is permissible to use
several different spectra in succession in the same program core image.
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3.3. Preventing the generation of forbidden substructures

Some chemical structures are so implausible (unstable) that they would
never exist, either alone or imbedded within any larger structure. The
STRUCTURE GENERATOR has a list (BADLIST) Of these implausible struc-
tures; and no output of the STRUCTURE GENERATOR will contain any
substructure on BADL is T.1
The STRUCTURE GENERATOR avoids generating structures containing

forbidden substructures by checking rigorously before attaching new atoms
to a piece of structure. At every step in generating a radical, the program
knows the partially built structure and can determine whether the atom and
bond which are about to be attached to it will include one of the forbidden
substructures. The following process insures that no forbidden structures
will be formed:

1. The partial structure is guaranteed to be plausible because of previous
checking.

2. Form the new partial structure by adding the next bond and atom.
3. Consider all elements of BADLIST which have a top atom identical to

the atom just added to the partial structure.
4. For each such element of BADLIST, compare the radicals which are

attached to the top atom of the new structure with the radicals
attached to the top atom of the BADLIST structure.

5. If every radical on the BADLIST structure is found in the list of radicals
on the new structure, then the new structure must be rejected.

6. Rejecting a structure means that it is necessary to change either the
added bond or the additional atom (or both) in order to generate an
allowable structure.

Note that this process prevents the STRUCTURE GENERATOR from creating
many implausible molecules, since the addition of each new node causes a
check to be made for forbidden substructures including that node. Usually
only part of the structure has been generated because unallocated atoms are
added only to stable pieces.
Each forbidden substructure appears on BADLIST several times, once for

each possible top (apical) node. Structures are added to or removed from
BADLIST by the function FIXBADLIST, which first generates all the forms of
the forbidden substructure, and then adds to or deletes from BADLIST
according to the desire of the user. Naturally if there are no structures on
BADLIST then there are no constraints on the output of implausible structures.

I As described in section 1, BADLIST may be expanded according to given spectral data.
The permanent part of BADLIST belongs to the program's theory of chemical
instability. But substructures of both the theoretical and the context dependent parts of
BADLIST are treated alike.
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The current form of B ADLIST has been suggested after several iterations of
the following loop:

suggest forbidden substructures.
generate output.
inspect output.

The currently forbidden substructures are listed in Table 5. Hydrogen atoms
must be specified explicitly, and lists of atoms enclosed in parentheses
indicate that any member of the list may be used in that position on the
substructure.

1. C=C—(N,0)—H
2. cc—(N,0)—H
3. N=N—(N,O,H)
4. H-0—C—(N,0)—H
5. ii—c—m=o
6. N=C-0—H
7. o—o
8. (N,o)—(N,o)—(N,o)
9. o—s
10. s—s—s

/H
11. H—N—C—Nc-H

\ANY
12. (N,0)—C-0--H

0

Table 5. Forbidden substructures comprising BADLIsT

3.4. Partitioning a composition Into plausible sub-compositions

The unconstrained structure-generating algorithm produces molecules by
first determining the center of the structure (bond or particular atom) and
then generating all possible radicals out of the remaining composition and
attaching them to the center in all possible combinations. When all possible
centers have been considered, the process of structure generation is complete.
The task of generating a set of n radicals from a single composition requires

that the composition be divided (partitioned) into n subcompositions. Then
a radical is generated from each smaller composition.

All possible partitions are considered in the unconstrained program,
regardless of whether the sub-compositions are 'plausible' or compatible
with a spectrum. The lowest partition is considered first, where 'lowest' means
that it has two sub-compositions, of equal size if possible, and with the lowest
ranked atoms all in one of the compositions (where the arbitrary ranking
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from carbon to sulfur is: C <N< 0 <P <S). After the lowest partition has
been used, it is incremented to the next higher form, used to make radi-
cals, and incremented again until the highest set of compositions has been
used.
As each partition is generated it can be checked for plausibility before any

attempt is made to generate the corresponding radicals. Each sub-composition
is checked against the spectrum. (See section 3.2.) If its weight is not present,
the whole partition can be bypassed. Similarly, each sub-composition of a
partition can be checked against the dictionary of previous work (see section
3.7) to determine whether any radicals can be made from the sub-composi-
tion. If the dictionary indicates an impossible composition, then the whole
partition can be bypassed.
The advantages of these constraints are evident in even a simple case.

Suppose we wish to partition the composition ((u. 1)(c. 6)(o. 6)) into two
parts. The 'lowest' partition is [((u. 0)(c . 6)), ((u. 1)(o . 6))]. There are 17
radicals corresponding to ((u. 0)(c . 6)) but there are no allowable radicals
corresponding to ((U. 1)(o . 6)). Thus, the work done in generating all the six-
carbon radicals is wasted because there are no six-oxygen radicals to go along
with them. If this is determined in advance, then much time will be saved by
eliminating this partition. Similarly, this partition might have been elimin-
ated if there were no spectral evidence of a C6H13 fragment (a saturated
radical with six carbons). Currently, the only spectral evidence that the
program accepts for a composition is a peak at the corresponding mass. This
drawback will soon be eliminated, for we are programming the PRELIMIN-
ARY INFERENCE MAKER to look for evidence of a more subtle kind. For
example, a cluster of peaks may indicate a significant fragmentation although
no peak alone indicates it.
Every composition of a partition may satisfy the spectral and dictionary

constraints, yet the partition may be implausible when considered as a
whole. Plausibility criteria, suggested by chemists, include such considerations
as the ratio of carbon to non-carbon atoms in each composition compared
to the ratio of carbon and non-carbon atoms in the whole partition. Spectral
considerations may be included in the plausibility criteria at a later date. A
partition plausibility score is calculated, and if this score does not lie within
a given range, the partition is bypassed. The usual lower limit of plausibility
scores is 1. Lim =4 (0 is the lowest) and the usual upper limit is uum= 10
(the highest) but these two global variables can be reset by the program user,
i.e. (SETQ LLIM 0).
The LISP function MAKELST CLS (make-a-list-of-composition-lists) is the

usual procedure for making a n-part partition out of a composition list. The
LISP function MAKEGOODLSTCLS is called instead to insure that the parti-
tion satisfies the dictionary, spectrum, and plausibility constraints.
The partitions are usually generated one at a time as needed by the program.

But the program can be made to generate all the plausible partitions in
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advance and put them on a list (PARTLIST) for future reference by the pro-
gram. The program assumes that the partitions obtained from PARTLIST are
plausible and it makes no further checks. The main advantage in using
PARTLIST is that the list can be filtered or re-ordered, either by an arbitrary
scheme of the user or on the basis of plausibility scores. Then the 'most
interesting' structures will be generated first. At the present time the PART-
LIST is only constructed for the top level of molecule-building, although it
would be possible to generate partition lists for deeper levels of structure
generation.
The partition constraints are activated by the program user as follows:

1. To bypass partitions on the basis of their plausibility scores, either
set Lum>0 or set uum<10. If uum=10 and Lum=0, all parti-
tions will be plausible.

2. To activate the partition list, first set the switch NOPARTS =NIL.
Then, before generating any molecules, the program will ask the user
if he wishes the partition list to be constructed.

3.5. Specifying required substructures

The basic components used by the STRUCTURE GENERATOR are chemical
atoms which possess two properties, valence ind atomic weight. These atoms
are connected by bonds to form radicals (structures with a free bond) which
may in turn be connected with other atoms and radicals to form larger
radicals and molecules.
The STRUCTURE GENERATOR can also treat complex structural fragments

as atoms. Structures so treated have come to be known as ̀ superatoms'. The
STRUCTURE GENERATOR replaces a group of atoms in the given composi-
tion by the name of a corresponding superatom, and generates structures
with the revised composition (including the superatom name). Only at output
time (if then) do the constituent atoms of the superatoms re-appear. Two
obvious benefits arise in the use of superatoms:

1. The generation of isomers of a composition is faster because there are
fewer atoms in the composition.

2. Structural fragments essential to an explanation of a mass spectrum
may be made into superatoms. All isomers will contain the selected
substructure, thus the output list is more relevant to the data.

A third benefit was realized as a result of the use of superatoms:
3. Ring structures can now be generated by the previously acyclic
STRUCTURE GENERATOR by specifying each different ring as a
superatom.

Normal atoms are known to the STRUCTURE GENERATOR because their
names are on a global list called ORDERLIST. The usual value of ORDERLIST
is '(c N OP S)' and the position on this list de—fines the ̀ DENDRAL Order' of
the atom: C <N < 0 <P <S. Each atom on ORDERLIST has the properties
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VALENCE and WEIGHT. When superatoms are created, their names are also
added to ORDERLIST. SUperatOMS have the properties VALENCE, WEIGHT,
STRUCT and SYM (the last two to be described later).
Any new atom or superatom may be introduced to the STRUCTURE

GENERATOR by calling the LISP function (ADDATOM (QUOTE X)) where X
is the name' of the atom. A common superatom is the keto radical *co*,

/C---0, with two free bonds on the carbon atom. This superatom has

properties VALENCE=2 and w Eio HT =28 and STRUCT= (1 C(20)). It is
list notation representation2 that is stored under the property STRUCT of the
superatom name. It is used at output time to put the generated isomer back
into canonical DENDRAL notation in terms of ordinary atoms. Note that the
free bond leading into the superatom is a 1 rather than a 2, since the most
saturated form is always used.
But consider the case of the general ketone substructure, KET*:

I
—C—C—C—

I II I
0

It is desirable to be able to treat this as a superatom, yet there must be some
way of stating that the valence of 6 is split up between two different atoms.
This is done by stating that VALENCE= (3 3). The property WEIGHT has
value 52 and STRUCT= (1 C(1 C(1 C) (2 o))). The numbers in the valence
list correspond to atoms with free valences in the list structure, reading from
left to right. The first atom which does not have all its valences filled by bonds
has an effective valence equal to the first number in the valence list, and so on.
During normal structure generation, the effective valence of this super-

atom is six, and as many as six radicals may be generated to attach to a
ketone superatom. The actual locations to which the radicals are attached
are indicated by a locant vector associated with the superatom name in the
list notation for a larger structure. The locant vector is a list of numbers, one
for each attached radical. Each number specifies the atom to which the
radical is attached. The ketone superatom has atoms 1 and 2 which are
available for attached radicals. (An atom's number corresponds to its position
from left to right in the valence list and the list notation of the structure.)
Since each available atom in the ketone structure has three free valences,
each atom (1 and 2) may be listed up to three times in the locant vector.
As an example, suppose four methyl groups (radicals of one carbon atom,

three hydrogen atoms each) are to be attached to the ketone superatom,
represented by ̀*KET*'. The possibilities, with associated locant vectors and
list notation representation, are:
1 Any atom with a name longer than 1 character should be enclosed in asterisks.
2 List notation is analogous to dot notation described in section 7. The difference is that
bonds are represented by numbers and radicals are enclosed in parentheses.
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1. C—C—C—C—C (1 1 1 2) (NIL (*KET* 1 2)(1 c)(1 c)(1 c)(1 c))
I II
Co

2. C—C—C—C—C (1 1 2 2) (NH, (*KET* 11 22)(1 c)(1 c)(1 c)(1 c))

0

3. C—C—C—C—C (1 2 2 2) (NIL (*KET* 2 2 2)(1 c)(1 c)(1 c)(1 c))
I

OC

Note that l's in the locant vector are listed before 2's, when the two represent-
ations would be equal. For example, in this case

(11 12)=(1 1 2 1)=(1 2 1 1)=(21 11).

A firm rule with locant vectors is that the 'lowest' of equivalent forms is
always used.

Further, note that structures 1 and 3 are mirror images, obtained by
interchanging nodes 1 and 2. This arises because the ketone superatom is
symmetric for these nodes and because the radicals attached to the symmetric
nodes are equal. Thus it becomes necessary to check for symmetrical struc-
tures to avoid redundancy.
An important property for each superatom with split valences (i.e., the

valence property is a list rather than a single number) is the list of symmetries.
Each symmetry is a list of numbers, the same length as the valence list,
indicating which node is equivalent to the nth node under a given transfor-
mation. The identity transformation gives the symmetry (1 2) (node 1
equivalent to node 1, node 2 equivalent to node 2). The identity symmetry
is possessed by every split valence superatom and thus is not included in the
symmetry list. The reflection transformation applied to the ketone super-
atom gives the symmetry (2 1) (node 2 equivalent to node 1, node 1 equivalent
to node 2). This is the only non-trivial symmetry, so the SYM property for
ketone is ((2 1)).
In the case of a superatom such as

>C=C—C—
I I
0

the properties would be
STRUCT= (i c(2 c(1 c)(1 0)))
VALENCE= (2 3 1)
WEIGHT=52

SYM=
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In the case of the six membered carbon ring shown below the properties
would be:

VALENCE= (2 2 2 2 2 2)
WEIGHT= 72
SYM= ((2 3 4 5 6 1)(3 4 5

(4 5 6 12 3)(5 6 1
(6 12 34 5)(6 5 4
(5 4 3 2 16)(4 3 2
(3 2 16 5 4)(2 16
(1 6 5 4 3 2)).

6 1
2 3
3 2
1 6
54

2)
4)
1)
5)
3)

C( 1

4 3c

\ C7

All possible rotations and reflections produce equivalent structures, so all
symmetries are listed.
A ringed structure cannot be written in list notation conveniently, so the

composition list is given as the value of STRUCT, for rings, STRUCT=
((U. 1)(c. 6)) in this example. (At least one degree of unsaturation is always
present in a ring.) Rings are not converted back to basic atoms at output
time since there is no convenient way to write them on a single line. The

locant vector notation is retained during output of structures containing
rings. The first number in the locant vector refers to the attachment position

of the afferent link if there is one.
The presence of a superatom name on ORDERLIST defines the superatom

for the system but does not force the STRUCTURE GENERATOR to use it.
Another global list called GOODLIST, is set by the program user to indicate

which superatoms are relevant at a certain time. An element of GOODLIST
has the form (NAME MAX MIN), where MAX and MIN specify the upper and
lower limits on the number of these superatoms which may be substituted
into a given chemical composition. For example, if MAX =0, this superatom
is ignored, and if MIN= 1, then this superatom is required. If the MAX and
MIN are left unspecified, then the assumed values are MAX = 100 and m = O.
When the STRUCTURE GENERATOR is given a composition from which to

generate structures it must first check GOODLIST to see which superatoms
can be formed from the given composition. If any superatom has a specified
minimum greater than 0, its atoms are removed from the composition and the
corresponding number of superatoms are inserted instead. If any superatom

with a minimum greater than 0 cannot be made from the atoms of the
composition, then all structure generation terminates for that composition.

If the Zero-Order Theory is operating, structure generation also terminates

if the mass of the superatom is not in the spectrum.
When the required superatoms have been inserted into the composition,

the STRUCTURE GENERATOR then places all possible combinations of
remaining superatoms into the composition and generates all possible struc-

tures from the new set of corresponding compositions.
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Consider an example:

GOODLIST= ((*COOH*)(*C0*)(*NOH*)(*KET

*COOH*: STRUCT= (1 c(1 0)(2 0))

VALENCE= 1

WEIGHT= 45

*CO*: STRUCT= (1 C(2 0))

VALENCE= 2
WEIGHT= 28

*NOH*: STRUCT= (1 N(1 0))

VALENCE= 2

WEIGHT = 31

*KET*: STRUCT= (1 c(1 CO c)(20)))
VALENCE= (3 3)
wEIGHT=52
SYM= ((2 1))

The composition C31171•102 has the composition list ((u. 1)(c. 3)(N. 1)

(0 .2)). The composition lists for the four superatoms are:

))

((u.1)(c.1)(o.2))
((u.1)(c.1)(o.1))
((u .0)(N .1)(o.1))
((u.1)(c.3)(o.1))

The following revised composition lists are all possible ways of generating

isomers of C3117NO2.

1. ((u. 0)(c. 2)(N. 1)(*coox*. 1))
2. ((u. 0)(c. 2)(*co*. 1)(*N0x*. 1))
3. ((u.0)(c. 2)(N. 1)(o. 1)(*co*. 1))
4. ((u. 1)(c. 3)(o. 1)(*NoH*. 1))
5. ((u.0)(*Nox*.1)(*KET*. 1))
6. ((u. 0)(N. 1)(o. 1)(*KET*. 1))
7. ((u. 1)(c. 3)(N. 1)(o.2))

There are two global variables which may be set to limit the total number
of superatoms in any single composition. These are MXSAT and MNSAT,
representing the maximum and minimum number, respectively. In the example
above, if mx SAT = 1 then #2 and #5 would not be permitted; or if MNS AT= 1
then #7 would not be permitted. If GOOD LIST had the form

((*cooll* 2 1)(*co*)(*Nox*)(*KET*))

then only #1 would be permitted.
When c OODLIST is present during structure generation, the program does

not allow implicit superatoms to be formed from the remaining normal
atoms. The structure (1 c(1 o)(2 o)), for example, is a forbidden substruc-
ture when the explicit superatom *coox* is on GOODLIST. Thus, if isomers
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were generated for all the seven composition lists given above, the total
number of isomers would be exactly the number generated by the program
for the composition C31171•102 with no GOODLIST present. For that reason,
the variables specifying the maximum and minimum for total and individual
superatoms are nearly always specified to prevent uninteresting isomers from
being generated. If a GOODLIST superatom happens to contain one of the
forbidden substructures on BADLIST, BADLIST prevails. That is, the BAD-
LIST theory of chemical instability must be changed before conflicting super-
atoms will be generated.
The superatom type of structure generation is activated whenever GOOD-

LIST is not NIL. A general form of GOODLIST is stored in the program and
can be used by executing (SETQ GOODLIST SAVEGOODLIST). A function
called STRUCTURES will ask the user to specify the maximum and minimum
number for each superatom on GOODLIST. As described earlier, the PRELIM-
INARY INFERENCE MAKER gives superatoms to the STRUCTURE GENER-
ATOR automatically so that generated isomers will correspond as closely as
possible to the information contained in the real spectrum.

3.6. Observing the process of structure generation

The basic structure-generating function is a LISP function called GENRAD
which generates a single radical from a composition list. GENRAD operates
recursively by calling itself for successively smaller subsets of the composition
list.

It sometimes happens that the work done in generating radicals from a
composition subset is wasted because the partial structure to which these
radicals will be attached is implausible. Or else, a user of the program may
be uninterested in certain classes of structures, but has to watch impatiently
while the program works its way down to the interesting structures.
A dialog option allows the on-line user of the program to inspect GENRAD

at each level and to decide whether GENRAD should be allowed to proceed
to a deeper level of recursion. At each dialog point, the current partial
structure and remaining composition are printed. This gives the user the
opportunity to decide if the structure-generating algorithm is proceeding
along a fruitful path. If not, a sort of user-implemented tree pruning can be
evoked just by answering 'N' to the program's query about whether to
continue. It is hoped that the program can learn to make use of the reasons
for altering its operation in this way.
The dialog option is initiated by executing (SETQ DIALOG (QUOTE ON))

and it is terminated by executing (SETQ DIALOG (QUOTE OFF)). The dialog
may be stopped during structure generation by typing a left arrow instead of
the usual answer to questions typed by the program. Then type (SETQ
DIALOG (QUOTE OFF)) and the dialog will no longer appear.
The user has another device available to cause the program to terminate

structure generation even though the output list is incomplete. To control
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output in this way, execute (SETQ OUTCONTROL (QUOTE ON)). The
program will pause after a specified number of outputs have been printed and
ask permission to continue. The interval for pausing is determined by the
number stored as the value of the global variable called AMT.
Both these devices for controlling output are usually ignored, but have

been very useful during program debugging and demonstrations.

3.7. Rote memory

The normal operation of the STRUCTURE GENERATOR causes a dictionary
to be built which contains all the structural isomers of every composition
(and every subset of every composition) which has been encountered. This
dictionary contains lists of radicals, saved under names which can be re-
constructed from the compositions. Whenever structure generation is under
way, the program first searches the dictionary to see if the current composition
has been encountered previously. If a dictionary entry exists for a composition,
it is assumed to be an exhaustive list of all radicals which can be made from
the composition. No further structure generation is performed; the dictionary
list provides the output.

Dictionaries which are built during a run of the program may be saved on
tape for further use. The function SAVDICT writes a dictionary on tape. The
dictionary is recalled for further use by the function GETDICT. The global
variable called DICTLIST has as its value a list of all names of entries in the
current dictionary.
Because every dictionary entry is assumed by the program to be an ex-

haustive list of radicals corresponding to the named composition, the diction-
ary may be used as a program constraint. An existing dictionary (either in
core or on tape) may be edited manually (or by computer, using techniques
which will be described in a later report). The editing may either delete or add
radicals, and subsequent structure generation with the edited dictionary
present will result in reduced or expanded output lists.
Sometimes a previously edited dictionary is used unintentionally. For

example, BADLIST prevents certain structures from entering the dictionary at
all. If BADLIST is later changed, but a previously built dictionary is left in the
program, the output will appear as though the old form of BADLIST were
still present; or worse, it may appear that the old BADLIST is present for
small structures (ones that were previously in the dictionary) but the new
BADLIST is present for large structures (ones that are being built for the first
time). A certain amount of caution in changing BADLIST will prevent this
type of erroneous structure generation.
The dictionary-building process may be turned off so that previous work

is not remembered. The command for this is (SETQ DICTSWITCH (QUOTE
OFF)), but seldom is it advisable to do this. It speeds initial work, but later
work that depends on previous work is slower. A core dictionary may be
deleted by executing (UNDICT DICTLIST) and (SETQ DICTLIST NIL). To
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restart the dictionary building process after it has been turned off, execute
(SETQ DICTSWITCH (QUOTE ON)).

4. THE PREDICTOR: FIRST STEPS TOWARD A
COMPUTER THEORY OF MASS SPECTROMETRY

Introduction

Part of HEURISTIC DENDRAL is a computer program which predicts major
features of mass spectra of acyclic organic molecules. The program contains
a rough theory of mass spectrometry which is still in its formative stages.
In the course of designing the HEURISTIC DENDRAL program for formu-

lating hypotheses to explain mass spectral data, it became apparent that the
program needed a detailed theory of mass spectral fragmentation processes.
This is because the STRUCTURE GENERATOR suggests plausible candidate
structures for explaining the data, but has no way of testing its candidates.
Thus, a theory by which the computer could make some verifiable predictions
about each candidate would help to reduce the set of likely candidates.
Through the program described here, the prediction now takes the form of a
suggested mass spectrum for each candidate structure. The EVALUATION
FUNCTION described in section 5 then compares the predicted spectrum and
original spectrum to determine which structural candidate is the most satis-
factory choice.
A mass spectrometer is, briefly, an instrument into which is put a small

sample of some chemical compound and out of which comes data represent-
able as a bar graph. The instrument itself bombards molecules of the com-
pound with electrons, producing ions of different masses in varying amounts.
The x-points of the bar graph represent the masses of ions produced,1 and
the y-points represent the relative abundances of ions of these masses. The
spectrum predictor program is an attempt to codify the numerous descrip-
tions of what happens inside the instrument, and thus to generate mass
spectra in the absence of both the instrument and the actual sample of the
substance. The input to the program is a string of characters representing the
graph structure of a molecule. The output is a bar graph representing the
predicted mass spectrum for this molecule.
In broadest outline, the mass spectrum predictor calculates a spectrum

(list of mass-intensity pairs) for a molecule in the following series of steps:

1. Calculate the mass of the molecular ion and an associated intensity,
depending on the degree of unsaturation.

2. Determine the nature and extent of eliminations and rearrangements
of the molecular ion.

3. Break a bond between a pair of adjacent atoms in the molecule, looking
at each bond only once.

I More accurately, the x-points of a mass spectrum represent the mass to charge ratio
(m e), where most, but not all, recorded fragments are singly charged.
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4. Calculate the masses of the two resulting fragments. Then calculate an
intensity (on an absolute scale) for each fragment ion by estimating
the probability that this bond will break and the probability
associated with ionization of each fragment.

5. Determine the nature and extent of eliminations and rearrangements
of each fragment ion.

6. Add isotope peaks and peaks at m +1, m + 2, to account for hydrogen
addition to some fragment ions. (Optional.)

7. Recycle through 3-6 until every bond in the molecule has been
considered once.

8. Eliminate low mass peaks and adjust the intensities to percent of the
highest peak.

The following discussion elucidates the theory by explaining in detail what
the program does in each of the above steps. Justification for some decisions
exists in print. Many decisions, however, have been made out of consider-
ations of simplicity, elegance, deference to the intuitions of professionals, or
out of ignorance.

4.1. The Program

The molecule is represented in a slight variant of Lederberg's DENDRAL
notation described in section 4.4. This notation omits explicit mention of
hydrogen atoms but shows all the other connections of a chemical graph.
The program attaches a unique name to each atom, and keeps track of each
atom's place in the graph by putting names of adjacent atoms on the property
list of each atom under indicators FROM and TO.
The molecular ion's mass is the sum of the masses of all atoms plus the

masses of all implicit hydrogen atoms. The intensity associated with this mass
is a function of the degree of unsaturation of the molecule. This function is
easily changed, but it is currently x times the product of all bond orders (on
an absolute scale) where x=2 [Lisp function called MOLVAL].1 For example,
in a molecule with all single bonds except for one double bond and one
triple bond, the intensity of the molecular ion would be

2(1 x 1 x, ...,x 1 x 2 x 3)=12.

Peak heights on this absolute scale are translated onto a 0-100 scale at the end.
Since any ion, including the molecular ion, tends to a more stable form if

possible, the program must take account of the relative stability of each ion,
as compared to the stability of possible products it may form. The program
looks for ways of losing certain neutral molecules or rearranging the atoms
already present. It has a list of very stable ion products, which are preferred
structures, and must determine whether, and to what extent, the given molecu-
lar ion can form one of these products. To do this, it looks for any occurrence

1 The most important LISP functions and parameters will be bracketed throughout this
section.
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X
I 11

1. —C--C—C— a. Only two types of bonds break:
i 1 (i) Bonds alpha to the heteroatom;

(X=0,N,S) i.e., the bonds between C and
or, X X

—C—C—H C, with only the heteroatom-
1 (X=0,N,S) containing fragment ionized.

[test function ALPHA?]
(ii) Bonds gamma to the heteroatom;

i.e., X
11

R—C—C—C-LC—R
[test function GAMMA?]

b. The McLafferty rearrangement, if
possible, is invoked for the mole-
cular ion.

c. Carbon monoxide is lost from each
cm-cleavage fragment containing
the carbonyl radical.

1 1
2. —C—X—C— a. Only two types of bonds break:

1 I (X=0,S,NH,N—R) (i) cc-bonds, as above. Preference
is given to loss of the most
highly substituted fragment or
to loss of the longest carbon
chain (when degrees of substi-
tution are equal).

(ii) y-bonds, as above.
b. In each resulting fragment, subsequent

rearrangements favor loss of highly
substituted carbons and loss of
long carbon chains.

3. —C—OH a. Reduce the intensity of the molecular
ion to zero.

b. Add peaks at the following x, y
points (intensities on absolute
scale, a=2)

mass intensity

M-18 2a(=4)
M-18-15 4a(8)
M-18-28 8a(=16)
M-18-29 3/4. 8a(=12)

, M-18-42 8a/2(=8)
M-18-43 3/4. 8a/2 (=6)
M-18-56 8a/4(=4)
M-18-57 3/4. 8a/4 (=3)

until (M-18-X)<29.
[The value of a is controlled by
the parameter AFACT.]

C. Add cm-cleavage peaks (with only
the hydroxyl fragment ionized).
Preference is given to loss of the
most highly substituted fragment or
to loss of the longest carbon chain.

Table 6. Significant radicals and their effects
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allocation of intensity
units of the molecular ion
and [parameter names]*

type characteristic K1 % for K2% for skeleton of
subgraph parent daughter daughter ion

X XH
McLafferty 11 40 60 1
Rearrangement C H [xmcoLo] [xmcisiEw] C

/\ 1 /\
z x—x—x z x

( x= c, N, 0, P, S)
(Z—C, H, N, 0, P, S)

H OH
1, 21 elimination 1 1 60 40 —0--C—
of H20 (thermal) —C—C— [KwoLo] [cwNEw] 1 1

1 1
H

1, 3t elimination 1 1 1 0 200
of H2S —C—C—C— [Ks3oLD] [xs3NEw] #

1 1 1
SH

H
1, 4t elimination 1 1 1 1
of H2S —C—C—C—C— 0 300

1 1 1 1 [xs4ot.o] [xs4NEw]
SH

H
1, 3f elimination 1 I 1
of HCI —C—C—C— 0 200

1 1 1 [xcl..3oLn] [xcL3NEw]
Cl

1, 4t elimination 1 1 1 1
of HCI —C—C—C—C— 0 300

1 1 1 1 [xcLzIoLD] [xcL4NEw]
Cl

* Global parameters' current values are listed; parameters may be reset by the user.
t The number notation 1,n refers to the relative positions of the combining atoms or

radicals.
$ The program now calculates only a mass-intensity pair of these daughter ions since we

are uncertain about their structures.

Table 7. Rearrangements and eliminations in molecular ions

of the significant radicals listed in Table 6, for example the carbonyl radical

/C--0. Associated with each of these significant radicals is a set of rules for

restructuring the ion to make it more stable and a set of parameters for
determining the extent to which this restructuring should (or does) occur.
Heuristic programmers recognize such a plan as a list of situation-action
rules of the form: in situation X perform action Y. A very desirable feature
of this is that the list can be extended or amended very easily.
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Table 7 is a summary of the program's rules for eliminating neutral mole-
cules or rearranging atoms in molecular ions. The characteristic subgraph is
the part of the ion which the program looks for. The two parameters deter-
mine the percent of the abundance of the molecular ion (as originally
determined) which should be allocated to the original molecular ion (K1 %)
and to the daughter ion, that is, to the ion after restructuring (K2 %). Reset-
ting the parameter whose name is bracketed changes the corresponding
allocation. The skeleton of the daughter ion is indicated. The program has
rules for removing atoms, changing the order of bonds, and moving atoms
from place to place, so that the structure of rearrangement products will be
printed, if requested.

After the program has considered the molecular ion [function PARENT]
it considers the likelihood that the molecular ion will fragment at each of the
bonds between atoms. Its theory says that only single bonds will break apart,
thus it skips over double and triple bonds in the molecule. Of the single
bonds, it distinguishes bonds between carbon atoms from bonds between a
carbon and a non-carbon atom. The probability that the ion fragments at a
given bond depends upon the environment of the bond and the functional
groups present in the molecule. The probability associated with the ionization
of one or the other of the resulting fragments also depends on these features.
This part of the program is also organized as a set of conditional sentences:
if the molecule contains functional group X and this bond environment has
feature b then include the factor resulting from calculation f(b) in figuring
the probability that the molecule fragments at this bond. The features which
the program considers are explained in detail in section 4.2, together with the
associated functions. Briefly, however, the program first checks for the
presence of the significant radicals listed in Table 6 and then looks at some
or all of the following eleven features to determine both the probability
that any particular bond will break and the:probability of ionization for each
resulting fragment:

1. The order of the bond itself [HTVAL].1
2. The types of atoms joined by the bond [HTVALCC, HTVALCX,

INDUCTIVE].
3. The orders of the bonds which are one atom removed from this bond

[vINvLic].
4. The number of non-hydrogen atoms which are one atom removed

from this bond, i.e., the degree of substitution on the first atom in
each fragment [LCALC, METHYLP].

5. The number of heteroatoms which are one atom removed from this
bond [CONTIGHET].

6. The types of heteroatoms which are one atom removed from this bond
[HETERO].

I The bracketed names of the Lisp functions responsible for these features are given for
later reference.
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7. The types of radicals that are one atom removed from this bond
[CARBONYL].

8. The orders of the bonds which are two atoms removed from this bond
[ALLYLIC].

9. The length of the carbon chain in each fragment [CHAINLTH].
10. The total number of heteroatoms in each fragment [NHET].
11. The total number of carbon atoms in each fragment [NUMCARBS].

The result of calculating the probability of ionization of a fragment is a
number pair, (x.y). The first component is the mass of the fragment. The
second is the relative abundance of these fragment ions (y> 0).

Since fragment ions, as well as the molecular ion, may eliminate neutral
molecules or rearrange atoms to form more stable ions, the program must be
able to predict the most significant occurrences. After the program calculates
the mass of a fragment and the relative frequency of its ionization, it checks
the fragment for elimination and rearrangement possibilities. Exactly the
same procedure is used as for the molecular ion, but the list of characteristic
subgraphs may be different depending on the functional groups present in the
molecule. Table 8 lists the different possibilities now in the program.
Thus the program examines each bond to calculate the probability of

cleavage and each fragment to calculate both the probability of ionization and
the possibility of rearrangements. In addition, it has already calculated a
molecular ion peak and has looked for the possibility of eliminations and
rearrangements in the molecular ion. By the time it has finished, it should
have calculated a list of mass-intensity pairs corresponding to the most
significant peaks in the actual mass spectrum for the same molecule. To
conform to common practice, mass units below 29 are deleted and the
intensities are converted to percent of the highest peak (base peak).
Some annotated examples of predicted spectra appear in section 4.3

together with the actual mass spectra for the same molecules. Section 4.4
explains how to use the program; and section 4.5 explains the options that
are available from the console.

4.2. Rules for calculating relative intensities of primary fragments

Cleavage of Single Bonds between Carbon Atoms. Under special conditions
the program bypasses the general rule for calculating intensities of fragments
given below. Thus, before stating the general rule, which is relatively com-
plex, the exceptions will be noted.

A. Exceptions

1. Assign zero as the intensity of the two fragments when considering the
bond between CH2 and CH3; that is, do not break off a methyl which is part
of an ethyl. This rule is preempted by the special rules of Table 6 for signifi-
cant radicals. For example, the methyl radical will be lost in this molecule
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R—N—CH2A-CH3

because this is cc-cleavage in an amine. [test function METHYLP].
2. Assign zero as the intensity of both fragments when considering a vinylic
bond; that is, do not break bonds which are adjacent to double bonds. The
rules of Table 6 preempt this rule also. [function VINYLIC].
3. Assign zero as the intensity of all primary fragments of ketones, aldehydes,
amines, ethers, thioethers, and alcohols except for the fragments resulting
from the rules of Table 6.
4. For cc-cleavage in amines, ethers, and thioethers, calculate the intensity of
the heteroatom-containing fragment as a function of
(a) the degree of substitution of the first carbon atom of that fragment,

and
(b) the number of carbon atoms lost.

Specifically, the intensity is the sum of two factors Xi and X2 where
Xi =0 if 3 or 2 hydrogens are attached to the first carbon,

30 if 1 hydrogen is attached, or
45 if 0 hydrogens are attached. [function AMINESUBST]

X2=3 if 2 or 1 carbon atoms are lost,
10 if 3 are lost, or
15 if 4 or more are lost. [function AMINECARBS].

B. The General Rule
The general rule for calculating the intensity of each fragment resulting
from dissolution of the bond between two carbon atoms is

/= (Z1 +Z2 -I-Z3 + W1) x W2 x W3 x W4
The Z-factors are context-dependent factors. That is, it is necessary to look at
features of both fragments (the total context) in order to calculate each Z-
factor. The W-factors are context independent, which is to say that each one
can be calculated by looking only at the fragment under immediate considera-
tion.
1. Z1 is calculated in two steps according to the number of non-hydrogen
atoms alpha to the bond under consideration:
(a) Compute a factor (Ti) which is equal to the sum of intensities of
both fragments (estimated probability that this bond will break given
this information):
T1=10 if there are 0, 1, or 2 branches to non-hydrogen atoms,

12 if . . . 3 branches . .
16 if . . . 4 branches . .
18 if . . . 5 branches . .
20 if . . . 6 branches . . .. [parameter list TINLTH]

(b) Compute a ratio for splitting Ti between the two fragments
(relative probability that each fragment will be ionized as a result of this
break given this information):
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ratio =1: 1 if the difference between the number of non-hydrogen branches
is 0,

5:7 if the difference. . . is 1,
1:3 if the difference. . . is 2,
1:5 if the difference. . . is 3. [parameter list RINLTH]

The ratio is weighed in favor of the fragment with more alpha branches.
Z1 for each fragment is then the result of applying this ratio to Ti.

[function LCALC]
2. Z2 is calculated in a similar two-step manner, this time taking into
account the number of heteroatoms (non-hydrogen, non-carbon atoms)
alpha to the bond under consideration:
(a) • Compute a factor (T2) which is equal to the sum of intensities of
both fragments (estimated probability that this bond will break given
this information):
T2=0 if there are 0 branches to non-hydrogen, non-carbon atoms

(heteroatoms) from both of the carbon atoms,
3 if . . . 1 branch .
10 if . . . 2 branches . .
20 if . . . 3 branches . .
30 if . . . 4 branches . .
40 if . . . 5 branches . .
50 if . . . 6 branches . . .. [parameter list TINCON]

(b) Compute a ratio for splitting T2 between the two fragments
(relative probability that each fragment will be ionized as a result of
this break given this information):
ratio =1:1 if the difference between the number of branches to

heteroatoms is 0,
3:10 if the difference . . .is 1,
1:9 if the difference. . . is 2,
1:19 if the difference . . . is 3. [parameter list RINCON]

(again, weighted in favor of the fragment with the more branches).
Z2 for each fragment is then the result of applying this ratio to T2.

[function CONTIGHET]
3. Z3 is an attempt to integrate the principle that longer carbon chains are
lost preferentially to smaller ones. The longer a carbon chain in a fragment,
the higher the probability that the molecule will split apart at that bond.
Also, though, the long-chain fragment is less likely to be ionized than the
other fragment at this break-point. So Z3 is calculated for fragment #1 at a
break-point as a function of the chain length of fragment #2.

[function CHAINLTII]
Currently the function just multiplies the chain length by two [the value of
CHFACT] although this parameter, like every other in the program, can be
easily changed.
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The next factors in the intensity calculation for any fragment are context-
independent. The program considers only features within the fragment, first
on one side of the bond under consideration, then on the other.
4. W1 is equal to the number of heteroatoms in the fragment. The program
now simply counts the number of occurrences of non-hydrogen, non-carbon
atoms, although it could return some function of the count.

[function NHET]

5. W2 attempts to capture the principle that in a fragment the types of hetero-
atoms alpha to the bond under consideration greatly influence the probability
that the fragment retains the charge (is ionized) when this bond is broken.
That is, the program looks at atoms in the place occupied by X in the fol-
lowing schema and assigns W2 by the accompanying rule:

I I
—C—C— • • •

I
+X

W2 = 5 [FHETN] if Xis Nitrogen,
4[Film] if Xis Sulfur,
3 [F. x Fro] if Xis Oxygen,
2[FHET cL] if Xis Chlorine,
1 otherwise. [function HETERO]

6. W3 is a similar factor taking account of certain heteroatoms doubly
bonded to the carbon at the break-point. The program looks at atoms in the
X-place in the schema and assigns W3 by the following rule:

X
II I

—C—C— . . .

W3=4 [FCARBN] if Xis Nitrogen
3 [FcARBo] if Xis Oxygen
2 [FcARBs] if Xis Sulfur
1 otherwise. [function CARBONYL]

Thus for a bond connecting two carbon atoms in the molecule, the intensities
of the two fragments depend upon the context-dependent and context-
independent factors (the Zs and Ws) as just described. The atoms closest to
the bond have the greatest effect, but two of the factors (Z3 and W1) depend
upon atoms farther away from this bond.
7. W4 is a factor which attempts to capture the favorable influence of allylic
bonds on the fragmentation process. For example, in fragment (a) below
the bond marked with an asterisk is an allylic bond (relative to the double
bond of the fragment) and thus increases the probability of fragmentation to
produce fragment (a).
( a ) C—R [function ALLYLIC,

parameter lc ALLYLIC]

242



BUCHANAN, SUTHERLAND AND FEIGENBAUM

Cleavage of Carbon-Heteroatom Bonds. For a single bond between a carbon
atom and a heteroatom, several of the same calculations are made as for
carbon-carbon bonds. In accordance with existing theory, the carbon-
containing fragment is much more likely to be ionized as a result of this

cleavage than the other one. (In rearrangement products, however, the hetero-
atom-containing fragment often retains the charge; see the amine entries of
Table 8 for example.) But this bond is less likely to be broken than a single
bond between two similar carbon-containing fragments.
A. Exception. A bond between a carbon and hydrogen atom breaks if this is
an a-cleavage in an amine. For example,

HC—N—R
i
HH

B. The General Rule. The equation for calculating the intensity of the carbon-
containing fragment at a C—X break is:

I,=Z4 x Z5 x W5.

As before the Zs are context-dependent factors and the W is context-inde-
pendent.
For the heteroatom-containing fragment the intensity is merely:

ix =Z4.

1. Z4 is directly analogous to the factor Z1 for carbon-carbon bonds. The
carbon-containing fragment resulting from such cleavage ordinarily should
have a smaller intensity than the corresponding fragment in cleavage of a
carbon-carbon bond. The program accounts for this in the first two steps for
calculating Z4.

(a) Compute a factor (T4) which is to be equal to the sum of the ,
intensities of both fragments:
T4 = the intensity which would be assigned to the carbon-containing

fragment in a similar carbon-carbon bond environment. (The
program 'pretends' that the heteroatom is a carbon atom and
computes T4= ((Zl +Z2 +Z3+ W1) x W2 x W3) as above for
the intensity to be divided between the two fragments.)

(b) Compute a ratio for splitting T4 between the two fragments according
to the number of heteroatoms in the carbon-containing fragment
which are alpha to the bond under consideration:
ratio =10:1 if the number of heteroatoms attached to this carbon

atom is 0

20:1 if the number of heteroatoms. . . is 1
30:1 if the number of heteroatoms. . . is 2
40:1 if the number of heteroatoms. . . is 3
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(weighted in favor of the carbon-containing fragment). Z4 for each
fragment is then the result of applying this ratio to T4. The smaller
intensity is returned for the non-carbon fragment.

[function LCALCX]
For the carbon-containing fragment two additional context-dependent
factors Z5 and W5 are calculated. The intensity for this fragment is the
product

Z4 x Z5 x W5.

2. W5 =5[FHETN] if nitrogen is singly bonded to the carbon at the break
point

4[FHErs] if sulphur . . .
3 [FHE-ro] if oxygen. . .
2[FHETcL] if chlorine . . .
1 otherwise. [function HETERO]

allocation of intensity units of
the parent ion [and parameter names]

type characteristic subgraph K1% of parent's K2% of parent's skeleton of
intensity intensity daughter ion

(for parent) (for daughter)

Rearrangement of —H2C—N—R1
Amines

R2 100 80
[xAm3otp] [cAm3NEw]

(Check degree of substitution and number
of carbon atoms in RI and R2 to see which
drops away)

—H2C—N—R
100 80

[xAm20La] [xAm2NEwl H2C=---N112
Rearrangement of

Ethers and —H2C—X—R 100 80
Thioethers (X= 0,S) [KAm2oLD] [xAm2NEw] H2C=--XH

McLafferty X+
Rearrangement 40 60

[KmcoLD] [xmcNEw] XH

Type F

(X= C,N,O,P,S)
(Z=C,H,N,O,P,S)

+X H

/‘
Z X

(Biemann) I I 80 20 - +X
C—C—C [xFoLo] [KFNEw]
(X=C,O,N,S) HC

Type a
(Biemann ) + 20 80 +N

[caot.D] [KoNEw] I

Table 8. Rearrangements for fragment ions
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3. Z5=5[K IND c L] if the heteroatom X at this C—X breaks is chlorine
4 [KINDBR] if the heteroatom. . . is bromine, oxygen or sulphur
3 [KINDI] if the heteroatom. . . is iodine
1 otherwise [function INDUCTIVE]

The next section shows some examples with brief explanations of the PRE-
DICTOR'S work. Whenever a chemist finds major discrepancies between
predicted and actual spectra, we try to localize the contributing functions
or parameters and change them. The specialized rules of Table 6 and Table 8
in particular, directly resulted from finding major errors in predictions for
ketones, amines, ethers, and alcohols. Instead of adjusting the core of the
theory in these cases, however, special tests and branches were added. At a
later' date, we hope to be able to reunify the PREDICTOR'S theory.

4.3. Examples

The command DRAW in each case started the predictor's work on the indi-
cated structures. The list of number pairs following the command is the output
from the program: the mass-intensity pairs of the most significant ionized
fragments.

Example A

(DRAW (QUOTE C2110 Cl Cl CC1 Cl Cl C$))
((43 . 100) (57 . 88) (58 . 22) (71 . 100) (85 . 88) (86 . 22) (128 . 14))

The graphical representation for this molecule, 4-octanone, is

0

H3C—CH2--CH2—C—CH2—CH2—CH2—CH3
The mass spectrum for this compound from the Stanford University Mass
Spectrometry Laboratory is
((41. 48) (42. 8) (43. 100) (44. 3) (53 .2) (55.8) (56 . 2) (57 .92)
(58 .56) (59 .2)(64.1) (67 . 1) (69. 3)(70. 1)(71. 91) (72 .4) (81.1)
(83 .1) (84.1)(85 .60) (86. 23)(87. 2)(99. 3)(113 .2)(128 .13)
(129. 1))

The molecular ion has mass 128. The two other even numbered peaks of
high intensity, 86 and 58, are the results of the McLafferty rearrangement of
the molecular ion (twice). The peaks at 85 and 71 result from alpha-cleavages,
in each case with only the heteroatom-containing fragment retaining the
charge. The peaks at 57 and 43 come from loss of carbon monoxide (mass 28)
from each of the alpha cleavage fragments. The remaining peaks in the actual
spectrum are of little informative value to chemists, thus they remain un-
predicted. Several of these could be regarded as isotope peaks and thus
could have been predicted (by setting IPEAKS = T).

Example B

(DRAW (QUOTE C111 CCN1 Cl Cl Cl CO)
((30. 17) (44 . 80) (72 . 21) (100. 100) (115 . 2))

245



MACHINE LEARNING AND HEURISTIC PROGRAMMING

This molecule is graphically represented as

H3C\
,\ CH—N—CH2—CH2--CH2—CH3

H3C7 I

and its actual mass spectrum (from the Stanford Mass Spectrometry Labora-
tory) is

((41.38) (42. 21) (43. 25) (44. 88) (45. 2)(54. 1)(55 .3)(56 .8)
(57.13) (58 .16) (70.11) (71 .4) (72.100)(73. 4)(84.2)(85.2)
(98 .3) (100.61) (101 .4) (114.2) (115.5))

The molecular ion is of mass 115. Alpha-cleavage accounts for the peaks
at 100 and 72, in each case with only the nitrogen-containing fragment re-
taining the charge. The amine rearrangement shown in Table 8 affects each
of the alpha-cleavage fragment ions resulting in the peaks at masses 44 and
30. In the actual spectrum, peaks below mass 41 were not recorded, but it is
not unreasonable to believe that the peak at mass 30 would be a strong
peak. Some of the other discrepancies may be due to isotope peaks; many of
the rest from lack of rules for amine fragmentation processes.

4.4. Using the mass spectrum PREDICTOR

To run the program, once it is in core, call the top level function DRAW.
This function requires one argument, a name of the quasi-DENDR AL symbol
string which represents the molecule whose spectrum is to be predicted. For
example, either (a), or (b) below would serve for predicting a spectrum for

glycine: HO—C—CH2—NH2:

0

(a) (DRAW (QUOTE C12100C1NO)
(b) (SETQ GLYCINE (QUOTE C12100C1N$))

(DRAW GLYCINE)

QUaSi-DENDRAL notation is just DENDRAL dot notation (not necessarily
canonical) with four changes:

1. dots are replaced by numerals to indicate bonds,
2. the symbol string is terminated with a dollar sign,
3. atom names longer than one character are surrounded by asterisks,

for example *CL* for a chlorine atom, and
4. central bond molecules are prefixed with a special character – the

value of the variable CENTRALBOND (currently an asterisk).

The output of the PREDICTOR is a list of number pairs, representing the
mass-intensity pairs of the predicted spectrum. Peaks below mass 29 are
omitted and intensities are adjusted to percent of the base peak (highest
peak). Several options are available to the user to help him interpret the
program's work. Section 4.5 lists those currently available.
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Also, users familiar with the program can change its theory substantially
by resetting parameters before calling DRAW. Section 4.2 indicates many of

the parameter names and current values as well as brief descriptions of their
effects. Since the functions using these global variables are so intertwined, it is
impossible to describe the effects in all contexts. Thus it is generally helpful
to look at several examples before and after changing parameters.

4.5. Options and how to use them

1. Print the spectrum as a bar graph instead of as a list of number pairs. Give
a name of the spectrum to the function PSPEC, e.g.,

(PSPEC (DRAW (QUOTE CiNi C1C1 CS)))

Or (PSPEC (QUOTE ((15 . 20) (29 . 40) (30 . 22) . . . )))

or (PSPEC SPECNAME), where s P EcNAmE' is the name of a list of
number pairs.

2. Print an analysis of the last predicted spectrum. This function prints all the
number pairs of the spectrum, in order of descending mass units, with a short
note explaining the source of the peak.
The synopsis printed by the function SCAN first indicates the structure of

the molecule in DENDRAL dot notation, except with numbered atoms
replacing the atom-types. For example Cl. = .01 02 C2.N1 for glycine, as
given in the ClUBSi-DENDRAL notation above. The mass-intensity pairs for
the ions are indicated in order of decreasing masses. An indication of the
source of the pair follows each pair:

(a) (MOL ION) following a mass-intensity pair indicates that this is the
pair resulting from the unfragmented molecule.

(b) (*RR MOO indicates that the pair resulted from some rearrangement
of the molecular ion.

(c) (c4 1 c3) indicates that the pair resulted from breaking the single
bond between atoms C4 and C3.

(d) (c4 1 c3:*RR c4) indicates that after the bond between C4 and C3
was broken, the fragment containing C4 underwent some rearrange-
ment which resulted in the mass-intensity pair on this line.

To obtain this analysis, call the function SCAN after the spectrum has been
calculated: (sCAN).
3. Calculate isotope peaks. After the mass-intensity pair calculations have
been made for a fragment, the program can generate a cluster of peaks
around the original one to account for isotopic variations of the fragment and
addition of extra protons to the fragments. This feature is optional since the
most significant peaks in spectra often do not include isotope peaks. Set the
global variable IPEAKS to T (true) before calling DRAW: (SETQ IPEAKS T).
4. Print an on-line report of progress, including:

(a) the bond under consideration
(b) the rearrangement products
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(c) the features considered and the numerical values associated with
them during intensity calculation.

To monitor progress in this way, set the global variable SPEAK to T: (SETQ
SPEAK T).

5. Include mass units below 29 in the spectrum. Use the function DRAW 100
instead of DRAW as the top-level function.

5. THE EVALUATION FUNCTION

After candidate structures have been generated by the STRUCTURE GENER-
ATOR, the program needs some way to attach a degree of plausibility to each
one. The PREDICTOR makes predictions for each one; the EVALUATION
FUNCTION must now reflect the degree to which the predictions confirm or
disconfirm each candidate hypothesis. Strictly numerical evaluation functions
score predicted spectra on the basis of how much they 'cover' the peaks in
the original spectrum without adding spurious peaks — perhaps weighting
various kinds of failures. But all of these fail to account for the higher
theoretical significance of some peaks over others, regardless of the numbers
involved. After experimenting with such numerical evaluation functions, their
inadequacies became obvious.
The current evaluation function is relatively untried, but its theoretical

base is much sounder than that of previous functions. The PREDICTOR
now marks various kinds of cleavages and rearrangements as being very
significant from a theoretical point of view. For example, the results of alpha-
cleavage in ketones, amines and ethers are put on a global list named
SIGNIFICANT, together with the results of other theoretically significant
peaks in the predicted spectrum. At the end of the PREDICTOR'S run this
global list remains set for use by the EVALUATION FUNCTION. Evaluation
is a two-step process here: (A) reject any candidate whose predictions are
inconsistent with the original data, and (B) rank the remaining candidates.
(A) For each candidate molecule the EVALUATION FUNCTION looks in the
original spectrum for each member of this list of significant peaks. Either a
significant predicted mass point is represented in the original spectrum or it is
not. If there is a peak at this mass point, x, and its intensity level is higher than
the expected intensity level from an isotope peak (1 % of the intensity of the
x— 1 peak times the estimated maximum number of carbon atoms in the
x— 1 peak), then the next significant predicted peak is considered. When the
evaluation routine decides that the original spectrum shows a significant
peak only because this is an isotope peak, the candidate is rejected. Rejection
of a candidate is accompanied by a message explaining which significant
peaks were missing from the original spectrum or were present only in
amounts expected from isotopic variations, as shown in the examples in the
following section. If the significant peak is not present in the original spectrum
and other masses in this region were recorded in the original spectrum, then
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this candidate is rejected entirely. For example, if the predicted spectrum
shows rearrangement peaks at the wrong mass points, it should not warrant
further consideration since the theory is strongly violated by that candidate.
When only high mass peaks have been recorded in the original spectrum,

as is frequently the case, and one of the significant peaks thus fails to appear
in the spectrum, the EVALUATION FUNCTION notes this fact on the list
LOWPKS. For example, a significant peak at mass 15 will not be found in a
spectrum which starts at mass 40. No candidate is ruled out by the failure
to match unrecorded peaks since a more complete spectrum may well
include them. On the other hand, there is no assurance that these significant
low mass peaks would, in fact, appear if low masses had been recorded.
(a) For each candidate, the list SIGNIFICANT is matched against the original
spectrum. If the candidate is rejected, all of the missing significant peaks are
printed as justification for rejecting it. The second step of this routine is to
rank the remaining candidates, each of which accounts for some of the non-
isotopic peaks in the recorded spectrum, but not necessarily all. The best
candidate is taken to be the one which accounts for the most peaks, as one
should expect. In case of ties, the preferred molecule is the one with the lower
number of unrecorded low mass peaks in doubt (as saved on the list named
LOWPKS). The rest of the peaks in the predicted and actual spectra are not
used at all presently. However, we may want to resolve ties by a numerical
scoring of the remaining (non-significant) peaks in the spectra.
Examples of the results of this EVALUATION FUNCTION are shown in the

next section.

6. EXAMPLES, SUMMARY, AND CONCLUSIONS

The preceding sections have promised that section 6 would include examples
showing the entire operation of the HEURISTIC DENDRAL program. Two
simple examples are shown in Tables 9 and 10. These examples seem trivial
until one considers the possible list of answers which could have been gen-
erated. The total number of structures for the composition c 8 FL 16o is about
seven hundred 'chemically stable' structures. (Several thousand others were
eliminated by BADLIST.) Forty of these are ketone structures, yet the
particular spectra (S:09320 and S:09046) enable the program to reduce the
output to one and three structures, respectively.
We have been using the program in another mode, namely to direct a

search of chemical literature to determine which structural isomers of a given
composition have previously been synthesized by chemists. In the case of
threonine (composition c4 H9 NO3), we estimate that there are several
thousand isomers (unrestricted by BADLIST). Approximately 750 of these
are considered 'chemically stable' but only about sixty of these have been
reported in standard chemical references. This disparity has great significance
for chemists because of the number of potentially useful compounds that
may be found among the 890 'new' structures.
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(EXPLAIN (QUOTE C8H16o) s :09320 (QUOTE TEST2) (QUOTE JULY8))
*GOODLIST= (*N-PROPYL-KETONE3*)
*BADLIST= (*C-2-ALCOHOL* *PRIMARY-ALCOHOL* *ETHYL-ETHER2*

*METHYL-ETHER2* *ETHER2* *ALDEHYDE* *ALCOHOL* *ISO-PROPYL-

KETONE3* *ETHYL-KETONE3* *METHYL-KETONE3*)

(JULY-4-1968 VERSION)

C*N-PROPYL-KETONE3*H8

MOLECULES NO DOUBLE BOND EQUIVS

1. C= . c3H7 cH2.c3H7,
2. c=.. o c3H7 cH2.cH.. cH3 cH3.

DONE

(SCORE (QUOTE TEST2) s:09320)

JULY-8-1968

1.) c2llociciccic1c1c$
((43. 100) (57 . 88) (58 . 22) (71 . 100) (85. 88) (86 . 22)
(128 14))
2.) c2ilociciccicllcc$
((43 .87) (57. 100) (58 . 8) (71 . 87) (85 . 100) (86 .4)
(100.4)(128.16))
*THIS CANDIDATE IS REJECTED BECAUSE OF (100).

*LIST OF RANKED MOLECULES:

1. #1.

s =6.
p=(57 71 43 85 86 58)
U= NIL

*1. # N MEANS THE FIRST RANKED MOLECULE IS THE NTH IN THE

ORIGINAL NUMBERED LIST ABOVE. S= THE SCORE (HIGHEST= BEST)

BASED ON THE NUMBER OF SIGNIFICANT PREDICTED PEAKS IN THE

ORIGINAL SPECTRUM. P = THE LIST OF SIGNIFICANT PREDICTED

PEAKS. U= THE LIST OF POSSIBLY SIGNIFICANT UNRECORDED PEAKS

USED IN RESOLVING SCORING TIES (THE FEWER IN DOUBT THE BETTER).

DONE

Table 9. An example Of HEURISTIC DENDRAL output: 4-Octanone

(EXPLAIN (QUOTE C8HI 60) S :09046 (QUOTE TESTI) (QUOTE JULY8))

*GOODLIST= (*ETHYL-KETONE3*)

*BADLIST= (*C-2-ALCOHOL* *PRIMARY-ALCOHOL * *ETHYL-ETHER2*

*METHYL-ETHER2* *ETHER2* *ALDEHYDE* *ALCOHOL* *ISO-PROPYL-

KETONE3* *N-PROPYL-KETONE3* *METHYL-KETONE3*)

(JULY-4-1968 VERSION)

C2*ETHYL-KETONE3*H8

MOLECULES NO DOUBLE BOND EQUIVS

1. cH2.. cH2.c3H7 .o c2H5,
2. cH2.. CH.. cH3 c2H5 c=.o c2H5,
3. cH2.. cH2.cH.. cH3 cH3 c= .o c2H5.

DONE

Table 10. An example of HEURISTIC DENDRAL output: 3-Octanone
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(SCORE (QUOTE TESTI) S:09046)

JULY-8-1968

1.) clIc1c1c1cc2locic$
((29. 100)(57. 100)(71 .70) (85 .40)(99 . 70) (128 .13))
2.) cllcIlccicc2locic$
((29. 100) (57. 100) (71 . 100) (72. 4)(99 . 100) (128. 19))
3.) clIcicIlccc2locic$
((29 . 100) (57 . 100) (71 . 87) (99 .87)(128 . 16))

*LIST OF RANKED MOLECULES:

1.#2
s=.5.
P---= (29 995771 72)

3.#3
s=4.
P= (29 99 57 71)

u=(29) u=(29)
2. #1 *I. # N MEANS THE FIRST .
S = 4. (see Table 9)
P= (29 995771)
u=(29)

Table 10 (contd.). An example of HEURISTIC DENDRAL output: 3-Octanone

We realize that the internal structure OfHEURISTICDENDRAL has not been
presented in much detail. No very unusual programming has been employed,
however; but we have taken full advantage of the facilities of LISP 1.5. What
we have tried to present in this paper is the global strategy of the program.
Between the global strategy of a program and its coded functions there are
many levels of complexity. We have tried to keep an eye on both extremes and
to stay roughly mid-way between them in order to show how some of the
heuristics of the program work, how the various subroutines are tied together,
and how we plan to expand the program to cover cyclic structures and more
classes of acyclic structures. •

Recently we have had some ideas of how to rewrite HEURISTIC DENDRAL
to separate more completely the model of chemistry from the graph manipu-
lating processes. This will be our next big programming effort. Hopefully the
revised program will handle rings without making them special cases. The
program's poor handling of ringed structures is now its major deficiency.
In limited areas, the current program performs its two major tasks with a

fair measure of success.

(1) Using Lederberg's DENDRAL algorithm plus a theory of chemical
stability, the STRUCTURE GENERATOR can construct all acyclic
isomers (structural variants) of a given composition, either in-
cluding or rejecting unstable structures.

(2) With the more interesting task of explaining the data from a mass
spectrometer by finding molecular structures which best account for
the data, the program approaches the chemists' level of sophistication
only for a few select classes of molecules. Expanding the program to
cover more classes depends upon much interaction with chemists,
but no new programming strategies are anticipated.
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7. A SUMMARY OF THE DENDRAL ALGORITHM

DENDRAL is a system of topological ordering of organic molecules as tree
structures. Proper DENDRAL includes precise rules to maintain the uniqueness
and the non-ambiguity of its representations of chemical structures. Each
structure has an ordered place, regardless of its notation; the emphasis is
upon topological uniqueness and efficient representation of molecular
structures. The principal distinction of DENDRAL is its algorithmic character.
DENDRAL aims (1) to establish a unique (i.e., canonical) description of a
given structure; (2) to arrive at the canonical form though mechanistic rules,
minimizing repetitive searches and geometric intuition; and (3) to facilitate
the ordering of the isomers at any point in the scan, thus also facilitating the
enumeration of all of the isomers.
The DENDRAL representation of a structure is made up of operators and

operands. The operators are valence bonds issuing from an atom. Each
bond looks for a single complete operand. An operand is (recursively)
defined as an unbonded atom, or an atom whose following bonds are all
satisfied in turn by operands. Hydrogen atoms are usually omitted, but are
assumed to complete the valence requirements of each atom in the structure.
If the structure has unsaturations (one unsaturation for each pair of hydrogen
atoms by which the structure falls short of saturation), these are indicated by
locations of double and triple bond operators. Single, double, and triple
bonds are represented by . , : , and respectively. The operator : may be
represented by = and the operator by $.
As an example, the molecule

/O—CH3
NH2-C

\ s
has one unsaturation and may be written in many ways, including:

(1) C.O.C.:NS

(2) C.O.C:.SN
(3) 0..CC.:NS
(4) 0..C.:NSC
(5) C..:O.CNS
(6) C.:.O.CSN
(7) c.:.NSO.0 (canonical)
(8) C:..SNO.0
(9) S:C..O.CN
(10) N.C.:O.CS

Each of these ten notations is a non-ambiguous representation of the mole-
cule. However, proper DENDRAL also specifies that the representation be
unique. The key to obtaining the unique or 'canonical' representation is the

252



BUCHANAN, SUTHERLAND AND FEIGENBAUM

recognition of the unique center of any tree structure and the subsequent
ordering of successive branches of the tree.
The centroid of a tree-type chemical structure is the bond or atom that

most evenly divides the tree. A molecule will fall into just one of the following
categories, tested in sequence. Let V be the count of non-hydrogen atoms in
the molecule. Then either

A. Two central radicals of equal count are either (1) united by a leading
bond ( V is even) or (2) sister branches from an apical node ( V is odd);
Or

B. Three or more central radicals, each counting less than V/2, stem from a
single apical node.

In the first case, the centroid is a bond, and the canonical representation is an
operator followed by two operands. In the other two cases the centroid is an
atom, and the canonical representation is an operand in the form of an atom
followed by two or more bonds and operands. In every case where two or
more bonds follow an atom, the operands must be listed in ascending
DENDRAL order.
DENDRAL order (or simply 'weight') is a function of the composition and

arrangement of a structure and finds its primary use when comparing two
operands (radicals). The weight of a radical is evaluated by the following
criteria (in descending significance): count, composition, unsaturation, next
node, attached substructures.
Count is the number of skeletal (non-hydrogen) atoms. Of two radicals,

the one with the higher count is of higher weight.
Composition refers to the atoms contained in the radical. An arbitrary

ordering of the atoms makes carbon less than nitrogen less than oxygen less
than phosphorus less than sulfur, C< N< 0 < P < S. (This ordering is alpha-
betical as well as by atomic number.) When comparing two radicals of the
same count, the one with the fewer number of carbons has lesser weight. If
carbons are equal, the one with the fewer nitrogens is of lesser weight. And so
forth.

Unsaturation counts the number of extra bonds (1 for a double bond, 2 for
a triple bond) in the radical, including those (if any) in the afferent link (the
bond leading into the radical). Of two radicals, the one with the greater
number of unsaturations has the greater weight.
The next node or apical node refers to the first atom in the radical (the one

connected to the afferent link). When comparing two apical nodes, the
following three criteria are evaluated (in order of decreasing significance):

Degree is the number of afferent (attached) radicals. The apical node with
the most radicals attached to it has the greater weight.

Composition refers to the type of atom. A carbon atom is the lowest apical
node, while a sulfur atom is the highest.

Afferent link refers to the bond leading to the apical node. A single bond
afferent link is the lowest, a triple bond is the highest.
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If the above criteria fail to determine which of two radicals has the greater
weight, then the radicals appendant on the two apical nodes must be arranged
in increasing order and compared in pairs. The first inequality in weight of
appendant radicals determines the relative weight of the original radicals.

The canonical representation for the molecule in the example given earlier
is notation #7. It must be a central atom molecule since its count (ignoring
hydrogen atoms) is 5; and the non-terminal carbon atom is the only atom
which has all its appendant radicals with counts less than 5/2. Of the three
appendant radicals, the one containing two atoms has the highest count and
thus is the heaviest. Of the two radicals containing a single atom each, the one
with the double bond is the heavier because it has more unsaturations.
Even-count molecules may have a bond for center, if the count of the

molecule is evenly divided by cutting that bond. Thus, the canonical form for
NH2\ /OH

`CH2--CH2/ is . c.Nc.o, a leading bond, the first dot, calling for
two operands.
The collection of rules and conventions described above provides a unique

and non-ambiguous representation for any non-ringed chemical structure.
In addition, the rules also allow us to construct the 'lowest' structure which
can be made from a composition (collection of atoms). Once this lowest
structure has been made, it may be transformed by a process of rearranging
its atoms and unsaturations into the ̀ next to lowest' structure. This ̀ incre-
menting' process may be continued until the 'highest' structure has been made.
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A Chess-Playing Program

J. J. Scott
The Computer Laboratory

University of Lancaster

INTRODUCTION

Aims

The aim of the project is to produce a chess-playing program which is cap-
able of playing good human chess with reasonable move times. I also hope
that some general principles of machine intelligence may emerge from the work.

Project and program segmentation

The program, mirroring the aspects of the project, falls easily into three
major segments:

1. a 'communication' segment, which can describe the computer's moves
in an acceptable format, can decode its opponent's moves from a
standard chess notation and check their validity and non-ambiguity,
and can provide other necessary facilities;

2. a 'thinking' segment, which, when given a board position, can decide
which move to make;

3. a 'learning' segment, which can
(i) adjust the parameters of the 'thinking' segment so as to optimise it,
(ii) record opening sequences and their relative merits, and use these

to provide alternatives to the moves generated by the 'thinking'
segment.

At the time of writing the 'communication' segment is fairly complete; the
'thinking' segment is being continually improved, and at the moment is
being upgraded to play 'full chess' as opposed to a 'restricted chess', which
does not allow pawn-promotion, castling or pawn-taking en passant (pre-
viously omitted so as to get a clearer picture of the problems associated directly
with choice-making); the 'learning' segment is virtually non-existent, the
function of parameter adjustment being performed manually by myself.
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Implementation

The latest version is written in PLAN 3 for an ICT 1909/5 machine with a 2
micro-second store.
The program requires between 8 and 8.5 lc of store, a short overlay file on

disc, and an interrogating typewriter; it also optionally uses one paper tape
reader and one paper tape punch.
Development of the program has been fairly rapid. As the program requires

only a small virtual machine, it can be time-shared with a reasonable pro-
portion of the Laboratory's job load, including jobs run under the operating
system, and in this way much testing has been possible.

THE COMMUNICATION SEGMENT

Introduction

A communication segment is a vital though perhaps not a very interesting
part of any program involving human interaction. Especially when the pro-
gram is to hold a conversation, or the like, with someone who knows little
about computers, it is necessary to make the computer as human-like as
possible to get an accurate performance from the person.

All communication is via an interrogating typewriter. For examples of
dialogue see Appendix 1.

Starting or re-starting a game

To start or re-start a game a short series of questions are asked by the
program (most requiring just a 'yes' or ̀ no' answer) to set the game up as
required.

Output: move description

The format used in the presentation of the computer's moves is an extended
form of the Standard English Notation, for example:

(a) N(QN1)—QB3

to be read: 'the knight on queen's knight one moves to queen's
bishop three'.

(b) (KN 5) x N (KB 6)
(All positions here refer to the computer's side).

Input: move description

The program will accept most variations of the Standard English Notation
(see Appendix 1). Checks are made on (a) format, (b) legality of move, (c)
non-ambiguity of move.

Other facilities

These include directives to obtain a picture of the board for checking purposes,
temporarily suspending games, terminating games by resigning, etc.
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THETHINKING SEGMENT

Introduction

This is the most interesting part of the program, for it involves the application
of many principles of machine intelligence. As such, I have devoted a large
proportion of my time and this paper to it. Many of the methods and principles
in this segment have been derived by considering the methods and principles
of human thought (especially my own).

The basic method of choosing a move

A fairly good definition of the best move in any given position is 'that move
which gives most chance of winning as soon as possible'. To determine the
best move using this definition would involve constructing an exhaustive
move tree (i.e., a graph of all possible combinations of moves), each branch
of the tree being terminated only by a winning, drawing or losing position.
Unfortunately, in the majority of positions (the exceptions being end game
positions near to a mate, etc.) the amount of calculation required to do this is
prohibitive.
Hence, some compromise has to be made: in this chess program, as in

others, the method of finding the best move is-to construct a move tree of all
possible combinations of moves to a depth of n moves (i.e., 2n 'half-moves' or
`plys'), where n is fixed for any particular search, then 'mini-maxing' to
choose the move (see Michie, 1966, for a general review).

A prototype: the M K1 version

The first version of this program was written in FORTRAN using a very simple-
minded approach.
The best move was determined by using a simple evaluation function applied

at each terminal node of a 2-ply move tree. -
The evaluation function consisted of the following:

(i) points were given to each piece for its existence on the board in the
ratio
p=1,
N=3,
B=3.5,
R5,
=
= 1000 ;

(ii) additional points were given for the degree of advancement of each
pawn;

(iii) points were given for the mobility of each piece (i.e., the number of
free squares to which each can move), the number depending on
the type of piece under consideration;
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(iv) points were given for any attacks, the amount being determined
by the piece under attack (but not the attacking piece).

This version played fairly poor chess, but the writing and developing of it was
a very instructive experiment, and it was decided that if the play was to be
improved, either the evaluation function should be made more powerful or
the program should look further ahead.

Thinking time

The m K1 version showed that a very important factor in programs performing
the type of machine intelligence involved in playing chess, is that of 'thinking
time'. It seems reasonable to suppose that, given long enough, a program
can draw all the conclusions from a set of data that it is possible to draw,
even though this may be millions of years; the intelligence in such programs
is the ability to draw the necessary conclusions while doing the minimal
amount of work. To stress this point I cite the following example:
The mid version took, on average, about 30 seconds to find the best move

looking at a depth of 2 half-moves. If the program had been altered to look
4 half-moves ahead without devising any time-saving methods, the amount
of calculation required would have been multiplied by a factor of 1,000, and
the average move time would have been of the order of 8 hours. In the latest
version, using the time-saving methods described in some of the following
sections, the average time for such a search is approximately 45 seconds —
faster by a factor of 7001

Hence, methods were devised to speed up the program and these fall into
three main categories:

1. optimisation of the code of the program;

2. reduction of the effective size of the search tree by applying the alpha-
beta heuristic, etc;

3. reduction of the time taken for position evaluation by using methods
of value alteration rather than complete re-evaluation.

More details of these methods are given in some of the following sections.

THE LATESTVERSION OF THETHINKING SEGMENT: MK3

The evaluation function

Like the /AM version the method of finding the best move consists of looking
ahead an even number of half-moves then applying a simple evaluation
function at the terminal nodes of the move tree, but in this case the search
depth is not limited to 2 half-moves but is permitted to vary under the control
of various parameters, a typical depth being 4 half-moves.

Additional features were added to the evaluation function which now con-
sists of:
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(i) points given to each piece for its existence on the board in the ratio
P=1,

N=3,

B=3.5,

R=5,

Q =
=a relatively infinite value;

(ii) additional points given for the position of pawns on the board, in
general the number becoming greater the more advanced the pawn
and the more central the file on which the pawn lies;

(iii) points given for the mobility of (i.e., the number of free squares
available to) each piece, the number depending on the type of the
piece;

(iv) points given for both attacks and defences, the number being
dependent on both the attacked/defended piece, and the attacking/
defending piece.

Trial-and-error experiments showed that the magnitude of all the points
described above should be symmetric with respect to possession (for example,
that the value of a knight attack on a queen should be the same (but of
opposite sign) whether the queen belongs to the computer or its opponent).
To counteract the unbalancing effect of the fact that some of the attacks

of a side are much more potent if it is that side's turn to move, the following
principle is adopted: if the last half-move before the evaluation function is
applied implies an advantage for the side making the move, the magnitude
of the improvement is reduced and an upper limit is placed on it.

Various other tricks are used to give the program a clear understanding of
mate and stalemate, etc.

Adjustment of the value obtained from the evaluation function as opposed
to total re-calculation

To describe the methods used to adjust the value of the evaluation function
it is first necessary to describe the exact way in which the program values a
position; the procedure used is as follows:
A contributory value is attributed to each piece on the board and these

values are summed to give the value of the position.
To calculate the contributory value of, for example, a bishop:

(i) give points for its existence on the board;
(ii) for each of its (four) paths of movement consider, sequentially,

longer and longer moves down that path until either another piece
or the edge of the board is encountered. For each of the moves to an
empty square give mobility points, and, if the path is terminated by
a piece, give points for the attack or the defence so implied.
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Almost identical methods can be used for the rook and the queen. Similar
methods can be used for the king and the knight, but in these cases each path
is at most only one move long. Again, the pawn, although slightly more
complex can be treated in a similar way.

Let us suppose that the position in figure 1 has been evaluated by the
method described above. If White now moves his rook to the opposite R 5
then the only pieces which have their contributory values changed are the
moved rook, the white king, and the white pawn on N4; the values associated
with the other pieces are unchanged. Thus, if the original position is fully
evaluated and the necessary information is stored about the interrelations
between the pieces on the board, only three pieces need to be revalued.

kr
Black

b . n . .

KP

P .

•
.....

White

Figure 1 (lower case letters represent Black)

In a typical game the average number of pieces affected by a move is
between 3 and 4. Thus, at the most critical part of the program, with respect
to time, this method of re-valuing the position as opposed to evaluating it
fully can reduce the amount of calculation necessary by a factor of some 6
or 7 on average.

This method can be extended and improved by subdividing each piece into
'piece-paths', a piece-path being a possible line of movement of a piece;
a king consists of 8 piece-paths, a rook of 4, etc.

If evaluation of a position is performed by attributing values to piece-paths,
instead of pieces, in an exactly similar way to that described above, value
adjustment involves about 15 times less calculation than a complete re-
evaluation.

Using this latter method in the TA x3 version has reduced the average
position evaluation time by a factor of about 10.

Data structure

To hold the necessary information about the relations between piece-paths
on the board I have used a data structure that I call a 'three-dimensional list
structure' (a term which suggests its physical counterpart: that of a stack of
stacks of chess-boards), which is, in fact, a plex, the cells of which are inter-
woven to form lists holding three different types of information.
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Each cell of this structure represents a possible move or a defence. When
the 'thinking' segment is entered, this structure is initialised for the initial
board position it is given. During the tree search the plex is continually up-
dated (except for the terminal moves) so as to refer to the board position
existing at that instant in the search.
Each cell contains pointers for the lists described below and also informa-

tion to indicate which move it represents, to which piece-path it belongs, etc.
The cells are joined up into three lists:

(a) ('Piece-path lists'). A list for each piece-path linking all cells of that
piece-path.

(b) (Position lists') . A list for each square on the board linking cells
.which represent either moves to that square or defences of a piece on
that square.

(c) (`Move lists'). A list for each side of all cells which represent possible
moves for that side. For the majority of the time these lists hold the
moves approximately in descending order of merit; this enhances the
effect of the alpha-beta cut-off (see next section).

To determine which piece-paths are affected by a move (beside the moved
piece and any taken piece, etc.) all that is necessary is to look down the
'position lists' of any squares whose contents have been altered by the move:
each cell of these lists indicates an affected piece-path.
For all moves except terminal moves (i.e., moves to a terminal node of the

move tree) new cells are constructed for all the affected piece-paths and the
old cells are removed by making use of the 'piece-path lists'. For the terminal
moves of the search, the lists are used to determine (as described earlier)
which piece-paths require re-evaluation, the amount of calculation being
reduced to a minimum.
The time taken in setting up and maintaining the plex is almost negligible

compared with the time saved in the innermost routines which have to be
executed much more frequently.

Use of the alpha-beta heuristic

I do not describe this heuristic here because it is amply discussed in other
texts. It is the most powerful time-saving tool in the program. The effect of
applying it is to reduce the 'branching factor' at each node of the move tree.
(The 'branching factor at a node' is the number of alternative moves con-
sidered from the position which the node represents.)
Under optimal circumstances, if the branching factor without the applica-

tion of the heuristic is n, it can be reduced to when the heuristic is applied.
In the m K3 version, where the moves are held in lists in which the good
moves are frequently near the front of the lists, the alpha-beta heuristic is
fairly well optimised and the average branching factor has been reduced to
about 1.6,In, where n is of the order of 35 on average. Hence, for a depth 4
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half-move search in the middle game, which may involve taking 1,000,000
positions into consideration, only about 7,000 will actually be evaluated.
The efficiency of the heuristic, as applied in this chess program, varies

quite significantly with the details of the board position: in general, the more
obvious the best move in a position is to a human, the more forced is the
position, the more efficient the alpha-beta cut-off, and consequently the
computer replies faster.
Note. To assist the ordering of the move lists, for each search of h half-moves, if h>3
a depth h-2 half-move search is performed before the bigger search: this technique is
applied recursively, thus, for example, a depth 5 half-move search would first call for a
depth 3 half-move search and that for a depth 1 half-move search.

Move-time control

The program is given two parameters for any game:

(i) a limit to the depth of search it may perform,

(ii) a limit to the average move time it must maintain.

For all moves of a game the program initially performs a depth 2 half-move
search, then may progress to consecutively deeper and deeper searches of
4 half-moves, 6 half-moves, etc. After each such search the program first
checks whether the depth limit has been reached; if not, then it estimates the
time it would take to perform the next deeper search and uses this, together
with the degree to which it is above or below the average time limit and
various other parameters, to decide whether or not it is desirable to perform
the deeper search.
The 'standard restrictions' placed on the program are to have no limit on

the depth of search but to have an average move-time limit of 2+ minutes.
The result is as follows:
In the opening and middle games most moves are determined by a depth 4

half-move search taking an average of about 45 seconds each, thereby storing
up a large time 'reserve'. Near and during the end game the board becomes
more empty of pieces, move analysis becomes easier and depth 6 half-move
searches become frequent, thus improving the standard of play. Consequently,
the program's standard of play, in comparison with human play, is maintained
fairly constant throughout the whole game.

THE FUTURE

Several modifications and extensions need to be made to the present version:

(i) extend to play 'full chess' recognising all the various draws: third
repeated move draw, 50 move draw;

(ii) optimise the code at critical points in the program in order to speed
it up and enable deeper searches to be made;

(iii) write the learning segment: this should generally improve the play
of the program;
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(iv) get the program to utilise the opponent's reply time by guessing his
move and analysing the resulting position.

After these improvements have been made experiments can be performed on
the applications of various methods, such as 'forward pruning' of the move
tree, localised deepening of the tree, etc.

CONCLUDING REMARKS

Although several good chess-playing programs are already in existence, this
one contains, as far as I know, some unique features:

(i) use of a very simple evaluation function;
(ii) adjustment of the value given by the evaluation function, rather than

complete re-evaluation, during the tree search;
(iii) dynamic alteration of the depth of analysis, often enabling the

program to play reasonably well right through to the natural end
of a game.
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APPENDIX1

Notation: responses of program's opponent in lower case.

A short game showing complete dialogue

#XESS MK 3B DATE 26/07/68 TIME 10/32/00
is THAT ALL ? no
NAME PLEASE? opponent.1
SHALL WE START A NEW GAME? yes
SHALL I CHOOSE SIDES AT RANDOM? yes
AM I TO PLAY WITH STANDARD RESTRICTIONS? yes
YOU ARE WHITE.

TYPE YOUR MOVES BELOW:

OPPONENT.! V #XESS(BLACK)

1.p—q4 P(Q2)— Q4
2. p —qb4 N(QN1)— QB3
3. b—b4 P((2)— K4
4. qpx p B(KB1)—QN5
5. n—qb3 P(Q4)—Q5
6. n—kb3 P(Q5)xN(Q86)
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OPPONENT.! V # XESS(BLACK)

7. qxq N(QB3)x Q(Q1)
8. r -n1 AMBIGUOUS

8. r -gni P(QB6)-QB7
9. b-q2 P(QB7)xR(QN8)
10. resign

Note: this differs from the actual dialogue only in the change of the opponent's name,
a slight tidying up of some typing errors, and a minor re-arrangememt of a heading.

APPENDIX 2: SOME SPECIMEN GAMES

Note: the following games illustrate some of the program's better play

(1) #XESS MK 3A DATE 20/07/68

White Black (Program)

1. P-Q4 N(KN1)-KB3
2. N(QN1)-QB3 P(Q2)-Q3
3. p-K4 B(QB1)-K3 ?
4. N(KN1)-KB3 P(Kn2)-Ka4
5. P-KR3 P(Qa2)-Qa4
6. P-QN3 P(Ka4)-Ka5
7. B-QB4 B(K3) X B(QBS)
8. P X B N(QN1)-QB3
9. B-KN5 P(QN2)-QN3

10. B X P R(KR1)-KR4

11. B-KN5 K(K1)-Q2
12. K-K2 Q(Q1)-K1
13. K-K1 B(Qa1)-QN1
14. R-QN1 N(QB3)-QN5
15. P-QR3 N(QN5)-QB3
16. N-QN5 ? N(KB3) X P(K5)
17. Q-Q3 ? N(K5) X B(KN4)
18. Q-KB5 N(KN4)-K3

19. Q X R ? N(K3)-KB5
20. K-K3 N(KB5) x Q(KR4)
21. P-N4 N(Ka4)-KB3
22. QR-Q1 P(K2)-K3

23. P-QB5 P(QN3) X P(QB4)

24. P X P ? R(QN1) X N(QN4)
25. N-KN5 R(QN4) X P(QB4)
26. K-K133 ? R(QB4) X N(KN4)
27. K-Q3 a(KN4)-QB4
28. P-B3 N(QB3)-K4
29. K-K3 N(K4) x R(Q6)

(GAME STOPPED)
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(2) #XESS MK 3c

White (Program)
1. p(Q2)-Q4

2. N(KN1)-KB3
3. N(QN1)-Q133

4. P(K2)-K3
5. P(QR2)-QR3

6. P(QN2) X B(Qn3)
7. i(i3)-4

8. Q(Q1)-Q3
9. Q(Q3)-QN3

10. N(Kri3)-K5
11. B(KB1) x p(Q134)
12. Q(QN3) X N(QR4)
13. p(c3)-K4

14. Q(Qa4)-QN3
15. N(K5) X N(Q7)
16. Q(QN3) X P(QN7)
17. Q(QN7)-QN4
18. Q(QN4)-QN7
19. P(KN2)-KN3
20. P(o32)--KB4
21. Q(QN7) X P(Qa7)
22. P(c4)-K5

23. B(Q134) X P(Q3)
24. n(Q3)-K2

25. D(c2)-KB3
26. B(QB1)-K3 !
27..R(Qa1)-Q1
28. ic(c1)--K132

29. n(KB3)--K2

30. R(Q1)-Q2

31. R(KR1)-Q1

32. R(Q1) x R(Q2)
33. B(c3)-QN6!
34. R(Q2) x B(Q7)
35. R(Q7) x R(Q8) ch.
36. n(QN6) X Q(Qa7)
37. a(Q8)-QN8

DATE 20/07/68

Black

N-KB3

P-Q4

P-K 3

B-QN5

B X N

N-K5

N-QB6

N-R5

Q-Q2 ?

P X P

Q-K2

N-Q2

0-0

P-QB4

B X N

P X P

Q-KR5

R(KB1)-Q1

Q-KB3

R(R1)-QN1

P-Q6

Q-K84

Q-KN5

Q-KR6

Q-KB4

Q X P(QB7)
Q-QB6 Ch.

R-QN7 Ch.

Q-(2131
R-QB7

R X R

P-KB3

Q-QR1

Q X Q

K-KB2

K-K2

resigns
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Analysis of the Machine Chess Game,
J.Scott (White), ICL-1900 versus
R. D. Greenblatt, PDP-10

I. J. Good
Virginia Polytechnic Institute

It is no disgrace for Scott's program to have lost to Greenblatt's which seems
to be the best chess program so far written: it finished one of its games with a
brilliant five-move combination.* Judging by the present game Greenblatt's
program could play about board 2000 for England. Neither program seems
able to form a plan that is naturally expressed-by a description rather than by
evaluation functions plus analysis. In the following game the first four moves
on each side were played before the machines took over the play, because the
ICI, program cannot castle. The move time limits originally agreed were 90
seconds for # xEss and 'blitz speed' (5 or 10 seconds per move) for the
Greenblatt program, as it was considered that the PDP 10 is about 10 times
faster than the I CL1909 /5. After a few moves the PDP 10 team increased its
move time limit to about 25 seconds per move, while #xESs remained at 90
seconds per move.

1. P—KN3, P—KN3

2. N—KB3, N—KB3
3. E—N2, E—N2
4. 0-0, 0-0
5. N—QB3, N—QB 3 (Both players weakly block their QBPS)
6. P—Q4, P—Q4
7. N—K5, Q—Q3
8. N X N

Better is 8. N—N 5 which sets a trap with negligible risk since, if 8....,Q—N 5;
9. N X QBP, R—N1; 10. N—R 6 !, P X N; 11. N X N winning R for N; whereas if
8. ..., Q—Q 1 ; White can at least repeat position by 9. N—QB 3 and presumably
Black would then mechanically play Q—Q 3. Then White could play 10.B—KB 4
or 10. N—N5, Q—Ql; 11. P—QB4 with advantage.

8. . . Q X N

*See, for example, Chess, 32 (1967) 313.
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If 8... ., P X N; 9. p-K4 and then, for example, 9. . . P x P, 10. N X P, N x N;

11. BXN, BXP; 12. B-B4, p-K4; 13. B-R6, R-Ql; 14. P-B3, B-N3; 15.
)3X BP!, Q-B 3; 16. Q-B3, QX Q; 17. B X Q, and White has a slight advantage.
(Not here 16. B X R, R X Q; 17. QR X R, B-R6 and Black wins).

9. B-KN5 (threatens the QP), R-Q 1
10. Q-Q 2 (prevents P-KR3), B-K 3

If 10. . . P-QN3; 11. B X N, BX B; 12. p-K4, p--K3; 13. P-K5, and the game

has the character of a French defence difficult to evaluate.
11. P-QR3

Both programs reveal what Nimzowitch called 'the lust of the pawns to
expand', once the development of the pieces is more or less completed.
White did not play 11. P-QR4 since the extra square for the R, in the program's
estimation, is more than counterbalanced by the loss of a square for the N.
White should have prepared for P-K4.

11. . . P-QR4 (Better is QR-B1 With Q-K1 and P-QB4 in 'mind')
12. Q-Q3, P-R3
13. BXN,BXB
14. P-K 3 (P-K4 is again double-edged), P-R 4
15. P-KB4 (if 15 N-K2, B-B4; but better is QR-B1 *followed by N-K2),

P-KR5

16. P X P
Prevents 16, ..., P-R6, but the pawn could be won. For example, 16. ic--B 2,
P-R6; 17. B-B3, K-N2; 18. P-KN4, B-R5 ch.; 19. K-K2, R-R 1 ; 20. R-KN I

with the plan 21. QR-KBI, 22. B-RI, 23. R-B3.

16. . . BXRP
17. lc-RI, B-B3
18. Q-K2, R-R3 ? (better to bring the RS to the KR file.)

19. P-QR4

The square QN5 has more value for White now that the Black QRP has ad-
vanced.

19. . .,R-N3
20. N-N5, B-B4
21. P-B 3, B-KS ? (leads to a weak Pat K 5 and reduces his attacking chances)
22. BXB, PXB
23. P-B4, P-K 3 (if B-N2; 24. P-KB 5 prevents P-B 4)

24. P-QB5, R-R3
25. N-B 3 (good, if 26. Q-N2 had been intended), K-N2(belated)
26. p-R3 ? ? (even a machine should have seen 26. Q-N2), B-K2

27. P-N3?
Better is 27. Q-N2, P-B4; 28. R-KN1, Q-K 1 ; 29. N X P, P X N; 30. Q X KP,

R-B3; 31. R P Ch., Q X R; 32. R-KN1, Q X R Ch.; 33. K X Q.

27. . .,P-B4
28. K-N2, B-B3
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29. QR-K 1 ?, B-R5
30. R—B1, D—R2
31. R-KR1, R-KR1
32. R-QR1 ? ? (only a machine could play such a move), B—B3
33. Q-QN5, R-Q1
34. QXQ,RXQ
35. P—R 4 ? ?, P—N3
36. P-R5, PXRP
37. R(KR1)—xN1 ? ? (underestimates the value of pawns), P x P
38. x—s 2 ch., x—R3
39. N—N5, P X P
40. N X P(Q4), RXN1

Slightly better than 40. . . B X N; since it reduces the material more.

41. PXR,BXP ch.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

x—N3, R—B6 ch.
x—N2, B X R
KXB,RXP

R-QB1, P-K6 ?

R X P, K-N3

K-B!, R-N5

K-K2, R X P(35)

K X P, R-K5 Ch

K-Q3, P-R5

R-B8, RXP

K-B2, P—R6
x—B3, P-R7
R-KR8, R-R7

K-N3, R-K7

K-R4, K-N2

R-R3, R-R7 ch.
x—N 5 ? ?

1_

GOOD

White had a chance of a draw with 58. K-N3 in the hope that the game would
continue, for example, 58. . R-K 7; 59. K-R4, R-R7 ch.; 60. K-N3, R-K 7;
etc. For all White knows, the Black program might have no precaution
against a draw by repetition.

58. . . P—x4

59. Resigns?

This (human) resignation seems premature since the Black program might

play the late end-game very badly. There are principles in the end-game,

such as the gradually decreasing net and the avoidance of a draw by stalemate,
which are unimportant in the opening and middle-game. I have known a
contender for the West of England championship fall into a stalemate trap.
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PROSE-Parsing Recogniser Outputting
Sentences in English

D.B. Vigor 1
Hoskyns Systems Research, London

D. Urquhart
International Computers Limited, Reading

and

A. Wilkinson
Computing Department
University of Glasgow

PROSE is a program which is capable of adaptively improving its linguistic

behaviour by conversation with a human being. The aim of this paper is to

present the sequence of events which have led to the development of this
program in its present state, and to outline the model which underlies its
operation.
The program itself is surprisingly quick at mimicking the linguistic be-

haviour of its conversational partner, considering the simplicity of this model.
Only a small initial priming dictionary of a hundred words is used to start off

the system, and there are only six initial relations built into the system. The
program through conversation increases both its vocabulary and its range of
sentence forms.
PROSE has developed to its present state from a program called GASP, or

Grammatically Analysed Sentence Producer. This program was a simple
demonstration program, written for amusement only, which outputs gram-
matically correct sentences assembled from words in a number of internal
dictionaries labelled by word classes. The basic idea of GASP was that every
word should call in a related word, and that sentences are somehow con-
structed by starting at a full stop which calls in a verb-like word, which then

calls in a subject-like word and an object-like word, the subject-like word
calls in an article, and so on.

1 Present address: Hoskyns Systems Research, Boundary House, London, E.C.4.
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In order to do this we assigned a subroutine for each type of word. These
subroutines called in, and marshalled by the use of internal tables, other
subroutines which put words into a sentence. This can be illustrated by the
example in figure 1.

4,
operates

program well on
4,
the computer

4,
this

Figure 1

The sentence is assembled by calling in a full stop, which then calls in the
verb 'operates'. This then requires to be satisfied by a subject-like word, and it
calls in the noun 'program', which in order to be satisfied requires the article
'the'. We now find that 'the' needs nothing else to satisfy it, so we return to
'program'. This needs nothing else to satisfy it. We return to 'operates',
which can now ask for an adverb. So we produce 'well', which requires
nothing else to satisfy it, so we return to 'operates'. 'Operates' is then capable
of producing a prepositional clause, so it calls in 'on' which calls in 'com-
puter' as its noun, and 'computer' calls in 'this', an article. 'This' requires
nothing else to satisfy it, so we then return to 'computer', to 'on' and then
back to 'operates'. 'Operates' requires nothing more to satisfy it so we return
to full stop, and output the sentence: 'The program operates well on this
computer.' The fulfilment of the sentence is the tree with the full stop at the
root, and 'the', 'well' and 'this' at the tips.
A sentence in GASP was a hierarchy of subroutines. Some of these sub-

routines had a dictionary look-up facility. This was carried out in GASP by
taking a random word from a list of words which had a certain property. For
example, the lists were lists of nouns, verbs, adjectives, etc. The analogy
between this class of grammar and Hays' dependency grammars (Hays 1964)
became obvious. We also recognised that the dependencies between the
various words depended not only upon factors that one could call syntactic,
but also upon semantic ones, such as 'is abstract', 'animate' or 'concrete'.
These are properties of nouns which restrict the class of verbs to which those
nouns can be subject.

It is very important for the understanding of this paper that one should
clearly distinguish between dependency grammar and a phrase-structure
grammar. Although both of these systems are formally equivalent (Gaifman
1965) they are different in that, in a phrase-structure system, constructs
called phrases are postulated. A sentence is looked at as a collection of
phrases. These phrases may have sub-phrases, and so on. Eventually the
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words of the sentence are hung upon the tips of the tree. In a dependency
system the words are actually on the internal nodes of the tree representing
the sentence. An example is shown in figure 2.
A modified version of the GASP sentence producer was written by Urquhart

using an improved dependency system. A number of sentences were produced
using the random number generator. The sentences so generated were much
better than we had expected.

subject

sentence

predicate

verb object aciverb

4,
noun phrase noun phrase

article noun I article adj. noun

It 1 \ \I
The man programmed the large computer

tIt I 1 I t t I I
daringly

The dependency tree can be rewritten:

4,
programmed

man computer
4,
the the large daringly

Figure 2

phrase

structure

analysis

idependency

analysis

In parallel with this work, Bratley and Dakin (1968) had been developing
a parser for English language. Using the model of their surface structure

analyser, we developed a simplified parsing routine called SPUD (Sentence
Parser Using Dependency). This generated the crude dependency structure

for particular input sentences. We linked this with a modified GASP so that
we could use the structure generated by the parser for input sentences to

generate sentences with a similar dependency structure, but with words taken

from an internal dictionary. We then realised that this process of analysis
by outputting test sentences could be used as a test bench for studying the
structure of English.
We also realised that outputting sentences would allow us to distinguish

between ambiguous interpretations of the sentences analysed by SPUD. This
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could be done by outputting simple sub-sentences, each one of which tested
the validity of one particular dependency in the SPUD -analysed structure.
We developed a conversational system around GASP and SPUD, using the

GOLD (Glasgow On Line Desks) System on the KDF9. However, the aban-
donment at the University of Glasgow of the GOLD System forced us to
implement this system in a non-real-time environment, by making each
conversational run into a set of batch-processing runs which simulated a
conversation. The first run parses a batch of sentences and outputs for each
sentence a set of sentences aimed at testing particular hypotheses about the
input sentence's structure. An illustrative example is given in the Appendix.
The second run processes any replies to the first output, and re-outputs
sentences to test any newly found inexplicable rejections. From this evidence
the program updates its various dictionaries. The batch method is not as
effective in this application as conversation.
We built in to the system the ability to add words and sentence structures to

dictionaries. Sentence structures were interpreted as the map of a stack of
subroutine entries. The analysis resulted in the formation of such stacks.
The polishing process labelled the sentences according to the type of diction-
aries from which they could 'choose' their words. We have since changed our
viewpoint, and now label words according to the local structures (depend-
encies) in which they can participate.
The dictionaries of both words and structures are partitioned by a learning

program called the Finisher. This takes its cues from a stylised conversation
with the user on the merits of particular sentences which it has output. We
then realised that the sentences in this stylised conversation were amenable
to analysis by the same techniques as the sentences being discussed. This
increases our freedom by allowing us to use in the discussion of the structure
of the sentence any stylistic trick which we have learnt through this discussion.
In order to do this we only needed to introduce a few 'semantic' key words.
These will set up dictionary subclasses and name them, and place markers in
sentence structure maps.
GASP, SPUD and the Finisher were amalgamated by this process into a

single program which we call PROSE. Since 1967 we have incorporated a
number of extra features which do not detract from the intrinsic simplicity
of the system, yet increase its power immensely. With the birth of PROSE we
were able to start formalising a grammatical model for the processes we were
carrying out. A version of PROSE is being implemented in Pop-2. All this
should allow a much deeper investigation of the power and usefulness of
PROSE.

We recognised that there were basically only four classes of subroutines in
the GASP program. These four classes of subroutines could be classified by
inventing two two-valued properties. Each subroutine corresponded to a
particular class of dependency. These dependencies could be classified into
two groups of two, using these binary properties.
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We call the two properties binding and determinacy. Binding is a measure
of how much the dependency is determined by the physical position of the
words concerned in the dependency. Determinacy is a measure of the rigidity
of the context in which this dependency could appear. Our four classes of
dependencies, each of which is associated with a particular set of GASP
subroutines for assembling words related by that particular class of depend-
ency, could be named by a combination of the values of these two properties.
The two values for binding are bound and loose. Those for determinacy are

determinate and recursive. The dependency between noun and article, and
between verb and personal pronoun are examples of bound determinate
dependencies. The dependency between the word governing a prepositional
clause and the preposition of that clause, or the relation between the verb of a
main clause and the connective pronoun of a subordinate clause, are examples
of loose determinate dependencies. The relation between adjectives and the
noun they qualify is an example of bound recursive dependency.
The relations between a conjunction and both words which it connects are

an example of loose recursive dependencies. An adverb which precedes the
the word it modifies has a bound determinate dependency to the word. An
adverb which follows the word it modifies has loose recursive dependency.
This means that there can be only one preverb which must immediately
precede the verb or adjective, whereas there may be a number of adverbs
which will appear after the object or indirect object. This indicates that the
dependency type is not necessarily related to the grammatical function of the
word. This is a strong argument, we believe, against the phrase structure
model for English. Loose recursive dependencies are extremely tricky to
handle in phrase structure models, but can be handled naturally in the PROSE
system.
The recursive dependencies are capable of carrying two types of restriction

on the word classes involved in these dependencies. These restrictions we call
negative dependencies, and classify them as global or local negative dependen-
cies. Such properties as plural and metaphorical are examples of global
negative dependencies over a sentence structure. They restrict the classes of
words which a dependency may govern. Properties such as abstract, animate
and inanimate are local negative dependencies between a noun-like word and a
verb-like word. If we are willing to throw away our conventional classification
of grammatical classes, then we notice that the distinction between noun and
adjective in a sentence is an example of local negative dependency, and that
the distinction between transitive and intransitive verbs is also local negative
dependency. Moving towards a semantic model for English, we see that the
relation between the two clauses in an ̀if. ... then . . .' or ̀ either . . . or . .
construction, as represented by the dependency chain through the conjunc-
tions ̀ then' and 'or', is an example of global negative dependency. PROSE
has built in the facility to generate, recognise and learn new instances of each
of these six dependencies.
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We embodied these ideas into a functional notation which described the
process of generation which was carried out by the particular subroutines.
We found that we could simplify the whole of our model to five basic func-
tions, which represented the skeleton of a sentence.
We describe these five functions in a number of equivalent ways. In the

first description, A is an expression which represents a dependency subtree of
the sentence.

Prefix form Infix form
1. f(A1,A2) A1fA2
2. p(A1,212) AipA2
3. o(A) oA
4. n(A) nA, where n is an integer >1
5. e(AI,A2) A1eA2

f means expression is followed by expression.
p means expression is preceded by expression.
o means optional.
<n>, where n is an integer >1, means up to n occurrences.
e means 'exclusive or'.

o could be included as a subfunction of n by a change of definition, but this
leads to complications in the learning process. It should also be noted that
the arguments of p and f do not commute. p and f differ from simple
concatenation in that they are non-associative.
A Backus Normal Form description of the use of these functions is:

<expression>::= <name> I (<expression> <function 2> (expression>)I
<function 1> (<expression>)

<function 2> :: =P I/I e
<function 1>::=o I n
<n>::=112131...
<name>::=<terminal symbol>

An example expressed in infix bracketed notation of a description of a sentence
is given below. The sentence is of the form:

subject verb object

(with three adjectives allowed before a noun, and an optional adverb allowed
either before the verb or after the object). To generate a sentence in the
sentence producer such an expression is interpreted directly from the bracket-
free prefix form. We assume that the program is at this stage capable of
recognising the following classes of words “terminal symbol>s):

T transitive verb
N noun
Q general quantifier (adjective)
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D noun determiner (article)
M modifier (adverb)
. full stop

• P(T f((N P(0(3(Q)))) P(o(D))) o(PMelM)
p((NP(0(3(Q)))) p(0(D))));

In this form of the notation we can clearly see the correspondence between the
bracketed entities and phrases in a phrase structure model. The dependency
tree is always rooted at the full stop, and sentences are generated by the yo-yo
or depth-first method of tree searching. Each partial flip of the yo-yo cor-
responds in some sense to the generation of a phrase in a phrase structure
grammar.
In the sentence recogniser part of PROSE we synthesise a model of the

sentence from the determiners in all directions along the branches of the
tree. In a fully determined sentence, for example 'The girl likes the boy.'
(see Appendix), the parser acts similarly to a phrase structure parser
which constructs its tree simultaneously from top to bottom and from
bottom to top until the two parts of the tree meet. In non-fully determined or
ambiguous sentences there is apparently no immediate analogy between
our representation and that of phrase structure.
In order to illustrate the relation between the notation and the operation

of the sentence generator and parser, we will adopt the following notation
in all figures. A dependency will be represented by an arrow directed from the
governing word to the governed word. On this arrow will be an ordered pair
of integers (r,g). r =1 for the dependency first recognised by the parser, r= 2
for the second one, and so on. g=1 for the first dependency called by the
generator, g = 2 for the second one, and so on.
In PROSE the order for generation of dependencies is fixed by the program

structure, but the order for recognition by the. parser is dependent on the
state of learning of the system. As the program becomes capable of recog-
nising more words as determiners, a larger proportion of dependency
assignment takes place in the first pass of the parser.

It is possible for us to imagine each dependency to be divided into two
parts, one attaching to the word which governs the dependency, and the
second to the word which is governed. We can imagine that on the end of
each one of these dependency halves we have some sort of plug, which is
typical of the type of dependency we are considering. For bound depend-
encies the plug can be thought of as being attached to the word itself, whereas
for loose dependencies the plug may be considered to be attached to the word
by a flexible lead. The plug will carry markers denoting the properties of the
words to which this plug may be attached.
The process of parsing is a process of setting up a dependency tree by

plugging in plugs, until all plugs are satisfied. For example, 'the' has a plug
which can only be satisfied by a plug from a noun. A full stop has a plug
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which requires a verb to satisfy it. 'Sits' has a plug which requires a singular
noun or pronoun to precede it, and an optional plug for a positional prepo-
sition to follow it. We may, during learning, find that the singular noun
must also have a property or negative dependency called animate, to satisfy
the plug on 'sits'. The learning program operates by attaching to words in the
dictionary a property list, structured into plugs which must be satisfied (sub-
routine calls) and negative dependencies associated with each plug (argu-
ments to the above subroutines).
The generator operates by choosing words which satisfy the existing

unsatisfied plugs. To start generation we simply produce a full stop. The
negative dependencies on plugs may be either local or global. Local ones only
apply to that part of the sentence tree which hangs on this plug. Global
negative dependencies apply to the whole sentence tree.
This model justifies our learning mechanism, which only learns by attaching

properties to words. These properties seem sufficient to specify sentence
structure. Once a property has been established as belonging to more than
three words (in the present implementation) then these words are factored
out into a subclass of the dictionary in which they appeared previously. This
means that the dictionaries are arranged hierarchically, and the learning
process sets up the hierarchy. The words in dictionaries at the top of this
hierarchy can be used in more general contexts than those lower down. The
total dictionary is thought of as one such tree, with nodes of two types, or-
exclusive nodes and and nodes, where or-exclusive means that the properties

in the subtree hanging on this node are disjoint, and on the and nodes the
properties of the node apply to all lower branches. For example, verbs and
nouns are separated by an or node because they require completely disjoint
contexts (positive dependencies). Concrete nouns and abstract nouns are on
an and node.
In the parser, when we form a dependency structure of the sentence, we

place the words tentatively into a specific dictionary inside this dictionary
hierarchy. If a sentence is rejected, we move down the tree creating a node if
none is available, and assign the value of this node as a property to the word;
that is we place a tentative restriction on the use of the word. If the word is
accepted, we may try to test it by moving up the tree to the node above the
one at which it was last accepted. For example, 'fish', accepted as a noun in

the first instance, may then be tested as a verb.
Although the learning process could proceed 'automatically' by using this

simple trial and error method, it is intolerably wasteful in terms of the number
of bad sentences output. In PROSE, therefore, we allow the conversational
partner (human being) to prompt the system by doing a limited amount of
manipulation on the dictionary tree. This is done by introducing the meta-
linguistic determiners isa and isp. These are recognised by the parser as
closed class verbs, which, when recognised, call in a subroutine to manipulate
the dictionary entries.

278



VIGOR, URQUHART AND WILKINSON

Isa is a verb which may appear in a sentence such as 'Sat isa past participle.',
if no past participles have been seen before. This sets up a new dictionary
whose name will be pastpart, that is, the first eight characters of the name.
This allows learning to be speeded up by introducing new classes of words
when the conversational partner thinks it is useful. Past participles will have
initially the dependencies which 'sat' had. If this is not the first past participle
seen, it will add the dependencies of 'sat' to those of the subjects of previous
isa past participle statements. We can also, by the use of the character
denote a suffix which can be used to distinguish a class. For example, we
could make the statement '-ed isa past participle.' and words ending in -ed
would be classified that way. In this case the past tense of certain verbs
would be classified as an or instance of past participle when they occurred.
Another example is `-ly isa adverb.' or '-ing isa present participle.' Both
present and past participles also end up in the system as subclasses of adjec-
tives on an or node. The same physical dictionary of past participles would be
accessed via both adjectives and verbs.

Isp sets up a marker on the word which appears as its subject. This marker
is used to denote a negative dependency which is assumed to be local until
proved otherwise by the rejection of a sentence in which the word appears.
This marker defines a subclass of the class to which the subject of isp belongs.
It is represented by a bit on the plug which is assigned to this property. For
example, 'Men isp plural.', 'Man isp animate?, 'On isp positional.' The isp
property is assigned to both the word which appears in the isp statement and
that word on which it depended in the statement being discussed previously,
to which the isp statement is an answer. The subject of isp should be chosen
as the governed class in the dependency. If we had had a sentence such as
'The boys like girls.', we could possibly obtain as an output sentence 'The
girls sits.' We could use this to make a general statement about nouns: ̀-s isp
plural.' The conversation is referring to 'girls', as 'sits' did not appear in the
original sentence. Therefore, the general rule 'Nouns with -s at the end are
plural' can be sneaked in in this way. The rule has a number of exceptions and
will result in bad analyses in later sentences, to be refined by further conversa-
tion concerning this property 'plural'.
We have been studying the possibility of applying a dependency model of

word structure to generate new words. A tentative stand-alone program has
been written which processes the dictionary of PROSE and produces an en-
larged one by recognising and removing prefixes and suffixes from words.
The dictionary is sorted alphabetically. All initial sequences of characters

which appear in two or more words are removed from all but the first of
these words. The blank spaces at the start of each word are given a count
value which is the number of characters which have been blanked out. If
more than five consecutive words have the same count, then the remaining
characters of each word with this property are tested in the same part of
speech as the word from which it was derived. If an acceptable word has been
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generated, the count and the letters are entered into a prefix dictionary, and the
word less the prefix is entered on to the end of the main dictionary. If an
acceptable word has not been generated and the word totally rejected, then
this particular prefix is labelled fallacious, and its last character is returned
to the stem. The test process is then repeated.
The dictionary words are then inverted (turned back to front) and sorted

into another area of store, and the same process is used to recognise suffixes.
This gives a rhyme dictionary which may be useful for generating poetry.
The next stage of the process to be implemented will be to use the prefix

suffix dictionary to construct new words for PROSE. Suffixes can change the
part of speech, for example ̀ -e' in a verb to ̀ -ation' in a noun, addition of
`-ly' generates adverbs. The meta verbs isa and isp will oar the ability to
recognise and learn such transformations.
At the sentence level the model is symmetric in the processes of analysis and

generation, in that it can recognise any sentence that it could generate. At the
word level the learning at present takes place only in the prefix, suffix and
stem recogniser. The symmetry could be retained by the introduction of this
transformational part. This could be used to investigate how new semantically
suggestive words could be or have been generated in English. We can gener-
ate recognisable adjectives by straight addition or replacement of a terminal
-e on a noun or verb by -al, -y, -ive, -Jul or -able. We could extend the use of a
Latin stem by use of re-, in-, pre-, pro-, inter-, and so on, or of Greek stems
by use of epi-, endo- or -ic. Who in the jungle of present mathematical ter-
minology would argue with a learned paper on the interproduction of
epimorphistic conformability?
In the present version of PROSE the starting dictionary is of approximately

one hundred selected determiners. This is sufficient to give adequate initial
power to allow efficient bootstrapping of more words and structures into the
PROSE memory. However, we do not claim that this is in any way a minimal
dictionary. Provided that care was taken in choosing the initial sentences, one
would require many less initial words with well-defined dependencies. In
compiling this initial dictionary we were guided by the results of Thorne,
Bratley and Dewar (1968).
What we have been describing is a performance model for recognition and

generation of sentences in an ill-defined subset of English. Such a program
as PROSE could be used by allowing it to converse with a linguist to develop a
competence model for English based on dependency structure.
There is evidence, based on our limited experience of using PROSE, that a

number of problems facing phrase-structure grammar users can be quite
simply overcome by using a dependency model. One such difficulty arises
when dealing with conjunctions which are handled in our system by loose
recursive dependencies. However, we do not have enough experience as yet
to be able to assess the full potential of our model.
To check the present state of learning in the system, we use the sentence
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generator to produce, with the aid of a random number generator, a sample
of the linguistic ability of the system. The following few sentences, taken from
such an output after the system had ingested and discussed thirty sentences,
chosen from Punch, Computers and Thought and The Organisation Man,
illustrate the power of the system even in its present embryonic state:

'Reports stretch simply.'
'A state generates their money.'
'If its class touches the connection then it, their magical diabolical
circuit, exterminates this material.'
'The director has created the society thru a child.'
Will the programmer retire?'
'Annihilate all books.'

It appears also that the essence of style and semantic context can be
abstracted by the use of the conversational mode of PROSE. The system
organises itself by setting up relation markers (negative dependencies), which
means that it uses the vocabulary in sentences of similar structure to those
from which the words were taken. This can be seen to a limited extent in the
preceding examples.
The dependency relations in a sentence are capable of carrying information

about the universe which is being discussed in that sentence. A very tentative
initial experiment in rejecting sentences which were not contextually mean-
ingful indicates that the model is capable of learning over a much larger
context than a single sentence. This is done by introducing interdependencies
which carry context markers (global negative dependencies) and which
assemble sentences into paragraphs.
The method of parsing seems very effective for a small subset of English.

Nouns can correspond to files representing sets of objects; adjectives and
prepositional clauses can correspond in statements to predicates on these
sets, and in questions to selectors (Vigor 1968). Verbs then correspond to
procedures, adverbs to procedure typing, conjunctions to logical connectives,
and subordination to subroutine call. The dependency model of syntax adds
a clarity and simplicity to the structuring of the requests and updating infor-
mation in the system.
The possibility of applying this to a real life situation is being investigated

by Vigor for parsing both questions and input data for a natural language
information retrieval system on large commercial data bases (Hoskyns
Systems Research 1968).

APPENDIX

1. Example of operation of parsing routine.

'The computer and the program in its store become an integrated
whole which can perform marvellous feats.'

Information at the end of the first pass:
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The
computer
and
the
program
in
its
store
become
an
integrated
whole
which
can
perform
marvellous
feats

noun determiner
substrate noun
conjunction
noun determiner
substrate noun
preposition
closed class noun determiner
substrate noun
verb
noun determiner
verb or adjective
noun
closed class subordination
closed class auxiliary verb
verb determined by can
noun, adjective or adverb
plural noun or singular verb.

Information at the end of the second pass:
becomes 4---- •

computer *and 4-program whole which

the the in an

store

its

perform

can feats

integrated marvellous

Words in doubt are 'marvellous' and feats'.
Also to be checked are 'integrated' and 'whole'.
We must also confirm that 'program' and 'computer' are of the same class.
The sentence producer is called with the following words to be tested:

'feat, whole, program, computer' as nouns,
'marvellous, integrated, whole, feats' as verbs or adjectives.

The latter class will also be tested as complements.

Examples of output
'The feat is performed.'
'The feat is marvellous.'
'The feat sits.'
'The whole becomes the computer.'
'The whole is integrated.'
'The computer and the program perform.'
'The whole computer performed the feat.'
'The whole is marvellous.'
And so on
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Sample reply
'Right'
'Right'
'Feat isp abstract.'
'Whole isp abstract.'
'Right'
'Check'
'Right'
'Right'
And so on
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In conversation a single word of reply signifies approval of the output

sentence.

Third pass (Finisher):
From the results of the conversation the dictionary will be updated by

1. the unequivocal words in the initial sentence,
2. the dubious words from the context and remarks made during the

above conversation.

From the two abstract corrections we would have the output:

'The whole is performed.' Reply: 'Right'

2. Examples of PROSE dependency trees on some simple sentences:

(1,4)  (4,3)  (2,1)
I I I I I-1

Will the programmer retire ?
I i

(3,2)

(7,6)

(1,7)

The

(3,3)

man

—If

(3,2) 

the girl saw, smoked .
I II LJ

(4,5) (6,4) (5,3) (2,1)

the

(11,10) I

speed limit

(9,8) (12,9)

1 I 
(15,13) (2,15)

does not reduce casualties on the road
I I I I

(1,7) (13,12) (14,14)

(8,6)

1 
(6,4) (7,5)

1 I
— then why have it ?

II I
(5,2) (4,1)
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(1,2) (7,9) (9,10) (2,12)

I

(3,3

like Edinburgh

(6,1)

I r
in the summer
i 1

)! (4,5) (8,11)

when it Iis warm and dry .
1 II II II 1

(5,4) (12,6) (11,7) (10,8)

(4,1)

(2,2) (3,5)
1 rl

Did you like the lecture
 I

(1,3) (5,4)

(2,2) (5,4)

This sentence is the la
l
st

1 i I 

1 1 l 1
(1,3)

1 
(3,5)

(4,1)
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The Organization of Interaction in

Collectives of Automata

V. I. Varshavsky
Leningrad branch of the Central Economic-Mathematical Institute

The study of the collective behaviour of automata, originated and directed
by M.L. Tsetlin and continued after his premature death by his pupils, has

made it possible to construct a number of interesting models and to develop
an effective approach to the study of control_processes in complex systems

(Tsetlin 1963, Tsetlin and Varshavsky 1965, Tsetlin and Varshavsky 1966,

Varshavsky 1968). The first models were developed to study regularities of the

behaviour of a collective of autonomous objects (automata) whose 'inter-

action' derives entirely from the effects of the external surroundings on their

joint behaviour. Thus each automaton is ignorant both of the problem to be

solved by the collective and of the number of members in the collective.

Some interesting and significant results were obtained in this direction. But

even during Tsetlin's lifetime models were developed in which the above

restrictions had to be abandoned. These were the model of the distribution of

'computation means' (Ginzburg and Tsetlin 1965) and the problem of the

organization of behaviour in a periodic random environment (Varshavsky,

Meleshina and Tsetlin 1965). Further development of this line of in-

vestigation has forced us to pay serious attention to the solution of the

internal problems for a collective, that is the organization of interaction and

exchange of information between the automata. Here we shall consider some

very simple models of the organization of such interaction.

We shall consider a Goore game of N identical automata (Borovikov

and Bryzgalov 1965). Following Tsetlin (1963), we define a game of

N automata. Let sl(t) and P(t) be the values of the input and output

variables of the automaton Ai at time t. si(t) is assumed to take only

two values, si( t)= 0 and .0(0=1, corresponding to (unit) gain and loss

respectively by the automaton Ai at time t. An output variable P(t) takes

values from the set fir These values are called strategies of Al, and if

f 1(t)=A, then automaton Ai is said to use its ath strategy. A set of strategies
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f(t)=(fl(t), ...,fN(t)) used at time t by the automata Al, . . AN is called
a play played at time t. The outcome s(t+ 1) of a playf(t) is the set s(t + 1) =
(si(t+1), . . sN(t+ 1)) of values of the input variables (unit gains and
losses) of the automata at time t+ 1. Automata Al, . . AN take part in a
game if for each play f(t) the probability P(f(t), s(t+1)) of the outcome
s(t +1) is given, and the equation EPU(t), s(t+1))= 1 holds for any f.
The game consists of a sequence of plays.
The game F is called a game with independent outcomes if

P( f,$) = P(f,s1 ,sN)= H P ( f, s )
J=1

A Goore game is a game of N automata with independent outcomes in which

fi= {0,1} (j=1N, . . N)

and P(f,si =1) = P(E finv). P(a) (j =1, . . . ,N).
1=1

Thus in each play of a Goore game the probabilities of winning are the same
for all players and depend only on the fraction a (0 ‘. a 1) of automata
choosing strategy 1. Essentially, a Goore game can be interpreted as an
example of collective behaviour whose expediency is determined by a rational
distribution of 'effort'. For simplicity, the function P(a) is assumed to have
only one minimum at a point ao. Borovikov and Bryzgalov (1965) showed that
the probability distribution of a tended to a 3-function at the point ao as the
memory capacity of the automata increased. On the other hand, Volkonskii
(1965) and Pittel' (1965) established that with a fixed memory capacity n, the
quality of the performance of the collective deteriorates as Nincreases, and as
N--■co, the distribution of a tends to a normal distribution with mean at a =+.
To maintain the quality of performance as N increases, n must increase at
least as fast as N1+8.

This example shows that in a collective without internal interaction the
struggle against entropy requires that the individual resources of its members
increase as the size of the collective increases. Strictly speaking, in a Goore
game we have to deal not with a collective of automata, but a 'crowd'.
However, introduction of the simplest type of interaction between the
automata leads to improvement of the behaviour characteristics. For this, we
shall construct a game on a circle (Gel'fand, Pyatetskii-Shapiro and Tsetlin
1963). Let the automata in a Goore game be situated on a circle, that is, each
automaton Ai has two neighbours1 AJ+1 and AJ+1.
Now let si be the gain or loss of the jth automaton in a Goore game, 70 be

the input signal for the jth automaton and

1.1(t+1) =p--1(t) fl(t). fi-1-qt) Vfi-1(t) li(t)..p+I(t) V

V si(t+1)[7-1(t)C)fil+1(t)] ,

I Addition and subtraction of indices are performed modulo N.
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that is, the jth automaton loses if its action differs from the actions of its
neighbours, wins if its action coincides with those of its neighbours and acts

according to the outcome of the play if the actions of its neighbours are
different: P-1 0P+1. Such interaction causes automata to try to assemble
into groups with 'community of interests' so that the only automata taking
part in the game are virtually those at the ends of a group.1 Figure 1 gives
experimental curves for the distribution of a in a Goore game of 32 automata
with linear tactics for n = 2, 3, 4, 5; the left-hand column is without interaction
and the right-hand column with interaction in a game with 216 plays. The
effect of interaction is evident.
Both in the above example and in other examples of collective behaviour

in a random environment automata solve the problem of selection against a
background of noise. Introducing interaction, as in the Goore game, makes
it possible to organize in some sense a directed search. On the other hand
there are problems in which randomness of environment and the influence of
noise are not dominating factors. An example of such a problem is the
organization of collective behaviour for achieving a one-dimensional alloca-
tion of resources (Varshavsky 1968, Varshavsky, Meleshina and Perekrest,
in press). We usually meet such situations when attempting to organize
collective behaviour in control problems. The organization of collective
behaviour is achieved rather easily if the effect of collective behaviour is
the sum of the effects of the functioning of the separate parts of the system
under certain restrictions, as in the problem of allocation of resources,2 or if
the problem admits a more or less obvious decomposition into sub-problems
('sub-games' in Michie and Chambers 1968). In other cases we have to study
methods for organizing interaction between subsystems and assessing ways of
exchanging information. In this case gradient methods are often suitable. On
the one hand they make it possible to organize local behaviour, and on the
other hand the form of the partial derivatives of the minimized (maximized)
function often makes it possible to find ways of organizing interaction for
local estimation of the current value of the partial derivative. In recent years a
number of successful attempts have been made to use gradient methods for
the solution of a wide class of problems including linear and nonlinear
programming problems (Arrow et al. 1958). Problems like this arise in
connection with the necessity of organizing control in systems for which a
purposeful collective behaviour seems to be most natural. From this point of
view it seems to be of interest to give here some preliminary considerations of
the possibility of using a gradient approach to the travelling salesman problem.

Naturally the plays f(t)= (0, 0) and f(t) = (1, . . 1) are stable, but it is easy to
exclude the possibility of arriving at these situations.
'Such an approach can be trivially extended to the case when the overall performance-

criterion of the system is the product of the performance-criteria of the sub-systems —
for example, when the probability of a correct observation is the product of the probab-
ilities of correct solution of the problem by the sub-systems and observation time is limited.
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We shall consider the travelling salesman problem in the following form.
There are n points all connected to each other. The path joining the ith point
to the jth point has length rtj satisfying the triangle inequality rik+rkj?...rii.
We want to find a closed path of minimal length passing through all the
points.
Under the above restrictions a closed path of minimal length is a Hamil-

tonian path, that is, it passes through each point once and only once. Any
path of this kind can be specified by a cyclic permutation matrix. Thus the
solution of the travelling salesman problem reduces to finding a cyclic
permutation matrix C= II cu II which minimizes E Ecuru.

ii

Note that permutation matrices are extreme points of the space of bisto-
chastic matrices and so it is reasonable to try to organize a continuous search
in the space of bistochastic matrices. We used a similar method in the search
for transition matrices of finite automata with expedient behaviour in random
environments by employing stochastic automata with variable structure
(Varshavsky, Vorontsova and Tsetlin 1962, Varshavsky and Vorontsova 1963,
Varshavsky and Vorontsova 1964).
Let mu be the probability that the point i is connected to the point j, and

let the matrix M= II mu II describe the current state of the connections in the
system. If M is stochastic then the elements of Mk= mini are the probabili-
ties that a path starting at the point i reaches the point fin k steps. Hence the
condition Mn =E, where E is the unit matrix and n is the dimension of M, is
the condition that for any i a path beginning at the point i returns to the
point i after n steps.

It is not difficult to see that if n is a prime number, m=0 and Emu-1 =0
J=1

0), then the condition M=E implies that M is a cyclic permutation
matrix. Thus the travelling salesman problem can be stated for prime n as
follows:

Find
min EEmuru

ii

under the conditions:

1. E m1 -1 = o; m1,=0; m1j>0.
J=1

2. Sp M" = E mfr)= it, that is, Sp Ma—n = 0.
i=

Generally speaking, in this presentation the problem can already be solved
by gradient methods using Lagrange multipliers. But here we are faced with
a number of difficulties which accompany gradient methods for solving the
problem of minimizing a linear functional under certain restrictions (Arrow,
Hurwicz and Uzawa 1958). To avoid some of these difficulties we introduce a
nonlinear functional.
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Consider the matrix L=1111.111, where 4=exp( — rii)mij; we shall maximize
Sp L" under the above restrictions.

Consider the function Q= Sp Ln — (Sp Ms—n) and its partial derivatives
with respect to elements of M.

'9e " n  81= T— S M SP- —25p8M" ,  
omij ornij 

emu 

am. a
(Ap--

am, emu

am-1 114)=. omu

n-1= E m„—i—sEums,
s=,)

OM
where Eli= ,

on"

is a matrix in which e ij= 1 and all the other elements are equal to 0. It is not
difficult to see that

Sp = nmJi("""
°Mu

and similarly

Sp ,--
an 
= n exp ( — rij)1

(
ir 1) .

°mu

aQ
Hence = n [exp ( — rij)67-1)— 24-11,

emu

where the Lagrange multiplier 2 represents exp (—s), s being the length of
the shortest path.
These considerations motivate a search for new computational procedures

and principles of collective behaviour for the solution of the travelling
salesman problem. It should be emphasized that we have given here only
preliminary considerations about one possible approach to this and a number
of similar problems. The search for effective methods for solving the problem
by applying the principles above presents several difficulties which have
yet to be overcome.
From the point of view of studying the interaction of automata, the models

of purely logical interaction developed by J. von Neumann (1966), Ulam
(1962) Burks (1964) and others are of particular interest. Recently much
work has been published on the so-called 'firing squad synchronization
problem' (Moore 1964, Levenstein 1965, Waksman 1966, Balzer 1967,
Varshavsky 1968, Varshavsky, Peschanskli and Marakhovskii 1968). We
shall consider some variants of this problem in more detail.
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The problem of synchronizing a chain of automata posed by J. Myhill has
given rise to several models of particular interest. We modify the statement of
the problem as follows. Is there a finite automaton A such that a chain of n
automata A can be synchronized at time T after being 'switched on' by a
starting signal applied to an arbitrarily chosen automaton at time t= 0 ?I Each
automaton is assumed to be connected to its immediate neighbours and the
complexity of each automaton is independent of n.
Here synchronization means that all the automata in the chain simul-

taneously pass into a state called the synchronized or terminal state at time T,
and each automaton reaches this state only at time T. We consider Moore
automata in which the internal states are the output signals. We first give a
general idea of the solution of the problem in the original form (Levenstein
1965, Varshavsky 1968). The basic idea is to arrange for successive bisections
of segments of the chain of automata. Consider figure 2. The first bisection
is carried out as follows. The starting signal puts the end automaton into
the preterminal state and two signals pi and p3 start to travel down the chain
from this automaton.
The first signal travels with velocity 1 and the second with velocity 1 / 3

(a signal travels with velocity 1 /m if it passes to the next automaton after
having stayed in the preceding one for m time units). The signal pi reaches
the end of the chain, puts the end automaton into the preterminal state, and
returns with the same velocity. The reflected signal meets the signal p3 at the
centre of the chain and the corresponding automaton (or two, if the number
of automata in the chain is even) passes into the preterminal state. If the reflec-
ted signal continues to travel down the chain with velocity 1 and if the first
automaton emits a signal at t= 0 with velocity 1 / 7 (signal p7), these signals
will meet at a distance of 1/4 from the beginning of the chain. If in addition
each automaton emits a sequence of signals with velocities 1 / (2m+1— 1) when
it enters the preterminal state and if the automata at the meeting point of the
signals pass into the preterminal state, then a sequence of successive bisections
of segments of the chain will be produced, as shown in figure 2.
Now suppose that the starting signal is applied to an arbitrary automaton

in the chain. The general picture of the propagation of the signals is shown in
figure 3. After the starting signal has been applied, two signals pi and pl
start to travel from the initial automaton in opposite directions. Both signals
have velocity 1 (the initial automaton does not pass into the preterminal
state unless it is an end automaton). When the signals pi and pi reach the
ends of the chain they put the end automata into the preterminal state and
give rise to reflected signals with the same velocity. As stated above, an
automaton which has been put into the preterminal state begins to generate
a sequence of signals with velocities 1 /(2m+1— 1).

If the starting signal had been applied to the automaton 0 at the end of the

a In Myhill's problem the starting signal is applied to the automaton at one end of the
chain.
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x= A; z e {A,D,EbE2} or

1
x A z x e {C,EI); z= D or

x=D; z=D or
x=Ei; z=E2 or
x=E2; z=E2

A

x C z x= A; z e {D,D} or
2

x e {EbE2}; z= D

xe {B,C,Ei}; z= A or

A

x D z
3 x=E2; z=C or

x= A; z e tA,C}
A

B B B
4

A
—

x E1 D
5 x e {A,E2}

A

A Y z y=B; z= A or
6

y= A; z=B

x

B

A
7 x E {C,R}; Z e {A,D,Ei,E2}

C

C C z
8 z e {A,EbE2}

C

x D z
9 xe (C,R); z e {A,C,D,D)

C

x D z x e (C,D}; z=D or
10

C x=R; z= A

Table 1
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number rule condition

11
R B B

6

12
x A z x=C; z e {C,C} or

x=B; z=BR

x C z x e {R,D); z=E2 or
13

x=D; z=Ei

x=C; z=C or
x=B; z=B or

x

R

z
14 x=R; z e {A,C,D,E2} or

x e {A,D}; z e (A,D} or

x=D; z e {A,D,D} or
x=E2 ; Z = E2

R

x y z x=C; y=D; z e {EbE2} or
15

x=R; y e {B,D,D,E2}; z=RR

16
y=E2; z e {A,R}R

A B z
17 z e {B,D}

D

x A z xe {C,D}; z e {A,Ei,E2) or
18

x=D;z=D
D

C z
19 xe {A,C,D,E1}; z E {R,D}

7)
D C z

20 z e {A,C,D,E2}

D

Table 1 contd.
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21

22

x D D
x e {A,B}

x e {C,D); Z e {A,B) or

x.7); z G {Ei,E2}

x

--./;

D z

D

D

E2 z
23 z e {A,R}

I)

24
B E, B

E1

x D E2
25 x e {A,L}

E1

x Ei z x= A; z e {A,D,E2} or
26

x=C; z=DE1

x D Ei
27 xe {A,D}

E2

X E2 z x= A ; z e {A,C,D,R} or
28

x=R; z e {EliD}E2
-... ■-•

X C D
29 xe {R,D}

30
x

E2

D R
x e {C,Et}

E2

R R R
31

F

F F F
32

A

Table 1 contd. 295
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chain nearest to the initial automaton the picture of the propagation of
signals would have been similar to that in figure 2, but with origin 0'. In this
case, the signal p;, travelling from 0' with velocity 1 /3, would have met
the reflected signal p'r at the point A1 (the centre of the chain). It is easy
to see that the line representing the signal A meets that representing the
reflected signal at the point A corresponding to the position of the
initial automaton. Hence, to carry out the first bisection of the chain, the
velocity of the reflected signal pi' must be changed from 1 to 1/3 at the
point A. The line representing the signal travelling from 0' with velocity
1 /(2m+I —1) meets that representing the signal travelling from 01 with
velocity 1 / (2m —1) at a point on the line AC which represents the line on
which the velocities must change. To obtain the correct sequence of bisections
every signal leaving 01 with velocity 1 / (2m —1) must change its velocity, to
1/ (2m+I —1). The slope of the line AC corresponds to a signal with velocity
1. Otherwise, the picture of signal propagation in figure 3 is similar to that
in figure 2.
To construct the state transition table for an automaton as in Levenstein

(1965) we introduce the relation of contraposition of internal states and transi-
tion functions of automata of the chain. Internal states D and :5,-6 and
will be regarded as opposite. Each of the other states is opposite to itself.
Values of transition functions are opposite when they are of the form

F(x1,x2, • .. , xn) and F*(xt, . . ,

where x. and x: are opposite states of the automaton. For the jth automaton
of the chain the following relation holds:

(xj_i,xi,x.H. ) = FI(x.7+1,x,,x.1`_ 1) . (1)

Hence Table 1 only gives the transition functions for half the set, since their
values for the other half can be obtained from (1).

Figure 4 gives an example of the synchronization of a chain of 28 automata
when the starting signal is applied to the tenth automaton.
Comparison of figures 2 and 3 shows that synchronization is achieved

more quickly in the case of figure 3; the time saved is exactly that needed for a
signal with velocity 1 to travel from 0 to H. Thus, if the starting signal is
applied to an arbitrary automaton, the time required for synchronization is
T= 2n —2— amin, where amin is the distance from the initial automaton to the
nearest end of the chain.
For practical applications of the synchronization problems, the following

form of the problem seems more natura1.1
Suppose there is a chain of objects (devices) which have different set-in

times (latent periods), that is, the ith object starts to operate Ti time units

1 In practice, it is not particularly difficult to arrange for a signal to be supplied simul-
taneously to a number of objects, using, for example, common communication lines.

296



VARSHAVSKY

1111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28

GI

1 MINN MONNE •• NE •IININININNI
2 • C.1 •IIlIUNNUUlUUN

• Q N•ac
4 IQ D•N•<UIQRNNNUUUUN

a c

CI
1UUUU

5 P i> > a
6 Q D D D 4 4 4P]IIIIlIIIII• Q I> » <1 a -I

8 p D > D (> 4 4

9 D D D D <I < 4

10 • D D D N 4 4

i

4 4p
11 4 •D D D <1 4 < <1 <

12

li

0 D• > 1> D 4 4 4 <I <

13 0 <1 •I> D <I < -1 <1 4 <1 4

II14 0 <1 D• D > 4 MI < < 4 4 <3

15•< 0 4 •D <1 4 < < <I <1 Q

16•0 O a N• N 4 « « « ap
17•ID 0 <1 4 • 4 <I 4 <3 <1 <1 1 <1 P

ILI 1111311•11MICICI 110111101111:1111011131113M11111z7]CI
19 0 4 0 D 4 < 4 4 4 4 4 <1 •

20 0 0<2 0 4 <1 4 4 < 4 < 4• D

21 D <0 a 0• N a a a a a a •a D
22 0< 0 4 0 I.4 4 4 4 <3 <I• D 0

••<0 00 00 <I •4 • N< 4 <3 <3 •< ND.<

0 •<< <1 44 D ON

•0 0 04 0 <1 • N< 4 •< C> 00

•0 0 D 0< I:4 4• > NOD 

1

000 0 <0 <1 • •4 > 1 i 1 11•0 0 0 < 0 <I

4D N

D 11 0

•0 0 D

<

0< •4 D >0 0

•0 0 0

<

0 4

D 0 > 0

•0 0 0 <I 0 •4 > 0 ND

33

•0 0 0 4 • • D >0 0>0 0 <I 0 •• •. > D 0 0

34

R
0 0 <1 0 • D• •.1 • D LI 0 0

35no0<1 0 •.io r... r).1-1 0 D

36 D 0 0 • r> 0go0 .:1 . 0 N 0 0

37

El
0 0 0 •<1 D 0 D 4 >• 0 > 0 Ll

38•0 0 o• NUNO >• •a o.a • N0 n
3900 0 0 0 •0 0 4 • O 0

40 00 0 • 0111 11›>0 0 •0 04 • • • 0 0

41 fl 0Do o •> a ■ o 0 •D 111 •D • 4• w D4
42 0 0 4 0000 I> 0 •0 • o ENa vi •[la 1111 1-1

En 0•0.0 •040.D •E•c1.0 •0• .IE
44 • •• • ••• •• •0• •• •• ••• ••CM
•• ••••••••111111••••••••••••••••

Figure 4

State Notation

A BCCDOE,E.R F

Q111. 4><0 a••

297



MACHINE LEARNING AND HEURISTIC PROGRAMMING

after a starting signal is applied to it. Time is assumed to be discrete, so that
the Ti are integers. The question is whether automata exist satisfying the
following conditions:

1. Each object is associated with one automaton.

2. The automata form a chain in which each automaton is connected
only to its two neighbours (except for the end automata which are
each connected to only one neighbour).

3. The complexity of an automaton depends only on the set-in time of its
associated object and does not depend on the length of the chain and
the set-in times of the other objects.

4. After a starting signal has been applied to some automaton of the chain
at time t= 0 the objects must simultaneously begin to work at time T.

We shall not aim at a solution which is optimal as regards the time required
for synchronization or the number of internal states. Here we shall merely
show that a solution is possible. If the chain of automata is to solve the above
problem, the ith automaton must produce a starting signal for the ith object
ri time units before the moment of synchronization. Suppose we have a chain
of automata, of the type considered in the previous problem, which passes
into the terminal state simultaneously with the chain of objects. Any three
automata occupying consecutive places in the chain are in the preterminal
state one time unit before the transition to the terminal state and at no other
time. The states of these automata at this moment depend on their states and
on those of their right- and left-hand neighbours at the preceding moment,
that is, on the states of five consecutive automata of the chain. In general, the
states of any 2k +1 consecutive automata at time t are determined by the
states of 2k +3 automata at time t —1. Hence the state of any automaton at
time t is determined by its own state and the states of ri of its right- and left-
hand neighbours at time t—r. Thus by observing a chain of 2ri +1 consecu-
tive automata we can determine the moment of time which precedes the
moment of synchronization by ri time units.

Consider a chain of 2E; +n automata which solves the synchronization
i=

problem. Decompose it into subchains of length 2ri +1, and consider each
such subchain as a separate automaton. We keep the conditions of operation
of the original automata in the chain. The original automata will be called
subautomata, and a chain of 2r1+ 1 subautomata is called an automaton.
From what has been said above, it is clear that by observing the states of the
automaton formed by 2rj +1 subautomata, we can determine the moment
of time which precedes by Ti time units the moment of synchronization of the

whole chain of 2Eti+n subautomata. Detection of the states of an automaton
i=

at exactly Ti time units before the synchronization of the whole chain can be
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carried out by a logical network whose inputs are the states of the subauto-
mata. Thus there is a solution to the problem of synchronizing a system of
objects with differing set-in times by means of a chain of automata. The
solution may be summarized as follows. As the automaton associated with
the ith object, we take a subchain of Zvi +1 subautomata which solves the
synchronization problem for the whole chain of subautomata. The sub-

automata of all the automata form this whole chain of length 2Eri+n. The
i =1

starting signal for the object is produced by a logical network whose inputs
are the states of the subautomata of the given automaton. Note that the
automaton continues to operate after it has supplied the starting signal to the
object and all the subautomata pass into the terminal state at the same time
as the objects start to work. The proposed construction of the automaton
satisfies the conditions of the problem.
We shall assume that the starting signal given to the ith automaton is

applied to its middle subautomaton. Then the time from the application of
the starting signal until the objects start to work is equal to

i - 1

4E ri+2n-2—Ti—min {[2 1 E ri+(n—i-1)1}.
i=i i=1

If Ti=0 for 1 < i<n, then T=2n— 2 —amin.
We shall consider the conditions satisfied by the states of the automaton ri

time units before the moment of synchronization.
1. Ti time units before synchronization, a chain of subautomata of length

2r+1 must contain at least one subautomaton in the preterminal state
(state R, see Table 1 and figure 4).

At the kth bisection of the chain of subautomata, which occurs [ —
21`

n —1]

.,
time units before synchronization, the distance between two non-adjacent

[n-1
subautomata in state Ris —

2k 
. Choose k so that

[n-1
2k]

n-1
 [2k-1] •

Let n—i =c2"+fJ, where /3<2k.

Then [—
n-1]= a, and
2k 2k-1

that is, 2k -1 2k
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or (3)

It follows from (2) and (3) that

n— 1
T - and 2; + 1 

[n —11

2 21'1] •

Hence at  ; time > tme units before synchronization, a segment of length[
2:111 1

i

2; contains at least one subautomaton which is passing into state R. Then
it is always possible to select from a subchain of length 2; +1 a subchain of
length T i +1 having at least one end subautomaton in state R. If there are two
consecutive subautomata in state R, then only one of them is included in the
subchain of length T / +1. Henceforth we only consider such subchains.

2. If both end subautomata are in the preterminal state R and there is no

subautomaton between them in the states C, B or R, then synchronization
will occur after r1 time units.
These two assertions follow directly from figure 4.
If the left (right) end automaton is in the preterminal state and the other

end automaton is in state a (C), and there is no subautomaton between

them in states C, B or R, then synchronization will occur after; time units.
These two assertions also follow directly from figure 4.
3. If a chain of length T i +1 does not satisfy condition 2 and the left (right)

subautomaton is in state R, then it contains a subautomaton in state C (C)
and also a subautomaton in state E1 or E2 between the subautomaton in
state -6 (a) and the right (left) end subautomaton.
For the proof, consider figure 5. The subautomaton in state R at the left-

hand end of the chain emits a signal d which travels to the right with velocity

1. Since ; >[ 1-1-
-1
], on its way the signal G. meets inside the chain a signal

2k

El or E2 coming in the opposite direction. The subautomaton at the meeting
point passes into state R. At time r1 time units before synchronization, the
signal E1 or E2 is inside the subchain of length ;+  1, since it travels toward
the meeting place with velocity less than 1, and so must be to the left of a
fictitious signal travelling from the point A to the meeting place with velocity
1. The number of subautomata through which the signal E1 or E2 passes

before it meets C is equal to the number of signals b. travelling in the direction
of E1 or E2 and enclosed between E1 or E2 and the approaching signal C.
Thus the distance from the meeting point B to the left end subautomaton is

= d(Ei V E2, R)
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where d(Ei V E2, R) is the distance from the subautomaton in state E1 or E2
to the left-hand end of the chain, and ;ID is the number of subautomata in
state D.

n - 1

2'
-4

automata ---
Figure 5

The time required for synchronization is the sum of the interval 6 and the
interval required for the signal C to reach the meeting point, that is

3 + [6 — d(R,3)] = 23 — d(R, = 2d(E1 V E2,R)-2nD—d(R,6),

where d(R,C) is the distance between the subautomata in state R and the
subautomaton in state C.
The condition for supplying the starting signal to an object is then expressed

as

Ta=2d(E1 V E2, R)-2nD—d(R,E).

We shall now consider a variant of the synchronization problem in which
transmission of a signal from one automaton to another takes T time units,
that is, the communication lines between the automata all have the same
delay time. We are interested in a solution in which the complexity of the
automata is independent of T. The general idea of the solution is as follows.
Each automaton is represented as a pair of subautomata (figure 6).
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Figure 6

The subautomata C must generate gating signals with time interval T+ 2,
and the subautomata A solve the synchronization problem by the method
described above in synchronism with the gating signals, that is, the subauto-
mata C send signals for change of state to the subautomata A. Now to solve
the synchronization problem for a chain with delay time it is sufficient to
solve the problem of obtaining synphase periodic functioning of the sub-
automata C. The solution is trivial for period 2(1* +1). In order to put the
subautomata C into periodic operation with period T + 2 we use an algorithm
of successive approximation of signals. Consider two subautomata C. After
the starting signal has been applied to automaton C1 at time t= 0, it sends
three signals a, b, c to automaton C2 at three consecutive moments of time.
Automaton C2 sends these signals back, delaying signal a by 1 time unit,
signal b by 2 units and signal c by 3 units. Automaton C1 processes the signals
it receives in a similar way. As a result, in (T +1)(T + 2) time units one of the
automata will simultaneously emit a pair of signals (a,c) which is identified
with the signal b. An automaton emits the first synchronous signal when
after emitting signal b it receives signal b at its input. This occurs simultane-
ously for both automata at time (r+2)2. From this moment on, when an
automaton receives the synchronous signal it sends it back again. Thus
signals begin to circulate in the system with period T +2.
The above algorithm is illustrated by a diagram of the synchronization of

two automata with delay T=5 in the communication line (see figure 7).
Each automaton has 12 internal states and its complexity is independent of
the value of T. The rules for changing internal states and forming output
signals are given in Table 2.
We now return to the original statement of the problem. After the starting

signal has been applied to an arbitrary automaton of the chain, this automaton
becomes synchronized with its left- and right-hand neighbours according to
to the above algorithm. At the moment of synchronization of this subchain
of three automata, the original automaton passes into a state corres-
ponding to the starting state in the synchronization problem without delay.
Subsequently an automaton only changes states at gated moments of time.
Thus, each automaton of the chain can change its state only once during T + 2
time units and with this gating the synchronization problem is solved just as
in a chain without delay.
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So

Si

S2

S3

S4

S5

S6

S7

S9

Slo

S11

Table 2

Sp Si Sy S3 54 S5 S6 S7 S8 S9 S10 Sll

SO S2 S2 — So S4 S4 — — — So So

S3  

So — — S4 SO  

S9 — S4  

S5 — — — S5 — S5 S5 S6 S5 —

S10 — — — S10 S11 — S10 S10 S7 S10 —

S8  

S8  

S9 — S4  

So  

S10 — — — S10 Sil — S10 S10 S7 S10 —

So SO

An essential feature of the problems discussed above was the unchanging
rigid pattern of connections between the automata. It seems to be of interest
to investigate the possibility of synchronization in a collective of automata
with random dual interaction.

Consider a collective of N identical automata. By random dual interaction
we mean that at each moment of time an independent equiprobable
partition of the N automata into IN pairs takes place (for simplicity N is
assumed to be even). In each of these pairs the output signal of each
automaton is the input signal for its partner. We shall consider Moore auto-
mata in which the output signal is the number of an internal state. Let xi(t)
denote the internal state of the automaton Ai at time t. Then if automata Ai
and A.1 are paired at time t,

xi(t+1)=F[xi(t); xi(t)] and xi(t+1)=F[xi(t); xi(t)].

If the transition function is symmetric, then xi (t +1) = xi(t +1). We pick
out the state x=0, called the initial state, and x=n, called the terminal
(synchronous) state. We take F[0;0] =0, that is, two automata each in the
intial state remain in this state when paired.

Let rj(t) be the number of automata in state j at time t. The fraction
pf(t)=rj(t)IN of automata in the state j at time t will be called the filling
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number. Let j5, (t) denote the mathematical expectation of pi (t). For suffi-
ciently large N, the mathematical expectation of the fraction of automata
which form pairs' in which both automata are in state j is equal to p(t).
Similarly, the mathematical expectation of the fraction of automata forming
pairs in which one is in state] and the other in state i is equal to 2p(t) pi(t).
We now consider the synchronization problem for this collective of

automata. We shall say that the collective is s-synchronizable if after a
starting signal has been applied to an arbitrary automaton at time t= 0, we
have

A/5„(t)..>- 0 for all t>0,
lim p(t)=1,

and there exists T such that

ii„(t)....s for t.<„7',
p„(t)?-1— a for t?....T +1.

Thus s-synchronizability means that there is a moment at which at least 1-2s
automata simultaneously pass into the terminal state. We shall be interested
in the construction of automata which produce c-synchronization and
in the asymptotic behaviour of the number of states of such automata as
N--*co and e-40.
We consider two possible constructions of automata.
1. xi(t+1)=Mt+1)=max [xi(t); xj(t)H-1

if max [xi(t); zi(t)] 0,
max [zi(t); xj(t)]On, (4)

x,(t+1)=xj(t+1)=n if max [xi(t); xj(t)]=n,
x,(t +1) = xj(t +1)=0 if max [Mt); x(t)J=O.

The starting signal transfers an automaton from state 0 to state 1. Consider
the first few moments of operation of the system.

1. p 0(0) =1; MO) = 0 for all j>0.

2. po(1) = 1—
N' 
—
1
• p1(1)=;—

1
 p (1) = 0 for all j>1.

N

3. po(2) = 1--
2 

pi (2) = 0; p2(2) =
' ' 
—
2 

p,(2) = 0 for all j>2.
N' N

4. po(3) = pZ(2)= (1--
2
)

2
; pi(3) = 0; p2(3) = 0;

2 2
P3(3)=1_(1_) : p(3) = 0 for all j>3.

1 The probability of a pair OW being formed is
rf .ri N  r1 0,3 N Pl 03+ P3 PI 0,3 Pl(1—Pi)
N N-1 N N N-1 N(N-1)— N-1 N-1= • N-1  N-1 '

P2 JPI Similarly, the probability of the pair (1,1)is 2pipi+ N-1'
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It is obvious that Po (t) is the mathematical expectation of the number of
automata in state 0 at time t —1 which are paired with an automaton in state
0, that is, Po(t) =pg (t- 1).1
The solution of this difference equation with the above initial conditions is

ijo(t)= (1— 2/N)2"2. Taking into account the rule for changing states, for
sufficiently large N we may write:

Po(t)=exp( —2"-1 IN); pt(t) =1—exp( —2t-1 IN); pi(t)=0
(0<j0t).

It is also obvious that

f 0 for t<n,

P"(t =1 1 —exp( —2i-11N) for t>n.

To achieve c-synchronization it is necessary that

1 —exp( — 2"- 1 IN) ,>-1—c,
that is, n N+log2 ln (1 /8)+1. (6)

Hence to achieve e-synchronization the memory capacity of the automata
must increase as N increases.

2. xi(t+1)=Mt+1)=min [xi(t); xj(t)]+1, if min[xi(t); xi(t)]On,
max [xi(t); xi(t)] 00,

xi(t+1)=x1(t+1)=n, if min [xi(t); xi(t)] = n,
xi(t+1)=Mt+1) =0, if max [xi(t); Mt)] =O.

The starting signal transfers an automaton from state 0 to state 1. Introduce

a new variable yj(t) = Epi( t). It is not difficult to see that at time t, only those
i=J

automata will be in states with numbers greater than j— 1 which at time t — 1
were in states with numbers not less than j-1; that is,

(t)= )/_1(t-1) for j?..-2. (7)

We consider the system of difference equations (7) with the initial conditions:

Y(0)=1; 71(0) =0; yi(1)=1/N; yi(2) =2/N,

and, similarly to the previous case, yi(t) =1 —exp ( —2i-11N). Note that
y2(1)=0, y3(2) =0 and in general, yi(j— 1) =O.

Solution of the system (7) under the above initial conditions gives

0 for t...j+1,
Mt) = f[y i(r —j+ 1)] 2j- I for t >j+ 1.

Note that y(t)=p(t) and

{0 for t<n —1,
y(t) = [1—exp ( —2`W-n/N -1 for t>n+1. 

(8)

1 Obviously this difference equation only describes the process approximately. Here
we use this approximate description, disregarding the influence of the spread of the
distribution of po (t).
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Note that in this construction we allow the automata to leave the terminal
state. In spite of this, it is easy to see that y(t) is a monotonic increasing
function oft and lim y(t) =1.

i-• co
We shall introduce the auxiliary notations exp( —21." 1 N) =x and 2n-' =

1 /oc. Consider the system of inequalities

yn(t)= (1 — x)1I2 ‹. 8,

(9)
We shall determine the domain of existence of solutions of the system (9).

1 —x< 82 1 x>1 —cm
(10)

. 1 (1 —8)1 x2<1— (1 —8)2}

The system (10) is equivalent to (9). For a...51,

1 OCcce2 (1 —a)(2 —CC) 3
2.3  as — = 1 — ace— R(8) ,

2

R(e) >0,

and hence 1 —(1 —8)2 > as. Expanding (1 —82) in a Taylor series in powers of
cc gives

...

and so (1-82)<a 1n(1 /a) for a<1 /In (Ile).
Then the domain of existence of solutions of the system

x.,>.a In (1/c),

x<V(a8), (11)
oc<1 /In (1/8)

is a domain of solution for system (10) and a,solution of system (11) is a
solution of system (10). Figure 8 shows the functions x=a In (1/6) and
x=.\/ (n), and the domain of existence of solutions of (11) formed by these
curves. It is obvious that a solution exists only for a < 8/1n2 (1/6). Hence

nlog2(I/c)+2log2In(1/c)+l. (12)

ln
,„,2 in2 
(1/8) a3 1n3 (1/c)

(1-8)" = (1/s) 2‘ + 2.3

Now let

(10)+2 log2 ln(1 /3)+1>log2(1 /8)+2 log2 ln(1 /8)+1,

that is, 6 < e. Consider the moment

i=log2N+n+log2 {ln(1 /3) +In In(' /6)).

Then exp ( —27-17/N) =6 /1n(113) and 2= tin (1 /d))2/3. Hence

( 
6 \on (115))2

„1) =
ln(1/3))
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21

Figure 8

Since 3/In (1 IS) is small, we can assume that

y„(1)::-..exp ( —1n(11(5)) =3:5 6.

On the other hand,
32 (In (10))20

Yn(?+1)=" (1  {ln (1/6)}2

Thus we can assert that, independently of N, for any arbitrarily small 6>0
there exists no(c) such that for any n>no(e), more than 1-26 automata
simultaneously pass into the terminal state at time l(N,n). Since y„(t) is a
monotonicincreasing function of tand y„(t) 4 1, the time at which the terminal
state is attained is unique.
The solution to this problem was based on two assumptions: (i) for large

N the equations can be taken for mean values, ignoring dispersion; (ii)
terms of order 1/N can be neglected. The validity of these assumptions is not
obvious and to check the correctness of the results obtained the behaviour
of a collective of 1024 automata was simulated on a computer. For each n,
200 experiments were carried out. The results are shown in figure 9. The
upper solid curve represents the mean of the maximal number of auto-
mata simultaneously passing into the synchronized state (Ap...). The lower
solid curve represents the mean-square deviation (cr(Ap.)) and the
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dotted curve represents 1 —26(n). It is clear that the experiment does not
contradict the results found above.
The above models succeed in meeting the requirements of synchronization:

all the automata to within a pass into the terminal state at exactly the same
time. The second version succeeds in preserving an important feature of the

ee

Figure 9

is i4 is is
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determinate synchronization problem — the independence of the complexity
required in each automaton of the total number of automata.
The problems considered here naturally do not exhaust all the possible

ways of organizing interaction but I hope that the work presented above will
give some appreciation of the possibilities and the basic features of interaction
in collectives of automata.
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INTRODUCTION

This paper is a progress report on the work related to the word storage model
first described in Kiss (1967a). In that paper eight postulates have been out-
lined to characterize a set of hypothetical processes and structures which
could account for the behaviour of human beings when they use meaningful
words in certain experimental and natural situations. An outline of some
phenomena in verbal behaviour is to be found there, and the general direction

of the work remains the same.
Of the eight postulates of the previous paper Postulate 5, describing the

transmission of excitation among the elements of a parallel processor, and

Postulate 8, describing the process of word selection, are most affected by the
more recent work. In this paper the idea of a 'word store' is introduced and
takes the place of the parallel processor. This is more in line with current
terminology in the psychological literature, but essentially covers the same
idea.
The changes are, mainly, the introduction of stochastic process theory for

the characterization of the transmission of excitation, and the introduction
of a more 'passive' role for the central processor in executing a search over

the elements of the word store.
At first a general description of the word store will be given, followed by a

restatement in more mathematical terms. The model will then be related to

the behaviour of subjects in the word association experiment and the results
of some tests of the model will be presented.

1. THE WORD STORE AS A STOCHASTIC INFORMATION
RETRIEVAL SYSTEM

The basic idea behind this paper is that the word store should be regarded as

an information retrieval system which is governed by stochastic processes.
That probabilistic considerations should dominate a discussion of the

word store will occasion no surprise for anyone who ever felt frustrated at his
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apparent inability to recover a familiar word or name from his store on some
occasions. We all accept the fact that some rare items may not be available
when needed, that is, that there is only a certain probability — and sometimes
a rather small one — that an item which has not been used very often will be
found. It comes as a greater shock that occasionally even quite well-known
words are 'lost' in the system.
When I say that the word store is an information retrieval system, I want

to emphasize the contrast with a mere storage system. The essential difference
between the two is in the way of gaining access to an item of information. It
seems that most of the interesting psychological problems are associated
with this function, and not with the fact that information is held in the store.
By a storage system I shall mean here a system which is guaranteed to give the
required item of information when interrogated. In contrast, an information
retrieval system will provide that information with a probability which can
be less than one, and sometimes may well be zero.
The same system may operate in either of these two ways on different

occasions. This may be due to many reasons, two of which are that we may
not know where an item is in the store and have to search for it, or we may
not even know what item we want from the store, although we may be able
to recognize the item we want, if it is brought out from the store and presented
for testing. The mere necessity of a search process does not necessarily make
the system an information retrieval system. If exhaustive searches of the
store can be tolerated then, as long as an item is in the store, it will always be
recovered, given sufficient time.
When an information retrieval system is interrogated the required infor-

mation has to be specified in some form. Such a specification may be satisfied
by various items to a varying degree. If this is the case, then it becomes
necessary to define the relevance of an item to a query. Instead of coming up
with one unique answer, the system may provide a whole series of answers,
possibly graded in their relevance.
I add the word stochastic to the description of the word store, because I

want to emphasize that the actual processes whereby the operation of the
word store are implemented are themselves governed by probabilistic laws.
This statement refers to the dynamics of the system as far as its mechanism is
concerned, in distinction from the discussion in the preceding paragraphs
where its overall behaviour was discussed.

2. A MODEL OF THE WORD STORE

General

Having outlined what I mean by a stochastic information retrieval system,
let me now describe in an intuitive manner how this system may be organized.
The word store contains representations of words. For simplicity; I shall

talk as if the store contained words, although of course it only contains their
representations. At any given instant of time a word in the store can have a
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certain level of activity. This activity changes in time for a number of reasons,
to be discussed later. A state of the word store is speced by giving the current
level of activity of each word in it. The word store is therefore a system which
can be in a large number of different states. These states define the state-space
of the system.
The word store operates by going from one state to another. These transi-

tions are caused by changes in the activity levels of words: some will increase,
some decrease, and some may remain unchanged. The state of the word
store may change in response to a variety of influences. First, information
may be received from the sense organs through perceptual mechanisms. Such
information may selectively alter the activities of some words in the store.
Second, some higher level parts of the overall human information processing
system may alter the activity levels. This is the influence of thought processes.
Third, the state of the word store may change because of intrinsic influences
between words in the store.

It is particularly this third kind of mechanism with which I shall be dealing
in this paper. I shall call these transitions 'free'. Once the system is started
from an initial state, the time course of its evolution would be determined
by the connections between the words if all other external influences are
absent. This would rarely be the case and would happen for relatively short
periods only.
The idea that the representations of words are inter-connected with each

other could be traced back to early associationistic psychology. In a more
specific form it has been restated by Treisman (1960). The suggestion is that
the activity of one word may influence the activities of other words by means
of such connections. The state of the word store may therefore change in the
absence of any external influence, merely because of the interactions between
the words themselves. I am suggesting here that these free transitions are
stochastic in nature, owing to the fact that the interactions between words are
probabilistic. The activity in one word has a probability of influencing by a
certain amount the activity of another word. Once these probabilities and the
initial state of the system have been specified, it should be possible to deter-
mine the evolution of the system through time, according to the mathematical
theory of stochastic processes.
At any instant during this process a word can 'enter consciousness', or, to

use a more neutral terminology, it can become available for further processing
in the central processor. The probability that a word will do so is assumed
to be a function of its level of activity at that instant. The higher the activity,
the more probable it is that the word will be selected for further processing.
In the language of some writers on choice behaviour (Luce 1959), the activity
level corresponds to the 'response strength' of an alternative. The choice is
then made randomly, so that the probability of choosing an alternative is the
ratio of the response strength of that alternative to the sum total of the
response strengths over all alternatives in the system.
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The two essential components of the retrieval process are then, in sum-
mary: the evolution of the word store in time through free transitions from
some starting state, and a 'decision stage', in which a random choice is made
among the words so that the relative probability of choosing any one word is
proportional to its relative activity at that moment.

Physiological

Although it is claimed by some psychologists that research and theorizing
can be pursued at a psychological level without reference to physiological
mechanisms, there is no virtue in doing so. Moreover, it will be seen that a
consideration of possible physiological mechanisms can be useful in elimin-
ating some of the possible models. In fact, I would like to put it on record
that it was the consideration of neural mechanisms which helped me resolve
some of the inconsistencies of my earlier model.

Let me now outline one possible implementation of the word store in terms
of neurons. It should be kept in mind, however, that the model presented
here is not dependent on this particular implementation. Other mechanisms
could also be assumed. My purpose here is merely to show that the model is
not inconsistent with current physiological knowledge.
I shall assume that the representations of words are made up of sets of

neurons. These sets would be distributed over a large area of that portion of
the cerebral cortex which is concerned with the storage of words. No attempt
will be made here to identify the anatomical location of this cortical area.
Let us call the set of neurons which represent any given word the representa-
tive set of that word. Any representative set would then have members
distributed over a relatively large cortical area. It is at present an open ques-
tion whether the representative sets of different words are disjoint or over-
lapping, allowing the sharing of neurons between several representative sets.

Since neurons are interconnected through synapses, the firing of one neuron
can have an influence on the state of a number of other neurons. This influ-
ence may not be limited to synaptic transmission. The nature of the interaction
between neurons is still very much a matter of controversy amongst physio-
logists. Apart from the roles of spatial arrangement and temporal patterning
of synaptic interactions, additional effects arise from ephaptic interaction
between adjacent neurons (Grundfest 1959) and from gross electric field
influences (Bullock 1957). In addition to the complexity of these mechanisms,
there is evidence that there are some truly random processes operating at this
level in the form of random threshold fluctuations (Frishkopf and Rosenblith
1958), internal noise, and irregular spontaneous activity (Fatt and Katz
1952; Verveen 1961).

It is not, therefore, entirely without support to suppose that for our purposes
here the interaction between neurons could be regarded as a probabilistic
affair. I shall summarize this by saying that the firing of a single neuron can
bring about the firing of a number of other neurons only with a certain probabil-
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ity. I am arguing that as far as the word store model is concerned, it makes
sense only to talk in terms of such probabilities. Whether there is true ran-
domness here, or the randomness is only apparent because of the complexity
of the processes and our ignorance about their details, is irrelevant for our
purpose.
Owing to these interactions between neurons the firing of any neuron in

one representative set will have a probability of activating a certain number
of neurons within the same set and also in other sets. According to these
numbers we can theoretically define the strength of association, or transmit-
tance between any two sets.
Let us now see how we can map the concepts outlined in the previous sec-

tion into neurophysiological mechanisms.
Each word in the store has a representative set of neurons. The activity

of a word is determined by the number of neurons currently firing in its
representative set. The state of the word store is specified by the momentary
levels of activities of the representative sets of all words. Due to synaptic
and other interactions between neurons, there is a certain transmittance
connecting any two representative sets. The transitions of the system corres-
pond to changes in the activity levels.

It should perhaps be discussed a little further. how the levels of activity can
be said to be maintained in the representative sets over time. I said that the
activity level corresponds to the number of neurons firing at any given time
in the set. Since the firing of a neuron is followed by an abrupt increase in its
threshold which then decays in a roughly exponential fashion towards the
resting level, there is a refractory period during which the neuron is not
available for firing. If a continuously varying activity level in the set is
required, this can only be accomplished if at any two successive instants of
time separated by a short interval the activity is carried by different neurons
within the same set. The mechanism will work as long as the level of activity
(the proportion of neurons in the set firing at any instant) is not too large.
If this proportion approaches unity, then it must necessarily fall to a value
near zero at the next instant, since there will be no cells available for firing
(all of them being refractory). Certain discontinuities are therefore to be
expected if the activation of any word is increased in an extreme fashion.
Such discontinuities are observed behaviourally in various satiation phen-
omena.
Looking at the word store system as a whole, one can assume two rather

different models. In one of them the system starts from a quiescent state. The
stimulus puts the system into some starting state by injecting a certain amount
of activity into one of the representative sets (or into several sets) and then
the excitation spreads to other sets in an exponentially increasing fashion. It
can be shown mathematically that in a system of this kind the activity will
either die out or will increase indefinitely. Which of these two cases will
happen depends on the mean number of 'progeny' produced by any neuron.
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Physiologically, of course, the activity cannot increase indefinitely and must
necessarily fall after reaching a maximum, as discussed previously.
In the second version of the model the system is never in a quiescent state.

The stimulus impinges on some ongoing activity, and the starting state is
determined both by the stimulus and by the momentary state of the system
when the stimulus is applied. In this model there is always some general level
of activity, maintained possibly by the regulating action of the nonspecific
activating systems. The stimulus may momentarily increase the general
activity, but this effect dies out -relatively quickly compared with the time
intervals involved in word selection tasks (normally between one and two
seconds). In this model the overall level of activity does not increase in the
system as a whole during the word selection process, but the relative proportion
of this activity carried by any given word changes in the course of time. The
activity of any word can only increase here at the expense of others. The sum

total of activity is constrained to a fixed level. The possibility can still be left
open that this level is adjustable over longer time intervals corresponding to
degrees of 'activation' or 'arousal'.

Mathematical

I shall now turn to the problem of how the behaviour of such a model can be
characterized mathematically. The essential content of this section will be a

formulation of the general ideas outlined in the previous sections in a mathe-
matical form.
What is needed is a mathematical toolwhich is able to express the probabil-

istic nature of the word store and is also able to cope with the structural
organization of the model. By this second point I mean to emphasize the
need for a mathematical formalism which is not only able to reflect some
idealized general characteristics of the system, such as frequency or probab-
ility distributions, relationships between mean values and time variables, but
can be extended to the study of the 'fine structure' of the system's behaviour.
An illustration of a mathematical model's failure to achieve this is the use of
the so-called pure death process model by McGill (1963) for describing the
empirical curve obtained by Bousfield and Sedgewick (1944), when subjects
are asked to name four-legged animals or cities in the US, and a cumulative
record of the number of items produced as a function of time is plotted. The
pure death process model does lead to a mathematical expression which fits
the empirical curve well, but as McGill comments:

Several weaknesses in the extinction chain model of Bousfield and
Sedgewick's data should be recorded. For example, the associations come
out in clusters triggered by naming a member of an obvious subclass
(e.g. geographic clusters). This sort of clustering produces roughness in
the data with which a simple extinction model cannot cope. In addition,
systematic deviations from the exponential curve form at early stages are

I often noted. These discrepancies do not appear to be large, and the rough
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grain in the data due to clustering does not seem to affect the curve shape
seriously, but both effects are observed and they are simply ignored by
the model.

If a model could be formulated which would be able to deal with these
ignored characteristics of the data, then that model would be preferable to
the one described by McGill.
The mathematical apparatus of stochastic processes is now widely used by

psychologists for the description of behaviour. Most of these applications of
stochastic models are not structural models in the above sense. Structural
models have been extensively discussed by Harary, Norman and Cartwright
(1965) in a recent textbook. The main preoccupation of that book is with
graph .theory. The relationship between stochastic processes (especially
Markov chains) and graph theory is of course well known. The state transi-
tion diagrams of Markov chains are by now familiar to most psychologists
from Shannon's work and subsequent developments of finite state grammars.
The relationship with graphs has not, however, been emphasized in most
applications of stochastic theory to psychology, for the reason that these
applications are not structural.

It is suggested in this paper that the word storage model should be an
application of stochastic models in this structural sense. As we shall see
later, this leads to the possibility of using graph theoretical tools for the
treatment of structural problems, while the analytical methods of the theory
of stochastic processes remain useful for the study of large-scale behaviour.
In specifying a stochastic process, one must make a choice between two

alternatives both as to the state space and as to the time scale of the system.
For reasons of simplicity, mainly, the discussion will be at first in terms of a
discrete state space and discrete time. In choosing the discrete model I am
assuming that there are a finite or denumerably infinite time points for which
the process is defined. Whether these assumptions are justified can only be
decided on the basis of more detailed knowledge of brain physiology. These
assumptions are not essential, however, and the model can be extended to
the continuous case. Discrete models are often used as approximations to the
continuous case.
The most reasonable model for this system seems to be a multi-type branch-

ing process, or vector Markov process (Harris 1963; Bharucha-Reid 1960).
I shall omit here a general mathematical characterization of the multi-type
branching process and turn directly to an interpretation of the word store
model in these terms.
The state of the system is defined by a random vector

(Xi, X2n• • • •2

where Xn is the number of neurons active in the system at the nth transition of
the process, N is the number of words in the system, and the component
scalar random variables X,,, (i= 1, 2, . . N) represent the number of neurons
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active in the representative set of the ith word at the nth transition of the
process, that is, the Xi„ are the activity levels of the words ot the nth transition.
A neuron belonging to word i has the probability

Mai, az, • • •, aN)
of activating in the next transition al neurons for word 1, a2 neurons forword
2, . . aN neurons for word N. If an initial random vector Xo and the prob-
abilities pi are given, then this determines the probability law for the free
transitions of the system. If it is assumed that X„.1.1 depends only on X„ and is
independent of all previous values, then the process has the Markov property
and can be called a vector Markov process.
One can now define generating functions for the (n +1) St 'generation' of

neurons which are 'progeny' of a neuron of type i active at time zero:

F1,„4.1(s) =

where s = S2,. SN), and the square brackets denote functional iterates,
and

00

F1(s) = F,1(s) = E
al=0

The moments of Xn can be obtained by differentiating the generating function.
In particular,

—
us./ „,„2=

is the expected number of neurons of word] at the nth transition, activated by
one neuron of word i active at time zero. It can be shown that the relation
[moifo] = [m(J1)]* exists* between the first moments of the nth transition andi 

those of the first transition. If we let M=Pnlpj denote the first moment
matrix, then we have

E{ Xn} =
The first moment matrix is therefore in some sense analogous to the transition
matrix of a Markov chain. In fact, Harris (1963, Section 12.2) remarks that
if the matrix M is suitably normalized to make it a stochastic matrix, then it
becomes the Markov transition matrix of a process which he calls the
expectation process.
A number of relevant theorems are reviewed in Harris (1963). I shall only

mention here the result that as far as the asymptotic behaviour of the system
is concerned, when n--■ co , the vector random variables X„ /pn converge with
probability 1 to a vector random variable W. The length of W is truly random
but its direction, in case WO, is fixed and is the direction of the positive left
eigenvector v of the matrix M. This means that the total activity of the system
divided by pn converges to a random variable, but the relative proportions of
the activities of various words approach fixed limits.

*The square brackets denote a matrix operation.
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3. RELATING THE MODEL TO THE BEHAVIOUR OF
SUBJECTS

Word association networks

In the free word association experiment, subjects are presented with stimulus
words and asked to say or write the first word that comes into their minds.
The kind of data generated by this type of experiment is too well known to
need detailed description here (Palermo and Jenkins 1964; Russell and

stage 1

stage 2

stimulus word

responses

new stimuli

Figure 1. The growth of an association network

Jenkins 1954). These tabulations are known in the literature as word associa-
tion norms. Essentially they are tables showing the frequency distributions of
responses to a number of stimulus words.
A number of workers have pointed out recently that associative linkages
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among words not only form lists — as the usual presentation of the norms would
lead one to conclude — but that they form complex networks (Deese 1965;
Pollio 1966). That verbal habits form complicated structures has been
realized for some time, as the terminology of associative gradients, response
hierarchies and the like shows. It is only very recently, however, that some
precise quantitative formulations of these ideas have been reached (Kiss
1965a; Pollio 1966).

\ Silk

Chrysalis

Summer

Flutter

V
0",Wing

Figure 2. Part of the association network around BUTTERFLY

What I mean by a word association network is illustrated by figure 1. This
shows the successive stages in the process of growing an association network
from a single root point. In the first stage the word assigned to the root point
is used as a stimulus in a word association experiment. In the second stage the
responses of stage 1 are used as stimuli. This leads to linkages being formed
between some of the words which are already in the net, and also to the intro-
duction of new words. In stage 3 this is carried one step further. The structure
obtained is a directed linear graph. It is composed of nodes (which represent
words) and directed lines (arcs) bearing arrows (which represent an associa-
tive connection between the two words connected by the line). In figure 1 the
nodes which are used as stimuli in any stage are marked by a ring. The process
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of growing the network can be continued indefinitely, or at least until the
vocabulary of the subjects or of the language is exhausted. Intuitively it can
be seen that the number of words in the network grows approximately expo-
nentially.
Such networks can be grown both for individual subjects and groups of

subjects. Some suitably chosen value can be assigned to the arcs. In the case
of a group, the frequency of occurrence of the response, or its probability
estimated by its relative frequency in the group, is a convenient measure. If
this is done, the graph resembles the transition diagram of a Markov chain.
An example of an association network is shown in figure 2. This network

was derived by using 50 subjects and shows only some of the words obtained
in the second stage of growth. It has been drawn in a way which emphasizes
the existence of clusters formed by semantically inter-related words. This
aspect of the graph has been studied in an earlier paper and will not be dis-
cussed further here (Kiss 1965b).

›, ..
t ). gi 6'c.

0 0 0 .s4 = -(7)0 ' # ' •• 0 0 , . g : .. ..y. . .
S. +6 R • 91 'P. >, 7,1 c) 8 .3 ,_, 8 „ m car cd
R:1 4 3 isi ir, >-, 44 U cq PI g F“.) i7i 121

7-:
9
 lg.

i.,

.

a Et)
Butterfly 9 4 6 1 23 1 — 1 1 1 1 1 2 4 2 3
Moth 8 21 1 1 2 1 1 2
Insect 2 1 1 8 1 6 1 4 1
Wing 248 2
Bird 2 15 1 1
Fly 5 4 1
Yellow 1 1 3 3 2
Flower 1 1 3 1
Cocoon 5 5 1
Colour 1 8 7 2 1
Blue 4 2 3 3 1
Bees 5 2
Flutter 10 5 1 3 4 4
Spring 1 1 1 10
Summer 1 2

Figure 3. The value matrix of the network shown in figure 2

There is of course an intimate connection between matrices and graphs
(Harary et al. 1965), and the same information is shown in matrix form in
figure 3. The rows of the matrix correspond to the stimuli and the columns
to the responses. An entry at the intersection of a row and a column indicates
that a line joins the nodes corresponding to the stimulus and the response,
bearing the value appearing in that cell of the matrix. I shall call this the
value matrix of the graph. If one replaces all nonzero entries of the value
matrix by is the so-called connection matrix is obtained. This only shows
that there is a link between two nodes of the corresponding graph, but does
not indicate its 'strength'. Such matrices have been used by Pollio (1966) to
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evaluate the 'cohesion' among a set of words. Similar ideas were used by the
author in two earlier papers (Kiss 1965a, 1965b). Other uses of graph
theory in the context of word association networks are discussed in more
detail in Kiss (1968).

It will be perhaps useful to digress now from the main argument and to
reflect on the significance of conceptualizing associative connections within the
context of networks. I was first led into a consideration of networks as a
possible model for word association phenomena by the observation that
many of the words which appear in the low frequency range of a normative
tabulation of responses for a stimulus word are themselves responses to words
which appear higher up in the frequency distribution. An example will make
this clearer. In the norms for the word butterfly one finds the word plane
or aeroplane occurring with a rather low frequency. The word plane usually
occurs with a fairly high frequency as a response to stimuli like wing, fly,
flying, flight, etc., all of which usually appear in the norms, with higher fre-
quencies than plane, as responses to butterfly. One is led to the idea of lower
frequency responses being reached via higher frequency responses through a
random walk in an associative network. The difficulty lies in the fact that this
random walk cannot be a conscious process, since the subject is asked to
report the first word which occurs to him, and in most cases there is no reason
to doubt that he is complying with the instructions. One must therefore make
this into an unconscious process.
A second difficulty lies in the fact that there is no simple criterion for stop-

ping a random walk of this kind. The only assumption one could make is that
the words reached in the course of the random walk are, still unconsciously,
examined from the point of view of various criteria (such as being a subordi-
nate, having similar meaning, being an opposite, etc.) and the process stops
at the first acceptable word. Essentially this view was advocated in one of my
earlier papers (Kiss 1965a). What is wrong with this view is of course the
assumption that such detailed logical and semantic decisions could be taken
at the unconscious level. This picture of the word selection process can only be
maintained if we permit the subject to suppress, consciously, some of the early
responses which occur to him, and this model does indeed fit many experimental
paradigms (e.g. Rosenberg and Cohen 1966). As far as the unconscious
decision processes are concerned I would like to keep things simple and not to
permit anything more complicated than can be implemented in the form of
some unidimensional threshold or comparison process and possibly some
affective evaluation.
Added to the argument so far, there are two rather interesting findings in

the literature, both showing that responses which were not emitted during the
experiment but could have been emitted, have a strong influence on the
actual response which is emitted. The first of these findings was reported by
NM° (1963) and consists in the fact that there is a positive relationship
between the rank of a word in a normative table and the number of other
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words in the table which elicit that word as a response. Converting this
finding into network terminology, we can say that the more numerous the
indirect pathways between a stimulus and a response in a network, the higher
the probability of that response. So the probability of a response seems to depend
on the number of different ways it can be reached by walking about in the
network. Yet only one of these pathways could have been used in finding the
word if it is emitted when it is reached for the first time. I am again forced to
conclude from this that it would be unreasonable to represent the word
selection process as simply a random walk over the associative network until
the correct word is hit for the first time.
The second piece of evidence comes from Treisman (1965). In this paper

she reports that when subjects guess a missing word in a sentence or in an
approximation to English text, the latency of the guess depends as much on
the possible responses, which have been made by other subjects, as it does on
the probability of the response which is actually made by the subject. This
finding would again be incompatible with a simple random-walk conception.
What is required is a mechanism in which all possible responses can exert an
influence on the selection of the eventual response. The model described in
the previous section has this property.

Word selection in individuals and groups

As far as a single trial of a word association experiment with a single subject is
concerned, the model described gives the following account of events. When
the stimulus word is presented a certain amount of activity is produced in one
or some of the word representations of the system. The stimulus, therefore,
produces a specific starting state. The system is now allowed to evolve through
free transitions for a certain amount of time. During this interval the activity
levels vary. At some instant the subject makes a decision to emit a response
word. The probability of choosing a word is determined by the relative level
of activity of that word. Since this decision is a stochastic one, variability of
behaviour is a characteristic feature of the model, in accord with our exper-
ience with verbal behaviour. Mathematically, the expectation process describes
the behaviour of the single subject.
Under normal conditions the stochastic nature of the transmission of

activity from one word to another will not manifest itself, owing to the very
large number of individual elements which can be expected to participate in
representing a word. The mean transmissions between words will therefore
be stable and behave in a more or less deterministic fashion. It can be expected,
however, that random fluctuations in the transmissions will have appreciable
effects under abnormal conditions, such as subliminal presentation of stimuli,
brain damage, etc.
When the word association experiment is repeated with a group of subjects,

using the same stimulus word, a number of possible factors contributing to
the variability of the results becomes apparent. The basic transmittance
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structure can be different from one individual to another. There is some
evidence in the literature that there is at least a strong similarity between the
associative networks of individuals. For the time being let us adopt the homo-
geneity of transmittance structure hypothesis as a deliberate simplification.
The response probabilities in the word association experiment depend on the

time spent on selecting the response. Empirically this phenomenon is known as
Marbe's Law which has been demonstrated by several investigators (Wood-
worth and Schlosberg 1955). In the model, time corresponds to the number
of transitions gone through by the branching process. As we have seen in the
previous section, the law of this change is described by the successive powers
of the transition probability matrix of the expectation process. The different
time intervals (latencies) spent by different individuals in a group on selecting
their responses will therefore also contribute to the variability of the results.
There is some evidence (Woodworth and Schlosberg 1955) that the distribu-
tion of latencies is rather close to the lognormal. The fact that this kind of
distribution could be expected to appear in a branching process model will be
discussed elsewhere.
Most of the available normative word association data is based on groups

of subjects and not individuals. Due to the fact that the subjects are not
constrained in the time they spend on selecting a response, such normative
data is always a composite of responses, which have been selected by letting
the word store go through a variable number of transitions. The contribution
of different lengths of transition chains to the total results obtained from a
group of subjects is dependent on the distribution of latencies. This is known
to be nearly lognormal, so that the contribution of shorter latencies is dom-
inant, and that of the longer latencies diminishes in a roughly exponential
fashion.

This suggests some ways of testing the model. If a word association network
is obtained from a sample of subjects, then an approximation to the one-step
network could be obtained by eliminating from the value matrix all entries
which fall below some arbitrary threshold value. According to Marbe's law,
the remaining high probability values correspond to short latencies, and
therefore also to a small number of transitions. The error in this approxima-
tion is due to three factors. First, by cutting off all the low probabilities one
also cuts off some one-step connections which happen to have a low value.
Second, the remaining high probability values are still a composite of one-
step and indirect connections. As discussed below, it is possible to eliminate
the contribution of indirect connections. Third, there will be an error com-
ponent due to the limited accuracy with which the probability values can be
estimated from a sample of a given size. The collection of network information
from a large sample is very expensive. For this reason it is of great interest to
see whether an approximation to the one-step matrix could be obtained froma
small sample. This turns out to be the case, as the use of a small sample has
the effect of the threshold operation described, since most of the information
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on the small probabilities is lost. The error of estimating the actual values will
be large. Still, as is shown below, if the small-sample network is used as an
approximation to the one-step network and the n-step network is obtained
from it, the resulting probabilities correlate well with the values obtained
directly by using a large sample to provide values for some of the nodes.

Clearly, a method for determining the basic one-step connection structure
of the word store for an individual, or for a group in a statistical fashion, would
be of great interest. It seems rather difficult to approach this problem empiric-
ally, although putting time pressure on the subjects, or selecting responses
which were given with a short latency are approaches currently being ex-
plored. It is, however, possible to work back to the one-step structure from
the normative empirical data with an approximation method, to be described
in more detail elsewhere. Essentially this method amounts to the iterative
removal of the contribution from indirect transition chains until a structure
is obtained which is capable of regenerating most of the information contained
in the original data.

Some empirical tests of the model

Two kinds of empirical tests have been carried out on the model so far. One
of them is the test discussed in the previous section and is essentially an
attempt at predicting the word association norms of a large sample of subjects
from association network data obtained from a smaller sample. The second
test was an attempt at predicting the word association response probabilities
to stimuli, which consist of several words, from a knowledge of small-sample
norms for the component words. The results of the first of these tests and the
procedures used will now be described. The results of the second test have been
described in a separate paper (Kiss 1967b).

Prediction of large-sample norms from small-sample networks

Word association networks were grown from four words as rootpoints:
BUTTERFLY, WHISTLE, MUSIC and SLOW. AS a short cut the lists of high
and low frequency associated to these words listed by Deese (1959) were
used instead of the first stage of growing the net. Deese lists 30 responses to
each of these words. These 4 x 30=120 words were interspersed with an
additional 140 irrelevant words (also taken from Deese's paper) by random-
izing the order of the resulting 260 words. Two lists of 130 words each were
then typed and duplicated for use in the collection of association responses.
Two separate samples of 50 subjects each were used to obtain responses to
each of these lists. The subjects were undergraduate students at Birmingham
University. The results were sorted by computer. Parts of one of the resulting
networks were shown in figures 2 and 3. For a sample of 50 subjects a matrix
of the kind shown in figure 3 has about 500 columns for 30 stimuli. In order
to reduce computer time and storage requirements, the matrices were arbitrarily
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restricted to 60 columns. The 30 columns corresponding to the stimulus words

were always retained if they occurred as responses.

The resulting four 30 x 60 matrices formed the input data to a computer

program which was written to evaluate 'flow graph transmittances'. The use

of flow graph methods in the context of word association networks is dis-

cussed in detail in another paper (Kiss 1968). Suffice it to say here that these

methods are equivalent to the calculation of M+ M2+ M3+, . . +MNMA X,

where M is the input data matrix and NMA Xis a parameter in the program,

Din

—1
10

—2
10

—3
10

0
0

00

0

cb

0

0
0

00
00 0
0

O 000

O 0. 0
O 0 0 40 0

0°
00 

8
O 00 0

& go 0 0 °  0000
O 

o o
o

0

0

CO 0 00

0 0

0

o 0

00

0

0

—3 —2 —1
10 10 10

Figure 4. Scatterplot of the response probabilities obtained by simulation of the model
(ps) and from words association norms (pm)

which determines the length of the longest pathway between stimulus and

response, which is taken into account during the calculations. Instead of

calculating the whole of the resulting matrix, however, flow graph methods

enable one to evaluate any cell of that matrix independently.

The flow graph transmittances were computed for each of the words

BUTTERFLY, WHISTLE, mum and SLOW with NMAX=1, 2 and 3. This
resulted in sets of words which can be reached in 1, 2 or 3 steps from the
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Ps Pm, Pm2
STOP .1403 .1298 .0560
BLOW *0864 .0555 .0600
TRAIN '0678 .0882 •1060
SHRILL .0518 .0307 .0300
NOISE .0504 .0723 .0660
DANCE .0472 - -
MUSIC .0428 .0079 .0110
SONG .0403 .0327 .0370
SING .0396 .0614 .0540
SOFT .0325 - .0010
SHOUT .0307 .0059 .0030
BIRD .0304 .0039 .0070
WIND *0279 .0009 .0020
TUNE '0269 .0485 .0320
LOUD .0234 .0168 .0400
GO *0233 - -*
HAPPY .0215 .0049 .0090
PIERCING '0197 - .0030
SOUND .0189 .0386 .0610
BOY .0172 .0257 .0370
WOLF .0172 .0178 .0230
GAME '0172 .0009- -*
CHOIR .0144 - -
NOSE '0122 - -*
DOG .0090 .0366 .0180
PIANO .0072 - -
WATER .0059 - -*
VOICE .0054 - -*
RED .0054 - -*
BARK .0052 .0009 -*
RECORD *0049 - -
GIRL .0046 .0386 .0430
TRAFFIC .0044 - -
QUIET .0044 - -*
EAR .0034 .0009 -*
ANIMAL '0034 - -
GAY .0032 - -*
MOUTH .0032 .0148 .0180
FOOD .0029 - -
TALK *0029 .0039 .0020
LOW .0029 .0009 -*
SHORT .0017 .0009 -*
PIPE '0016 .0019 -
HIGH .0011 .0059 .0070
SIGNAL .0009 .0019 -*
SHARP .0007 .0079 .0130
GONG '0007 - -
WOMAN .0007 .0099 .0050
LAD .0004 - -*

Table 1. Responses to the stimulus word WHISTLE
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stimulus, together with integers showing the transmittance (the strength of
the connection) value when all pathways up to NMAX in length are taken
into account. One such set for WHISTLE with NMAX=3 is shown in
the first column of Table 1. Hereafter such values will be denoted by PS when
the transmittances are normalized so that they sum to 1. These normalized
transmittances are shown in column two of Table 1, labelled ps. A complete
matrix of ps values will be denoted by S.
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Figure 5. Scatterplot of ps from the raw input data against pm

The row of the matrix S corresponding to WHISTLE (shown in Table 1)
represents the simulated response probabilities for this word. These values
should then correlate with the probabilities estimated from, e.g. the Minnesota
norms. In Table 1 the column headed pmi is based on the 1954, and the column
headed pm2 on the 1964 Minnesota norms.

Ideally the ps values should be equal to the pm values, but due to the simpli-
fications involved, one should not expect more than a linear relationship.
The results of such a comparison are displayed in figure 4. It can be seen that
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a linear relationship does emerge, and the points are fairly symmetrically
distributed around a line at 45° to the co-ordinate axes. The scatter increases
towards the lower probabilities, and it should be noted that the lowest pm
value which could occur is about 0.001 since the normative data is usually
collected from subject samples of the order of 1000. The calculated ps values
do, of course, go below this value. The correlation between ps and pm is 0.578.

—1
10

—2
10

—3
10

0

0
0
03
08

00
0

0

0

0

0

0
0

00

:

0

0

0
2?

d'

00

0

0

if

0

00

0

0

0
(9
°

0

—4 0
10

le°

—4 —3
10 10

—2
10 10 P

Figure 6. The effects of using an algorithm for obtaining the basic one-step transmit-
tances. The algorithm was applied to the four root words only

In comparison, figure 5 shows the scatter when the pc values are taken from
the raw data which serves as an input to the flow graph solving program. No
systematic relationship between the ps and pm values can be found in this
case. From this one can conclude that the raw input data contains very little
information about the correct normative probability values. This information
is contained mostly in the structure of the associative network which is
mapped out in obtaining the raw data.
The effects of using the algorithm for deriving the basic one-step transmittance
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values from the raw data are shown in figure 6. Here the ps values are
based on the resulting network, again using maximum pathways of length
three. The correlation is in this case 0.669. It should be noted that the algor-
ithm was used to obtain the one-step transmittances for the root words only,
and not for the complete networks. This accounts for the remaining scatter
at the lower probabilities.

Additional light is thrown on these results by noting that the reliability of
the Minnesota norms is 0.9 for the first 30 responses to the word WHISTLE.
This was obtained by correlating the 1954 and 1964 versions. The reliability
of the Ps values is also 0.9 on the basis of correlating the Ps values obtained
by using the two samples of 50 subjects. The largest expected correlation
would therefore be 0.9.
Taking into account the simplifying assumptions which have been made,

and also the rather unsatisfactory method which has been used in collecting
the data (presenting long unrandomized lists of stimuli), it can be concluded
that these results are in favour of the model presented.
The correlation of response probabilities obtained by simulation with

those obtained from word association norms is not, however, the only way of
evaluating the model. Another criterion can be set up on the basis of evaluat-
ing the model as an information retrieval system.
A retrieval system can make errors of two kinds. It can fail to retrieve

items which are relevant to the query, or it can retrieve irrelevant items.
Indeed, given that there is some way of determining whether any given item
is relevant or not, it can belong to one of the following four cases: (1) a 'hit'
if it is relevant and it is retrieved; (2) a 'false drop', if it is irrelevant and it is
retrieved; (3) a 'miss', if it is relevant and it is not retrieved; (4) a 'correct
rejection', if it is irrelevant and it is not retrieved. On the basis of the probab-
ilities that any of these events will occur, one can define a number of ways of
evaluating the effectiveness of a retrieval system. One of the most convenient
methods was proposed by Swets (1963) in terms of statistical decision theory.
The proposal amounts to using the two well-known parameters of signal
detection theory, d' and beta, as measures of retrieval system effectiveness and
query breadth, respectively.
In attempting to apply signal detection theory to the evaluation of the

word store model, one way of proceeding is to assume that relevance is
decided by whether a given response word occurs in the association norms.
The effectiveness of the model is then evaluated by drawing up a four-fold
table, divided according to whether words are retrieved or not, and whether
they occur in the norms or not. The entries in such a 2 x 2 table would be the
number of words which fit into any of these four classes. From such a table d'
and beta can be determined. One can also obtain ROC curves by setting up
such tables at successive threshold probability levels PS.
I shall not attempt a detailed application of these ideas here. To convey

some idea of how the model performs, Table 1 shows the list of words
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retrieved by the model when NMA 1=3 for the stimulus WHISTLE. Here

Ps has its usual meaning, pmi is the probability estimated from the 1954
Minnesota norms, and pm2 is the probability from the 1964 norms. It can be

seen that there are 50 words which are retrieved by the model. It should be
remembered that the input data was arbitrarily truncated to 60 responses
from about 500. It is not therefore known at the moment how many words
can be reached in 3 steps from the stimulus, using the complete network.

Neither is it known how many words among those which would be retrieved
beyond the 50 shown would also occur in the norms. However, it can be seen
that at the lower probabilities the agreement between the norms themselves
is not very good, and therefore it would not be surprising if the model did not
perform very well with these words. A star in the pm2 column means that
although the word does not occur in the sample of 1000 undergraduates, it
does occur somewhere in the other age samples. The 1964 Minnesota norms
do not list frequencies of 1 unless they occur as responses in some other sample
with a frequency greater than 1. For some words, therefore, the probabilities
are not known, only the fact that they do occur. It is apparent that out of the
50 words retrieved by the model (one of which is the stimulus word WHISTLE
itself, with a probability of .0882, not shown in the table) 30 occur in the
1954 norms, and 40 in the 1964 norms.
In conclusion it can be said that the ability of the model to recover the

highly relevant words without too many irrelevant ones is fairly good in view
of the simplified manner in which it has been simulated.
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The Game of Hare and Hounds and the
Statistical Study of Literary Vocabulary

S.H. Storey
and
M. Ann Maybrey
The University, Liverpool

INTRODUCTION

In the early sections of this paper, a technique for enabling a digital computer
to be taught to play a reasonably respectable game of Hare and Hounds is
described. The results of a number of experiments with the techniques thus
developed are described and discussed. The paper concludes with a dis-
cussion of the possibilities of using results of this type to test theories of the
statistics of literary vocabulary.

THE GAME OF HARE AND HOUNDS

The game of Hare and Hounds is a board game played on the usual 8 x 8
chessboard. Four hounds and one hare are required. The relative positions
of the pieces at the start of a game, in the version of the game used for the
purposes of the paper, are shown in figure 1: that is to say, only the white
squares of the board are used, and the bottom right hand of the board is
assumed white. Moves are made as in draughts, the hounds moving only
forwards, that is, from the bottom to the top of the board, whereas the
hare may move either forwards or backwards. The object of the hare is to
reach the bottom of the board. The object of the hounds is to prevent this and
eventually to trap the hare so that it cannot move. The hare may start from
any of the top four (white) squares of the board, but normally starts from the
centre.
The game is not as simple as it would appear, and the authors know of no

concise algorithm for playing either the hare or the hounds. The level of
difficulty of the game is substantially below that of draughts, but considerably
higher than that of such games as noughts and crosses where a definite
algorithm is known to exist (see Booth and Booth 1953).
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TOP

/7

BOTTOM

Figure I. Starting position

THE PATTERN RECOGNITION PROBLEMS

Experience of the game has shown that, on a board of this particular width,
the hounds have a distinct advantage, and, in the hands of a player of even
moderate competence, should probably win every time. Accordingly, it was

decided to teach the computer to play the hounds. The method adopted was

that of teaching the computer to recognize a position and remember (from

its coaching alone) which move the hounds should appropriately make.

However, the number of positions which arise from the distribution of four

identical hounds and one hare on the thirty-two available white squares is

(32 x 31 x 30 x 29 x 28) / (4 x 3 x 2). 1,006,880. In spite of the fact that

roughly half of these positions would not be needed (those for which the hare

had succeeded in moving behind the hounds, at which point the game would

normally be abandoned), the technical problems involved in storing and

searching such large amounts of data could safely be described as forbidding.
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At this point two observations were made which at once so greatly re-
duced the problem that the implementation of a game-playing program
became trivial.

First, it was noticed that the move made by a human player in response to
the position shown in the top half of figure 2 was frequently the same,
relative to the position of the pieces, as that to the position in the bottom half.
(The two sets of pieces are shown on the same board to save space.)

TOP

//

BOTTOM

Figure 2. Equivalent relative position

In figure 2, if the correct move in the lower half is to move the rightmost of
the two hounds on the bottom row, then the corresponding correct move in
the top half is to move the leftmost of the two hounds nearest the bottom of
the board. Further, it was found that by numbering the white squares in the
serpentine fashion shown in figure 3, any position can be reduced to its
equivalent baseline position by simply subtracting the highest possible
multiple of four from the numbers specifying the position. Thus, the position
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in the top half of figure 2 is described as having hounds at 21, 22, 25, and

27, with the hare at 29. Subtracting 20 from each of these numbers (a larger
multiple of four would yield negative values) leads to the configuration 1, 2,

5, 7, and 9, which is the description of the configuration in the lower half of

figure 2.

TOP

28 29 7 30 31

/1 /27 ' / /26 7,  25 24

20 . 21 /// 22 23/1

19 7/ 18
7 /

17 16

12 / 13 7/ ' 14 15

11 10 9 , - / 8

4
/

/
5 6 7/ 7/

0' '3 2 1
/

BOTTOM

Figure 3. Numbering scheme adopted

It was accordingly assumed that the computer should base its response on

the equivalent baseline position only. This assumption had the advantage of

reducing the maximum number of patterns to be stored by a further factor of

six to seven; such an assumption, however, ignored the possibility of an

'edge effect', where the top edge of the board might influence those moves

made in its proximity.
Although this assumption greatly reduced the number of configurations to

be considered, there still remained the possibility of having to store some

100,000 or so positions. The second observation made, however, suggested
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that the actual number needed would in fact be very much smaller than this.
It was noted that, in the case of a human player, once a pattern was recog-
nised and a particular move was found to be successful, the same response
was made on all subsequent occurrences of the configuration. Further, as a
human player playing the hounds gained experience and control, the number
of configurations which he allowed to arise appeared to be very small. This
seemed partly due to the fact that in retaining control, the experienced player
could only permit himself a limited number of interlocking responses, and
partly that, in many cases, the position of the hare was irrelevant.

Accordingly, a study was begun on the assumption that only a few hundred
configurations would be needed, which of course meant that the whole
program could be held within the high-speed memory of the computer.

PROCEDURE

As soon as the concepts described in the previous section were adopted, the
techniques necessary to 'teach' the computer to play, and to use the computer
to play actual games became very simple. So simple, in fact, that it was
found unnecessary to use a computer at all, and a substantial portion of the
results presented below were obtained with pen and paper. They will con-
tinue to be discussed, however, in terms of a computer.
To start the process, the computer is 'shown' a sample game between two

human players (in which the hounds have won). The computer 'studies' the
patterns and responses made during the game and 'assimilates' them. In
practical terms, a list of the patterns and corresponding moves made during
the game is read into the computer. The computer then reduces all the patterns
to the equivalent baseline patterns and makes a list of them, ordered, in the
first instance, by frequency of occurrence, and, within each frequency,
numerically by hound patterns. The form of the list held in memory is given
in Table 1.1 This table shows the state of the computer's memory after
assimilating one and five coaching games with each of its two instructors.
The information consists of (i) a hound pattern (reduced); (ii) the source of
the hound move (S); (iii) the destination of the hound move (D); and (iv)
the positions in which the hare has been observed. In the original computer
program, the hare positions, which are also reduced to their baseline equiva-
lents, were packed into a single word, but experience has shown this not to
be necessary.
Once the computer has available a memory of the game, that is, a list of

baseline patterns and responses, it is in a position to begin playing actual
games. The current position of the hounds and hare is fed into the computer.
This is then reduced to the equivalent baseline pattern. The computer then
searches its memory of the game for the pattern and, on finding it, prints out
the move which it has learned to correspond to this pattern (suitably re-
converted to match the current position values). There are exceptions to this

1 The tables employed in the (manual) preparation of the memory included the
frequencies.
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COGNITIVE PROCESSES: METHODS AND MODELS

behaviour. First, if the computer cannot find the required hound pattern in its
memory of the game at all it informs its opponent of this and asks for instruc-
tion. Second, if the hound pattern is listed, but the hare position is not, the
computer selects the response corresponding to the most frequently occurring
configurations with the correct hound pattern. If a variety of hare positions are
associated with the listed hound pattern, the computer notes that it is un-
certain of the correct move, prints the suggested move, and asks for instruc-
tion. If only a single position has so far been associated with the listed hound
pattern, the computer notes great uncertainty, prints the suggested move and
again asks for instruction.
This technique for playing has worked realistically in practice. In the event

of the computer having no record of the configuration at all, the move, is
made for it by the instructor and the game then continues. In the cases so far,
when mere uncertainty has been noted, the suggested move has almost
invariably been unsatisfactory to the instructor. In cases of great uncer-
tainty a substantial proportion of the suggested moves have been rejected by
the instructor and another move substituted. It may be of interest that, using
this technique, the computer, with a memory of only one game (the first
shown in Table 1), successfully defeated a consortium of two relatively in-
experienced human players without assistance.
Normally, however, the computer has played its instructors. If the com-

puter wins the game (and, with the help of its instructors, it invariably does)
the resulting game is assimilated into its memory of the game in much the
same manner as was the starting game. As has been noted, the computer is
capable of defeating human players without help after assimilating a single
game. After assimilating five it is probably a better player than its instructors.

EXPERIMENTAL RESULTS

The game of Hare and Hounds, although straightforward, is of sufficient
complexity for the possibility of more than one successful method of playing
the hounds to be appreciable. In this case, if the computer were to be taught
to play by two different instructors, there should be a measurable difference
in the style of game played by the computer in each case. If such differences
arise, the process described here might form the basis for reasonably precise
studies of the influence of the teacher on the learning process. The perfect
memory of the computer is an advantage for such an study, since it avoids a
serious source of experimental error.

Accordingly, a series of five coaching games was played with the computer
by each of two instructors, denoted by A and B. The process was halted after
five games, since by this time the computer was rarely surprised at anything
its instructors did, and simply played remorselessly on to a win. The corn-
puter was thus considered, at the end of five games, to have learned most of
what its instructors could provide. The results of this experiment are given in
Table 1.
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One source of error which should be noted at this stage lies in the fact that,
although for all games except the first the computer was coached exclusively
by the same instructor (playing the hare), the first of B'S games the computer
saw was played between A and B. Thus, the final result of the teaching process
is not quite the work of a single instructor. This should, of course, tend to
reduce the differences in the final results, but does not, in fact appear to have
had any serious effect.

INSTRUCTOR A INSTRUCTOR B

1 2 3 4 5 1 2 3 4* 5*

0 40 40 38 36 36 35 33 33 34 34
1 2 0 0 2 2 8 6 4 2 2
2 3 0 2 0 0 4 3 3 4 2
3 2 4 1 2 0 1 3 3 2 3
4 0 0 1 1 3 1 1 1 2 1
5 1 2 1 1 0— 1 0 0 1
6 1 1 2 0 1— 1 1 1 1
7 — 0 0 2 0— 1 1 0 1
8 — 0 1 1 1 — — 1 0 0
9 — 1 1 0 0 — — 0 0 0
10 — 0 0 0 2 _7 — 1 1 0
11 — 0 0 1 0 — — 1 1 0
12 — 1 0 1 0 — — — 1 0
13 — — 1 0 0 — — — 0 1
14 — — 0 0 1 — — — 0 0
15 — — 0 0 1 — — — 0 0
16 — — 1 0 0 — — — 1 2
17 — — — 1 0 — — — — 0
18 — — — 0 0 — — — — 0
19 — — — 0 0 — — — — 0
20 — — — 1 0 — — — — 0
21 — — — — 0 — — — — 0
22 — — — — 1 — — — — 1
23 — — — — 0 — — —
24 — — — — 0 — — — — —
25 — — — — 1 — — — — —

S1 25 49 74 99 124 23 41 65 79 104

S2 93 347 700 1177 1880 49 171 429 725 1328

K 1088 1241 1143 1100 1142 491 773 862 1019 1132

• The last two games are not in a direct sequence.

Table 2. Number of moves appearing with frequency F after N games

Table 2 presents results which are intended to show that differences in style
resulting from different instructors are indeed apparent (although this point
will be discussed in more detail below). The hounds have available, on the
base line scale as well as on the unreduced scale, 49 possible moves. Table 2
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gives the number of moves occurring once, twice, and so on, in the course of
five coaching games by both A and B. In the case of instructor B, who was
initially unacquainted with the game of Hare and Hounds, some initial moves
were abandoned as a result of difficulties with the edge effect mentioned
above (because of this some moves retained in the memory are very unlikely
to recur). The final sequence of games in both cases is such as would be pro-
duced by players playing on an infinitely long board. It is worth noting that,
of the many configurations common to the two final memories, only two have
different moves specified. All of these seem plausible.

GAME PLAYING AND LITERARY COMPOSITION

The frequency distribution of moves shown in Table 2, although of interest,
does not make comparisons between the style of play taught to the computer by
A and 13 particularly easy. For direct comparisons to be possible it is nec-
essary to look somewhat more closely at the problem of calculating the
characteristic properties of frequency distributions of this form.
The most interesting measure of this type is suggested by the very close

analogy between the mechanism of playing a game of Hare and Hounds and
that of composing a piece of prose. It is not difficult to see that the selection of
the appropriate move for a given configuration corresponds closely to the
selection by a writer of the correct word for his vocabulary for a given con-
text. The fact that the hounds are trying to play a winning game can be thought
of as equivalent to an attempt to write a piece of prose on a given subject, and
so on.
This analogy between game-playing and literary composition suggested

that there might be available in the literature on the statistical study of
literary vocabulary a suitable measure which could be borrowed. Such a
measure is, in fact, available as a result of the work of Yule (1944), who
defines a 'characteristic' measure

{ S2 — s1
K = io,000

'-'1
which he uses to study the frequency distributions of nouns in the works of a
number of authors. Here

and

S2 = EPA,

where the factor 104 is introduced by Yule purely for numerical convenience,
and there are f, moves occurring i times.

It is beyond the scope of this paper to go into the detailed justification of
K as a characteristic, independent of sample size, for the distributions of
interest here. The reader is referred to Yule's work (1944), with the remark
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that all of the arguments used by Yule to justify the use of K in work on
literary vocabulary frequency distributions can be carried over unchanged to
game-move frequency distributions.
The characteristic K can thus be used as a single measure for the direct

comparison of the move frequency distributions produced in the computer
by instructors A and B. Table 2 includes the values obtained for K at the end
of each of the five games played by the computer with each instructor. For
greater ease of comparison, the value of K in both cases are plotted in figure 4.

1500-

1000

Am,

500_

VIMO

0

0

o o 9

0 Instructor A

+ Instructor B

1 2 3 4
number of games played

Figure 4. Variation in K with experience

CONCLUSIONS

It is not possible to draw firm conclusions about the answers to the two main
questions which this work has raised. However, the results obtained so far
have been sufficiently suggestive to encourage further work.
The first question, which was concerned with measuring the effect of the

teacher on what is learned by the pupil, is intimately connected with the
question of whether or not there is a single 'best' concise algorithm for
playing the hounds. The results which are of interest from the point of view of
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both these questions are given in figure 4. That the characteristic K is indeed
sensitive to the influence of different instructors on what the computer
learns is clear from the very substantial differences in the K values for A and
B in the early games learned. Thus the use of K and other measures of this
type should make precise studies of the influence of the instructor (and pos-
sibly of the teaching method) on the final results possible.
The second point of interest about the results given in figure 4 is the clear

suggestion that the K values of the two instructors appear to be tending to the
same value. The behaviour observed in the two K values may be due to the
fact that initially instructor A had had substantial experience of the game
whereas instructor B had not. As the experiment proceeded, instructor B also
learned from experience how the game should be played, so that his char-
acteristic tended towards that of the initially more experienced A. This sug-
gests that experienced players should teach the computer to play a game with
the same K, and this, in turn, implies that there does appear to be a practical
algorithm for playing the 'best' hound game. However, just what this algo-
rithm is would have to be found from other considerations.
Another simple measure obtainable from Table 2 is the proportion of

moves not seen by the computer. With B, the percentage of moves not used
decreased only from 71 per cent to 69 per cent over the five games, whereas
for A the corresponding figures are 82 per cent and 74 per cent. In other
words, the inexperienced B introduced most of the practicable moves in the
first game, without regard for context; the experienced A introduced new
moves much more cautiously.
The analogy pointed out above between literary composition and game-

playing has so far proved satisfactory, although further work is needed.
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The Holophone - Recent Developments

D. J. Willshaw
and
H. C. Longuet-Higgins
Department of Machine Intelligence and Perception
University of Edinburgh

In this paper we review some of the properties of the holophone (Longuet-
Higgins 1968a and b), which is a device analogous to the holograph (Collier
1966) but working in time rather than in space. It was invented to illustrate
the principle of non-local information storage-as applied to temporal signals,
a principle which may very well be used in the human brain. But whether or
not this is so, it seems worth while to explore the behaviour of the holophone
in some detail, since the device might find application in man-made memory
systems.

Before embarking on mathematical details, it may be helpful to indicate
some of the properties of the holophone, viewed as a black box with one input
channel and one output channel. Three properties are of special interest:

1. It can be used to record any input signal which lies in a certain
frequency range and does not exceed a certain length. If part of a
recorded signal is then put into the holophone, the continuation of
the signal emerges, in real time. In this paper we investigate the
amount of noise associated with the playback.

2. Several signals can be recorded on the same holophone. If the
signals are random, an input cue from one of the signals will evoke
the continuation of that same signal. The accompanying noise
increases with the number of recorded signals.

3. The holophone can be used, like an optical filtering system, for
detecting the occurrence of a given segment in the course of a long
signal. What one does is to record on the holophone the segment
of interest followed immediately by a strong pulse. The long signal
is then played into the holophone; immediately after an occurrence
of the recorded segment a pulse will emerge from the holophone.
This property has not been discussed before, and we shall present
the relevant theory.

349



COGNITIVE PROCESSES: METHODS AND MODELS

In essence the holophone is a bank of narrow-pass filters, connected in parallel
to an input channel, and also connected in parallel, through amplifiers of
variable gain, to an output channel. The memory of the system resides in the
gains of the various amplifiers. Figure 1 illustrates the layout of the system.
The recording of an input signal is carried out in two stages. The first

stage, which corresponds to the formation of a latent image in photography,
is to measure the power transmitted by each filter during the passage of the
signal. This calls for a set of integrators, which are not shown in figure 1.

1(t) hk(t) Akhk(t)

g (t)

Figure 1

The second stage, corresponding to photographic development, is to turn up
the gain of each amplifier by an amount proportional to the value stored in
the corresponding integrator. The overall result is to change the response
function of the holophone by an amount depending on the temporal auto-
correlation of the recorded signal, and this is the secret of the device. But
these cursory remarks are unlikely to carry conviction without further
argument, so we now give a brief account of the underlying mathematical
theory.

Let f(t) be an input signal and let hk(t) be the output of the kth filter. Each
filter must respond linearly

.0
h k(t) = Rk(r) f (t t) dr,

and its response function must be of the form

P - urRk(t) = -e -- cos kin.
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The quantity p in this expression represents both the bandwidth of every
filter and the spacing between the resonant frequencies of neighbouring
filters, so that the given frequency range is fully covered. For a particular
setting of the amplifiers the output signal g(t) is given by

g(t) =Akhk(t),

where Ak is the gain of the kth amplifier.
Suppose now that we wish to record a signal f(t) which is over by the

time t= O. We arrange for the integrators to measure the quantities
0

Wk(f) f ) = _mf Mei" h(t)dt,

which may be thought of as the amounts of work done by f(t) upon the
various filters, with greater weight attaching to the more recent events. (It
can be shown that the Wk are essentially positive quantities, a point of
importance for what follows.) Subsequently, at leisure, we increase each
gain A k by a proportional amount, namely

AA k = (2nAlp)Wk.

This process has the effect of altering the response function of the holophone,
defined by the equation

g(t) = f (t—r) dr.

Detailed analysis shows that when p is small the change in M due to the re-
cording off is

AM (r) = f (r)e2 `'-')f(tl—r) dt'.
- co

This is a time-weighted autocorrelation integral of the recorded signal. If
the duration off is short compared to p-1, the exponential term in the inte-
grand may be neglected; if it is much longer the earlier part of the signal will
be forgotten. The quantity /4-1 therefore sets an effective upper limit on the
length of signal that can be recorded.

Suppose that initially all the amplifier gains are zero, so that M(r):.--. 0,
and that a signal! is then recorded. After the recording the response function
of the holophone will be given by the above expression for AM(r), and a
new input signal f ' will give rise to an output

g(t) = Af AM (Of'(t—r) dr

=Af [1
a) 0

f(r)e29(̀ '-')f (e—T) drif (1—r) dr.
o co
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It might be supposed that this output is merely an indistinct ̀ echo' off', and
in general this will be the case. But iff is a sufficiently complicated signal, and
if f ' happens to be an excerpt from it, a different conclusion must be drawn.
To see why, let us begin by writing g(t) in the alternative form

g(t) = .1f f(e)C(t,e) di',

jwhere C(tX) = f (i' --z) e4(̀'-') f ' 0 — T) dT.
0

For times t after the end of the cue f ', the integral C becomes a function only
oft—t':

co

CO

C(t—t')— .1 _.f(e—t+s)e4(e—i+s)fi(s) ds.
It then represents (see figure 2) the degree of resemblance between the cue f '
and the section off that was played into the holophone t—t' units of time
ago. If f is sufficiently irregular, C(t — t') will be small unless t—t' equals
some fixed time interval O. We deduce that in these circumstances

g' (t) = f (e)C(t — t') de cc f (t-0),

so that the output g' will approximate to a continuation of the recorded
signal f, carrying on from the moment at which the cue comes to an end.
This is our first important result, anticipated at the beginning of the paper.

0

Figure 2

1 >time

The recall of a whole recorded signal by presentation of an excerpt from it
is analogous to the phenomenon of 'ghosts' in holography. Two objects are
illuminated by the same coherent light source, and the scattered wavefronts
are made to produce an interference pattern on a photographic plate. One
of the objects is removed, and the other is illuminated as before and viewed
through the interference pattern. A ghost of the absent object is seen beside
the object which is actually there. In the temporal case the recorded signal f
represents both objects, while the cue f' represents the object which was left
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in position during the viewing process. There is only one non-trivial difference
between the two cases: the cue!' can only evoke that part of the recorded
signal which followed it, not the part which preceded it. It is possible, how-
ever, to evoke a time-reversed form of the earlier part off by playing the cue
in backwards! The interested reader may care to establish this curious
property for himself.

Before turning to the question of noise in the playback we shall explain how
the holophone can be used as a recognition device, since this promises to be
one of its most useful applications. Suppose that we are faced with the
problem of detecting the occurrence of a short segment!' in the course of a
long signal f. (Both f and!' are assumed to be 'noise-like', having no marked
periodicities.) What we do is to record on the holophone a signal consisting
off' followed immediately by a strong pulse at t =O. The response function
of the holophone will then become

= 21 [6(0+ f' (t')]e2P(''")[3(t' f' (I' )] dt'.

Expansion yields four terms, of which the third vanishes because f' (sr )=0
for positive and the fourth may be neglected if the pulse 6(0 was strong
enough compared with the segment f' (t'). On this assumption

M(t) =

so that g(t) = Af (0+ 0e-2" f' (—T) f (t —r) dr.

In this expression for the output evoked byf(t), the first term is uninteresting,
being merely a playout off itself. But the other term is a weighted correlation
between f and f', and will make a sudden sharp contribution to the output
whenever the recently received section off is identical with the recorded
segment f'. The prepared holophone therefore emits a sharp pulse immed-
iately after any occurrence of the segment which it has been designed to
detect. This property of the holophone is precisely analogous to the use of
holography in the detection of special features such as printed words in an
extended spatial pattern such as a page of a book.

An important question about the holophone is: how much noise will accom-
pany the playback evoked by a cue taken from a recorded message? There is
one special case which can be quickly disposed of, corresponding to the case
of a collimated reference beam in holography. If the signal to be recorded
consists of a strong pulse followed by a weaker signal of some sort, then after
the recording has been completed the input of a pulse will evoke the weaker
signal virtually free of noise. The reason is simple: in our earlier expression
for C(t— t'), f'(s) becomes 3(s— t2), that is, a pulse at time t2, and in
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f(t'—t+s) the only significant term is that arising from the recorded pulse,
namely (5(t'—t+s—ti), where 12-11=0. Hence

C(t—t') = e2'4(̀ '-'2)3(e—t+ 0),

and our expression for g(t) reduces to

g(t)

= eat (t —0) cc f (t —0).

But the more general case must be considered, and to this end we have
reformulated the mathematics in discrete terms, assuming all signals to be
short enough for the exponential decay factor to be neglected. For further
convenience we have also imposed a cyclic boundary condition on the time
dimension, and regarded each signal as a set of numbers associated with The
vertices of a regular N-sided polygon. The recorded signal is then represented
by a set of N numbers, each of which is assigned the value +1 or —1; the cue
is taken to be a limited selection of L of these numbers at adjacent vertices,
the other N—L being assigned the value 0. No loss of generality is then
suffered by writing the cue as

f;, • • f2, • • •, fL, 0, •••, 0],
where the recorded signal is

[A, f2, • • • , fid•
With these simplifications the following non-rigorous argument leads to a
tentative expression for the signal-to-noise ratio of the 'playback' [ gLA-1, • . .
gig] evoked by the cue [ft, . ..,fAd. Defining Cm by the equation

Cm =
Il

we may write gi in the form

gi 0-- Efici_j.

The sum on the right-hand side includes N terms, one of which may be
expected to be much larger than the others, namely that for which The
value of Co is in fact just L, since each of the components off' matches one
off. But every other term Ci_j is the sum of L elements each of which is +1 or
—1 with equal probability (if the components are random). So taken to-
gether these terms have a variance equal to (N-1 )L, while the square of the
amplitude of the signal - the term in Co- is just L2. The signal-to-noise ratio is
therefore DI(N-1)L, which simplifies to LIN when Nis large.
The above argument suggests that the signal-to-noise ratio should be

approximately equal to the cue length divided by the length of the recorded
signal (for long signals), but we thought it advisable to check the result by
computer simulation. Pop-2 was chosen as the program language. The
following operations were carried out:
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1. The N components of an input signal were generated with the aid of a
pseudo-random number generator.

2. The first L of these were used to calculate the correlations Cm
defined above.

3. The N—L components of the playback signal were then calculated
according to the above equation for gi.

4. Of these components approximately half arise from signal components
equal to +1, and for this subset the signal-to-noise ratio was
calculated from the formula

(SIN), = (g.)21((g2).u_(ga.)2).

5. The same was done for the components arising from signal
'components equal to —1, and the two results were averaged to give
an overall signal-to-noise ratio for the entire playback.

A sample set of results is shown below. A single 801-component signal had
been recorded, and cues of varying length were used to recall it. The com-
puted and theoretical values of the signal-to-noise ratio are tabulated against
the number of components in the cue.

Length of cue (L) SIN (computed) SIN (theoretical)
150 0.214 — 0.187
200 0.252 0.250
250 0.301 0.313
300 0.396 0.375
350 0.412 0.466
400 0.513 0.500
450 0.553 0.572

The computed signal-to-noise ratios bear out the Theoretical expression
rather well in this case.
We also thought it advisable to test our theoretical estimate of the signal-

to-noise ratio when several signals have been recorded on the holophone, and
a cue from one of them is used to recall the rest of it. A straightforward
extension of our earlier argument indicates that in this case the signal-to-
noise ratio should equal the cue length divided by the combined length of all
the recorded signals. To test this prediction we recorded ten signals, each of
151 components, and provided cues of varying length from arbitrarily
selected signals. The results were as follows:

Length of cue (L) SIN (computed) SIN (theoretical)
31 0.0175 0.0206
46 0.0348 0.0303
61 0.0354 0.0404
76 0.0372 0.0503
91 0.0375 0.0604
106 0.0450 0.0701
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Here the agreement is less good, so we checked our last three values by
repeating the computation on a fresh set of signals, with the following
results:

76 0.0450 0.0503
91 0.0436 0.0604
106 0.0500 0.0701

Presumably the discrepancy between the computed and the theoretical
ratios is due to the non-independence of the various C., a feature which
assumes greater importance for smaller values of N. Be that as it may, the
computations show that the primitive theory (which assumes them inde-
pendent) is at least roughly correct, and may be used as a basis for rough
predictions about the behaviour of the holophone (and, for that matter, the
holograph).

The above results show that the holophone will indeed function as a content-
addressable memory, but that in this role it has rather distressing noise
characteristics. Used as a recognition device, however, it should perform
much more satisfactorily, and might even assume some technical importance.
Let us briefly examine the theory of this process, using the same simplifica-
tions as were introduced earlier. Using [fl,fi, to denote the signal
which is to be recognized, and [. f_2,fo,f2 , . . .] to denote the input signal,
we obtain the following simple expression for the detection signal:

L-1

Agi= E
1c=0

If for some value of i the relationship

fi—k=

holds for k=0, . . . , L-1, then the ith component of the detection signal
will be a spike of height L, and a spike of this height will signify with cer-
tainty the occurrence off' in f.
A more interesting and realistic problem is that of detecting a slightly

noisy version off' in the longer signal f. The amount of noise in f can be
specified by a parameter p which is the probability that the sign of a particular
component off' is wrongly quoted in the input signal f For this noisy occur-
rence off' to be detected, the threshold of the detection device must be
lowered below the value L, but not too much or else it will emit false alarms.
A sensible criterion for optimizing the threshold is to lower it until the
increase in false-alarm probability equals the increase in probability of detec-
tion. On this criterion the optimum threshold T is found to have the value

T=L(1+ 2 /log2p),

when p is small and L is large.
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Like the holograph, the holophone is a non-local, content-addressable
storage and retrieval system. It further resembles the holograph in employing
highly parallel logic and in being relatively invulnerable to damage of indi-
vidual components. It was these characteristics which seemed to recommend
it as a possible model of the human temporal memory — though in this con-
text it must be viewed with all possible circumspection. The computations
which we carried out to simulate its performance brought home to us the
extreme difference in speed between the action of a holophone (which de-
livers its playback in real time) and the running of a computer program
designed to simulate it. The difference is due, of course, to the fact that if the
recorded signal is of length N, then N3 separate acts of multiplication are
needed to construct the output evoked by a cue. It is for this reason that the
holophone, like the holograph, may be more useful as a hardware device
than as a software subroutine — if it eventually finds a place in computing
technology.
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Pictorial Relationships-a Syntactic
Approach

M. B. Clowes
Division of Computing Research,
C.S.I.R.O., Canberra

1. INTRODUCTION

Grammars or syntax specifications address themselves to the characterisation
in symbolic terms of the structure of complex expressions. Two types of
expression of empirical interest have been studied: sentences in English and
other 'natural' languages, and programs written in some high-level procedural
language like ALGOL. Expressions in these languages consist of sets of
elements (words and characters) co-ordinated with one another according
to the sensorily manifest relationship 'alongside', more commonly termed
'followed by'. (In the case of context-sensitive phrase-structure grammars it
may also be 'on both sides of', more commonly termed 'bounded by' or 'in
the context of'.)
A grammar seeks to relate, by translation or mapping, this manifestation

of the expression into another in which the same elements together with
others (e.g. 'Noun Phrase', 'Simple arithmetic expression', etc.) are co-ordin-
ated by abstract relationships which in the case of English and ALGOL is the

. single relationship 'parts of'. The notation used to exhibit this relationship
is some tree-structure representation in which elements are associated with
(i.e., label) the nodes of the tree.
A syntactically motivated parser is a device which accesses elements of the

sensorily manifest expression, by application of an addressing procedure, e.g.
'Next char' which embodies their sensorily manifest relationship. The
parser develops a representation in which elements are co-ordinated by the
abstract relationship ('parts of'), through application of an addressing
procedure, e.g. 'Ti' or 'Cdr' (Woodward 1966) which embodies this abstract
relationship.
In a free paraphrase of Chomsky we might say that a parser translates

some set of surface relationships on elements, into some set of underlying
relationships on those (and other) elements. Thus, according to Chomsky
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(1965, P. 171), the functional relationship 'Subject of' is to be understood
as the relation of 'dominated by' obtaining between a Noun Phrase node and
the S (entence) node which immediately dominates it. Needless to say this
cannot be translated simply into the surface relationship 'followed by' — hence
Transformational Grammar.
The foregoing differs from 'traditional' accounts of generative grammar in

according a central role to the relationships manifest in the surface and the
underlying representation of an expression rather than focusing attention
upon the categories of element (e.g. NP, s.a.e., N, var) and the properties
or features which they might be thought to possess. The need to reformulate
the account of generative grammar in this way appears essential to the
characterisation of expressions of a non-linguistic kind and in particular
to pictorial expressions (Clowes 1968).
There have been several attempts to write generative grammars for pictorial

expressions notably those of Kirsch (1964), Narasimhan (1966) and Shaw

(1967).
In the case of Kirsch's 'triangle grammar' — a set of rules which express

addressing (and labelling) operations upon a two-dimensional array of
positions — we observe the implicit identification of the surface relationships
'to the left of', 'below', etc., predicated on positions as elements. The
'grammar' specifies no other kind of relationship. Specifically it fails to

exhibit as parts of the triangle whose structure it purports to describe, the
'edges' of the triangle.

Both Narasimhan and Shaw utilise surface elements consisting of two or
more distinct and distinguished positions (called Head, Tail by Shaw and

vertices numbered 1, 2, 3 by Narasimhan). Shaw defines these elements by
providing co-ordinate values for Head, Tail; thus we may compute the rela-

tionship between them, e.g. length or relative position, but this rela-
tionship is not structurally exhibited. Both authors predicate the surface
relationship 'coincidence' on pairs of positions belonging to two different
elements. The grammars both assign the underlying relationship 'parts of'.

Furthermore on this view of syntax it becomes clear that Minsky's (1961)
picture language is one in which a wide variety of named relations, e.g.
ABOVE, LEFT, INSIDE is assumed. Constraints such as 'parallel' in

Sketchpad (Sutherland 1963) would appear to have a similar role. An
immediate distinction between string expressions (English sentences, say) and
pictorial expressions now emerges.
The variety of relationships which we can readily identify and name is

much greater in pictorial expressions than in string expressions. We should

note that one way to look at Chomsky's 'Aspects of the Theory of Syntax' is
an attempt to account for, among other things, the grammatical relationships
Subject-Verb Verb-Object (pp. 64, 73). This attempt fails in the author's
view precisely because of the failure to reformulate the purpose of generative
grammar in relational terms. It seems likely that other problems inigenerative
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grammar might benefit from this reformulation, when this distinction
between string and pictorial expressions would lose much of its force. It would
remain true, however, that linguistic relationships are harder to identify and
name. This is the essential fact that makes it necessary — if we are to adopt
any of the methods of generative grammar — to reformulate syntax as having
to do with relationships rather than with what is related.
Given that the foregoing analysis is true, it follows that we will have to

make provision in the metalanguage (in which we will couch picture gram-
mars) for the overt characterisation of (possibly) large numbers of distinct
relationships. Given such a metalanguage, the empirical task becomes that
of providing formal definitions of just those relationships as do mediate our
grasp of the structure of pictorial expressions.

2. THE METALANGUAGE

As we have noted, both Narasimhan and Shaw are concerned in their nota-
tions to exhibit a specific relationship — that of 'joined' or 'connected'. Thus
in Narasimhan's notation the primitives r and h'

(1) 1

3

may be considered to be parts of SGMMA.

(2)   3

h'

1 2 3

SGMMA

according to the composition rule (3).

(3) SGGMA (1, 2, 3)--r . le (1 1:2, 3; 3)

We read this as stating that r and h' are 'joined' at positions or 'vertices'
designated as 1 of r and 1 of h'. Furthermore that three positions or 'ver-
tices' on SGMMA are to be identified with positions 2, 3 of r and 3 of h'.
The descriptions of r and h' — as each having distinguished positions 1, 2, 3, —
implied by (3) is made pictorially explicit in (1). We must imagine of course
that in any formal procedural account of this notation, this informal pictorial
characterisation would be replaced by a specification of r and h' in which the
positions 1, 2, 3 would be given co-ordinate values. Thus we might replace (1)
by
(4a) r(1(x,y),2(x+p,y+p),3(x+2p,y+2p))

(4b) hi(1(x,y), 2(x+d,y),3(x+2d,y)),
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where (x,y) are of course variables assuming different values in each of the
three sets of parentheses— that is, h' might have the literal form h'(1 (x,y),
2(x+ 1,y), 3(x+ 2,y)).
The intention of (3) is that it is these co-ordinate values of designated

vertices of r and h' which should be 'transferred' to designated vertices of
SGMMA, rather than the vertices themselves. Similarly that it is an equal-
ity of the co-ordinate values associated with 1 of h' of r which underlies this
'join' relationship between these two primitive parts of SGMMA. In
other words, several pictorial relationships, 'join', 'coincidence', 'same
position as' are assumed in our reading of (3). A syntax should provide a
formal description of these assumed conventions insofar as they reflect
pictorial intuitions. We can rewrite (3) in a form which makes these assump-
tions explicit and names the varieties of relationship involved.

(5) join <r(1(x,y), 2(x,y), 3 (x,y)), h' (1(x,y), 2(x,y), 3(x,y))>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ECOit/C <2,12>1

.SGMMA (1(6,7), 2(9,10), 3(19,20))

This states that SGMMA is formed from two parts r and h' — enclosed within
angle brackets. The relationship which these two parts enjoy in order that
they be 'capable' of forming SGMMA is join, which entails a further relation-
ship namely of coincidence (Coinc) between designated elements of the
descriptions of r and h'. The inferior or (suffixed) integers used in (5) merely
provide an explicit referencing mechanism to replace the implicit ordering
convention of (3). This permits us to state the 'same position as' requirement
in respect of the distinguished positions of SGMMA and those of r and h'.
The left-hand side of (5) is descriptive of the structure of SGMMA in

exhibiting its parts and specifying the relationship between them. On the
right-hand side a further description of SGMMA is provided which does not
explicitly state the relationships between the elements (1, 2, 3) which comprise
it. The same is true of the descriptions of r, and h' on the left-hand side of (3).
A further difference between (3) and (5) is the use of, and the di rection

of the What we have in mind here is that in discerning that SGMMA is
'made up of two parts' we are recovering relationships, specifically join,
Coinc, on these parts, thereby assigning an underlying structure to SGMMA.
We identify this process with parsing. Accordingly, regarding (5) as a rule of
grammar, the arrow points in the generative direction, i.e., towards the surface
form of the pictorial expression.

This account of (5) identifies it with a rule of transformational grammar
(a T-rule) and we may note a fairly consistent correspondence between the
syntactic structure of (5) and the syntactic structure of the generalised trans-
formation (Chomsky 1965). Specifically, join is the name of the transforma-
tion; the pair of descriptions enclosed in angle brackets, are S D1, S D2; the
relationship within the square brackets is the condition restriction on the
T-rule; the right hand side of (5) is the derived structure.
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(5), then, exhibits the metalanguage which we will deploy in discussing

pictorial relationships and their role in determining our intuitive apprehension
of form and shape. The problem now becomes that of determining the rela-

tionships and the structures which they co-ordinate. Published accounts of

'picture syntax' have not provided any systematic accounts of the variety of

pictorial relationships with which they deal, much less a discovery procedure
for those relationships. This omission may of course be intentional in the

sense that no attempt is being made to capture our intuitive knowledge of

picture structure in these picture syntaxes. In this account, however, we adopt
as goal the formal description of our pictorial intuitions and accordingly
we shall adopt a more or less systematic methodology for ascertaining what
these. intuitions are.

3. THE METHODOLOGY

The methodology to be employed in deciding the specification of a picture
grammar is based upon that of Chomsky. Since (as Chomsky remarks) our
intuitions are not always immediately apparent it may prove necessary to
resort to consideration of particular expressions and pairs of expressions which
have the property of rendering our intuitions clear cut. This is the purpose of
the study of ambiguous, anomalous and paraphrastic expressions. A good
example of the use of ambiguity would be the pictorial expression in (6)
which may be seen in two ways: as a 'bellying sail' or a ̀sting-ray'.

( 6) a

In the former interpretation we group sides a and c, b and d. In the latter
'reading' we group a and d, b and c. Any adequate picture grammar must

provide the symbolic apparatus by which to exhibit this 'grouping' of edges.

As examples of paraphrase we might take the three pictorial expressions

illustrated in (7) which evidently have the same shape.

( 7) •

Our intuitions about this similarity of shape apparently involves relations
between edges or lines, between the positions we call 'corners', and involves
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among other things the idea that lines can 'function' as edges. We require
that the picture syntax give us an adequate formal account of these intuitions.

Finally we might introduce varieties of anomalous picture such as that in
(8).

( 8 )

Attempts to assign an interpretation to (8) break down due to the inconsist-
ency involved in assigning to the region S the status of figure in the vicinity a,
but ground in the vicinity b. Making these assignments is evidently tied up
with the recovery of certain relationships between the edges — denoted by
lines — in the vicinities of a and b. The picture grammar must give some
account of what sort of relationships between 'edges' mediate or force the
assignment of such distinctions as 'figure'/'ground'.

4. THE PICTURE GRAMMAR

4.1. The structural representation of position

Restricting ourselves to mechanical means for displaying or addressing
pictorial data (that is, excluding the retina) it is clear that the primitive ele-
ments of pictorial expressions must be distinct positions in a two-dimensional
array. This conventional view is of course based upon the insight of Cartesian
co-ordinate geometry which established the (x,y) notation; that is, the repre-
sentation of position in a plane by two magnitudes which reflect the operations
required to address the given position starting from an origin on a defined
axis.
The notation (x,y) implies an axis and an origin but nowhere states it. For

our purpose it will be necessary to do so since it (x,y) denotes 'position
relative to the origin', and we are committed to making all relationships overt.
Thus our representation of position would take the form

(9) Relpos <axis<p,p>[bint(t,bint)], p>[bint,bint]
12 3 4 5 6 7 8

This exhibits the relationship relative position (Relpos) of a point (or position)
suffixed 6 with respect to an axis of co-ordinates defined on the positions
suffixed 1,2 as depicted in (10). The value of this relationship is given by a
pair of basic integers (bints) suffixed 7,8 corresponding to the variables
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(x,y) in the traditional notation. The characterisation of magnitude by a bint

rather than some more conventional notation has a specific purpose.

(10) • 6

• •
1 2

4.1.1. Bint. In keeping with the desire to symbolise everything by syntactic
structure bint is defined by the context-sensitive phrase-structure grammar

(11) :

(11)

t. .

(i) bint-> {bin
# 

, t

{bint;j 

(ii) bint-tint}, t / 
# 

_...t

(iii) bint- > t, {bint} /
# 

t 

The usual notational conventions are implied here, that is / t specifies

that the category bint may only be rewritten according to (ii) if it is in the
context of - specifically: immediately precedes - a t. Braces indicate alterna-
tives. Thus applying (i) we get two main alternatives:

(12) (13)

bint bint

t 

or

t 
Z

bint bint

Rules (ii, iii) 'separately' develop (12,13) so that a typical structure resulting
from (13) might be (14) :

(14) bint

bint
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We may think of (14) as specifying the magnitude 1 and of (15) as the
magnitude —1

(15) bint

hint

4.1.2. Axis. With this interpretation of bint we see that the bint suffixed 3 in
(9) is .of unknown but positive (because of its right-branching structure)
magnitude. The mapping of axis into pictorial relationships is given by the
recursive productions (16,17)

(16) axis<p,p>[bint(t,bint)]
12 3 4 5

axis<p,2>[5],
6

1 6

(17) axis<p,p>[bint(t,bint(t,#))]
12

1 2

Rule (17) asserts that the relationship axis of unit magnitude (bint(t,bint
(t,#))) between positions suffixed 1,2 is identical with the relationship of
nearest horizontal neighbours. This pictorial relationship is exhibited in

pictorial form thus • In some mechanical device such as a television

tube, it would take the form of an incremental voltage applied to the
x-deflection plates of the tube.
(16) asserts that an axis defined upon points which are not nearest neigh-

bours — the general case — is manifested as a sequence of co-ordinated overlap-
ping pairs of nearest neighbour positions. The number of such positions is
determined by the magnitude of 3 in (9). The ̀,' in the right-hand side of (16)
is to be interpreted as ̀ 8e.

4.1.3. Relpos. While (9) characterises the notion relative position (and,
unlike the Cartesian notation (x,y), explicitly identifies the axis of measure-
ment), it does not exhibit the surface (pictorial) manifestation of this under-
lying relationship; that is, we have so far failed to provide a derived structure
for (9). This mapping can now be specified by a recursive production
rule having a similar form to (16,17).
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(18) Relpos <axis<p,p>[bint],p>[bint(t,bint),bint]
2 3 4 5 6 7 8

Relpos <axis<p,p> [3], 4>[7,8],
9

and

(19) Relpos <axis<p,p>[bint],p>[bint, bint(t,bint)]
12 3 4 5 6 7 8

Relpos <axis<p,p> [3], 4>[5,8],
9

9

9

CLOWES

(18) and (19) 'unpack' Relpos into a series of nearest neighbour relationships

of two types: one corresponding to the x dimension being , the

other corresponding to the y dimension being . (18) and (19) define

(recursively) relative position for non-zero magnitudes of x and y. Relpos
(axis, p> [bint (t,#), bint (t,# )] characterises a position coincident with the
origin of co-ordinates. Accordingly we may complete the formalisation of
Relpos by

(20) Relpos <axis<p,p>[bint], p>[bint(t,#),bint(t,#)]
12 3 4

axis <4,2)'[3].

Evaluating a Relpos is akin to changing the pen position on an incremental
plotter. We may illustrate this for a very simple case. Consider the position
(2,2) i.e., x = 2, y = 2, which in our terms is

(21) Relpos <axis, p> [bint (t,bint (t,bint (t,# ))), bint (t,bint (t,bint

(t,# )))i.

Represent the discrete incremental positions (of the pen) as a square array.
Then axis of (21) defines some pair of positions labelled 1,2 as shown in
(22a) with the associated values of Relpos. (For brevity integers are shown
as 2, 2 rather than in the explicit structural form of (21)). Applying (18) to
this yields a new axis pair denoted 1',2' in (22b), and so on until we reach
(22e) where the Cartesian value of Relpos is now (0,0). (20) now applies
yielding (f) which provides a labelled position for 4 correctly positioned with
respect to the initial origin 1.
The significance of this lies only in the fact that just two pictorial relation-

ships — sensorily manifest relationships, that is — are utilised, namely

I and
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The other relationships Relpos and axis are defined on these and are, accord-
ing to our earlier discussion, 'abstract' or underlying relationships. (22)
demonstrates, moreover, that any formulation of pictorial relationships
which is reducible to Relpos can be effectively computed, that is, defines
addressable positions on some plane surface, given only that two directions
and a unit separation are defined on that surface.

(22)

(a) 1 2 Relpos <axis<1,2> [bint],p> [2,2]

(b) 1 1' 2 2 Relpos <axis<1',2•>[3],4>[1,2]

(c) I 1' 2 2' Relpos <axis<1",2">[3]4>[1,1]

2" 2—
(d) 1 1 2 2' Relpos <axis<1",2—>[3],4>[0,1]

2" 2—
(e) 2 2' Relpos <axis<1",2—> [31,4> [0,0]

4

1 2 2' axis<4,2—>[bint]

(18), (19) and (20) define position for the first quadrant only. A further
version of (18) and of (19) is required dealing with negative magnitudes.

(18a) Relpos <axis<p,p[bint],p>[bint(bint,t),bint]
1 2 3 4 5 6 7 8

Relpos <axis<p,p>[3],4>[6,8], 1
9 9 1

and

(19a) Relpos <axis<p,p>[bint], p>[bint, bint(bint,t)]
1 2 3 4 5 6 7 8

,
Relpos <axis<p,p>[3],4>[5,7 ], —

9 9

A corresponding version of (20) differs only in applying to the negative
version of zero.

Notice that the same two pictorial relationships are used; we have merely
changed the 'ordering' of the position pairs they relate. Thus, the definitions
of Relpos express our intuition that if ̀ up' or 'left' is thought of as 'positive'
then 'down' or 'right' is 'negative', where both 'positive' and negative' are
given explicit definitions in terms of structural manipulations of bints.
The representation of integer magnitude in a structural form' is thus

I Originally introduced by my colleague D. J. Langridge to provide a syntactic account of
the arithmetic operations plus, multiply, etc.
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associated with distance and measure. It is of course possible to formulate
Relpos using not bint but more conventional integer symbolism, e.g. n, n-1,
etc. We have adopted bint here in order to avoid the implication that our
intuitions of position are based upon arithmetic concepts. Rather, we would
like to suggest that the reverse is the case.

4.2 The accuracy of position judgements

Consider the following simple experiment. We provide a blank, square sheet
of paper upon which we have marked a point. The subject (S) is invited to
estimate the position of the point relative to the edges of the paper as axes,
and to verbalise this estimate as an integer pair. The magnitude of these
integers relates to an 'assignment', on the part of S, of an interval scale to the
vertical and horizontal edges of the paper. It has been found (Klemmer and
Frick 1953) that the accuracy of these integer estimates is about 20 per cent;
that is, S can discriminate roughly 25 positions in this square. This limitation
seems a fundamental one (Miller 1956, Clowes 1967) ; what does it imply for
the structural description of position formulated here? The experimental
observations are consistent with the view that the bints (suffixed 7, 8) in (9)
both having a limiting value of 5. The magnitude of these integers is of
course dependent upon the magnitude of the nearest neighbour interval (e.g.

We may therefore, say that in judging relative position — recovering, that is,
a Relpos such as (9) from its pictorial manifestation — S ̀chooses' a nearest
neighbour interval to define an axis. This interval is sufficiently large that each
of the bints in 9 will not exceed 5 in magnitude.

4.3 Pairs of positions

Pairs of points may form an entity which is related to an axis. We may think
of a pair as defining a line, i.e., as the positions of the ends of a straight line.
Our grasp of the line as an entity involves a relation between the end points
of the line which bet:ay an inherent axis. Thus we might say the line is
'vertical', 'sloping' or 'long'. All of these epithets which apply to the relation-
ship between the end points imply an axis and an interval on which that
axis is defined. We shall designate this relationship coord expressed as

(23) coord <p,p>[Relpos<axis <1,p> [bint], 2> [bint,bint]]
12

Relpos<axis<p,p>[bint],l>[bint,bint],
4

Relpos<4, 2> [bint,bint]

(23) shows how choice of an axis (4) commits us to a particular image of the
relation between 1 and 2. If we rotated 4 we would grasp 1,2 differently. (23)
fails, however, to bring out the fact that the axis on the left-hand side is
`parallel' to that on the right hand side (see Postscript).
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4.3.1. Near. In describing a line as 'long' or 'short' we are implicitly relating
its endpoints: the judgement appears to apply to positions, minimally to
pairs of positions. If position is characterised by Relpos, and we are to seek
a formal specification of position judgements in structural terms then it is
natural to seek to characterise near as, say, an identity condition upon the
independent structural characterisation of two positions. Thus we might
argue that two Relpos's (of the form (9)) having the same axis and the same
bint (74 value would describe two positions which are near to each other. We
have seen that the use of different nearest neighbour intervals in the definition
of axis implies a labile metric for judgement of position. It follows, then, that
in judging that two positions are near to one another we are assigning an
axis — common to both Relpos's — which makes them so. We may express
this as a relation.

(24) near<p,p>[Eq<bint, bint>, Eq<bint, bint>]Relpos<axis, 1>[3,5],
12 3 4 5 6 7

Relpos<7,2>[4,6]

The crucial question, in making this judgement therefore rests upon the choice
of axis.

(25)

•

•

(a) (b)

Thus, in (25a), relative to the rectangular frame (an axis) the pair of points
appear close, but in (25b) they do not. Of course the axis may not be an
external one.

(26) x2

(a)

x 2

(b)

For example, where we are judging the proximity not of positions but of

complex pictorial forms as in (26), the axis may be provided by the forms

themselves. Thus large characters (26a) appear nearer than small ones (26b).

In introducing the metalanguage (2) we made use of relationship Coinc

(5) between a pair of positions. What is the distinction between 'coincident'
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and near? We shall take it that coincident is an identity relationship upon a
pair of positions, i.e., that they are the same positions.

4.4 Side

A weaker form of positional judgement than that involved in Relpos is the
judgement as to which side of a pair of points a third point lies. For example
in (27) the points c and D are on opposite of the line AB, while A and D are on
the same side of the line cu.

(27)

.A

In making this judgement it is intuitively apparent that a reorganisation of
structure is involved. Thus, prior to the remark about 'side', we see the points
as occupying unrelated positions in the rectangle. It acts as the frame of
reference or origin of coordinates. In making the 'side' judgements we use
first AB and then CB as the frame of reference. Thus (27) is an ambiguous
picture and as such reveals the syntactic structure of the 'side' relationship.
The first organisation would be characterised by four distinct expressions

of the form of (9) each taking A,B,C,D as the 'point' of the Relpos, i.e., as the
item suffixed 6 in (9), all identifying the same positions as axis. Informally
we may associate the latter with the base of the rectangular frame in (27).
The 'side' judgement however takes a pair of these positions, say A,B as axis.
(28) side<p,p,p>[bint] Relpos<axis< 1,2> [bint],3>[bint, 4]

1 2 3 4

Thus in (28) the positions suffixed 2, 3, 5 might be A,B,C. The derived structure
of (28) is a Relpos relation between c and A,B as axis. (28) thus defines side as
that relationship of relative position in which the ̀ x-co-ordinate' is undeter-
mined.
The judgement 'D and c are on opposite sides of AB' is the result of a

comparison of two relational structures of the form typified by the left-hand
side of (28) both having the same axis. It follows, of course, that the bint
(suffixed 6 in (28)) in one structure will be of opposite sign to that in the
other — it is this which we will regard as underlying the judgement.
The judgement 'A and D are on the same side of ca' is another comparison

of a pair of relational structures each involving CB as axis, with A,D as the
positions.
We may treat 'opposite sides' and 'same side' as relations between two

points and a pair of points. Thus sside (same side) might take the form
(29) sside<p,p,p,p> [Ssign<bint,bint>] side<1,2,3>[s],side<1,2,4> [6]

1 2 3 4 5 6
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Ssign (same sign) is the relationship 'same structure type' on the pair of bints
to which it applies (remembering that the distinction between positive and
negative is exhibited in the structure of bint).
What (29) does of course is to specify formally what was earlier stated

informally as the 'comparison of two relational structures of the form
typified by the left-hand side of (28)'. That is sside is assigned to this set of
four points just in case the separate side relationships on the right-hand side
of (29) satisfy the Ssign relationship specified on the left-hand side.

4.5. Discussion

The foregoing has established that, with the notational system introduced in
§2, we may characterise a variety of relationships between positions. The
relationships to be characterised are made evident by considering various
pictorial examples in accordance with the general methodological approach
outlined in §3, that is, we are characterising our intuitions about picture
structure, not erecting some arbitrary picture calculus.
Our perception of these varieties of pictorial organisation can be identified

with the assignment of these functional descriptions, e.g. Relpos, sside, etc.,
to the primitive sensorily-manifest data. The process of assignment is essen-
tially a parsing process. It will be evident that given say the illustration (27)
there are very many (probably an infinite number of) relationships which
could be assigned to this collection of points and the frame. We suggest
that this is entirely consistent with observation: there are many ways of look-
ing at (27). Significantly, however, we cannot hold these multiple views
simultaneously — we switch between them. Formally, that is, we can only
assign a single relational structure at a time, although this structure may re-
late a number of items, e.g. sside, in quite a complex manner.
There is one major respect in which the whole of the presentation to this

point has been inadequate. In exhibiting various pictorial expressions mani-
festing varieties of position relationship, we have assumed that a position is
denotable by a 'point' and that a 'straight line' has two salient positions
associated with its two 'end points'. These positions are abstractions which
underlie the forms, 'line', 'point', 'frame', etc. The whole apparatus is empty
of empirical interest (i.e., has no application to picture interpretation) unless
we can also characterise how these abstractions are possible, that is, charac-
terise form with the same apparatus used to characterise position.

5. THE CHARACTERISATION OF FORM

The recovery of Form may be stated to be the discovery of the significant
positional relationships exhibited in the picture. Thus, in our preceding
account we have denoted position by a point and pairs of positions (as in
coord for example) by a straight line. This denotation presumes that from
these two types of form — point and line — the reader may easily recover the
positional structure which underlies them. In picture interpretation, the raw

374



CLOWES

data is a very large number of possible relationships between positions
(sampled by a scanner) having distinguishable colours, e.g. between all
pairs of raster positions. A picture containing a line clearly has more than
one significant positional relationship exhibited in it although there may be
only one (the relationship between end points of the line) which we wish to
utilise. The positional relationships between say black and white points which
subsume the edge of the line (equivalently the edge of a point), are obviously
necessary to the exhibition of the line itself and the recovery of these more
primitive relationships must precede (in parsing the picture) the recovery
of the relationship between the end points of the line.
The essential difference between the interpretation of computer graphics

and, their hard-copy equivalents lies precisely in the fact that these 'end point
relationships' evident in both, are the raw data when input at the graphics
console, but extensively parsed data when recovered from the hard-copy via a
scanner.
The object of parsing is in some sense (one which we will progressively

make sharper) the recovery of objects with which we can associate some
'position information', i.e., a line having as 'position information' its end
points. We may regard an object to be defined as 'position information' upon
which a variety of position relationships are. specified. it will be convenient
to utilise much the same notation as already deployed except that the name
of the relationship, e.g. side, will be replaced by the object name, e.g. LINE.

5.1. Straight edges

We shall adopt the notation p (colour i) to designate a position having colour
i. Clearly, objects or forms are ultimately dependent for their exhibition upon
distinctions of colour between 'sets' of positions enjoying certain varieties of
spatial relationship. In fact, we could regard p(colour i) as an abbreviation
for an object definition involving two or more sets of positions having colours

respectively, enjoying the relationship /Of: Underlying the form 'straight
edge' (abbreviated to SEDGE) we discern a pair of positions — the 'ends' of
the edge — and a colour relationship between the opposite sides of the edge.

(30)
SEDGE<p,p,colour,colour>[side<1,2,p(3)>[0],side<1,2,p (4) > [ — 1], DU/0,4A

12 3 4

(30) provides a partial formalisation of this form in terms of the side relation-
ship. The values (0,-1) of the two sides employed restricts the scope of the
colour contrast to be local to the edge in the y direction. However, it leaves
unspecified the range of the contrast in the direction of the edge, i.e., in the x
direction. This is a direct consequence of the formulation of side; note,
however, that since isolated straight edges are pictorially anomalous, that is
they can only occur in the context of some extended boundary, no parsing
problems should arise from this imprecision. The relationship Eq <colour,
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colour> may be said to have the value true when the two colours are discern-
ibly different, otherwise false. The relationships predicated as underlying
SEDGE are essentially those recovered by various types of 'edge follower'
(Greanias 1963, Ledley 1964) in so far as these programs only examine
some restricted neighbourhood of positions in the picture in order to assign
an 'edge'.

5.2. Convex boundaries

The simplest 'context' in which a straight edge can occur is that whose
underlying 'positional information' is what we apprehend as a convex
polygon. Let us call this form a convex boundary (CBND).

(31)
CBND<SEDGE<p,p,colour,colour>[ ],

Z3t 4, 5,

SE DGE<p , p , colour, colour>[ ], . .
1,4.1 a+, 3t+i 4t+1 5,4.1

[Diff<41, 4i+i>, Between <2„ 3„ 2, ;,

Coinc <3„ 31+0, side <2„ 3„ 31+1>[bint(bint,t)]
sside <2„ 3„ 2, 3j>[ -for all i0j]

The formulation (31) is in terms of five types of relationship (Diff, Between
Coinc, side and sside) predicated upon an ordered set of SED GEs. The
ordering is determined by the values of Coinc and side which characterise
continuity (or connectivity) and a clockwise (because side is negative)
progression around the boundary. Convexity is specified by sside. The 'fact'
that the spatially distributed colour relationships which support a form are
not local to the edge (the assumption underlying SEDGE) is exhibited by
the relationship Between.

(32)
Between<p,p,p,p,p>[Ssign<bint(t,bint),bint(t,bint)>, sside<1,2,01

1 2 3 4 5 6 7

side<1,2,5>[6], side (3,4,5>17]

Of course such a form — one in which the 'interior' colour is uniform — is
idealised. Naturally illuminated objects present interiors whose illuminance
varies in a highly complex fashion. Thus the two-dimensional distribution of
retinal illumination produced by a uniformly illuminated sphere, is dark at
the edges (Lambert's law), brightening uniformly towards the centre.

.>

5.3. Compound forms

All forms do not of course have an underlying CBND. It is an essential part
of this approach to picture syntax that we regard Forms containing con-
cavities of boundary, as concatenations of Forms which are convex. Intui-
tively, the varieties of concatenation would be described as 'join', 'overlap',
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and 'touch'. Such descriptors evidently apply to complete convex Forms in
such a manner as to merge the two CBNDs deleting one or more SEDGEs
and introducing concavities characterised by positive side relationships. Thus,
if we take (34) to be the perceptual organisation underlying (33),

(33) (34)

5

then the BND derived from joining the CBNDs of A and B would have I
followed by 6, 4 followed by 3 and positive sides relating i and 6, 4 and 3.
The SEDGEs 2 and 5 would have been 'deleted'.
The concatenation requires several relationships including an 'agreement'

between the 'colour pairs' (4i, si of (30)) for each CBND. In the event that A
and B are of different colour SEDGE 2 will be 'merged' with SEDGE 5 not
deleted, in the derived structure there will be a single SEDGE replacing 2
and 5, this SEDGE having an appropriately modified colour contrast. This
form of join is appropriate to pictures such as maps: it will not be explored
here.
Whether 2 and 5 are deleted or merged there will be two positions (a,b in

33) in the resultant BND where essentially new side relationships will be
introduced. At least one of these positions a concavity (i.e. a negative side)
must be introduced if we are to be able to recover the underlying pair A,B.
[There is a weak sense in which any n-gon (n > 3) may be decomposed into
n —2 triangles and so on, even if the n-gon is convex. We do not consider this
case here.]
The key relationship between A and B to which the term 'join' applies is of

course the ̀ coincidence' of the SEDGEs underlying 2 and 5; that is, (33) is
decomposable into the two parts A, B of (34) at which 'point' the relationship
between A, B 'emerges'.

5.4. Discussion

In the foregoing sketch, we see how the relations defined in §4, mediate our
apprehension of Form. From the standpoint of analysing pictures, we may
say that the relationships underlying CBND (31), are predicates whose
value must be true over the set of SEDGEs which constitute the arguments of
these predicates. We may think of these arguments as the parts of CBND.
The formulation (31) is close to that developed by Evans (1968) and

Guzman (1968). The crucial issues, however, are identified as being concerned
with questions having to do with relationships not objects or forms, that is,
'How many relationships are there?'; 'How are they related and defined 2',
and so on. The answers given here to these questions may require revision in
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the light of further study; at present, however, the list of relationships is
evidently small, perhaps 10-20, and they form a hierarchy in that more
powerful relations are defined in terms of simpler ones (see Postscript).

It should now be evident, therefore, that a characterisation of Form is
possible along these (relational) lines, and accordingly we can claim to have
met the objection formulated in §4.5 concerning the status of observations
about position which rely upon a grasp of Form for their statement. Specifi-
cally we may ask ̀ What is a straight line?'

6. SHAPE

A straight line is a Form having a Boundary whose underlying positional
relationships are specified by a single CBND; that is, it is not a compound
form. The SEDGE set comprising this CBND is further characterised by
having a pair of SED G Es between which the relationship parallel obtains
and whose ps enjoy a near relationship. That is if A, B (in (35)) are the
coords in question, then p1 is near p3 and /32 near p4.

(35)

Thus we see that ̀straight line' (and any other line for that matter) involves a
judgement of positional relationships upon speced elements of a Form. We
have seen (§ 4.2) that the accuracy of positional judgements is based upon
the assignment of an axis which acts as a scale determiner. If we take this
axis to be either A or B then we see that we are saying that a Form will appear
line-like if, in addition to the requirements set out above, p1 is near p3 and p2
near p4, taking A or B as axis. This will be the case if the form is, as it were,
much ̀narrower' than it is long'.
The crucial concept underlying this formulation of 'line' is that it ̀ involves

a judgement of positional relationships upon specified elements of a Form'.
We take this to be a general definition of Shape.
In this way we see that Shape involves Form but involves in ̀ addition' the

`recovery' of further position relationships whose accuracy is, of course,
subject to the limitations discussed in § 4.2. We may think of these additional
relationships as the metrical aspect of Shape. In judging the similarity of
Shape of two or more forms, e.g. as in (7), we first recover the CBNDs
underlying the ̀ raw data' — and note we attempt to recover the same CBN Ds —
then we evaluate metrical relationships between the various ps.
Where there are alternative sets of metrical judgements of an essentially
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different kind, e.g. Relpos as against parallel, we may see that a single Form
has two or more alternative Shapes. This is the case in (6).
We noted in § 5 that 'the raw data is a very large number of possible

relationships between positions (sampled by a scanner) having distinguishable
colours'. The characterisation now given of Form and Shape suggests that the
central problem in the assignment of structure to a picture (i.e., in Picture
Interpretation) is the 'decision' as to what varieties of relationship are to be
recovered, since as we have seen there is no 'S' (in the normal grammatical
sense) from which all well-formed pictorial sentences are derived. This is a
more or less direct consequence of espousing a wholly relational and trans-
formational syntax. For the simple (whatever that means) pictures we have
discussed thus far it appears counter-intuitive to suggest that there are many
possible Forms and Shapes which are recoverable, i.e., visible in it. When
faced, however, with a wholly novel picture, for example that produced in
some esoteric experiment in physics, we may find that it takes some con-
siderable time to adjust our view so as to recover the significant elements of
Form and reject the insignificant. That we have a strong predisposition to see
certain Forms and Shapes and not others is of course familiar to the psycholo-
gist. Boring's 'Young Girl/Mother in Law' (1930) is a classic example.
The conclusion we would draw from this is that the structure we assign to a

picture is determined not solely by the 'raw data' of that picture but also by
a priori decisions as to the varieties of relationship we expect to find there.
The question therefore becomes 'can we formalise these a priori decisions?'

7. THE SEMANTICS OF PICTURES

We may summarise the foregoing argument as 'People see what they expect
to see'. The essential rider is that what they want to see is things not pictorial
relationships, that is, the a priori decisions reflect assumptions about the
things and events which we expect to see exhibited in the picture. We shall
argue that it is necessary and indeed possible to give a structural charactelisa-
tion of things and events which is a mapping of the relational structure of the
picture. This characterisation we call the semantics of the picture.
The case for something beyond the recovery of pictorial relationships is

readily made by appeal to the methodology (§ 3).
(36)

1 

(a)
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Thus, while (36a) and (36b) are pictorial paraphrases, there is a variety of
paraphrase, evident between both of them and (36c) which cannot be
established on pictorial grounds. It is the underlying electrical relationships
which are the same in all three pictures. We might expect that, corresponding
to Relpos, we have potential difference and also phase difference. These
relationships are, of course, purely abstract, that is, they cannot be recovered
except via some sensory manifestation, usually pictorial. Just what the
syntactic structure of a circuit might look like, utilising electrical relationships
in the metalanguage, is not yet clear. The example parallels closely those given
by Chomsky (1965, pp. 160-3) in discussing 'additional problems in semantic
theory'. He suggests that anomalies such as "0 the cut has a finger' (vs: 'the
finger has a cut') are to be accounted for not in terms of language use but
in terms of 'language independent constraints . . . in traditional terms, the
system of possible concepts'. He remarks 'it is surely our ignorance of the
relevant psychological and physiological facts that makes possible the widely
held belief that there is little or no a priori structure to the system of "attain-
able concepts'. The semantic structure we have been arguing for here is in
our view identifiable with Chomsky's 'structured system of attainable con-
cepts'.
We may note that developments in question-answering programs are

placing increasing weight on the structure of the data base. From the stand-
point espoused here we would regard the data base as exhibiting the relation-
ships between events, e.g. games in Baseball (see Green etal. 1963), and
entities, e.g. teams, places, scores. These relationships characterise our
knowledge of league games in the same way that Relpos characterises our
pictorial knowledge.

8. CONCLUSION

In this paper an approach to picture interpretation has been outlined. This
views the process as one of assigning to the 'raw data' sampled by a picture
scanner (equivalently the retina) a structure which makes explicit the var-
ieties of pictorial relationship visible in that picture. These relationships
are specified in a metalanguage (regarding the 'raw data' as an object language)
having a strong similarity to that deployed in transformational grammar. In
choosing to characterise visible structure we adopt a methodology which is
intended to expose just those relationships which mediate our grasp of Form
and Shape.
Among the many problems thrown up by this work we would single out the

characterisation of the semantics of pictures in relational syntactic terms as
crucial. The parallels drawn with current work in question-answering suggests
that it may be profitable to consider not only event structures having a
pictorial manifestation but events readily characterised in English too.
Indeed we might consider situations like particle physics where we have
bubble chamber photographs, English descriptions of particle interactions,
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and an algebraic representation , e.g. ir +p — a° , as ideally suited to
determine the semantic relationships.
A machine (or program) capable of mediating translations between these

various languages would utilise the underlying semantic structure as the
'pivot' of the translational process. We could describe such a machine as
'informed' — 'informed', that is, about the varieties of relationship applicable
in these various representations of an event. It would not, however, be
intelligent. Such an appellation should be reserved for a machine (like us)
capable of formulating and testing hypotheses about new relationships and
ultimately about new systems of attainable concepts manifesting these rela-
tionships.
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POSTSCRIPT

During the process of putting the manuscript of this paper into typescript
several points have emerged which help to place this work in better perspec-
tive.
Coord: There are two aspects of this entity which make it clear that it

should be regarded as an object (cf. SEDGE) rather than a relationship:
(i) The Relpos included in the L.H.s. of (23) references the elements suffixed
1,2. This is completely atypical of relation definitions but quite characteristic
of object definitions. (ii) We have not utilised coord as a relationship in the
formulation of any other relationship or object nor does it seem likely that
we would want to. We therefore conclude that (23) is incorrect and that
(23a) is more likely.

(23a) COORD <p,p>[Relpos <axis <1,p>[bint1,2> [bint,bint]]
12

Objects and Relations: In defining SEDGE, CB N D and (informally)
LINE we have deployed only those relationships defined earlier in the paper
(we could hardly have utilised any others). These relationships are character-
ised as being defined on, and in terms of, positions. If we regard position as
an object (as suggested in § 5.1) then the relationships defined in this paper
are those which involve just position (s) as the objects in terms of which they are
defined. The informal discussion of compound forms (§ 5.3) makes frequent
reference to SEDGE. Underlying every SEDGE we may presume a
COORD, and it may be plausible, therefore, to consider COORD as the
object necessary to the formulation of these 'higher' order relations 'join',
'touch', etc.

In terms of the theories of generative grammar espoused by Chomsky, it
is tempting to identify these higher-order relations as those involved in co-
ordinate constructions (Chomsky 1965, p. 134 and Note 7, p. 224), with the
consequence that the lower-order relations (those defined on positions)
might be identified with intra-sentential structure. Thus the inter-word and
inter-phrase relationships, reflected in the use made of lexical substitution,
might be regarded as relations defined on words and phrases as objects. The
question which then arises is 'why the distinction between the notational
system for inter-sentential co-ordination (generalised T-rules) and intra-
sentential co-ordination (strict subcategorization, selectional rules, and
lexical substitution) ?'
I would argue that the Aspects answer (which makes a distinction)
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obscures a real uniformity (and therefore an economy) in the metalinguistic
apparatus, and may well be obscuring our formal grasp of the linguistic
significance of the word. Thus the analogy between picture points (positions)and words breaks down precisely because a word has a very complicated
definition (its lexical entry) which from our standpoint would brand it as an
OBJECT. To grasp an Object is to grasp the relationships which underly it.To regard words as sentences (complex objects) would perhaps be one wayto tackle the anomaly underlying say ̀ *phonophone' (see Chomsky 1965, p.187).
These speculations may prove empty; what they point to, however — asdoes the rest of this paper — is the necessity for a clearer grasp of the distinc-tion between relations and objects in the formulation of syntactic theories.
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On the Construction of an Efficient Feature

Space for Optical Character Recognition

A. W. M. Coombs
G.P.O. Research Department,

London NW2

INTRODUCTION

The particular form of character recognition we shall be dealing with here is

that of identifying multi-font typed or machine-printed figures and letters
(usually called alphanumerics), for the purpose of postal sorting. In such an

application, special conditions apply: the cha—racters (in a code group in our
case) may be of very poor quality and in a wide range of styles, but the

accuracy of identification is still to be high — about one error in 300 envelopes

is tolerable, which, on the assumption of independence between characters of

the code, means not more than 1 error per 2000 characters. As the number

of characters in the code group has been reduced (for other reasons) to an

absolute minimum, there is little if any redundancy; no help is to be gained

from context. These are difficulties, and formidable ones at that. But the
problem has its easier sides: the speed required is not high in electronic

terms, being limited by mechanical handling difficulty to one envelope — about

six characters — every 60 milliseconds, and although identification accuracy
is to be maintained, it is permissible for the machine to reject characters as
unreadable and divert the envelopes for hand-sorting in say 20 per cent of the

cases (though naturally we wish to keep this figure as low as possible). There

are thus two basic design limitations: 20 per cent of the envelopes may be
rejected for hand-sorting, but of those not so rejected, less than 0.5 per cent

are to be mis-read.
Other problems involved in the sorting operation, such as envelope hand-

ling (the 'hand' simulation), the extraction of the code from the envelope

(the 'eye' simulation), the location of the code within the address, and the
separation of Ms from typed mail will not be discussed. It will be assumed that
there exists within the machine a space-quantised and grey-level dichotomised

pattern representing a probably degraded version of an alphanumeric

character in some type font or other, that the character is correctly centred
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on a test matrix (which can be a major problem in its own right) and may
well have been subjected to a prior clean-up operation, and that the problem
is to identify this character, or reject it, within the design limits specified above.

TEMPLATES

Type-written characters would appear, at first sight, to be of fixed size and
shape — sufficiently so, at least, to lend themselves to a simple 'template
matching' technique. In such an approach, the machine would have a set
of templates or 'masks', and would look through the set for one which was
'something like' the character being examined. 'Something like' is, however,
far too vague a condition to be implemented directly by machine; it is a
human assessment, and one which is by no means understood. How db we
measure the degree of 'something likeness' which something bears to some-
thing else? For Ms characters, with their infinite variety, the thing simply
cannot be done in this way, and in fact the fixed size and shape of typed
characters are more apparent than real; there are scores of fonts, varying
in thickness, angle of presentation, spacing, height and style.
A more reasonable approach is clearly to break down the patterns into

sub-patterns or 'features', which are less variable within categories and to
re-describe the patterns in terms of these features. The result is the 3-layer
machine.

THE 3-LAYER MACHINE

It is a remarkable fact that research workers in the field of pattern recognition
have almost without exception, and irrespective of where they started, even-
tually proposed a 3-layer machine, typified in figure 1. Note particularly the
initial work of Taylor (1956) and the later development by Rosenblatt (1962).
Such a machine possesses a sensory layer, or retina, on which the pattern to
be recognised is implanted (possibly having undergone some degree of pre-
processing), an association layer, or feature list, where the pattern is re-
mapped or described in terms of its characteristic features, and a response
layer where the verdict is finally given as to which category of patterns the
unknown pattern belongs to. The feature extraction process takes place
between the first two layers, and it may be highly elaborate, involving several
layers of investigation in itself, or it may be simply an assessment of the
activity of groups of retinal points, called n-tuples. Following the association
layer there is a discriminator, usually a set or sets of weights, which operates
on the association cells to give the requisite scoring differentials for the
several categories in the response layer.
The discriminant weights are often obtained by an adaptive process which

may conveniently be called 'learning'. Indeed, there is a strong link between
the 3-layer machine and the biological brain as neurologists are describing it,
brought out by the expressions 'retina', 'sensory layer', 'cell' and so on, and
illustrated in figure 1.
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The greatest diversityin themachines designed to date has been in the nature
of the features chosen, and it is towards the rationalisation and systematisation
of this one process that the discussion here is directed. We shall be thinking
specifically of retinal n-tuples, but the general principles evoked are of much
wider application. Throughout, the approach will be that of linear vector
spaces, wherein a set of N properties is represented by a vector in N-
dimensional space. The sensory layer will have S cells, which may be thought

MACHINE
Feature

Extraction Discrimination
Association

Sensory Layer
Layer

Cells

Response
AorabwilMirz • Layer

1.11111111kt put

E4Neatal Nay

Visual 101
Lateral Cortex Synapses

Geniculate
Bodies,etc. 

BRAIN

Retina

Figure 1. The 3-layer machine

Motor
Cortex

Adaptive
Si
Learning

Observes

of as the co-ordinates of an S-dimensional space, the association layer (or
feature space) will have F cells (or F dimensions), and the response layer will
have C cells, one per category. There will be a set of training characters,
say E examples in each of the C categories and a set of test characters to
assess the effectiveness of the machine designed around the training
characters.

THE ASSOCIATION LAYER

Our discussion here is going to centre on the association layer, so we must
be clear as to its function. On it, the characters which are to be separated are
re-drawn in terms of their features, and the ideal choice of features would
provide the following conditions:

1. Differences between characters in one category would be reduced.
2. Differences between characters in different categories would be

enhanced.
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3. Accuracy would be improved by the use of as many different ways
of describing the characters as might be found desirable.

4. The re-mapped characters would be in a form which made them
easily separable by categories in the ensuing discrimination stage.

For the purposes of 3 above, a retina of S points will yield up to (33/2)
possible descriptors, each descriptor being an n-tuple of excitatory and
inhibitory points. The denominator 2 reflects the fact that each n-tuple has
a partner in phase-reverse, from which no extra useful information is deriv-
able.
Let us now repeat the above conditions in terms of linear vector spaces,

the patterns being considered as S-dimensional retinal vectors re-mapped
into a feature space of F dimensions. So described, the conditions are:

1. The vectors of patterns in any one category should be a closely
packed cluster in feature space, fewer in number than the original
set in retina space.

2. The clusters of vectors representing different categories of patterns
should be widely separated from each other.

3. The dimensionality of the feature space should be increased to give
a large enough Hamming distance (HD) between typical category
vectors.

4. Consider the tips of the pattern vectors as sets of points in feature
space. Then the convex hull 1 of the points proper to any one
category, and the convex hull of the points proper to all the other
categories should be non-overlapping. This is the condition for linear
separability.

It is the custom of designers of pattern recognition systems to start with the
patterns on the retina, and to proceed forward from there; that, after all,
is the order things happen in Nature. The requirements of an ideal feature
space as set out above have not been used as a design criterion — not com-
pletely, that is. Many attempts have been made to satisfy the first requirement —
clustering of within-category patterns — by the intuitive selection of features
which seem to be useful, or by the use of vast numbers of random features,
the less useful ones being then eliminated by some test procedure, for instance
one involving an information theory measure (Kamentsky and Liu 1963).
Some attempt has been made to satisfy requirements 2 and 3; Kamentsky
and Liu made certain that typical category vectors were at an HD of at least 3,
and Saraga et al. (1967) used a 45-dimensional feature space, divided into
10 overlapping sub-spaces (one per category) in each of which there was a
guaranteed minimum HD of 1 between the relevant category and all others,

1 The convex hull of a set of points in hyperspace is that minimal hypervolume enclosing
them such that the straight line joining any pair of the points lies wholly within the hyper-
volume.
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with a probable mean HD of perhaps 5. The third condition was heavily
exploited by Uffelman (1962) in Codlex I; he used very large numbers of
nearly random features at the sensory level. Apart from that, the tendency
has been to use as few features as possible (the ultimate being of course
log 2 C). This is good mathematics but poor engineering, for no factor of
safety remains. The fourth condition is not usually considered until the
discriminant functions are being found; if it then transpires that the condition
is not satisfied, other means (such as piece-wise linear separation) have to
be used (Nilsson 1965), or more features found to provide the discrimination.
Human intuition is fallible, and there are so many possible n-tuple features

that the best ones are unlikely to turn up by chance. It is the contention of
this paper that starting with the retinal image is not the best way, however
natural it may appear to be, and that since the feature space and the arrange-
ment of the patterns in it are of supreme importance, then that space itself
should be the starting point of design. We should begin in the middle and
work both ways from there; that middle should be designed to satisfy the
four feature space requirements given above.

It is of course true that we shall at a later stage require to find the n-tuples
which divide the categories in the desired manner. This may not be as difficult
as it sounds. At least, we shall know what- the 'desired manner' is — and
therefore what we are looking for.

THE FEATURE MATRIX

We may represent the patterns of feature space by a matrix, figure 2, in which
the rows are the pattern vectors, one row per category, and any one column
indicates the activity to be engendered by one feature among the various
patterns. The pattern vectors are ideal, meaning that it will be our object by
rule 1 above so to design the features in relation to the real patterns which
have to be recognised, that all the patterns of a category shall on translation
into feature space be represented by vectors that cluster closely around the
ideal. Thus a(ij) is a measure of the presence of the feature tin the ideal
pattern of category j. For the purposes of this paper, the quantities a will be
regarded as boolean — the feature is either there or it is not — though later
work suggests that a third value 'Don't know' may be useful in centring the
patterns. Further, the present two values of the as will be +1 and —1, rather
than 1 and 0; under these conditions, the vectors of feature space will all be
of the same length (VF) and that space itself will be the surface of a hyper-
sphere centred at the origin of co-ordinates. In fact, the vectors will meet the
hypersphere at points of contact with an inscribed hypercube of Fdimensions.
For a pattern to be acceptable as belonging to a given category, its feature

vector will be required to lie within a defining hypercircle (on the hypersphere
surface) centred at the tip of the ideal feature vector for that category. If the
feature vector lies in the no-man's-land between defining hypercircles, the
pattern will be rejected as unreadable.
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The angles between ideal vectors taken in pairs are clearly to be large;
the cosines of these angles are proportional to the scalar products of the
vectors. In addition, the distances between ideal vector tips measured round
the circumference of the hypercircle should be large relative to the radii of the
category-defining hypercircles. In effect, these conditions imply large HDS
between ideal vectors, and that implies a design constraint (in a minimal
sense) on the dimensionality of the feature space. The ideal vectors will

Features

Categories 1 2 3 4

2

ail 021 031 
0
41

a 022 32 a12 22 32 42

j 02j 93j a4j

01C a2C 03C a4C

a — aF1

a •

aFj

aFC

Figure 2. The feature matrix

preferably be evenly and therefore symmetrically disposed in feature space,
and the dimensionality will be a function of the desired accuracy, the pro-
bability of any one term a(ij) being correct — that is, ideal — the permissible
reject rate and the number of categories. The relevant formulae are exhibited
in Appendix 1. The linear separability requirement is always satisfied by
hypercircles on a hypersphere.

THE COMBINATORIAL MATRIX

If the number of categories is neither too large nor too small, say about 5,
there is little difficulty in specifying a feature matrix to satisfy the conditions.
Each column must be made to give a systematically different dichotomy
among the categories. For instance, figure 3 illustrates a feature matrix for
5 categories, formed by making each column give a positive dichotomy for
a different 2 from 5, 10 columns in all. Ideal vectors are separated by an angle
arccos ( —1 / 5) and an HD of 6; the category hypercircles would embrace all
vectors at HD 2 or less from one of the ideal vectors (radius 2V2), or for
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greater accuracy in recognition, at the cost of higher rejection rate, all vectors
at an HD of 1 or less.
The 10-dimensional feature space of figure 3 can be made to accommodate

a sixth category of patterns, while still retaining the same angles and HIM
between vectors, by the addition of a '10+' vector as shown in figure 4, or

Categories
Features

1 2 3 4 5 6 7 8 9 10
1 + + + + - - - - - -
2 + - - - + + + - - -
3 - + - - + - - + + -
4 - - + - - + - + - +
5 - - - + ---4---- + +

Figure 3. Feature matrix for 5 categories, 10 features. HD= 6; mutual angle=cos-1/(-1)

Categories Features

1 2 3 4 5 6 7 8 9 10
1

_
+ + 4- + + + + + + 4-

2 + + + + - - - - - -
3 + - - - 4- + + — — -
4 - + - - + - - + + -
5 - - + - - + - + - +
6 - - - + - - + - + +

Figure:4. Feature matrix for 6 categories, 10 features. HD= 6; mutual angle=corl/( -4)

Categories
Features

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + +
2 + - - - - + + + +  
3 - + - - - + - - - + + + - - -
4 - - + - - -+ - - + - - + + -
5 - + - +
6 - - - - + - - - + - - + - + +

Figure 5. Feature matrix for 6 categories, 15 features. HD= 8; mutual angle=cos-1/(-11)

six categories could be deployed in a 2-out-of-6 matrix as in figure 5. This has
15 features, a mutual angle of arccos ( -1/ 15) and an HD of 8. Again, the
lower rows of the matrix, figure 5, could be used to separate five categories
with greater certainty, although with somewhat less efficiency, than is obtain-
able from the matrix figure 3, because of greater HD.
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And so on. The method for these 'combinatorial' matrices is obvious;
it breaks down either when the number of categories is low, or when that
number is high, on the one hand because it does not give enough features,
and on the other because it gives too many. We shall now consider these two
limitations.

THE REPEATED MATRIX

If the number of categories is low — say 3 — then there are only a few possible
dichotomies of combinatorial type, and feature space is low dimensioned.
This means low HD and hence loss of accuracy, although of course it is
wholly possible (and likely) that the original retinal dichotomies themselves
may be more reliable with a smaller number of categories, and so require less

Features

Categories
Field 1 Field 2 Field 3

1 2 3 4 5 6 7 8 9

1
2

3

-+-

--+
- + -

- - +

-+-

- - +

Figure 6. Feature matrix for 3 categories, 9 features. HD= 6; mutual angle= cos-1/(

HD. If they are not, the inference is that the categories include some wide
deviants, and these might well be classed as separate categories. Or dicho-
tomies could be applied to a restricted field of the retina, and repeated for
other fields, figure 6. An experiment something like this was described by
Roberts (1960), though it was not then put forward in these terms.
We have not given much attention to this limitation, since it is not on the

face of it our problem. We are much more concerned with the other extreme,
where the number of categories is high.

THE CALTROP MATRIX

Information theory suggests that each feature should appear in about half
the categories, and that each category should typically contain about half the
features. The geometrical approach given in this paper confirms the point
and shows why it is important; if it is not met, the hypersphere surface is not
used efficiently, the ideal pattern vectors tending to bunch into a small part
of it. A seventh category vector of 15 +' units added to the matrix figure 5
makes an angle of arccos ( —1 /3) with each of the others, themselves
mutually separated by the angle arccos ( —1 /15). But as the number of
categories increases, matrices designed on the combinatorial plan and also

392



COOMBS

satisfying the efficiency condition rapidly become unmanageably large.
Thus, with 11 categories and a 5-out-of-11 procedure, the required number
of features is 462, with mutual angles arccos ( —1 /11) and H DS of 252;
a twelfth 'all +' vector will make the same angle with all the others, and be
at the same HD from them. With a 3-out-of-11 procedure, 165 features are
needed, with mutual angle arccos ( +7 /55) and HD of 72; the twelfth vector
is at arccos ( — 5 /11) and HD 120. With a 1-out-of-11 procedure, only 11
features are needed, the mutual angle is arccos ( +7 /11) and the HD 2, but
the twelfth vector is at arccos ( —9 /11) and HD 10. Clearly, the combinatorial
approach is either impossibly uneconomic or highly inefficient, or both, as the
categories increase. It would seem that there should be a way of selecting
a sub-set of (in this case) the 462 features, which will still retain the angular
separation. There is indeed away, though it is of synthesis rather than analysis;
such a sub-set may be derived from an orthogonal matrix of appropriate size.

•■■••

+ + + + + + + + 4- + +

+ — + + + — — — +

— — + — + + 4- — — —

+ — — + — + 4-___ + — — —

— + — — + — + + + — —

— — + — — 4- — + + + —

— — — + — — + — + + +

+ — — — + — — + — + 4-

+ + — — — — + — t

4- 4- + — — — t — — 4- —

— + + 4- — — — t — — +

+ — 1- t + — — — + — —
— —

Figure 7 Caltrop matrix for 12 categories, 11 features. HD = 6: mutual angle = cos-'
(-1/11)

It is not difficult to show that a boolean orthogonal matrix must be of an
order which is a multiple of 4 (Paley 1933); it is probable, though as far as
we know not yet proved, that such a matrix can be constructed of any order
which is a multiple of 4. It can certainly be done up to order 112, and with
very few exceptions up to order 200. Now any such matrix is either already
in a form where one complete column and one complete row are both 'all +',
or it can be converted into this form by using the self-evident fact that a set
of orthogonal vectors remains an orthogonal set if any number of the vectors
be reversed in sign. The 'all +' column then represents a feature which
possesses no power of discrimination between the categories, and it can be
eliminated. The result is a matrix of 4m vectors in (4m — 1) space, the array
of vectors possessing a mutual angle of arccos (-1 / (4m —1)) and a mutual
HD of 2m. For m = 3, the matrix is shown in figure 7, covering 12 categories
with 11 features; the mutual angle is arccos ( —1 /11) and the tin 6, and this
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matrix clearly contains the required selected set from the 462 features specified
using the combinatorial approach.

Vector sets of this sort are generalisations into n-space of the 4-spiked
mediaeval 'caltrop' used to impede the advance of cavalry, and it is accord-
ingly proposed that they shall receive this generic name. They give the most
efficient possible way of filling the surface of a hypersphere with hypercircles.
It is in fact possible to generate a caltrop of n spikes for any (n-1) space,
but the caltrop can be boolean only if the n-space will support a boolean
orthogonal set (which probably means 'is of dimension 4m'). Thus, the
3-spiked caltrop in 2-space, figure 8, can never be boolean, whereas. the
4-spiked caltrop in 3-space, figure 9, both can be and is.

c o cl(/2)

a +1-2- 0

— 1/2 If +1/ 2 \re;
— 112i-2— — 1 iziE

Figure 8. Caltrop and corresponding matrix in 2-space (non-boolean)

AM/
a +4 +1 +1
b +1 -4 -1

-4 t I -4

d -1 -1 +1

cos-I (-1/5)

Figure 9. Caltrop and corresponding matrix in 3-space (boolean)

Consider the caltrop matrix, figure 7. In it, all the rows below the second
are 'shifted' repeats of the second, and all pairs of rows have mutual scalar
product ( —1). In fact, the typical row is a digital sequence with pseudonoise
properties, and such sequences can be used to construct caltrops (see Everett
1966). This form of synthesis requires that the period of the sequence be p,
where p = 3 (mod 4), and that either:

1. p is prime (e.g. p = 11)
or 2. pis 2k —1 (e.g. p =i5)
or 3. p is lm, where I and m are primes differing by 2, and having a

common primitive root (e.g. p = 35 = 7 x 5, 7 and 5 possessing
the common primitive root 3)
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A great many combinations of these and other matrices are possible, but we
cannot pursue the topic here. We should, however, refer to the fact, unknown
to us when we derived the caltrop, that the properties of these very useful
matrices have apparently been used in the construction of error-correcting
codes (Peterson 1961).

THE DICHOTOMIES

Any one column of the feature matrix gives the dichotomy required to be
effected by one feature among the categories. The aim will be to achieve that
dichotomy by a linear separation with an n-tuple which does not contain too
many points.
Now, each and every pattern of the input training set can be represented

by a linear inequality of S variables, those variables being the weight to be
attached to the retinal points, and the coefficients in the inequality being +1
or —1 depending on the activity of the retinal points. The problem reduces
to that of solving a set of simultaneous linear inequalities, CE in number
.with S variables, with the added refinement that as many of the weights as
possible are to be so close to zero that they can be ignored (thus reducing
the size of the n-tuple).
Put like that, a solution method using the Linear Programming techniques

of operational research is suggested; we are at present investigating this
possibility. To obtain the results exhibited in Appendix 2, however, we used
a computer simulation of 'Adaline' (Widrow 1962), which is a machine
ideally suited for performing dichotomies of this very type. The principle was
that we converged to a set of weights on the training set of characters, using
the Adaline algorithm, eliminated those weights (i.e., retinal points) which
were of low importance, re-converged, eliminated again, and so on. We
expected that the 'n' of the n-tuple with which we were eventually left would
for each feature be rather larger than the number of categories, but consider-
ably smaller than the number of patterns in the whole training set. And so
it proved. For patterns on a retina of 200 points, with 40 samples of each of
10 categories, groups of 30 to 50 points were sufficient to give the dichotomies.
These figures can undoubtedly be improved upon with more experience;
it is important to observe that because of the built-in Hamming distance
in the feature matrix, it is not necessary for the test dichotomies to be 100 per
cent correct. The curves, figures 10 and 11 of Appendix 1, illustrate the point.
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APPENDIX 1

Mis-sort and reject rates as functions of dichotomy reliability

Let the input characters belong to C categories, and let the number of features
be F. For a fully effective caltrop matrix,

C = F+ 1.

Let the feature space be used uniformly, so that every pair of ideal vectors
possesses M common features and a mutual Hamming distance of H, where

F = M + H.

Let the probability of obtaining a correct dichotomy at any given point in
the future matrix, with a test pattern, be p; define k as

, 1- p
K =

Let the number of features permitted to be different from an ideal before a
pattern is rejected be r, this specifying a hypercircle radius (= 2,/r); the
corollary is that any pattern at HD r or less from an ideal vector is allotted
to the category of that vector. Then if the categories have equal likelihood
of appearance, and a pattern is certainly being presented, the performance
of the matrix can easily be derived by a Bayes analysis, as follows.
Consider one particular ideal pattern vector, A. The probability that the

test pattern is in the A category is 1 / C, that being in that category it produces
a vector within the prescribed hypercircle is

pFirFlk..

0 L

The possibility that the test pattern is not in the A category is C- 1) / C;
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that not being in that category it still produces a vector within the A hyper-
circle is

ppirMitirlicH+y_z

Hence, the probability that the test pattern is allotted to a category at all is
Q, where

Q = + (C-1) trylt ride +

= (say)pF(X+Y).

Given that the pattern is allocated, the probability that the allocation is
wrong is P, where

P —
X+Y•

The graphs, figures 10 and 11, show mis-sort and rejection rates for a caltrop
of 23 dimensions (24 categories) worked out according to the above formulae.

APPENDIX 2

The following experiments have now been carried out, testing the theory
described in the paper.

Experiments

A set of 800 multi-font typed characters, 80 samples of each of the 10
numerals, taken with deliberately little regard for quality, was used as the
input. Half the characters (40 x 10) constituted a 'Training' set, and the
nearest suitable caltrop (11 features by 12 categories) was used, that is,
11 Adalines were converged according to the dichotomies shown in figure 7,
but with no inputs labelled categories 11 and 12. Convergence was continued
with the elimination of retinal points appearing to have little significance
(Adaline weights approx. = 0) until the 11 Adalines had 50 inputs each.
This number could have been reduced further had not time precluded it.
At this point, then, the feature layer consisted of 11 cells performing the

dichotomies indicated in figure 7, with each of the categories 1 to 10 con-
taining 40 training samples of the numerals 1 to 0 in multi-font, and categories
11 and 12 left arbitrary. The rest of the characters (40 x 10) were now shown
to the machine as a 'Test' set; they were, of course, previously unseen by the
machine. The results are given below.

Results

There is a 'trade-off' between reject rate and mis-sort rate in terms of the
acceptable Hamming distance between a test vector and the ideal vector for
the appropriate category. With the 11 x 12 caltrop, the HD between categories
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1 HD=0 2 HD=0 3 HD=1

6 HD =0 7 HD =0 8 HD =0

4 HD =1

9 HD =2

5 HD =1

10 HD = 0

11 HD =2 2 HD =0

•

13 HD =2 14HD:5 (T0(2):1) 15 HD =0

16 HD = 0 17 HD=3 TO® 18 HD:4 TO® 19 HD.:3 TO® 20 HD =1
O&M O&M O&S

®PREFERRED ®PREFERRED ®PREFERRED

Figure 13. First 20 test set 4s-machine responses (HD from ideal 4)
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COOMBS

is a uniform 6, so a distance of 3 from an ideal vector would in general give
ambiguity, an allowable distance of 2 would give a low reject rate but medium
mis-sort, while an allowable distance of 1 would give medium reject and low
mis-sort.
The figures actually obtained in the 'Test' phase with the unseen 400

characters were as follows:

1. Dichotomies performed correctly = 93 %
(312 out of 4400 incorrect)

2. With HD allowed to be 2
Correct categorisation = 93.75%
Rejected = 4.25%
Mis-sorted = 2.0 %

3. With HD allowed to be 1
Correct categorisation = 8025%
Rejected = 1950%
Mis-sorted = 0-25%
(i.e., one out of the 400 characters)

Notes —
Figure 12 shows an assortment of the Test characters, chosen rather to
illustrate the achievements and failures of the machine than to typify the set.
Thus, the first '4' was the only character to fail on HD = 1; it was a sample in
a very large font which had not appeared at all in the training set, and it
overlapped the matrix. Even so, analysis of the result scores showed that a
very small refinement in the technique of scoring would have resulted in its
rejection rather than its mis-sorting. To the purist, the words 'hyper-radius 2'
should be 'hyper-radius 2‘./2' and similarly for 'hyper-radius 1'; the hyper-
cubes in our boolean space are of edge 2 units, and any two of which edges
are mutually perpendicular.

Figure 13 is more useful to show the typical quality of the test-set characters.
It illustrates the first 20 samples of the numeral 4 in the test-set, including the
only character to fail with HD = 1 (sample Number 14). Open and closed
types, thick and thin, and highly defective samples are all shown, together
with the HD from the ideal vector for category 4. The 14th sample was at
HD = 5, and therefore mis-sorted. The 18th sample was at HD = 4, but in
fact was at such a point of the hypersphere surface that it was no nearer any
other ideal vector. The 17th and 19th samples were at HD = 3, and rejected
as ambiguous; analysis of the scores showed that the preference in each case
was for 4 — that is, if the association cell with the lowest score is deleted,
then each time the HD from 4 is reduced, whereas the ims from the alternative
categories are unaffected. The suggestion is that a discriminating stage, with
'learned' weights, would have improved the performance. All the other
samples were at HD 1, 2, or 0.
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Linear Skeletons from Square Cupboards

C. Judith Hilditch
Medical Research Council,
Clinical and Population Cytogenetics
Research Unit

INTRODUCTION

The problem of reducing the line-like elements of a digitized picture to
idealized thin lines is of general interest in pattern recognition. As early as
1957 the idea of obtaining a thin-line representation of certain patterns was
suggested (Kirsch et al. 1957); recently McCormick (1963) and Narasimhan
(1964) have described computer programs for doing this (for use in particular
on bubble chamber photographs), and similar work has been done in char-
acter recognition, for example by Deutsch (1967). Blum (1964) has put
forward an approach for dealing with more general shapes. In this the bound-
ary of a shape is considered as being the source of a wavefront. The points at
which wavefronts originating at different parts of the boundary first meet
form a 'skeleton' which, with a function giving the time taken for the wave-
front to reach each point of the skeleton, completely defines the original
shape. Programs for generating this skeleton for digitized pictures have been
described by Rosenfeld and Pfaltz (1966), and also by Philbrick (1966). A
technique which we at the MRC have implemented for reducing line-like
shapes to idealized thin lines is similar to the last of these, in that it involves
working inwards from the boundary of the shape under consideration, re-
moving all points except those which are considered part of the skeleton. It is
also similar to a stripping routine described by Izzo and Coles (1962) and
Preston (1961) in a rather different context.

AIMS

The problem with which we have been primarily concerned is the automatic
analysis of chromosome spreads, a typical example of which is shown in
figure 1.
The aim of the algorithm described in this paper is to reduce such a picture

to a 'skeleton' of idealized thin lines which satisfy not only the obvious
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requirement that they should lie approximately along the centre of each

line-like part of the picture but also satisfy, as nearly as is possible in a

discrete space, the definition of a line as 'that which has length without

breadth' while still retaining the connectivity of the original.

Figure 1. A typical human chromosome spread

THE PICTURE

Before describing how this has been done it is necessary to describe more

fully the form which the picture takes. Let J be the set of all pairs of integers.

Then a picture is defined as a function f on a subset P off. In particular? is

usually rectangular, i.e., P= {(i,j)I1<i<in,1<j<n} , and the elements of?

can be regarded as the elements of a matrix, or as points with integer co-

ordinates in the Euclidean plane. Usually the function f will initially take

values such that each element or point represents in some way the darkness

of that part of the picture. Subsequent transformations of the picture will,

however, alter the values of the points and hence of course their significance.
The work described here is concerned not with whole pictures, which in our

case consist of about a quarter of a million points, but with sub-pictures, that

is restrictions off to a subset Q of P; formally we denote this byf I Q. Q may

for example be the set of all points of P with value greater than some threshold
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or a connected component of such points. The problem which we are con-
sidering here is that of producing a skeleton for such a sub-picture which
satisfies all the requirements for a skeleton listed above.

CONNECTIVITY

At this stage it is necessary to define what we mean by connectivity in the
case of a digitized picture. Each point of a picture is considered to have eight
neighbours, these being the eight points which differ from it by one in either
or both co-ordinates. For convenience these neighbours are numbered
n2,. . ng as shown in figure 2. The numbers are taken modulo eight so that,
for example, neighbour nine is the same point as neighbour one.

• • •
n, n, n,

• • •
n, P n,

• • •
n, n, n,

Figure 2. The eight neighbours ni to ns of a point p

Following Rosenfeld and Pfaltz (1966) we say that a subset of a digitized
picture is connected if for any two points p and q of the subset there exists a
sequence of points

=PO, pl, P2, P3, • • .1 Pn-1, Pn=q,
such that pi is a neighbour of pi_ 1, 1in. This corresponds with the usual
concept of connectivity in the Euclidean plane, if one considers the area
defined by taking each point of the subset as the centre of a closed unit
square.
However, as pointed out by Rosenfeld and Pfaltz (1966), if one then con-

siders whether the complementary subset of the picture is connected, para-
doxical situations can arise. For example, both the set of black points and the
set of white points in figure 3a are connected, as is illustrated in figure 3b.
This paradox is not resolved by considering a point as having only four
neighbours, namely nlin3,n5 and n7. In this case we simply have the reverse
situation that neither the set of black points nor the set of white points is
connected.
The paradox arises because the connectivity of a subset of the picture and

the connectivity of its complementary subset are both being considered at the
same time. In practice one is usually interested only in the connectivity of a
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given subset, say the black points in figure 3a. In this case confusion can be
avoided by considering the connectivity of the area defined by this subset in
the Euclidean plane and the connectivity of the complementary area, rather
than the area defined by the complementary subset.

0 0 0 0 0 0 0

0 0 0 • 0 0 0

0 0 • 0 • 0 0

0 • 0 0 0 • 0

0 0 • 0 • 0 0

0 0 0 • 0 0 0

0 0 0 0 0 0 0

3a

0 0 0 0 0 0 0

0 0 -oz 0 -0 0 .0

0 W/zA
0M0W0

0 0
-/-

'

W

00

0 0 0 0 0 0

0 0 0 0 0 0 0

3b

0 0 0 0 0 0 0
0 0 0 :00 0 0
0 0-0,0v70 0
0vA0 0 0w0
0 o Pr...o r o o

o o 0..0 o o

o o o o o o o

3c 3d

Figure 3. A paradoxical situation in which both the set of black points and the set of
white points are connected. For a full description see text

This is made clearer by taking each point of the subset as the centre of a
square with side slightly greater than the distance between adjacent points; the
area defined by the set of black points is then given by the shaded part of figure
3c and clearly is connected, whereas its complement clearly is not. On the other
hand the area defined by the set of white points (given by the unshaded part
of figure 3d) is also connected and its complement is not. We choose to
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consider each point of a given subset of the points of a picture as representing
a square of slightly greater than unit area, in this way, and define the subset
as connected if the area which it represents is connected in the usual sense in
the Euclidean plane.
This is equivalent to defining connectivity on the neighbourhood basis with

the points of the given subset each having eight neighbours ni to n8, but
allowing the points of the complementary subset to have only four neigh-
bours ni,n3,n5 and 777.

Figure 4. In the hexagonal case each point has six neighbours, and the paradoxical
situations cannot arise

It may be interesting to note an alternative approach which avoids this
difficulty altogether. This requires alternate lines of the picture to be displaced
by half a unit, and each point taken to have six neighbours, as shown in figure
4. This is equivalent to considering each point as the centre of a hexagon, and
in this case it is clear that the paradoxical situations do not arise.

REQUIREMENTS TO BE MET BY THE SKELETON

We are now in a position to consider in greater detail the requirements to be
met by the skeleton and how these are satisfied. The requirements are:

1. Thinness

First, the skeleton is required to consist of thin lines. This is achieved
simply by eroding away the subset by successively removing points which lie
on its edge until all that remains is lines which are one point wide. The algor-
ithm is intended for use on a general purpose digital computer in which the
points must be treated sequentially and not in parallel. However, if the points
are removed sequentially — a point being removed from the subset as soon as
it has been found to lie on the edge of the subset — then subsequent nearby
points will appear to lie on the edge and will be deleted in their turn. The
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result is that the skeleton will tend to be biased towards one side or the other
of the original subset, depending on the order in which the points are taken.

2. Position

The second condition is that the idealized thin lines should lie along the
centres of the line-like parts of the subset. To achieve this the process of re-
moving points on the edge of the subset is made essentially parallel. A point is
removed only if it lies on the edge of the initial subset, regardless of which
other points have been removed. This means that several passes through the
points of the subset are required. At each pass the outer layer of points is
removed to give a 'thinner' subset for the next pass.
However, once this thinning process has reached a stage where some or all

of the subset has been reduced to thin lines of points, these lines must not be
thinned away to nothing. This is ensured by the next two conditions.

3. Connectivity

The third requirement is that the process should not alter the connectivity
of the subset. This is achieved by testing each point that is to be removed to
find whether its removal will alter connectivity. If it does, then the point is
retained even though it lies on the edge.
However, if this is performed in parallel, a difficulty arises in the case

where the subset has been reduced to a line that is two points wide, such as is
shown in figure 5.

Figure 5. In each of the cases shown above neither the deletion of point p nor the
deletion of point q will disconnect the area of shaded points; however, in each case the
deletion of both p and q will,
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In this case the removal of point p would not alter the connectivity of the
subset, neither would the removal of point q. Unfortunately, the removal of
both together most certainly will. This difficulty is overcome by taking
advantage of the fact that the points are really being dealt with sequentially.
Suppose, for example, that point p in figure 5 is tested before point q. Since the
removal of p does not alter the connectivity of the subset, this point is re-
moved. Subsequently, when point q is tested, the fact that p has been removed
can be taken into consideration and the point q retained. This means that for
a point to be removed, not only must its removal alone not alter connectivity,
but if any one of its neighbours has been removed, then the removal of the
two points together must not alter connectivity either.

4. Stability

Finally, it is necessary that as soon as a satisfactory skeleton, or part of a
skeleton, is obtained, this should be stable and not be eroded away by subse-
quent passes. For most points of the skeleton this is ensured by the connecti-
vity condition. However, a point which lies at the tip of a thin line can be
removed without altering connectivity. An additional condition is therefore
required to the effect that such a point may not be removed, otherwise the
lines of the skeleton will gradually become shorter and shorter. Also, in order
that an approximately circular subset should not disappear entirely, we need
a condition which ensures that the last remaining point of such a subset is
not removed.

THE ALGORITHMS

To meet these requirements the various algorithms that we have implemented
each require several passes. At the start of a pass a subset Q of some sub-
picture Jo I P is give& ; at the end of the pass a subset Q' of Q, which is one
layer 'thinner', has been defined. Initially, Q is the subset to be reduced to
idealized thin lines; the resulting Q' then becomes Q for the second pass, and
so on; eventually a Q' is obtained which is a skeleton of the required form.
Thereafter, no further points can be removed, and this fact is used to recog-
nize when no more passes are required.
We have found it convenient to assume that the subset Q is defined as those

points of P for which fo takes one of a given set of values, I, say, and that all
other points of P take one of a set of values N. In particular, the picture
usually takes the form of either a characteristic function with points in Q
having value one and all other points zero, or Jo takes values on the non-
negative integers, points in Q having values greater than some threshold and
other points less. However, this assumption causes no loss in generality since
it can be extended to a subset Q consisting of points having any given property
simply by making Jo the characteristic function for these points.

1 Since the algorithm requires the values of the neighbours of all points of Q to be
defined, P should contain at least all neighbours of points of Q.
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Throughout a pass through the points of the picture a record of the initial
subset Q must be maintained. However, it has been found convenient, rather
than retaining the original picture fo P as well as constructing point by point
a new picturef1 P which will define Q', to reserve a third set of values R for
points which have been removed (Rnl= 4) and RnN= 4)). Only one picture
is then required, and as each point q e P is tested the picture is changed by
setting that point to a new valuefi (q), wherefi (q)eR if the point is removed,
or, if it is not, fs(q)eI or fi(q)eN, depending whether the point was in Q in
the first place or not.
At the stage when point p of the picture has just been set the value of any

other point q is denoted by f(P)(q) (or f(q) for short), where f(P)(q) = fo(q),
if q follows p, and f (P)(q) = fi(q), if q precedes or is p. At this stage we have a
partially thinned picture f(P) I P; the initial subset Q is given by

Q= {qeP I f(P)(q)eIu 12}

and the partially thinned subset Q(P) is defined by
Quo. {via f(P) (q)

When all points of the picture have been tested

f(P)=f1 and OP). Q'= {q eP I fs(q)el}

The picture is then ready for the next pass to begin, except that all points
with values in R must first be reset to have values in N, or R and N must be
redefined to the same effect.

It is sometimes useful, also, to reserve a subset U of I for the values of
points which for some reason may not be removed at the current pass.
The crucial part of the algorithm is the determination of whether or not a

point should be removed. This is independent of the choice of sets I,N,R and
U and is described in full below.

CONDITIONS FOR THE REMOVAL OF A POINT

A point p will be removed, that is, it will be set to a new value fi (p) in R, if
and only if it satisfies all the following conditions:

1. It belongs to Q and its removal is allowed, i.e.,

f(p)el—U;

2. It lies on the edge of Q, that is, at least one of its axially adjacent
neighbours ni,n3,n5 and 177 does not belong to Q; i.e., if

p(p) = as+ as+ as+ a7 (where (11=1 if f(n i)eN, al= 0 otherwise)

then we have the edge condition

P(P)>1;
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3. It is not the tip of a thin line, that is, it has more than one neighbour
which belongs to Q, i.e., if

8

v (p) = E(1-a1) (a, defined as above)
i=

then we have the 'not tip' condition

v(p)>2

4. It is not the last remaining point of small 'circular' subset, that is, it has
at least one neighbour in Q which has not been removed; i.e., if

8w(p)=1Eici
then we have the condition

w(P) % 1

5. Its removal does not alter connectivity, that is, the area of the Euclidean
plane defined by the subset Q can be continuously deformed to give the
area defined by the subset Q— fp). This will be so if and only if the set
comprising those neighbours of p which are in Q consists of one con-
nected component. (The case where the removal of p would produce a
'hole' is prevented by condition 2 above).

(where c1= 1 iff(n )EI, cl= 0 otherwise)

• • • • • 0

• p • • p •

0 0 0 0 0 0

• • • 0 • 0

0 p 0 0 p •

• • • • "0 0

Figure 6. Crossing number. The crossing number at point p with respect to the set of
black points is one in the two upper cases and two in the two lower cases. Note in the
two right-hand cases that neighbour one is connected to neighbour three, so the fact
that neighbour two is white does not cause an increase in crossing number.

The number of components is calculated by considering the number of
times a 'bug' taking a walk around p by way of its neighbours would
have to cross from outside to inside the subset. This number is called
the crossing number of p with respect to the subset, and is generally
equal to the number of components, but would be zero in the case
where the 'bug' did not need to leave the subset at all. Note that to
conform with our definition of connectivity the ̀ bug' must go from one
axially adjacent neighbour of p to the next axially adjacent one, by-
passing the diagonal if by so doing it avoids leaving the subset. Some
examples are given in figure 6.
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This crossing number X(p) is calculated as follows:

4

X(p) =Eb I (where b1= 1 if f (n2i4) EN and either
1=1

f (7121)ENR or f (1721+1)EIuR
and b a= 0 otherwise).

The connectivity condition is then given by

X(p) =1

6. Its removal in conjunction with any one of its neighbours that has
been removed does not alter the connectivity of Q; that is, if neighbour
ni ofp has been removed, i.e.,f(ni) ER, then if the value of this neighbour
is temporarily altered so that f (ni) EN and it thus appears that ni is not
in Q, then the new crossing number at p, X, (p), say, is still one.
This gives us the additional 'two thick line' condition

f(ni)ctR or Xi(p) =1 (i=1, ...,8)

In general, the sequence in which the points are being tested is known, and it
is therefore only necessary to test this last condition for those neighbours which
precede p, sincef can only take a value in R for a point after it has been tested.
For example, if we start at the top of the picture and work from left to right
along each line, it is only necessary to test the condition for 1=2,3,4 and 5.
In addition, if i is even and p satisfies all the preceding conditions, then the
condition that either f (171)OR or .11(P) =1 is automatically satisfied and need
not be tested. For, iff ( n1) ER, then, since p has crossing number equal to one
and has more than one neighbour in Q, and ni belongs to Q, it follows that
either ni_i belongs to Q, or ni+i belongs to Q, or both. If both belong to Q
then deleting neighbour i does not alter the crossing number at p since the
'bug' can in this case 'cut the corner'. If on the other hand only one of these
is in Q then deleting neighbour i cannot possibly alter the crossing number,
so in each case we have Xi (p) =1. It is thus only necessary to test this last
condition for 1=3 and 1=5, i.e.,

f(ni)OR or Xi(p) =1, for 1=3 and 1=5

APPLICATION TO BINARY PICTURES

The algorithm was initially implemented for use on pictures taking the form
of a characteristic function. In this case points belonging to the subset Q have
value one, all other points have value zero, and when a point is removed its
value is set to minus one, i.e., the algorithm is applied with

{ 1
• N= {0}
and R= { —1}
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Between each pass it is necessary to set those points which have been removed
and so have value —1 to zero ready for the next pass.

This can be made more efficient in the following way. Consider a point p
of the picture and suppose that at one pass neither this point nor any of its
neighbours is removed. Then this point cannot possibly be removed at the
next pass since its situation with regard to the conditions for removal has in
no way changed. If all such points are set to two, therefore, and we define

U={2}

this will avoid the unnecessary testing of the neighbours, crossing number,
etc., of these points at the next pass. This is achieved by setting the value of
all points of Q which are not removed to two; then at the end of the pass,
when all points which have been removed are reset from —1 to zero, their
neighbours with value two are reset to one.

Figure 7 shows the results obtained by applying this algorithm to several
pictures.
An alternative method of improving the efficiency of the algorithm is by

avoiding the need to reset the values of all points which have been removed,
between passes, by re-defining the sets Nand R instead. This is done by setting
the value of those points which are removed atthe mth pass to —m instead of
—1 and defining I, N and R as follows:

1= {1}
N= {f10?-f> —m}
R= (—m)

Thus, after each pass, N and R are re-defined by incrementing m, and the
next pass can take place immediately.

SHORTCOMINGS OF THESE IMPLEMENTATIONS

With chromosome images we found that the type of approach described
above had two disadvantages. First, the outlines of chromosomes tend to be
rather noisy, with the adjacent arms of a chromosome not completely separate
but touching in several places, and this results in a skeleton with many
spurious branches, as illustrated in figure 8b. This can usually be overcome
without much difficulty by a simple smoothing of the boundary and by
expanding any 'holes' produced by touching arms until they are connected
with the exterior of the object. Application of the algorithm then usually
produces a skeleton with few or no spurious branches, as in figure 8c.
A second more serious shortcoming is that the resulting skeleton is com-

pletely defined by the original outline of the object. If the picture is essentially
black and white and its outline well defined — as it frequently is in character
recognition — this is exactly what is required. However, with chromosomes
the density drops off gradually from the central ridge of each arm outwards,
and the choice of boundary is somewhat arbitrary. In this case what is
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Figure 7. Binary pictures of a chromosome and of a hand-written digit, and the
skeletons obtained from them.
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required is that the skeleton should lie along the higher density ridges of the
picture rather than in a central position determined by outline alone. An
example illustrating this is shown in figure 9.
The way in which the algorithm can be varied in order to achieve this, for

pictures in which f takes values that are positive integers representing the
densities of the points, is given below.

IMPLEMENTATION FOR PICTURES WITH A RANGE OF
DENSITY VALUES

It is possible to obtain a skeleton which tends to lie along ridges of higher
density in a picture by removing only points at low density in the first few
passes and allowing points with higher density to be removed later. This is
done by restricting removal in any one pass to points with a given value.
Thus, if d is the value of points which may be removed in the current pass,
the algorithm is applied with I,N,R and U defined as follows:

I= {positive integers }
N= {0}
U= {all positive integers except d}
R={-1}

Initially d is set to one. After each pass those points which have been removed
are set to zero and the algorithm is re-applied until a pass is made in which no
points are removed. At this stage any troughs of points with value one, which
are not completely surrounded by points with a higher value, will have been
deleted. d is now increased to two and the process repeated. In this way points
with a low value lying between ridges of higher value points are deleted first,
thus, for example, separating touching arms. When no further points with
value two can be removed the program starts on value three, and so on.
However, whenever the deletion of a point with value d uncovers a point
with a lower value (i.e., a neighbour of a deleted' point has value g,0<g<d)
d is reset to g at the next pass. Nevertheless, it may be desirable to consider
that whenever there is an area of points with value di completely surrounded
by points with a higher value, d2 say, then this represents a closed curve
surrounding the di points. To achieve a skeleton which reflects this, all that
is necessary is that when all points with value less than or equal to d2 which
can be removed, have been, then any remaining points at level di are deleted
thus producing 'holes'. Thinning then continues at level di +1.

Unfortunately, application of the algorithm is very time-expensive since it
requires a complete pass to be made through all the points of the picture even
though there may be only very few points remaining with the current value d
(and in general the greater the number of values the less the efficiency). This
has been overcome by initially making a list of all points of the picture with
each value. Therefore, when removing points with a given value, it is neces-
sary to consider only the points given in the list for that value.
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Figure 8. (a) A digitization of a chromosome. The chromosome is digitized on aseven-level density scale, and in the line printer representation shown here the charactersare chosen so that the density at each point corresponds approximately to the overalldarkness of the printed character.
(b) The skeleton obtained from this chromosome by using the binary application of thealgorithm on its characteristic function.
(c) The skeleton obtained by pre-processing the picture before taking the characteristicfunction.
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Figure 10. Some chromosome pictures and skeletons obtained using the version of the
algorithm intended for pictures covering a range of density values.
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The success of this algorithm is illustrated in figure 10. As well as being less
sensitive to the choice of boundary for the picture it is also found to be much
less sensitive to noise — the only pre-processing required to obtain satisfactory
skeletons being a simple smoothing, by setting each point to a weighted
average of itself and its neighbours.
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Absys 1: an Incremental Compiler for
Assertions; an Introduction
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1. INTRODUCTION

Earlier papers (Elcock 1968, and Foster 1968) in this Workshop series
introduced design aims and motivation for an assertional language. Briefly,
in many problems concerned with complex but well-structured data, it is
advantageous and certainly nearer to mathematical practice to be able to
assert things about the structure of data, instead of being constrained to
sequences of imperative statements to construct particular data.
Absys 1 (Absys standing for Aberdeen System) is a working on-line

incremental compiler written by the Computer Research Group at Aberdeen
for the Elliott 4120.
The aim of this paper is to present, in an informal way, some of the main

features of the implemented language, and to try to exhibit assertional pro-
gramming by means of a few examples. The paper is not meant to be a com-
plete description of the language, which will appear elsewhere.

2. THE 'AND' CONNECTIVE

An individual assertion asserts a relation about data objects. Thus the
assertion

x=y

asserts that x and y satisfy an equality relation.
The operator is to be interpreted in the sense 'substitutable for', and

as such has the expected properties of reflexivity, transitivity, etc. In the same
spirit, the arithmetic operators have their expected properties so that, for
example, the assertions a = b +1, a =1 + b, 1 + b = a, b +1= a are equivalent.
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A written program consists of assertions. The individual assertions of a
program have an implicit (in that it is not written) 'and' connective between
them, with properties similar to its logical counterpart.
The system acts to construct data satisfying the conjunction of the asser-

tions. Thus, the trivial program

x=y y=2

would make both x and y the datum 2.
If the conjunction of the assertions of a program is found to be unsatis-

fiable then the program terminates unsuccessfully.
The occurrence in a program of the assertions y=x, x=2 and 3=y would

make that program terminate unsuccessfully, since no data x, y can be con-
structed to satisfy what has been asserted about x, y, 2 and 3.
There are no type declarations in the language. Types are determined

progressively and dynamically. Thus, after the assertion,

a=b+c

the types of a, b and c are constrained only to the set of types meaningful
with the asserted'+'  and'='  relations.

3. DATA DIRECTED CONTROL

A written assertional program places no explicit constraints on the order in
which particular operations are performed. In particular, if data can be
constructed to satisfy all the assertions about them, then these data are inde-
pendent of the order in which the operations are performed.
The on-line system is incremental in that, as assertions are accepted by the

system, whatever processing can be done on the basis of data already present
in the system is done. -

This lack of unnecessary concern with control in assertional programs is
sufficiently novel to be worth elaborating in the context of a trivial example of
list processing.

Consider the following constructions in a conventional list processing
language with assignment:
(i) the constructor operation

z4—cons(x,y)

which the programmer must ensure is only processed in a data environment
in which x and y have appropriate values and the current value of z is no
longer needed.
(ii) the selector operation

x+-hd(z)

which the programmer must ensure is only processed in a data environment
in which z has an appropriate value and the current value of x is no longer
needed.
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(iii) a test such as

equal (x,hd (z))

which the programmer must ensure is only processed in a data environment
in which both x and z have values.

In Absys 1

z=[x &y]

simply asserts that z is a list whose head is x and whose tail is y.
Whether it acts to construct z, or to select x and y, or to test whether x, y

and z satisfy the asserted relation, depends solely on the data in the system at
the time this assertion is processed.

If, at the time of processing the assertion, z is a known datum and it is a
list, then the assertion acts as a selector in that x will be asserted to be equal
to the head of the list and y will be asserted to be equal to its tail. If, on the
other hand, at the time of processing the assertion z is an unknown datum,
then the effect is to make z a list and again assert that x is equal to its head
and y is equal to its tail, that is, to act as a constructor.
In a less trivial example: the rather opaque assignment statement

z24— cons (cons (hd (zl), cons(hd(t1(z1)),0)), cons (cons (hd (zl),
cons (hd(t1(z1))),0),0))

expresses only one facet of the assertions

zl = [a;[b;c]]
z2=[[a;b];[a;c]]

which asserts a simple relationship over the lists zl and z2.

4. FUNCTIONS

A lambda construction allows the assertion of functions other than primitive
functions of the system.
Lambda expressions are sufficiently well known for the features of the

Absys 1 implementation to be discussed only briefly and by example.
Thus the assertion

f'. lambda x, yz begin x=[z & y=[z & r1 end

introduces a new function f such that

f(m,n)=b

is equivalent to the compound assertion

begin m=[b q'] n=[b & r'] end

that is, an assertion that m and n are lists with the same first item b.
The primes in the above serve to introduce new names, the textual scope of

which are delimited by begin and end brackets.
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Functions may be introduced by partial application of other functions.

Thus:

g'=f'(1)

f= lambda x, y=z begin z= x+ y end

asserts that g is the function lambda y = z begin z= 1 +y end

5. THE 'OR CONNECTIVE

Before going on to discuss the use of lambda constructions for the assertion
of recursive functions it is necessary to introduce the assertion of alternatives.

Alternatives can be asserted by the construction

{Al or A2}

where Al and A2 are conjunctions of assertions.
The assertional (implicit) and and or distribute so that, e.g.,

Al {A2 or A3} A4

is equivalent to

{Al A2 A4 or Al A3 A4)

The system attempts to construct distinct data to satisfy each conjunction of

assertions. Unsatisfiable conjunctions disappear when unsatisfiability is

detected.
To make this clear with a completely artificial example: after

p=[1;2]

Ip=[a;b] or p=[b;an

there are two sets of distinct data. In one set a and b are the data 1 and 2

respectively whilst in the other set a and b are the data 2 and 1 respectively.
If we were now to assert, for example,

a=b+1

one of the conjunctions will be unsatisfiable and will disappear from the

system together with its associated data.
By distribution, an assertional program can be transformed into a normal

form of a disjunction of conjunctions of elementary assertions. In this form

the conjunctions in effect constitute parallel non-interacting programs.

Absys 1 distributes the and, or connectives in a way which attempts to

minimise unnecessary duplication of processing.

6. RECURSIVE FUNCTIONS AND KEYS

Let us use the or construction to introduce a function analogous to the

recursive list-processing function map. The intention is that map(p,f),

where p is a list and f a function, should have the effect of asserting f applied

to each item of the list.
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Consider the assertion

map' =lambda p,f
begin {null(p) or p=[r' & s']f(r)map(s,f)) end

The two alternatives at each call of map are incompatible in that either the
list is null or not and if this incompatibility is detected then only one, the
intended, conjunction of assertions will be satisfiable. However, since there is
no explicit ordering of processing it is possible that processing of map might
give rise to further processing of map in the second of the or alternatives
before processing the assertion p=[r1 & s'] in that alternative. In this case
the construction leads to processing which does not terminate.

It. is clearly not sensible to try to process map(p,f) unless the datum p is
already present. Similar considerations apply to many other functions. The
lambda construction above does not however express this information.
The correct assertion for map is:

map' =lambda p, f key p

begin {null(p) or p=[r' & s']f(r) map(s,f)} end

The key statement indicates the data that must be present before evaluation
of the function may take place.
With this construction it is clear that there is no difficulty about termina-

tion, since the map(s,f) in the second alternative of the or will not be evaluated
until the datum s is present. This datum is constructed only as a result of
processing the assertion p=[r' & s'], which is the assertion incompatible
with the assertion null(p) in the first alternative of the or.
In the example of map above the or acts like a conditional. The following

example makes fuller use of the possibilities of the or construction.
First, a preliminary assertion:

item' =lambda xz key x

begin x= [p' & q'] {z=p or z= item (q)} end

This function item is such that, for example, the assertion

i= item ([1 ;2;3])

is equivalent to asserting

{i=1 or i=2 or i=3}

Consider now the following problem. We are given three lists p1, p2 and
p3, and we wish to assert that the triples r, s, t, such that r is an item in pl, s
in an item in p2 and t is an item in p3, satisfy the relation r+s=t. The re-
quired assertion is simply

r=item(p1) s=item(p2) t=item(p3) r+s=t

For example, if the data pl, p2, p3 already exist and pl, p2, p3 are respec-
tively the lists [1;2;5;6], [3;7;1], [10;2;7;4], then the result would be three
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distinct conjunctions of assertions with associated data r, s, t 1, 3, 4, 1, 1, 2
and 6, 1, 7 respectively. Each of these conjunctions would of course be subject
to any further assertions made.

7. A FINAL EXAMPLE

The functionf' =lambda x begin g(x) end parallels in an assertional language
what is rendered in predicate calculus by V (x){f(x)—,g(x)}, in that if, for

any a, f(a) is asserted, then g(a) is also asserted.
It is interesting to examine how one might parallel more general if-then

statements such as the statement V(x, y)(f(x) g(y)--4(x,y)}. We want
to arrange that if we assert, for example,

f(a) f(b) g(c) f(d)

then h(a,c), h(b,c) and h(d,c) are also asserted.
To do this we might arrange that the function f is defined so that an

assertion f(a) extends the function g by the partially applied function h(a),
so that an assertion g(b) results in the further application of h(a) to b to
produce h(a,b). The extension of the function g generated by any particular
assertion off must of course operate on all asserted arguments of g, irrespec-
tive of the particular temporal sequence of processing assertedfs and gs.

Call a list of the form [a; b & q], where q is an as yet undetermined
datum, an extendable list. The significance of this name is obvious at the
non-functional level in that after, e.g.,

p' =[1 & .71]

the assertion

q=[2 & r']

extends p to be [1;2 & r], when the assertion

extends p again to be [1;2;3 &s], etc.
Let extension be a system primitive function such that the assertion

extension(i,l)

extends an extendable list 1 by the item i leaving 1 still further extendable.
Assert

applist' =lambda 1, x key 1

begin 1=[r' & r(x) applist(s,x) end

Applist takes as first argument an extendable list of functions and asserts the
conjunction of these functions applied to the other argument.

Returning to f(x) g(y)--41(x,y), the required effect is now obtained by
asserting:
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new est

f'= lambda x begin extension(h(x), glist) end

g' =lambda y begin applist(glist,y) end

It is revealing to follow through the effect of some assertions off and g with
particular arguments, as if these assertions were made at the on-line teletype.

g(b)
The glist is as yet undetermined and so applist(glist,b) is held up awaiting
extension of the glist.

f(a)

The glist is now extended by the partially applied function h(a) and becomes
[h(a) &s'], say. The waiting applist(glist,b) now results in h(a) being applied
to b, asserting h(a,b), leaving applist(s,b) awaiting further extension of the
glist.

g(c)

This asserts applist(glist,c) where glist=rh(a) & s] and gives rise to the
assertion h(a,c), leaving applist(s,c) awaiting further extension of the glist.

-

f(d)

The glist is extended further by h(d) to become [h(a); h(d) & r'] and the
waiting applists now assert h(d,b) and h(d,c), etc., etc.
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INTRODUCTION

This paper describes recent progress with a computer program which simu-
lates a general heuristic controller learning to perform a rather special
control task. An early version of the program was described in Doran (1968).
The general control situation is represented in figure 1. There is a 'black

box' which we may imagine to have on it only a set of 'windows' and a set of
'buttons'. Through each window can be seen a symbol from some arbitrary
set. The black box contains unknown mechanisms which in some way relate
the symbols displayed to the pressing of buttons. We suppose that the box
operates in real time and that buttons can be pressed without restriction.
The controller has, roughly, the task of keeping certain symbols visible

through certain of the windows for as much of the time as possible. Neces-
sarily it has built into it some general assumptions about the nature of the
box, but it is expected to collect and remember detailed information about
the way the box reacts to button-pressing, and to use this information to
improve its performance in the control task. In general there will be restric-
tions on the components and logical processes which can be built into the
controller.

Similar control tasks have been considered by Andreae (1968) and Michie
and Chambers (1968).

It is illuminating to consider the set B of all possible black boxes with
associated control tasks, and the set A of all possible controllers, and to
consider the relationship between these two sets. In particular, given a subset
B' of B together with a probability distribution over this subset, we can
suppose that there will be an optimal controller a(B') in A, given that the
task is to control some box b from the set B', where bis to be selected randomly
according to the probability distribution and therefore cannot be predicted
in advance. In an important sense, B' defines a. The most interesting members
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SYSTEM IN REAL TIME

states with desirabilities

heuristic controller black box

actions

Figure 1. Schematic representation of the control task discussed in the text

of the set A are those controllers which are optimal for large and varied subsets
of B.
Let us now call each window of the black box a variable, each symbol a

value, and the set of variable values on display at any time the state. Let us
also call the pressing of a button an action. The controller to be described in
this paper, henceforth called the automaton, is most efficiently applied to the
subset of B of which the following are the main characterising properties:

1. The state normally only changes after an action, but occasionally
spontaneous changes occur.

2. The effect of an action depends upon the state at the time of the action,
and possibly on a random variable, but not on the previous states or
actions.

3. The control task is defined in terms of the desirability of each possible
value of each variable.

4. The control task can be performed by dealing with each variable
independently, possibly in some particular order.

5. Nothing especially simple can be said about the effects of particular
sequences of actions.
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Figure 2. Outline flow chart for the heuristic controller (the automaton)

Notice that, unlike normal function maximisation or 'hill-climbing', this
situation is one where it is sensible to store information from one search for
control to the next, and where the desirability of states is in no sense a con-
tinuous function.
When the automaton is applied to a control task not possessing some

of these properties, then we must expect its performance to be correspondingly
poor, though not necessarily disastrous. In fact, the special, but particularly
interesting, control task defined in this paper contradicts properties 2, 5 and,
to some extent, 4. It is a greatly simplified representation of the task which
the brain of a small animal (or mobile robot) faces when living in a spatial
environment which has to be explored and understood if the necessities of
life are to be obtained. Comparatively poor performance is acceptable since
we learn about the ways in which a general controller can cope with such a
spatial environment.

It is worth emphasising that this work is not intended as a model of
animal learning or other behaviour, nor as a serious robot simulation. It
does, however, have some relevance both to animals and to robots. It is
intended as an investigation of how different heuristic processes can be
integrated into an effective general controller.

THE AUTOMATON DESIGN

Figure 2 is an outline flow chart for the heuristic controller, that is, for the
automaton. The main elements of the automaton design are the following:
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1. A process for selecting top level goals.
2. A planning process which predicts the effects of sequences of actions
and which decides which action should be used in the various states
predicted to occur. This planning process has many features in common
with the tree-searching components of typical problem-solving and
board-game playing programs.

3. A memory network of complex nodes each of which contains the
descriptions of a state together with useful information.

4. A generalization process which is used in planning.

After explaining these processes in detail I shall describe the automaton's
performance in the spatial environment mentioned in the last section. I shall
then end the paper with a discussion of recent improvements in the generalisa-
tion and planning processes. I shall describe the design of the automaton
independently of particular control tasks.

Goal selection

Before describing the goal selection process I shall make the definition of the
control task a little more precise. There is associated with each state variable a
function, which when applied to the variable value yields a measure of the
desirability of the value. The measure always lies between 0 and 1. The total
desirability of a state is defined as Ewd, where the summation is over all the
variables, and where d is the value desirability and w a weight, also between
0 and 1, which defines the importance of the variable. The task is then to
maximise the mean total desirability over whatever period of time is specified.
In this simulation 'time' is simply a measure of the amount of computation

carried out by the automaton. The automaton does not perceive time
directly.
When the total desirability exceeds a chosen threshold, the automaton

ceases selecting actions until the desirability falls again. Notice that unlike
the desirability functions and the importance weights, which are logically
part of the control task, this threshold can be regarded as ' an adjustable
part of the automaton's control strategy.
Throughout the planning and decision-making processes to be described,'

the automaton has a particular state, its goal, which it is trying to reach. More
precisely, it is trying to increase the desirability of one particular variable,
and to this end is trying to reach again a state encountered in the past at
which this variable had a high desirability. The automaton reconsiders its
goal whenever it is about to plan, and always assumes that variables can be
controlled independently. It will never try to control two variables jointly.
In more detail, the situation is as follows. For each variable the automaton

keeps a potential goal state. This is the state in which the variable had its
highest observed desirability score. When selecting a goal, the automaton
calculates for each variable the difference between the desirability of the
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variable value in the potential goal state and the desirability of the variable
value in the current state. The result multiplied by the importance weight, I
shall call the benefit. The automaton also calculates the match between the
current state and the potential goal state. This is the number of variables
having the same value in each state divided by the total number of variables.
The final merit figure for a potential goal state is then calculated as

B(Mk +1—k),

where B is the benefit, M the match, and k an adjustable parameter. The
potential goal state with the highest merit score is adopted as the goal.

Notice that, by incorporating an admittedly crude estimate of difficulty of
achievement into the selection process, the automaton is caused to abandon
trying to bring one variable under control not only if another which is more
important goes out of control, but also if another which is less important
seems easier to bring under control.
The potential goal state for a particular variable is not fixed. It will change

whenever the automaton discovers, or is shown, a better value for the
variable.

Decisions, plans, and plan implementation —

In view of its initial total ignorance, the automaton's general strategy must
be to try actions, to observe the consequences, and to keep the acquired
information available for future reference.
The assumption that the state changes only in direct and immediate

response to an action means that the automaton need only inspect the state
just after it has implemented an action, that is, after a transition. Its past
experience can therefore be represented as a state /action sequence as in
figure 3(i). Given the additional assumption that the effect of an action
depends only upon the current state, then the past experience can be repre-
sented without loss as a network as in figure 3 (ii), with different occurrences
of the same state no longer distinguished.

Let us now consider the concept of a decision. Roughly, this is a state
together with an operation which will be implemented whenever it is en-
countered, given a particular goal state. The operation will usually be an
action but may be more complicated. Other components of a decision are
introduced below.

Ideally the automaton must, for each goal state, form a correct decision
for all the states which it may encounter. How and when should decisions be
made? In general, they can be made just when they are needed, that is, when
some action has to be chosen for immediate implementation; or they can be
made in anticipation of a later need.
The automaton forms decisions in advance of need during planning

phases. During a planning phase the automaton tries to predict the effect of
implementing alternative sequences of actions, so that it can select the most
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Figure 3. (i) The automaton's observations represented as a sequence of states (capital
letters) each followed by an action (Greek letter). (ii) The automaton's observations
represented as a network. Each node corresponds to a state and each arc to a transition
caused by an action. The network representation does not permit the original state/
action sequence to be reconstructed

promising actions with respect to its current goal state. Therefore it must be
able to predict what will be the result of implementing a given action, cc say,
in a given state, A say. In the terminology of Michie and Popplestone (see
Michie 1968) it needs predictor functions. Let us assume at this stage that it
makes a prediction by finding all the previous occasions on which a has been
applied to state A, and forming a list aA of all the different consequent states
which have been obtained. It can then assume that one of these consequent
states will be obtained again, the probability of obtaining any particular state
being estimated by the frequency with which it has been obtained in the past.
In fact the automaton uses a rather more complex prediction process, to be
described in a later section, and also makes some allowance for the possi-
bility of a quite new state being generated. If cc has never in the past been
applied to A then, on our present assumption, no prediction can be made.
The automaton predicts for its current state the effect of applying each of

its actions, where possible, and then does the same for each of the consequent
states obtained. The planning 'tree' so obtained will branch rapidly. It is
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scanned by a 'depth first' procedure (figure 4). Each branch of the tree must
be terminated and there are the following ways in which this can occur:

I. By a state being predicted for which no predictions can be made.
2. By a state being predicted which has already been dealt with. For this

to happen two branches of the tree must coalesce or one branch must
loop back on itself.

3. By a state being predicted for which a decision formed before this
planning phase is available.

4. The probability that a state will actually be reached, if the actions
along the branch leading to it are implemented, will be lower the

. further along the branch the state is. Following Sandewall (1968)
I call the limit below which this probability must not fall the pruning
level. Once the pruning level is passed the branch is terminated.

5. By a 'long-stop' limit to the length of a branch.

B (17) 3 C (17)

K (15) 3 E (15)
41 111111 

L (25)

Figure 4. Simple planning tree based on the network of figure 3 (ii). The tree is
scanned ('depth first') from top to bottom, and terminal and other values are assigned
as described in the text. The decisions made are indicated by the cross hatching. Not
shown are the EXPLORE and MAKEPLAN options at each node, nor the provision
made for unpredicted consequences of actions. The coalescence of two branches at
state i is detected and suitable action taken

As the tree is scanned the automaton forms decisions for all the states
predicted. It can select as the operation of the decision either one of the
actions or one of the complex operations EXPLORE and MAKEPLAN. When
EXPLORE is found in a decision to be implemented, the automaton selects
an action whose effect cannot be predicted. A random choice is made, possibly
with a fixed bias. When MAKEPLAN is to be implemented, then the
automaton makes a new decision for the state in question, going through a
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complete planning phase to do so. Thus, to incorporate MAKEPLAN in a
decision during the scanning of the planning tree is to say ̀ if I meet this
situation I will think again'.
In order to decide which operation to incorporate in a decision the auto-

maton assigns a numerical value to each of the alternatives open to it and
selects the alternative with the highest value. If the effect of an action is
unpredictable, then it is considered only as part of the option EXPLORE. The
value of the decision is the value of the alternative selected. These decision
values should not be confused with the values of state variables, which are
not necessarily numbers.
How are the values assigned? To assign a value to an action in a particular

state, the automaton takes the mean of the values of the decisions made for
the predicted consequent states of the action, weighted by the associated
probabilities. The value assigned to the EXPLORE option depends on the
match between the state and the goal state, and on the actions remaining
to be tried. A value is assigned to the MAKEPLAN option by weighing, very
crudely, the long term benefit likely to be obtained by 'rethinking' against
the short term loss of time.

It follows from what has been said that a decision cannot be made for a
state before decisions have been made for all its predicted consequent states.
The decision-making process must therefore work back from the tips of the
branches towards the root of the tree. How are values assigned at the tips?
If a branch is terminated because a state is predicted which has a usable

decision attached to it, then there is no problem. The decision value is just
what is needed. The decision may have been made either earlier in the current
planning phase, implying that two branches have coalesced, or at some earlier
stage. A decision is not usable unless a quantity called its reliability is
sufficiently high. The reliability of a decision is a measure of how much more
the decision can be used before it should be remade. Reliabilities are set initially
by the amount of computation used to form the decision, and are decreased
whenever the decision is used in any way. Thus any decision which is in
steady use is bound to be remade from time to time.

If a branch is terminated for any other reason, then EXPLORE or MAKE-
PLAN will be the operation selected, and a value will be assigned as for a
non-terminal state. MAKEPLAN is normally selected.
When a planning phase has been completed, decisions with operations,

and reliabilities, will have been formed for all the states encountered which did
not already have an attached usable decision. In particular, a decision will
have been attached to the current state. This decision the automaton will now
implement. Normally there will then occur a predicted transition to a new
state which will also have an attached decision. This the automaton will also
implement, and so on, until either a decision with operation EXPLORE or
MAKEPLAN is implemented, or something unpredicted happens. I shall say
that the automaton is following a plan when it implements a sequence of
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decisions in this way. However a plan ends, it is always followed by a planning
phase.
When a plan goes wrong in some sense, for example if an unpredicted

transition occurs, then the reliabilities of the decisions used in the plan are
decreased.
The planning process involves several parameters which need careful

adjustment. The most important choice is between planning trees which are
large (to depth 10, say) and tedious to process but which produce good
decisions, and trees which are small (to depth 4, say), fast, and possibly
misleading. In particular, there are parameters which set the pruning level,
the long-stop' cutoff, and the degree to which the possibility of unpredicted
transitions is taken into account. If this last parameter is set so that the
automaton 'expects the unexpected', then the effect will be to inhibit planning.
Of course, the mean depth of the tree will also depend greatly on the

extent to which previously made decisions are incorporated into it. There is
another important choice here between using past decisions frequently, with
an increase in speed but an attendant risk of repeatedly using the same wrong
action, and using past decisions rarely, with slower processing but more
reliable results. There are parameters to control the amount by which a
decision reliability goes down when the decision is used, and to adjust the
threshold which the reliability of a decision must exceed if it is to be incor-
porated into the planning tree.
One other parameter controls the extent to which MAKEPLAN is used. In

practice, too free a use of MAKEPLAN can lead to the automaton failing to
explore when it should. Thus, this parameter also needs to be set with some
care.

The memory structure

As already made clear, the memory of the automaton is a network. Each
node of the network is a complicated affair which we may call a record.
Records have the following components:

(a) a state

(b) a list of actions tried with (pointers to) their observed consequent
states (to be precise, to the records containing the consequent states),
and a note of how often each consequent state has been obtained.

(c) a list of decisions each keyed to a goal state, and each containing an
operation, a value, a reliability, and a list of (pointers to) expected
consequent states.

Virtually all processing by the automaton is a matter of updating this network
or drawing information from it. In particular, planning is carried out entirely
in terms of this memory structure. The nodes of the planning trees are nodes
of the network which are 'visited' as the planning process demands.
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I have so far said nothing about how the automaton locates a record in its
memory given the appropriate state but no direct pointer. This is a very
common need. It is met by making each record of the network the tip of a
branch of a special sorting tree, the tests at the branch points being simple
tests on the values of successive variables of the state. The reason for using a
sorting tree rather than, say, simply a list is speed of access. The greater the
number of records the greater the benefit.
There are reasons why it is sometimes efficient to delete records from the

memory network. The most obvious of these is in order to make room for
newly created records, the supposition being that the total memory 'storage
capacity is limited. A second reason is because the records in question,
belonging to the distant past, seem either irrelevant to, or actually misleading
in, the current situation. (This remark will have more point in the context of
'generalisations'.)
Some simple and rather arbitrary 'forgetting' processes have been built

into the automaton on an experimental basis. For a record to be fully
forgotten, it must be separated from the memory network, so that no operation
over the network ever encounters it. This means detaching it from the sorting
tree and independently from the transition links, that is, the actual network
links.
Each network link has a strength associated with it which depends on the

number of occasions on which the transition has actually occurred, and which
decays with time. Any attempt to make use of a link whose strength is below
a specified threshold merely results in its deletion.
Detachment from the sorting tree is achieved by limiting the amount of

of branching which can occur at the branch points immediately prior to the
tips. The final 'twigs' are arranged in order of occurrence, with the record
corresponding to the last state encountered heading the list. When a state is
actually observed its record always goes to the head of the appropriate list.
If it was not already present on the list then, assuming that the list has reached
its full length, the last record on the list will be discarded. ,

Generalisation

IslOw let us return to the task the automaton faces when it has to predict the
effect of implementing a given action in a given state. We have previously
assumed that it merely referred to previous applications of the action to that
state. However, this would be quite unsatisfactory, for it would mean that a
difference in one variable value could prevent a past state being recognised
as functionally equivalent to the current state even though that difference
were quite irrelevant to the effect of the action being considered.
' States must be recognised as equivalent for purposes of prediction even
though they are not identical. The criterion for equivalence must itself be
dependent upon the action under consideration. In the terminology of Michie
and Popplestone, we must have a non-trivial equiv function (see Michie 1968).
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The automaton uses the following system for defining equivalence. With
each action is kept a record of those variables of the state which influence the
effect of the action. Also kept with each action is a record of those variables
whose values are never altered by it. These two sets of significant variables
need not be the same. When the effect of action cc on state A must be predicted,
all states which agree with A in the significant variable values are found,
together with all the states which have been obtained by applying a to them.
For each such consequent state, the variables whose values are known not
to be affected by the action cc are given the values which they have in A (figure
5). This last step will greatly reduce the number of distinct consequent states,
and those remaining form the actual prediction list aA. As before, estimated
probabilities can be attached to the states of aA based upon their frequencies
of occurrence in the past.

PREDICTION NEEDED PRIOR OBSERVATION

cc[ABCD]–)? cc[PBCC]--[XYZVV]

PREDICTION

a[ABCD]–.[XYCD]

VARIABLES DETERMINING
EFFECT OF ACTION cc

GENERALISATION 

cc[—B C-4--■[XY—

VARIABLES AFFECTED
BY ACTION cc

(*if—

Figure 5. The stages in the generalisation process. An asterisk indicates a significant
variable. The generalisation itself may or may not be permanently stored. Normally
more than one previous observation is taken into account

This process for obtaining aA can be time-consuming when the number of
states in the memory which are equivalent to A is large. It is therefore wasteful
to recompute aA every time it is required, and provision is made for inserting
into the memory the outcome of such a computation so that it stands as a
'generalisation' to be quickly available whenever useful. Thus the generalised
state A', which is A with 'irrelevant' markers attached to the variables which
do not influence the effect of cc, is inserted into the memory network and
points to the consequent states aA obtained in the generalisation process.
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Whenever a prediction is required for a state, then these generalisations are
checked to see if the relevant one has already been made.
The generalisation process has one property which is worth noting, the

'pink elephant' property. The automaton can correctly predict the existence
of possible states which it has never actually observed, although it must have
experienced, each of the variable values which form them. In human terms, I
can visualise a pink elephant even though I have never seen one. I have,
however, seen both elephants and pink objects — it is the combination which
is new. New states of this 'imaginary' type are added to the memory network
in order that decisions can be associated with them, but they are more
quickly discarded than 'real' states.
Although the significant variables for each action are given to the auto-

maton, it will still sometimes make predictions which are wrong. It may even
predict states which the black box cannot possibly generate. If a faulty
prediction is made into a permanent generalisation, then the automaton's
performance may suffer greatly. Thus the criterion which determines when a
prediction should be permanently preserved is very important. In practice,
the criterion is that aA shall consist of a single state that has been obtained
at least a specified number of times. There is a choice here between a low
threshold leading to many generalisations, fast processing and mistakes, and
a high threshold which is slow but reliable.

Automatic parameter control

Each of the heuristic processes described can be adjusted by at least one
parameter. In practice, it turns out to be very difficult to so adjust all these
parameters that good performance is obtained in all of the situations which
may be encountered. In particular, when the automaton's plans are being
successful the parameter settings need to be different from when its plans are
failing. The automaton therefore monitors its own performance at a higher
level than that at which individual actions are selected, and adjusts its para-
meters accordingly.

Specifically, it notices when an unexpected transition occurs, or when a
planned sequence of actions returns it to a state previously encountered, or
when the decision values are uncomfortably low; and in each of these cases
increases the value of an 'alarm' parameter which determines other parameters
linearly dependent on it. The value of the alarm parameter falls quickly to
zero when things are going well.

THE CONTROL TASK

The environment

Having completed the description of the basic version of the automaton, I
shall now describe the special control task to which it has been applied.
The automaton 'lives' in an n x m chequer-board environment, occupying
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at any moment one of its squares. Typically, both n and m are ten or less.
Some of the other squares of the environment, including all those at the edge,
are occupied by letters of the alphabet (see figure 6). The analogy of a small
animal living on the floor of an enclosure which has boundary and interior
walls is not too misleading.

El

E2

E3

ADB F AAAA

R E AHA

P T ST J

0 K

ANMGUVL A

ADBFAAAA

G I AHA

G I J C

GE-- C_

AK KKKKK A

ADKF AAAA

G CAHA

E LK J

E -4 K

ACJBLBGA

Figure 6. The three 'chequer-board' environments used in the experiments. The auto-
maton (indicated by the arrow) must be adjacent to and facing the letters F, D for
the actions EAT, DRINK, respectively, to be effective. In mode 2 the automaton is warm
only when in the square adjacent to the letter H (its 'nest')

The automaton is oriented to the 'top', 'left', 'right' or 'bottom' of the
environment, and can move by stepping (action STEP) into the square
immediately before it, provided that that square is not occupied by a letter — if
it is, then the automaton's attempt to step has no effect. It can also turn
through a right angle to its left or right (actions LEFT, RIGHT). It can move
at any time.
The automaton can perceive very little of its surroundings at any particular

moment. It can detect only which letter lies directly before it (state variable
LETTER), and how many empty squares there are between it and the letter
(state variable DISTANCE). It cannot detect what lies to its right and left.
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Initially the automaton does not know how its movements will affect its
perception. It does not know, for example, that the action sequence LEFT
RIGHT will leave its perceptions unchanged nor, generally, does it know that
it is moving around on a flat surface.
The automaton is quite deliberately denied this information, which would

permit powerful but ad hoc search strategies to be used. We must accept
that, with this added burden of ignorance, performance will be unimpressive
compared with an ad hoc design, at least in the initial stages of an 'incarnation'.
The automaton is motivated by adding three state variables whose values

it is important it should control. Without being too misleading, these may be
described as measures of the automaton's 'hunger', of its 'thirst', and of the
'temperature' it is experiencing (state variables HUNGER, THIRST, TEMP-
ERATURE).

The automaton is equipped with two special actions EAT and DRINK.
When EAT is implemented at one particular point in the environment, then
the variable HUNGER takes a highly desirable value. As time passes, however,
HUNGER spontaneously slips back to an undesirable value. EAT has no effect
elsewhere in the environment. DRINK has similar properties. The value of
TEMPERATURE depends on the automaton's location in the environment. In

general some areas of the environment are 'warmer' than others. The inter-
actions between these three motivational variables make the control task
both interesting and difficult.
To sum up, the automaton's state is made up thus

[LETTER DISTANCE HUNGER THIRST TEMPERATURE],

with the last three variables having large importance weights, such that
HUNGER is more important than THIRST, and THIRST than TEMPERATURE.
As already stated, if the total desirability exceeds a threshold then the auto-
maton stops acting (sleeps) until it falls again. A natural criterion of perform-
ance for the automaton within this environment is the proportion of time for
which it is asleep. The automaton's actions are STEP, LEFT, RIGHT, EAT,
DRINK.

Even this very restricted type of environment is capable of systematic
variation in two important ways. Firstly, the variation through time and
space of the HUNGER, THIRST and TEMPERATURE variables can be made
simple or complex. In the simple environments used so far all three are
merely boolean variables. Secondly, ambiguity can be incorporated into the
environment by repeating some of the letters in it. If there are two occurrences
of K, say, then the LETTER/DISTANCE pair KO is ambiguous in the sense
that the automaton will perceive it at two different positions in the environ-
ment.

Performance

The Pop-2 (Burstall and Popplestone 1968) program which simulates the
automaton /environment system is fully debugged and has no obvious logical
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errors. This proves that the various ideas and heuristics incorporated into it
can be made detailed and precise in a consistent way. However, it is no proof
that these ideas and heuristics are genuinely useful for some or all control
tasks. Ideally we wish to know under what circumstances, if any, each heuristic
is useful, and then how useful. Further, different heuristics will interact and
we wish to know how.
As yet only a small amount of experimentation to these ends has been

performed. However, enough has been done to establish the general level of
performance and to identify the main limitations of the present design.
As mentioned at the end of the previous section, it is useful to distinguish

two dimensions of variation for the environment. The degree of ambiguity
which is built in can be varied, as can be the complexity of the variation of
the HUNGER, THIRST and TEMPERATURE values. Experimentation has been
restricted to three environments (see figure 6) each of which has two modes.
The environments are:

El. All letters different. Therefore no ambiguity.
2. Each 'wall' formed of a single letter, but different letters for different

walls. Therefore ambiguity, but ambiguity which will often be helpful
rather than confusing.

E3. An allocation of letters with various awkward duplications. Therefore
unhelpful ambiguity.

In each of these environments, the letters F and D occur uniquely in the
same positions and indicate where 'food' and 'drink' can be obtained, that is,

where the actions EAT and DRINK are effective. Where the automaton can
'see' a letter from more than one direction, special steps are taken to avoid
any unwanted ambiguity.
The two modes for each environment, ml and 1■42, are as follows:
Ml. Temperature high throughout the enclosure. After eating hunger

disappears for 10,000 time units, and then returns at full strength.
After drinking, thirst disappears for 5,000 time units and then
returns at full strength.

M2. Temperature low throughout the enclosure except at the top of the
right hand passage — the automaton's 'nest'. Hunger and thirst as
before but with the time intervals tripled.

To make the goal-selection mechanism operate sensibly, especially desirable
values are assigned to HUNGER and THIRST for a brief period immediately
after eating and drinking, respectively.
A typical incarnation starts with a 'training' session in which the automaton

is shown the desirable effect of eating and drinking at the appropriate points.
We can regard this as giving it basic 'reflexes'. Without this help the automaton's
search task would be impossibly difficult. This training takes 30,000 time
units — an artificial figure which in this case does not indicate the amount of
computation performed by the automaton.
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The automaton is then placed in its 'nest', facing the letter H, and left to

its own devices. It is expected to explore sensibly, to find its way to food and

drink, and to return to its nest for warmth (m2 only). When all its needs are

satisfied it should sleep until hunger or thirst wakes it up. Ultimately it

should settle into a fairly steady pattern of activity.

The standard length of an incarnation is 150,000 time units for ml, and

250,000 for m2: roughly 75 minutes and 120 minutes of real time on an Elliott

4130 computing system. A planning phase may take from 100 to 10,000

time units.

INCARNATION environ- time not time not time not time
ment hungry thirsty cold asleep

A El /m1 50.1 28.4 19.2

El /m1 57-6 44-0 29.2

El /m1 46.9 30.0 16-1

E2/M1 40.0 35.3 21.2

E2 /m1 26.7 10.0 3.3

E2 /m1 54.4 31.6 19-3

G E3 /m1 4.4 6.7 0.0

H E3 /m1 18-2 10.1 0.0

I E3 /m1 48.0 17.7 11.7

E2 /m2 24-0 30.0 18-4 0.0

E2 /m2 72.7 51.9 36.7 13-0

E2 /m2 12.0 6.2 56.8 0.0

Table I. Summary of the automaton's performance in three incarnations in each of four

variants (El/ml, E2/ml, E3/m1, E2/m2) of the basic chequer-board environment. The

incarnations are independent, and the automaton starts each with no knowledge of its

task except EAT and DRINK reflexes. TEMPERATURE is a variable to be controlled only

in r, lc and L. The figures given are percentages of the total lifetime, which is 250,000 time

units in variant E2/m2 and 150,000 time units otherwise. Details of the environment

variants and the automaton parameter settings are given in the text.

Table 1 gives a summary of the automaton's performance over twelve

incarnations, three in each of El /ml, E2 / ml, E3 / ml, E2 / m2. The main

features of its performance are as follows:

1. Learning does occur, and the automaton often does make a good job

of its control task.

2. However, performance is erratic depending quite heavily on key
• 

random choices, and on the automaton not getting into situations

such that it repeats long action sequences inappropriately. This can

happen when there are ambiguities in the environment, or where there '

are opportunities for faulty generalisation. The root cause is the
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automaton's assumption that only the current state is relevant to
prediction.

3. Predictably, the introduction of 'unhelpful' ambiguities and of
TEMPERATURE as a relevant variable impairs performance.

Figure 7 is a record of the first part of the most successful incarnation in
E2 /m2. To the onlooker, the automaton's behaviour appears a mixture of,
motionless 'thinking' or 'sleeping', and sudden bursts of movement.

initial
exploration

not hungry  

hungry —

not thirsty

thirsty  

warm —

cold

asleep

awake

nest reached
thinking route to nest just too late
in nest forgotten for sleep success

1--1-1

30,000 100,000 190,000

TIME -->

Figure 7. Part of incarnation K. The automaton sleeps only when it is warm and neither
hungry nor thirsty

As already explained, the performance of the automaton may be adjusted
by a considerable number of parameters. The parameter settings used during
these experiments were obtained after a considerable amount of trial and
error. They can be summarised as follows:

(a) Large rather than small planning trees, except when the 'alarm' level
is very low.

(b) No allowance made during planning for unpredicted transitions.
(c) Past decisions not used if alarm level at all high.
(d) The operation mAKEPLAN only used when the alarm level is low.
(e) 'Generalisations' formed as quickly as possible in El but only after

three or four consistent transitions have been observed in E2 and E3.

During these trials the memory record deletion mechanisms were switched off.
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As the performance of the automaton is clearly limited in major ways, I
shall say no more about details of performance, and turn instead to a more
genetal discussion of ways in which the design can be improved, and of the
preliminary experiments which have been carried out to this end.

DISCUSSION

Prediction and generalisation

Two critical remarks may immediately be made about the automaton's
present prediction mechanism. Firstly, it should be able to detect for itself
the significant variables of the state for each action; secondly, it should be
much more general and, for the chequer-board environment at least, should
not assume that only the current state is relevant to a prediction.
To meet the first point an extension to the automaton has been made.

Recall that a variable can be significant in either or both of two ways with
respect to a particular action. The variable can be one of those which help
determine the effect of the action or it can be one whose value is liable to be
changed by the action.
The automaton typically has stored in its memory many examples of the

effects of each action. It can therefore 'ruminate' occasionally and simply
look to see, for each action, which variables usually have their values carried
over unchanged, and which variables can usefully be taken into account by
the prediction mechanism, in the sense that knowing the value of the variable
enables the prediction to be made more precise.

This capability has been given to the automaton, and first trials indicate
that this essentially inductive process will work both in the sense that, given
a large and varied memory network, it will select as significant the correct
variables, and also in the stronger sense, that starting a control task with all
variables regarded as significant, and with a null memory network, the process
will come to select the correct variables as the automaton explores. A similar
inductive process was proposed to permit the Graph Traverser program to
improve its problem state evaluation function (Doran 1967), and unpublished
work by R. Ross provides additional evidence that the approach is sound
(personal communication).
The second criticism of the prediction mechanism is a more complex one.

The present mechanism can establish, store and use deductively generalisa-

tions of the following class

oc(xj=a A . . A xk=b)—■(4,=p A . . A x= (7)
where the Greek letter denotes an action, the unprimed xs refer to variables
of the state prior to the action, and the primed xs refer to variables of the
consequent state. I ignore the possibility of several alternative consequent
states. It is implied in the notation that the value of a variable is unaltered by
an action if the primed variable is not mentioned. The set of variables which
appear for a particular action must always be the same.
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That this set of possible generalisations is very restricted is obvious at a
glance. For example, the generalisation

(4=b)

cannot be formulated. On the other hand this limited set does have the virtue
that it arises fairly naturally from the way states are observed and stored.
How far does it impose a limitation on the automaton's performance?
In the context of the chequer-board environment, consider the following

generalisations

EAT (DISTANCE =0 A LETTER =F)-4 (HUNGER = 0)

EAT (-I (DISTANCE =0 A LETTER =F))--

These exactly describe the effect of the action EAT. The closest the auto-
maton can get to this is to establish all generalisations of the form

EAT (DISTANCE =a A LETTER =b A HUNGER = C)-4 (HUNGER = d)

for observed values of a,b,c,d.
The automaton should be able to predict how the temperature will change

as it moves about its environment. At present it formulates all generalisations
of the type

STEP(DISTANCE =a A TEMPERATURE =b)-+
(DISTANCE =C A TEMPERATURE =d)

for observed values of a, b, c, d, and thus tries to express the fact that stepping
'changes' the temperature. However, in a situation with a fairly complex
temperature function, this is very clumsy and at best a crude approximation
to the true state of affairs, which is much better described by the following
types of generalisation:

STEP(DISTANCE =a)-4 (DISTANCE = b)

together with

(DISTANCE =a A LETTER =b)-+ (TEMPERATURE =C)

Notice that the second class of generalisation makes no reference to an action.
Thus in the chequer-board environment the prediction mechanism is far

from adequate, even if we could retain the assumption that it need take into
account only the current state.

Ideally, the automaton would formulate an efficient copy or 'model' of
that part of the mechanism generating its environment which is relevant to
its control task.

It does not seem too difficult to enable the automaton to handle a much
wider class of generalisations than it does now. The sTeLLA learning machine,
for example, has an appreciably more general prediction mechanism (Andreae
1968.) A more complex prediction process would combine a number of
individual generalisations in order to 'build up' the consequent state, and
branches of the planning tree would be terminated more when the significant
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features of the states could not be predicted than for any other reason. Of
course, a very general prediction mechanism is inappropriate if the control
tasks envisaged do not require it.
At present the automaton's planning is directly in terms of its experience

in the following sense. Every state which appears on the planning tree is
either already in the memory or is at once placed there, and is just the same
kind of object as any other state in the memory. Thus it is not a great misuse
of words to say that the automaton predicts the effects of actions by imagining
actually doing them. This must in itself impose limitations on the power of the
planning process, and some capability to use symbolic reasoning must be
introduced sooner or later. To this end the automaton could be provided
with a formal language in which to carry out all or part of its reasoning, in
the tradition of the Advice Taker (McCarthy 1959), and in the way in which
Green has applied an automatic theorem-proving program to the task of
controlling a robot (Green 1969). A more remote possibility is to expect
the automaton to learn to use one class of its perceptions as a source of
symbols with which to represent all or part of its knowledge. The symbols
would be manipulated 'mentally' by the actions appropriate to that class of
perceptions. Something of this type seems to take place in human thinking.
Some first steps have been made in this direction in the context of the sum, A
learning machine (Andreae and Casitin 1969).

Complex planning

So far in this paper the word 'planning' has been used to refer to the process
of predicting in detail the consequences of actions. However, this is rather a
weak use of the word. It seems more appropriately used for a process which
outlines a course of action, leaving the details to be filled in as the action is
being carried out. Minsky (1961) discussed the value of some planning
process which would break up a problem into a set of smaller subproblems
by placing 'islands' in the search space. Planning has also been discussed by,
among others, Newell, Shaw and Simon (1959), Travis (1964) and Hormann
(1965). More recently, Sandewall (1968) has discussed in detail one type of
planning and much of his analysis is relevant to the work described in this
paper.
In the spirit of these discussions, some first experiments have been made

with a version of the automaton which has the following properties:

1. Not only are the basic state transitions caused by a single action
stored in the memory, but also the transitions which result from the
implementation of a plan in the old sense, that is, which result from
the implementation of a sequence of actions.

2. During a planning search, these complex transitions are manipulated
just as if they were basic transitions, and a complex transition may
be adopted as the operation of a decision. Only the fact that the
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consequent state has been reached from the initial state is stored, not
the actions which were used.

3. When a decision which has such a complex transition as its operation
comes to be implemented, then the consequent state of the transition
is set as a temporary 'subgoal', and a search directed towards this
subgoal is initiated. This-_search may well involve the formation of
plans involving further complex transitions, and so on.

4. When such a subgoal is achieved (that is, the state is reached) then the
search is automatically resumed within which the subgoal was set up.

First trials with this system have demonstrated that the approach is sound,
but indicate two problems. Firstly, the subgoals have a rather different
genesis from the main goals which is an unattractive state of affairs. This is
probably more because the main goal selection process is rather arbitrary
than because the planning process is faulty. The second and deeper problem
centres on the fact that complex transitions, like basic transitions (corres-
ponding to basic actions), really act only from one subset of the state variables
to another. The system implemented takes no account of this and is in
consequence too rigid to be really useful. In some coherent way, a record
of the relevant variables must be formed and kept with each complex transi-
tion.
The reader may wonder why the automaton should not store with each

complex transition the sequence of actions which generated it. There seem
two possible arguments against this, whose force will depend upon the class
of control task envisaged. They are that the amount of storage of detail
tequired may be too great, and that sequences of actions will not always be
repeatable in detail, or have repeatable effects.
The reasons for dealing with complex transitions-at all are to permit 'long-

range' planning without impossibly large planning trees, and to escape from
the hazards of planning in detail in a control situation which is too complex
or too random to be predicted in detail.

CONCLUDING REMARKS

The approach to machine intelligence which I have followed in the work
described in this paper can be seen as lying roughly midway between two
extremes. At one extreme is the approach which would advocate equipping
the automaton with the most general and precise inductive and deductive
systems which we know how to program, however 'unnatural' this may in
some sense seem to be. At the other extreme is the approach which is primarily
impressed by the abilities of the human brain, and which is therefore attracted
by large networks of similar elements operating in parallel (consider the
paper in this volume by Kiss). Just as we can ask how far the present auto-
maton's capabilities could be encompassed within some formal system, so
also we can ask to what extent they could be performed by a network of
elements operating in parallel.
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At first sight these two extremes seem far apart. However, it may be that

each will find its place in a general theory relating the design of intelligent
machines to the tasks which they must perform and to the constraints under

which they must perform them.
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Freddy in Toyland

R. J. Popplestone
Department of Machine Intelligence and Perception
University of Edinburgh

•

Introduction

This paper is about how Freddy, a robot that we in Edinburgh are building,
might structure the input from his sense organs, and build an internal model
of his toy universe. Freddy can then use this model to decide how to do
things like fetching an object when asked to do so.

1. SELF ORGANISING SYSTEM —

Let us consider how Freddy might make sense of his environment given a set
of primitive operations.
Suppose that Freddy has one input which is a teletype on which a stream

of characters is being typed. These happen to form sentences of the English
language, but Freddy doesn't know this. Freddy will first try to see structure
in this stream and then relate this structure to the inputs from his other sense
organs. How could the first process of structuring the input be done?
A phrase structure grammar (Ps o) can be used as a means of describing

languages. It is a useful first step in describing English. Suppose Freddy had
the wherewithal to construct a PSG. Could he build a grammar to describe
his input? I am going to describe rather informally how I think he might.
A PSG can be built out of symbols. The terminal symbols T of the grammar

are simply the set of characters of the input. A symbol s of the grammar is
either a terminal symbol, or a sequence of symbols, or a set of symbols. The
set S of all symbols which can be built from T is called the set of symbols
over T. A sequence of symbols (si) is said to be parsed into a sequence (ti) of
symbols if (ti) is obtained from (si) by replacing a subsequence of (Si) by a
single symbol, or by replacing one member of (si) by a set containing it
together with an indication of which member of the set was involved.
Thus 'the cat sat on the mat' parses to '(the) cat sat on the mat'. Where

(the) is that symbol which is the sequence of terminal symbols ̀t"h' and ̀e'
and (the) (cat) (sat) (on) (the) (mat)' parses to ̀ (the)[1,{(cat) (dog)
(pig))] (sat) (on) (the) (mat)' where [1, {(cat)(dog) (pig))] indicates that
member no. 1 of the set ((cat) (dog) (pig)) was involved.
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A grammar G is then just a subset of the set S of all symbols over T. G
specifies a language because only those symbols that are in G may be used for
parsing. How then do we 'grow' a grammar? That is, how do we decide that
one set of symbols should be used for making substitutions?
Let us notice first that English is highly redundant. That is to say that of all

possible sequences of n characters, only a few will be sentences of English.
Let the symbol s have a probability p (s). Let us assume that we have a

meaningful way of defining and measuring the probabilities of non-terminal
symbols. The score of a sequence (si) is defined to be log(p(st)). It is of
course the log of the probability of the occurrence of the sequence if there are
no interactions between the members. If one of the st is a set member (n,c1
then p ([n,c]) is defined to be the product of the probability of the occurrence
of the set c and the probability of the occurrence of the nth item of c. A
parsing can be regarded as a coding of one sequence into another. Freddy will
try to parse his input into a sequence of minimal score. I will try to show that
it is plausible that such a sequence will reflect the grammatical structure of
English.

Consider first the replacement of a subsequence of a symbol. If the sub-
sequence is (St, sf) and it is replaced by s, then the change in score is
log (p(s))-- (log(p(st)) + . . . +log(p
Thus there is a decrease in score in those cases for which s is more likely

to occur than if the si were independent.
Thus the replacement of the by (the) will lead to a greater reduction in

score than the replacement of e c by (e c).
There is no immediate advantage in score in replacing a symbol by a set

containing it, since both the probability of the set occurring and the probab-
ility of the symbol occurring within the set are used in calculating the score.
However, there can be a delayed advantage because the set may itself be a
member of a high-probability sequence. Thus if many sentences had the form

(the)<noun><verb><preposition>(the)<noun> <S1>

the advantage to be gained from substituting the set <noun> for (cat) in 'the
cat sat on the mat' lies in the ability to parse this further into form <S1> .

The score is then that required to specify <SI > together with the scores
required to specify (cat) as a member of <noun>, (sat) as a < verb>, (on) as a
<preposition> and (mat) as a <noun>, which is less than that required to

specify the words of the sentence as independent symbols.
However, there is a very large space of possible parsings to be searched.

How should this be organised? One could try some sort of Graph Traverser

search (Doran 1968) for a minimal score using only those symbols whose

occurrence was high enough for their probability to be estimated accurately.

In choosing sets of symbols to group together, the methods of numerical
taxonomy (Sokal & Sneath 1963) could be used. A measure of the likeness
of two symbols s and t would be the number of sequences actually occurring
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in text which on substituting t for s give a sequence which also occurs. Thus,
substituting (dog) for (cat) in (the) (cat), gives a sequence which can occur.

2. ON SEARCH STRATEGIES,AND SETS

One often has to search a large set for an optimal member. In such a situation
one wishes to avoid an explicit listing of the whole set, but instead to use a
method which will 'climb uphill'. The Graph Traverser (Doran 1968)
provides one standard method by which a set can be represented by a con-
nected graph and explored by moving along the arcs.
I want to suggest an alternative representation for sets. I will illustrate this

by an example. If I want to choose one of the set of all boats I may go to a
naval architect. The conversation might run as follows:

Architect: Do you want a sailing or power boat?
Me: Sailing

Architect: Sloop, cutter, ketch, schooner or yawl-rigged?
Me: Sloop

Architect: What about the length?
Me: 25 feet

Architect: I now know just what you want.

The thing to notice is that the later questions depend on the answers to the
earlier ones. Thus, one would not be asked about the rig of a power-boat. One
can regard the possible questions as forming a tree,with OR-nodes at the
points where choices are made. There will be AND-nodes at some places,
for instance in specifying the areas of the sails, because these can be specified
in parallel.
How could one represent this process in a language like Pop-2 (Burstall

and Popplestone 1968) ? A set S is a function

S: choice-tree—qtem, choice-tree

that is, S takes a choice-tree and produces an item and a new choice-tree. If
the choice-tree is a complete specification of a member of the set, then the
item will be that member. Otherwise the item will be UNDEF (undefined)
and the choice-tree produced as result of the function will be extended to the
next OR-nodes.
In passing, it is worth noting that this representation is a generalisation of

representing a set as an array, while the graph-traverser is a generalisation of
the list-representation.

3. MEMBERSHIP FUNCTIONS AND SET-OPERATIONS

The usefulness of any representation of sets depends on how easy it is to
implement the standard set operations like union and intersection.

First, let us suppose that each set S has a membership function MEM-
FUN(S). The FNPROPS facility of Pop-2 permits us to attach attributes
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to functions in this manner. Clearly any operation involving sets mustproduce
a new membership function.
The simplest set operation is UNITSET which takes a Pop-2 item and

produces a set containing that item. The choice-tree required to specify that
item is just a terminal-node TERMIN.
The set of real numbers, REALS has as members all P o P-2 numbers. A

real is specified by a 1-node choice-tree I  REAL I 3.14 .

If S,T, . . Ware sets then let U be the union of them. Then the choice-
tree for U will have an OR-node that specifies which of the component sets

is being referred to. Thus one might write in Pop-2

UNION ( [ %UNITSET ('DOG'), UNITSET (`CAT') % ANIMALS;

The trees for DOG and CAT would then be:

01212 1

TERMIN

OR/2 2

TERMIN

The only other set operation that is easy to implement is the direct product.

If as before S, T, . . W are sets, and L is a word, then we can form the

labelled direct product D of the sets by

DIRPRODL (L, [ %S,T,U,V,W%[ )-+D;

The label L is desirable because it permits conceptual distinctions to be made

which seem natural. Thus one might say

DIRPROD (`POINT3D% [ %REALS,REALS,REALS %[ )--+SPACE3D;

The choice trees for members of a direct product have an AND-node

connecting the choice trees for the components. Thus a point of SPACE3 D

could be specified by:

AND 13

REAL 2.8

REAL 3.4
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The actual members of a direct product would be P o P-2 records. Hence the
membership function would just have to check the DATA WORD, which
is the label of the direct product. It would be desirable to keep a record of the
selector functions of the record class somewhere in the set, so that additional
structural dependent operations such as vector addition could be defined.
The last of the set constructions that I am going to describe is the operation

which takes a set Sand produces the setP of all finite sequences of members
of S. A member ofP will be specified by a chain of OR- and AND-nodes as
in figure 1, where the final OR-node is marked by a choice 2.
The Pop-2 would be:

FINSEQ(S)--P;

The members of P will be lists of members of S.

,

0 Rf2 1

Tree for
first member
of sequence

0RI2 1

Figure 1. The choice-tree for a finite sequence

Tree for
second
member of
sequence

0.1212 2

TERMIN

Let us brush aside Hamlet's comment that 'There are more things in
heaven and earth, Horatio, Than are dreamt of in your philosophy', and
suppose that Freddy lives in a universe of blocks, cylinders and cones.
A rectangular block can be specified by two 3-vectors giving the position

of a corner and the length and direction of a side, together with two numbers
which give the lengths of the other two undetermined sides. So, in POP-2

DIRPROD ("BLOCK", [ %SPACE3D,SPACE3D,REALS,REALS %])--*
BLOCKS;

Likewise:

DIRPROD ("CYLINDER", [% SPACE3D, SPACE3D, REALS %])--+
CYLINDERS;

DIRPRODC CONE", [ % SPACE3D, SPACE3D, REALS % CONES;
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Objects can be cones, cylinders or blocks. Hence:

UNION([ % CONES, CYLINDERS, BLOCKS %])-4OBJECT5;

Finally, a universe is a sequence of objects.

FINSEQ (OBJECTS)-. UNIVERSES;

4. VISION

How can Freddy select one of this set of universes and say 'That is where I
live'? Consider what his eyes tell him. The raw information produced by a
TV camera can be regarded as a retinal function, which is a function which
takes a point in 2-space to a brightness level. One could, with varying degrees
of sophistication, write an eye-simulator, which would take an 'imagined'
universe and produce a retinal function, which is what the universe would be
expected to look like. If the imagined universe were like the real universe
then there would be some sort of match between the retinal functions pro-
duced by the real eye and the 'mind's eye'.
There are two linked problems to be solved before the promise inherent in

the last paragraph can be realised. The first is whether there is any possibility
of converging on an imagined universe that is a faithful representation of the
real one. The second is how to compare two retinal functions bearing in mind
that the subtle variations in light and shade of the real world are unlikely to
be simulated.
Let us look first at the problem of matching retinal functions. Edges, where

there are sharp transitions between light and shade seem important, and
indeed line drawings are a common way of conveying visual information in
a much condensed form. Thus one would first form the derived retinal
functions by dividing the retina up into squares and defining the derived
function to be 1 only on those squares whose light-level differed from that of
one of their immediate neighbours by more than a threshold.
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If this differencing and thresholding operation were applied to an input
from a real camera then the result would be something like figure 2A. From
the imagined universe one could get figure 2B. One can compare 2A and 2B
by saying that every point on 2A that is black (i.e., has a derived function= 1)
must be accounted for by a point on 2o, and conversely. That is, the dis-
similarity of the two pictures is measured by adding together the distances of
each black point on 2A from the nearest black point on 2B and conversely,
and then taking the weighted sum of the totals.
Let us now recall that objects of the imagined universe are specified by a

choice-tree, which is a structure containing real numbers among other things.
Suppose that as in 2B we have specified one cube. Changing the real numbers
' in the choice-tree will then move the image of the curve over 2n. As it moves
so the value of the matching function will change. There will be maximum
matching when the two images coincide. It seems plausible that a function
minimisation algorithm would find this minimum, especially if the lines in 2B
which were not accounted for in 2A were given small weight. The problem
of getting stuck in local minima is rather serious. Thus, matching S,T,U of 2 B
against A,B,C of 2A would give a near minimum that could only be resolved
by moving the face W X YZ through and past ABC.
In general a set-searching function is needed which will attempt to maximise

the value of some function defined over the set. The searching function does
not know anything about the set. It simply tries to make a choice-tree for
which the corresponding set member is optimal. The possible changes to a
choice-tree are to change a real terminal node (which is a continuous change)
or to change the choice made at an OR-node (which is a discrete change).
Such a set-searching function could in principle search the set of all universes
to find one which would account for quite a complicated scene. The problem
of one body partially occluding another would be dealt with by the eye-
simulator.

It seems that for complex scenes some form of pre-processing to look for
clues is desirable. Buchanan et al. (1969) found that this certainly paid off
in the case of HEURISTIC DENDRAL. Thus the meeting of three straight lines
would suggest the existence of a block.
In the case of patterns that are describable by linear functions, the work of

Roberts (1963) shows that the approach outlined in this paper is feasible.

5. CONCLUSION

The ideas outlined in this paper are untested. The future will show how
workable they. are. However, I feel that both the principle of reducing
information stated in the first part, and the use of a model to explain sensory
input as in the second part, must form part of an integrated intelligent
machine. Certainly there is an information reduction in converting the retinal
image of a cup into the word 'cup'. Since one can draw or paint imaginary
objects quite convincingly, it seems that we have quite a good internal
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model of visual processes like occlusion of objects and variation of light
and shade.
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Abstract

A computer program capable of acting intelligently in the world must have a
general representation of the world in terms of which its inputs are inter-

preted. Designing such a program requires commitments about what know-

ledge is and how it is obtained. Thus, some of the major traditional problems
of philosophy arise in artificial intelligence.
More specifically, we want a computer program that decides what to do by

inferring in a formal language that a certain strategy will achieve its assigned
goal. This requires formalizing concepts of causality, ability, and knowledge.
Such formalisms are also considered in philosophical logic.
The first part of the paper begins with a philosophical point of view that

seems to arise naturally once we take seriously the idea of actually making an
intelligent machine. We go on to the notions of metaphysically and epistemo-
logically adequate representations of the world and then to an explanation of
can, causes, and knows in terms of a representation of the world by a system
of interacting automata. A proposed resolution of the problem of freewill in a
deterministic universe and of counterfactual conditional sentences is presented.
The second part is mainly concerned with formalisms within which it can

be proved that a strategy will achieve a goal. Concepts of situation, fluent,
future operator, action, strategy, result of a strategy and knowledge are
formalized. A method is given of constructing a sentence of first-order logic
which will be true in all models of certain axioms if and only if a certain
strategy will achieve a certain goal.
The formalism of this paper represents an advance over McCarthy (1963)

and Green (1969) in that it permits proof of the correctness of strategies
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that contain loops and strategies that involve the acquisition of knowledge;
and it is also somewhat more concise.
The third part discusses open problems in extending the formalism of part 2.
The fourth part is a review of work in philosophical logic in relation to

problems of artificial intelligence and a discussion of previous efforts to
program 'general intelligence' from the point of view of this paper.

1. PHILOSOPHICAL QUESTIONS

Why artificial intelligence needs philosophy

The idea of an intelligent machine is old, but serious work on the problem of
artificial intelligence or even serious understanding of what the problem is
awaited the stored-program computer. We may regard the subject of artificial
intelligence as beginning with Turing's article 'Computing Machinery and
Intelligence' (Turing 1950) and with Shannon's (1950) discussion of how a
machine might be programmed to play chess.

Since that time, progress in artificial intelligence has been mainly along the
following lines. Programs have been written to solve a class of problems that
give humans intellectual difficulty: examples are playing chess or checkers,
proving mathematical theorems, transforming one symbolic expression into
another by given rules, integrating expressions composed of elementary
functions, determining chemical compounds consistent with mass-spectro-
graphic and other data. In the course of designing these programs intellectual
mechanisms of greater or lesser generality are identified sometimes by intro-
spection, sometimes by mathematical analysis, and sometimes by experiments
with human subjects. Testing the programs sometimes leads to better under-
standing of the intellectual mechanisms and the identification of new ones.
An alternative approach is to start with the intellectual mechanisms (for

example, memory, decision-making by comparisons of scores made up of
weighted sums of sub-criteria, learning, tree search, extrapolation) and make
up problems that exercise these mechanisms.
In our opinion the best of this work has led to increased understanding

of intellectual mechanisms and this is essential for the development of arti-
ficial intelligence even though few investigators have tried to place their par-
ticular mechanism in the general context of artificial intelligence. Sometimes
this is because the investigator identifies his particular problem with the field
as a whole; he thinks he sees the woods when in fact he is looking at a tree. An
old but not yet superseded discussion on intellectual mechanisms is in Minsky
(1961); see also Newell's (1965) review of the state of artificial intelligence.

There have been several attempts to design a general intelligence with the
same kind of flexibility as that of a human. This has meant different things to
different investigators, but none has met with much success even in the sense
of general intelligence used by the investigator in question. Since our criticism
of this work will be that it does not face the philosophical problems discussed .
in this paper we shall postpone discussing it until a concluding section.
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However, we are obliged at this point to present our notion of general
intelligence.

It is not difficult to give sufficient conditions for general intelligence.
Turing's idea that the machine should successfully pretend to a sophisticated
observer to be a human being for half an hour will do. However, if we direct
our efforts towards such a goal our attention is distracted by certain super-
ficial aspects of human behaviour that have to be imitated. Turing excluded
some of these by specifying that the human to be imitated is at the end of a
teletype line, so that voice, appearance, smell, etc., do not have to be consider-
ed. Turing did allow himself to be distracted into discussing the imitation of
human fallibility in arithmetic, laziness, and the ability to use the English
language.
However, work on artificial intelligence, expecially general intelligence,

will be improved by a clearer idea of what intelligence is. One way is to give a
purely behavioural or black-box definition. In this case we have to say that
a machine is intelligent if it solves certain classes of problems requiring intel-
ligence in humans, or survives in an intellectually demanding environment.
This definition seems vague; perhaps it can be made somewhat more precise
without departing from behavioural terms, but we shall not try to do so.

Instead, we shall use in our definition certain structures apparent to intro-
spection, such as knowledge of facts. The risk is twofold: in the first place we
might be mistaken in our introspective views of our own mental structure;
we may only think we use facts. In the second place there might be entities
which satisfy behaviourist criteria of intelligence but are not organized in
this way. However, we regard the construction of intelligent machines as
fact manipulators as being the best bet both for constructing artificial
intelligence and understanding natural intelligence.
We shall, therefore, be interested in an intelligent entity that is equipped

with a representation or model of the world. On the basis of this representa-
tion a certain class of internally posed ques-tions can be answered, not always
correctly. Such questions are

1. What will happen next in a certain aspect of the situation?
2. What will happen if I do a certain action?
3. What is 3 +3 ?
4. What does he want?
5. Can I figure out how to do this or must I get information from
someone else or something else?

The above are not a fully representative set of questions and we do not have
such a set yet.
On this basis we shall say that an entity is intelligent if it has an adequate

model of the world (including the intellectual world of mathematics, under-
standing of its own goals and other mental processes), if it is clever enough
to answer a wide variety of questions on the basis of this model, if it can get
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additional information from the external world when required, and can
perform such tasks in the external world as its goals demand and its physical
abilities permit.
According to this definition intelligence has two parts, which we shall call

the epistemological and the heuristic. The epistemological part is the repre-
sentation of the world in such a form that the solution of problems follows
from the facts expressed in the representation. The heuristic part is the mech-
anism that on the basis of the information solves the problem and decides
what to do. Most of the work in artificial intelligence so far can be regarded
as devoted to the heuristic part of the problem. This paper, however, is
entirely devoted to the epistemological part.
Given this notion of intelligence the following kinds of problems arise in

constructing the epistemological part of an artificial intelligence:

I. What kind of general representation of the world will allow the
incorporation of specific observations and new scientific laws as they
are discovered?

2. Besides the representation of the physical world what other kind of
entities have to be provided for? For example, mathematical systems,
goals, states of knowledge.

3. How are observations to be used to get knowledge about the world,
and how are the other kinds of knowledge to be obtained? In
particular what kinds of knowledge about the system's own state of
mind are to be provided for?

4. In what kind of internal notation is the system's knowledge to be
expressed?

These questions are identical with or at least correspond to some traditional
questions of philosophy, especially in metaphysics, epistemology and philo-
sophic logic. Therefore, it is important for the research worker in artificial
intelligence to consider what the philosophers have had to say.

Since the philosophers have not really come to an agreement in 2500
years it might seem that artificial intelligence is in a rather hopeless state
if it is to depend on getting concrete enough information out of philosophy
to write computer programs. Fortunately, merely undertaking to embody the
philosophy in a computer program involves making enough philosophical
presuppositions to exclude most philosophy as irrelevant. Undertaking to
construct a general intelligent computer program seems to entail the following
presuppositions:

1. The physical world exists and already contains some intelligent
machines called people.

2. Information about this world is obtainable through the senses and is
expressible internally.

3. Our common-sense view of the world is approximately correct and so
is our scientific view.
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4. The right way to think about the general problems of metaphysics and
epistemology is not to attempt to clear one's own mind of all knowledge
and start with ̀ Cogito ergo sum' and build up from there. Instead, we
propose to use all of our own knowledge to construct a computer
program that knows. The correctness of our philosophical system will
be tested by numerous comparisons between the beliefs of the program
and our own observations and knowledge. (This point of view cor-
responds to the presently dominant attitude towards the foundations
of mathematics. We study the structure of mathematical systems—from
the outside as it were—using whatever metamathematical tools seem
useful instead of assuming as little as possible and building up axiom
by axiom and rule by rule within a system.)

5. We must undertake to construct a rather comprehensive philosophical
system, contrary to the present tendency to study problems separately
and not try to put the results together.

6. The criterion for definiteness of the system becomes much stronger.
Unless, for example, a system of epistemology allows us, at least in
principle, to construct a computer program to seek knowledge in
accordance with it, it must be rejected as too vague.

7. The problem of 'free will' assumesran acute but concrete form. Namely,
in common-sense reasoning, a person often decides what to do by
evaluating the results of the different actions he can do. An intelligent
program must use this same process, but using an exact formal sense of
of can, must be able to show that it has these alternatives without
denying that it is a deterministic machine.

8. The first task is to define even a naïve, common-sense view of the world
precisely enough to program a computer to act accordingly. This is a
very difficult task in itself.

We must mention that there is one possible way of getting an artificial intel-
ligence without having to understand it or solve the related philosophical
problems. This is to make a computer simulation of natural selection in
which intelligence evolves by mutating computer programs in a suitably
demanding environment. This method has had no substantial success so far,
perhaps due to inadequate models of the world and of the evolutionary
process, but it might succeed. It would seem to be a dangerous procedure, for
a program that was intelligent in a way its designer did not understand might
get out of control. In any case, the approach of trying to make an artificial
intelligence through understanding what intelligence is, is more congenial
to the present authors and seems likely to succeed sooner.

Reasoning programs and the Missouri program

The philosophical problems that have to be solved will be clearer in con-
nection with a particular kind of proposed intelligent program, called a
reasoning program or RP for short. RP interacts with the world through
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input and output devices some of which may be general sensory and motor

organs (for example, television cameras, microphones, artificial arms) and

others of which are communication devices (for example, teletypes or key-

board-display consoles). Internally, RP may represent information in a

variety of ways. For example, pictures may be represented as dot arrays or a

lists of regions and edges with classifications and adjacency relations. Scenes

may be represented as lists of bodies with positions, shapes, and rates of

motion. Situations may be represented by symbolic expressions with allowed

rules of transformation. Utterances may be represented by digitize4 functions
of time, by sequences of phonemes, and parsings of sentences.

However, one representation plays a dominant role and in simpler systems

may be the only representation present. This is a representation by sets of

sentences in a suitable formal logical language, for example w-order logic

with function symbols, description operator, conditional expressions, sets,

etc. Whether we must include modal operators with their referential opacity

is undecided. This representation dominates in the following sense:

I. All other data structures have linguistic descriptions that give the

relations between the structures and what they tell about the world.

2. The subroutines have linguistic descriptions that tell what they do,

either internally manipulating data, or externally manipulating the

world.
3. The rules that express RP'S beliefs about how the world behaves and

that give the consequences of strategies are expressed linguistically.

4. RP'S goals, as given by the experimenter, its devised subgoals, its opinion

on its state of progress are all linguistically expressed.

5. We shall say that RP'S information is adequate to solve a problem if it

is a logical consequence of all these sentences that a certain strategy of

action will solve it.
6. RP is a deduction program that tries to find strategies of action that it can

prove will solve a problem; on finding one, it executes it.

7. Strategies may involve subgoals which are to be solved by RP, and part

or all of a strategy may be purely intellectual, that is, may involve the

search for a strategy, a proof, or some other intellectual object that

satisfies some criteria.

Such a program was first discussed in McCarthy (1959) and was called the

Advice Taker. In McCarthy (1963) a preliminary approach to the required

formalism, now superseded by this paper, was presented. This paper is in

part an answer to Y. Bar-Hillel's comment, when the original paper was

presented at the 1958 Symposium on the Mechanization of Thought Proces-

ses, that the paper involved some philosophical presuppositions.

Constructing RP involves both the epistemological and the heuristic parts

of the artificial intelligence problem: that is, the information in memory

must be adequate to determine a strategy for achieving the goal (this strategy
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may involve the acquisition of further information) and RP must be clever
enough to find the strategy and the proof of its correctness. Of course, these
problems interact, but since this paper is focused on the epistemological part,
we mention the Missouri program (MP) that involves only this part.
The Missouri program (its motto is, 'Show me') does not try to find

strategies or proofs that the strategies achieve a goal. Instead, it allows the
experimenter to present it proof steps and checks their correctness. Moreover,
when it is 'convinced' that it ought to perform an action or execute a strategy
it does so. We may regard this paper as being concerned with the construction
of a Missouri program that can be persuaded to achieve goals.

Representations of the world

The first step in the design of RP or MP is to decide what structure the world
is to be regarded as having, and how information about the world and its
laws of change are to be represented in the machine. This decision turns out
to depend on whether one is talking about the expression of general laws or
specific facts. Thus, our understanding of gas dynamics depends on the
representation of a gas as a very large number of particles moving in space;
this representation plays an essential role in deriving the mechanical, thermal
electrical and optical properties of gases. The state of the gas at a given
instant is regarded as determined by the position, velocity and excitation
states of each particle. However, we never actually determine the position,
velocity or excitation of even a single molecule. Our practical knowledge of a
particular sample of gas is expressed by parameters like the pressure, temper-
ature and velocity fields or even more grossly by average pressures and
temperatures. From our philosophical point of view this is entirely normal,
and we are not inclined to deny existence to entities we cannot see, or to be so
anthropocentric as to imagine that the world must be so constructed that
we have direct or even indirect access to all of it.
From the artificial intelligence point of view we can then define three kinds

of adequacy for representations of the world.
A representation is called metaphysically adequate if the world could have

that form without contradicting the facts of the aspect of reality that interests
us. Examples of metaphysically adequate representations for different
aspects of reality are:

1. The representation of the world as a collection of particles interacting
through forces between each pair of particles.

2. Representation of the world as a giant quantum-mechanical wave
function.

3. Representation as a system of interacting discrete automata. We shall
make use of this representation.

Metaphysically adequate representations are mainly useful for constructing
general theories. Deriving observable consequences from the theory is a
further step.
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A representation is called epistemologically adequate for a person or
machine if it can be used practically to express the facts that one actually has
about the aspect of the world. Thus none of the above-mentioned represent-
ations are adequate to express facts like 'John is at home' or 'dogs chase cats'
or 'John's telephone number is 321-7580'. Ordinary language is obviously
adequate to express the facts that people communicate to each other in
ordinary language. It is not, for instance, adequate to express what people
know about how to recognize a particular face. The second part of this paper
is concerned with an epistemologically adequate formal representation of
common-sense facts of causality, ability and knowledge.
A representation is called heuristically adequate if the reasoning processes

actually gone through in solving a problem are expressible in the language.
We shall not treat this somewhat tentatively proposed concept further in this
paperexcept to point out later that one particular representation seems epistemo-
logically but not heuristically adequate.
In the remaining sections of the first part of the paper we shall use the

representations of the world as a system of interacting automata to explicate
notions of causality, ability and knowledge (including self-knowledge).

The automaton representation and the notion of 'can'

Let S be a system of interacting discrete finite automata such as that shown
in figure 1

2

Figure I

3

10

Each box represents a subautomaton and each line represents a signal.
Time takes on integer values and the dynamic behaviour of the whole auto-
maton is given by the equations:
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(1) ai(t +0= Ai(ai(t), s3(t))
a2(t+1)= A2(a2(t) , si(t), s2(t), sio(t))
a3(t +0= A3(a3(t), s4(t), s5(t), s6(t))
a4(t +1) = A4(a4(t) s7(t))

(2) s2(t) =S2(ai(t))
s3(t)= S3(a2(t))
4(0= S4(a2(t))
s5(t) = S 5(ai(t))
s7 (t) = S7(a4(t))
s8(t) = S8(a4(t))
s9(t) = S9(a4(t))
s10(t) =Sio(a4(t))

The interpretation of these equations is that the state of any automaton at
time t+ 1 is determined by its state at time t and by the signals received at
time t. The value of a particular signal at time t is determined by the state at
time t of the automaton from which it comes. Signals without a source auto-
maton represent inputs from the outside and signals without a destination
represent outputs.

Finite automata are the simplest examples of systems that interact over
time. They are completely deterministic; if we knowthe initial states of all the
automata and if we know the inputs as a function of time, the behaviour of
the system is completely determined by equations ( 1 ) and (2) for all future
time.
The automaton representation consists in regarding the world as a system

of interacting subautomata. For example, we might regard each person in the
room as a subautomaton and the environment as consisting of one or more
additional subautomata. As we shall see, this representation has many of the
qualitative properties of interactions among things and persons. However,
if we take the representation too seriously and attempt to represent particular
situations by systems of interacting automata we encounter the following
difficulties:

1. The number of states required in the subautomata is very large, for
example 21010, if we try to represent someone's knowledge. Automata
this large have to be represented by computer programs, or in some
other way that does not involve mentioning states individually.

2. Geometric information is hard to represent. Consider, for example, the
location of a multi-jointed object such as a person or a matter of even
more difficulty — the shape of a lump of clay.

3. The system of fixed interconnections is inadequate. Since a person may
handle any object in the room, an adequate automaton representation
would require signal lines connecting him with every object.

4. The most serious objection, however, is that (in our terminology) the
automaton representation is epistemologically inadequate. Namely, we
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do not ever know a person well enough to list his internal states. The
kind of information we do have about him needs to be expressed in
some other way.

Nevertheless, we may use the automaton representation for concepts of
can, causes, some kinds of counterfactual statements ('If I had struck this
match yesterday it would have lit') and, with some elaboration of the repre-
sentation, for a concept of believes.
Let us consider the notion of can. Let S be a system of subautomata without

external inputs such as that of figure 2. Let p be one of the subautomata, and
suppose that there are m signal lines coming out of p. What p can do is
defined in terms of a new system Sp, which is obtained from the system S by
disconnecting the m signal lines coming from p and replacing them by m
external input lines to the system. In figure 2, subautomaton 1 has one output,
and in the system S1 this is replaced by an external input. The new system Sp
always has the same set of states as the system S. Now let it be a condition
on the state such as, a2 is even' or ̀ a2=a3'. (In the applications it may be a
condition like 'The box is under the bananas'.)
We shall write

can(p,n,$)

which is read, 'The subautomaton p can bring about the condition it in the
situation s' if there is a sequence of outputs from the automaton Sp that will
eventually put S into a state a' that satisfies it (a'). In other words, in deter-
mining what p can achieve, we consider the effects of sequences of its actions,
quite apart from the conditions that determine what it actually will do.
In figure 2, let us consider the initial state a to be one in which all subauto-

mata are initially in state 0. Then the reader will easily verify the following
propositions:

1. Subautomaton 2 will never be in state 1.
2. Subautomaton 1 can put subautomaton 2 in state 1.
3. Subautomaton 3 cannot put subautomaton 2 in state 1.

Figure 2. System S

(t+1)=ai(t)-1-s2(t)
a2(t +1) = a2(t) +s1(t) +2s3(t)

•ri(t +1) =if 413(0 .T.17) then 0 else a3(t) +1
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32(t) =1
s3(t) =if a3(t) =0 then 0 else 1
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We claim that this notion of can is, to a first approximation, the appropriate
one for an automaton to use internally in deciding what to do by reasoning.
We also claim that it corresponds in many cases to the common sense notion
of can used in everyday speech.
In the first place, suppose we have an automaton that decides what to do by

reasoning, for example suppose it is a -Computer using an RP. Then its output
is determined by the decisions it makes in the resoning process. It does not
know (has not computed) in advance what it will do, and, therefore, it is
appropriate that it considers that it can do anything that can be achieved by
some sequence of its outputs. Common-sense reasoning seems to operate in
the same way.
The above rather simple notion of can requires some elaboration both to

represent adequately the commonsense notion and for practical purposes in
the reasoning program.

First, suppose that the system of automata admits external inputs. There
are two ways of defining can in this case. One way is to assert can (p,n,$) if p
can achieve 7C regardless of what signals appear on the external inputs. Thus,
instead of requiring the existence of a sequence of outputs of p that achieves
the goal we shall require the existence of a strategy where the output at any
time is allowed to depend on the sequence of external inputs so far received
by the system. Note that in this definition of can we are not requiring that p
have any way of knowing what the external inputs were. An alternative
definition requires the outputs to depend on the inputs of p. This is equivalent
to saying that p can achieve a goal provided the goal would be achieved for
arbitrary inputs by some automaton put in place of p. With either of these
definitions can becomes a function of the place of the subautomaton in the
system rather than of the subautomaton itself. We do not know which of
these treatments is preferable, and so we shall call the first concept cana and
the second canb.
The idea that what a person can do depends on his position rather than on
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his characteristics is somewhat counter-intuitive. This impression can be
mitigated as follows: Imagine the person to be made up of several sub-
automata; the output of the outer subautomaton is the motion of the joints.
If we break the connection to the world at that point we can answer questions
like, 'Can he fit through a given hole?' We shall get some counter-intuitive
answers, however, such as that he can run at top speed for an hour or can
jump over a building, since there are sequences of motions of his joints that
would achieve these results.
The next step, however, is to consider a subautomaton that receives the

nerve impulses from the spinal cord and transmits them to the muscles. If
we break at the input to this automaton, we shall no longer say that he can
jump over a building or run long at top speed since the limitations of the
muscles will be taken into account. We shall, however, say that he can ride a
unicycle since appropriate nerve signals would achieve this result.
The notion of can corresponding to the intuitive notion in the largest

number of cases might be obtained by hypothesizing an 'organ of will',
which makes decisions to do things and transmits these decisions to the main
part of the brain that tries to carry them out and contains all the knowledge of
particular facts. If we make the break at this point we shall be able to say
that so-and-so cannot dial the President's secret and private telephone
number because he does not know it, even though if the question were
asked could he dial that particular number, the answer would be yes. However,
even this break would not give the statement, 'I cannot go without saying
goodbye, because this would hurt the child's feelings'.
On the basis of these examples, one might try to postulate a sequence of

narrower and narrower notions of can terminating in a notion according
to which a person can do only what he actually does. This notion would then
be superfluous. Actually, one should not look for a single best notion of can;
each of the above-mentioned notions is useful and is actually used in some
circumstances. Sometimes, more than one notion is used in a single sentence,
when two different levels of constraint are mentioned.
Besides its use in explicating the notion of can, the automaton representa-

tion of the world is very suited for defining notions of causality. For, we may
say that subautomaton p caused the condition x in state s, if changing the
output of p would prevent 7Z. In fact the whole idea of a system of interacting
automata is just a formalization of the commonsense notion of causality.

Moreover, the automaton representation can be used to explicate certain
counterfactual conditional sentences. For example, we have the sentence,
'If I had struck this match yesterday at this time it would have lit'. In a
suitable automaton representation, we have a certain state of the system
yesterday at that time, and we imagine a break made where the nerves lead
from my head or perhaps at the output of my 'decision box', and the appro-
priate signals to strike the match having been made. Then it is a definite and
decidable question about the system Sp, whether the match lights or not,
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depending on whether it is wet, etc. This interpretation of this kind of counter-
factual sentence seems to be what is needed for RP to learn from its mistakes,
by accepting or generating sentences of the form, 'had I done thus-and-so I
would have been successful, so I should alter my procedures in some way
that would have produced the correct action in that case'.
In the foregoing we have taken the representation of the situation as a

system of interacting subautomata for granted. However, a given overall
situation might be represented as a system of interacting subautomata in a
number of ways, and different representations might yield different results
about what a given subautomaton can achieve, what would have happened
if some subautomaton had acted differently, or what caused what. Indeed, in a

• different representation, the same or corresponding subautomata might not be
identifiable. Therefore, these notions depend on the representation chosen.
For example, suppose a pair of Martians observe the situation in a room.

One Martian analyses it as a collection of interacting people as we do, but
the second Martian groups all the heads together into one subautomaton and
all the bodies into another. (A creature from momentum space would regard
the Fourier components of the distribution of matter as the separate inter-
acting subautomata.) How is the first Martian to convince the second that
his representation is to be preferred? Roughly speaking, he would argue
that the interaction between the heads and bodies of the same person is
closer than the interaction between the different heads, and so more of an
analysis has been achieved from 'the primordial muddle' with the conventional
representation. He will be especially convincing when he points out that when
the meeting is over the heads will stop interacting with each other, but will
continue to interact with their respective bodies.
We can express this kind of argument formally in terms of automata as

follows: Suppose we have an autonomous automaton A, that is an automaton
without inputs, and let it have k states. Further, let m and n be two integers
such that m,n >k. Now label k points of an m-by-n array with the states of A.

This can be done in (r)! ways. For each of these ways we have a represent-

ation of the automaton A as a system of an m-state automaton B interacting
with an n-state automaton C. Namely, corresponding to each row of the
array we have a state of B and to each column a state of C. The signals are in
I-1 correspondence with the states themselves; thus each subautomaton has
just as many values of its output as it has states. Now it may happen that
two of these signals are equivalent in their effect on the other subautomaton,
and we use this equivalence relation to form equivalence classes of signals.
We may then regard the equivalence classes as the signals themselves.
Suppose then that there are now r signals from B to C and s signals from C
to B. We ask how small r and s can be taken in general compared to m and n.
The answer may be obtained by counting the number of inequivalent automata
with k states and comparing it with the number of systems of two automata
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with m and n states respectively and r and s signals going in the respective
directions. The result is not worth working out in detail, but tells us that only
a few of the k state automata admit such a decomposition with r and s
small compared to m and n. Therefore, if an automaton happens to admit such
a decomposition it is very unusual for it to admit a second such decom-
position that is not equivalent to the first with respect to some renaming
of states. Applying this argument to the real world, we may say that it is
overwhelmingly probable that our customary decomposition of the world
automaton into separate people and things has a unique, objective and
usually preferred status. Therefore, the notions of can, of causality, and of
counterfactual associated with this decomposition also have a preferred status.
In our opinion, this explains some of the difficulty philosophers have had

in analysing counterfactuals and causality. For example, the sentence, 'If I
had struck this match yesterday, it would have lit' is meaningful only in terms
of a rather complicated model of the world, which, however, has an objective
preferred status. However, the preferred status of this model depends on its
correspondence with a large number of facts. For this reason, it is probably not
fruitful to treat an individual counterfactual conditional sentence in isolation.

It is also possible to treat notions of belief and knowledge in terms of the
automaton representation. We have not worked this out very far, and the
ideas presented here should be regarded as tentative. We would like to be
able to give conditions under which we may say that a subautomaton p
believes a certain proposition. We shall not try to do this directly but only
relative to a predicate Bp(s,w). Here s is the state of the automaton p and w
is a proposition; Bp(s,w) is true if p is to be regarded as believing w when in
state s and is false otherwise. With respect to such a predicate B we may ask
the following questions:

1. Are p's beliefs consistent? Are they correct?
2. Does p reason? That is, do new beliefs arise that are logical conse-

quences of previous beliefs?
3. Does p observe? That is, do true propositions about automata con-

nected top cause p to believe them?
4. Does p behave rationally? That is, when p believes a sentence asserting

that it should do something, does p do it?
5. Does p communicate in language L? That is, regarding the content of a

certain input or ouput signal line as a text in language L, does this
line transmit beliefs to or from p?

6. Is p self-conscious? That is, does it have a fair variety of correct
beliefs about its own beliefs and the processes that change them?

It is only with respect to the predicate Bp that all these questions can be
asked. However, if questions 1 thru 4 are answered affirmatively for some
predicate Bp, this is certainly remarkable, and we would feel fully entitled to
consider B, a reasonable notion of belief.
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In one important respect the situation with regard to belief or knowledge
is the same as it was for counterfactual conditional statements: no way is
provided to assign a meaning to a single statement of belief or knowledge,
since for any single statement a suitable Bp can easily be constructed. Individ-
ual statements about belief or knowledge are made on the basis of a larger
system which must be validated as a whole.

2. FORMALISM

In part 1 we showed how the concepts of ability and belief could be given
formal definition in the metaphysically adequate automaton model and

indicated the correspondence between these formal concepts and the cor-
responding commonsense concepts. We emphasized, however, that practical
systems require epistemologically adequate systems in which those facts
which are actually ascertainable can be expressed.
In this part we begin the construction of an epistemologically adequate

system. Instead of giving formal definitions, however, we shall introduce the
formal notions by informal natural-language descriptions and give examples
of their use to describe situations and the possibilities for action they present.
The formalism presented is intended to supersede that of McCarthy (1963).

Situations

A situation s is the complete state of the universe at an instant of time. We
denote by Sit the set of all situations. Since the universe is too large for
complete description, we shall never completely describe a situation; we shall
only give facts about situations. These facts will be used to deduce further
facts about that situation, about future situations and about situations that
persons can bring about from that situation.
This requires that we consider not only situations that actually occur, but

also hypothetical situations such as the situation that would arise if Mr Smith
sold his car to a certain person who has offered $250 for it. Since he is not
going to sell the car for that price, the hypothetical situation is not completely
defined; for example, it is not determined what Smith's mental state would
be and therefore it is also undetermined how quickly he would return to his
office, etc. Nevertheless, the representation of reality is adequate to determine
some facts about this situation, enough at least to make him decide not to
sell the car.
We shall further assume that the laws of motion determine, given a situa-

tion, all future situations.*
In order to give partial information about situations we introduce the

notion of fluent.

* This assumption is difficult to reconcile with quantum mechanics, and relativity tells
us that any assignment of simultaneity to events in different places is arbitrary. However,
we are proceeding on the basis that modem physics is irrelevant to common sense in
deciding what to do, and in particular is irrelevant to solving the 'free will problem'.
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Fluents

&fluent is a function whose domain is the space Sit of situations. If the range
of the function is (true, false), then it is called a propositional fluent. If its
range is Sit, then it is called a situational fluent.

Fluents are often the values of functions. Thus raining(x) is a fluent such
that raining(x)(s) is true if and only if it is raining at the place x in the
situation s. We can also write this assertion as raining(x,$) making use of the
well-known equivalence between a function of two variables and a function
of the first variable whose value is a function of the second variable.
Suppose we wish to assert about a situation s that person p is in place x

and that it is raining in place x. We may write this in several ways each of
which has its uses:

1. at (p,x)(s) A raining (x)(s). This corresponds to the definition given.
2. at (p,x,$) A raining (x,$). This is more conventional mathematically

and a bit shorter.
3. [at (p,x) A raining(x)](s). Here we are introducing a convention that

operators applied to fluents give fluents whose values are computed by
applying the logical operators to the values of the operand fluents,
that is, iff and g are fluents then

(f op g)(s)= f(s) op g(s)

4. [As' .at(p,x,s') A raining (x,s')](s). Here we have formed the composite
fluent by 2-abstraction.

Here are some examples of fluents and expressions involving them:

1. time(s). This is the time associated with the situation s. It is essential
to consider time as dependent on the situation as we shall sometimes
wish to consider several different situations having the same time value,
for example, the results of alternative courses of actions.

2. in(x,y,$). This asserts that x is in the location y in situation s. The
fluent in may be taken as satisfying a kind of transitive law, namely:

Vx . Vy. Vz . Vs . in(x,y,$) A in (y,z,$)= in(x,z,$)

We can also write this law

Vx . Vy . Vz . V . in (x,y) A in(y,z)= in(x,z)

where we have adopted the convention that a quantifier without a
variable is applied to an implicit situation variable which is the
(suppressed) argument of a propositional fluent that follows. Sup-
pressing situation arguments in this way corresponds to the natural
language convention of writing sentences like, 'John was at home' or

'John is at home' leaving understood the situations to which these
assertions apply.

3. has(Monkey,Bananas,$). Here we introduce the convention that

capitalized words denote proper names, for example, 'Monkey' is the
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name of a particular individual. That the individual is a monkey is not
asserted, so that the expression monkey(Monkey) may have to appear
among the premisses of an argument. Needless to say, the reader has a

right to feel that he has been given a hint that the individual Monkey
will turn out to be a monkey. The above expression is to be taken as
asserting that in the situation s the individual Monkey has the object
Bananas. We shall, in the examples below, sometimes omit premisses

such as monkey (Monkey), but in a complete system they would have
to appear.

Causality

We shall make assertions of causality by means of a fluent F(m) where it is
itself a propositional fluent. F(n,$) asserts that the situation swill be followed

(after an unspecified time) by a situation that satisfies the fluent 7v.
We may use F to assert that if a person is out in the rain he will get wet, by

writing:

Vx . Vp . Vs. raining(x,$) A at(p,x,$) A outside(p,$) F(As' .wet(p,s'),$)

Suppressing explicit mention of situations gives:

Vx Vp . V . raining(x) A at(p,x) A -outside(p)= F(wet(p)).

In this case suppressing situations simplifies the statement.
F can also be used to express physical laws. Consider the law of falling

bodies which is often written

h= ho+ Vo (t—to)—ig (t —02

together with some prose identifying the variables. Since we need a formal
system for machine reasoning we cannot have any prose. Therefore, we write:

Vb . Vt . Vs .falling(b,$)A t?...0 A height(b,$)+ velocity(b,$) . t -fgt2> 0

F(As' . time (s') = time(s) +t A falling(b,s')
A height (b,s'). height (b,$) + velocity (b,$) . t—igt2, s)

Suppressing explicit mention of situations in this case requires the intro-
duction of real auxiliary quantities v, h and T so that the sentence takes the
following form

Vb Vt VT . eV. V h.

falling(b) A t> 0 A h = height (b) A v= velocity(b) A h+vt 0
A time=r F(time= t A falling(b) A height= h+ vt igt2)

There has to be a convention (or declarations) so that it is determined that
height(b), velocity(b) and time are fluents, whereas t, v, r and h denote
ordinary real numbers.
F(n,$) as introduced here corresponds to A.N.Prior's (1957, 1968)

expression Fir.
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The use of situation variables is analogous to the use of time-instants in
the calculi of world-states which Prior (1968) calls U-Tcalculi. Prior provides
many interesting correspondences between his U-T calculi and various
mdomatizations of the modal tense-logics (that is, using this F-operator : see
part 4). However, the situation calculus is richer than any of the tense-logics
Prior considers.

Besides F he introduces three other operators which we also find useful; we
thus have:

1. F(n,$). For some situations' in the future of s, n(s')

2. G(rc,$). For all situations s' in the future of s, n(s') holds.

3. P(n,$). For some situations s' in the past of s, n(s') holds.

4. H(n,$). For all situations s' in the past of s, (s') holds.

It seems also useful to define a situational fluent next (n) as the next situation
s' in the future of s for which n (s') holds. If there is no such situation, that is,
if --iF(n,$), then next(n,$) is considered undefined. For example, we may
translate the sentence 'By the time John gets home, Henry will be home too'
as at(Henry,home(Henry),next(at(John,home(John)),$)). Also the phrase
'when John gets home' translates into time (next (at (John ,home (John)) ,$)) .
Though next (7r,$) will never actually be computed since situations are too

rich to be specified completely, the values of fluents applied to next (7r,$) will
be computed.

Actions

A fundamental role in our study of actions is played by the situational fluent

result (p,a,$)

Here, p is a person, a is an action or more generally a strategy, and s is a
situation. The value of result(p,a,$) is the situation that results when p
carries out a, starting in the situation s. If the action or strategy does not
terminate, result(p,a,$) is considered undefined.
With the aid of result we can express certain laws of ability. For example:

has (p,k,$) A fits (k ,sf) A at (p,sf,$)m open (sf,result (p,opens (sf,k),$))

This formula is to be regarded as an axiom schema asserting that if in a
situation s a person p has a key k that fits the safe sf, then in the situation
resulting from his performing the action opens(sf,k), that is, opening the
safe sf with the key k, the safe is open. The assertion fits(k,sf) carries the
information that k is a key and sf a safe. Later we shall be concerned with
combination safes that require p to know the combination.

Strategies

Actions can be combined into strategies. The simplest combination is a
finite sequence of actions. We shall combine actions as though they were
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ALGOL statements, that is, procedure calls. Thus, the sequence of actions,
('move the box under the bananas', 'climb onto the box', and 'reach for the
bananas') may be written:

begin move (Box, Under-Bananas); climb (Box); reach-for (Bananas) end;

A strategy in general will be an ALGOL-like compound statement containing
actions written in the form of procedure calling assignment statements, and
conditional go to's. We shall not include any declarations in the program
since they can be included in the much larger collection of declarative sen-
tences that determine the effect of the strategy.

Consider for example the strategy that consists of walking 17 blocks south,
turning right and then walking till you come to Chestnut Street. This strategy
' may be written as follows:

begin
face(South);
n:=0;

b: if n= 17 then go to a;
walk-a-block, n:= n +1;
go to b;

a: turn-right;
c: walk-a-block;

if name-on-street-sign 'Chestnut Street' then go to c
end;

In the above program the external actions are represented by procedure
calls. Variables to which values are assigned have a purely internal signifi-
cance (we may even call it mental significance) and so do the statement labels
and the go to statements.
For the purpose of applying the mathematical theory of computation we

shall write the program differently: namely, each occurrence of an action a
is to be replaced by an assignment statement s:=result(p,a,$). Thus the
above program becomes

begin
s:= result (p,face (South),$);
n:=0;

b: if n= 17 then go to a;
s:= result (p,walk-a-block,$);
n:=n+1;
go to b;

a: s:=result(p,turn-right,$);
c: s:=result(p,walk-a-block,$);

if name-on-street-sign(s)0`Chestnut Street' then go to c.
end;

Suppose we wish to show that by carrying out this strategy John can go home
provided he is initially at his office. Then according to the methods of Zohar
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Manna (1968a, 1968b), we may derive from this program together with the
initial condition at (John,office (John) ,So) and the final condition at (John,home
(John),$), a sentence W of first-order logic. Proving W will show that the
procedure terminates in a finite number of steps and that when it terminates s
will satisfy at(John,home(John),$).
According to Manna's theory we must prove the following collection of

sentences inconsistent for arbitrary interpretations of the predicates qi and q2
and the particular interpretations of the other functions and predicates in the
program:

at(John,office(John),so),
qi(0,result(John,face(South),S0)),
Vn . Vs. qi(n,$)= if n=17

then q2(result(John,walk-a-block,result(John,turn-right,
s)))
else qi(n+1,result(John,walk-a-block,$)),

Vs . q2(s) = if name-on-street-sign(s)0` Chestnut Street'
then q2 (result (John,walk-a-block,$))
else at (John,home(John),3)

Therefore the formula that has to be proved may be written

3s0{ at (John ,office (John) ,5) A qi(0,result (John, face (South),so))1

2n. 3s . {qi(n,$) A if n=17
then A q2(result(John,walk-a-block,result(John,turn-
right,$)))
else 7 q1(n + 1,result(John,walk-a-block,$))}

V
2s. {q2(s) A if name-on-street-sign(s) 'Chestnut Street'

then —1q2 (result (John,walk-a-block,$))
else at (John,home(John),$)}

In order to prove this sentence we would have to use the following kinds of
facts expressed as sentences or sentence schemas of first-order logic:

1. Facts of geography. The initial street stretches at least 17 blocks to
the south, and intersects a street which in turn intersects Chestnut
Street a number of blocks to the right; the location of John's home and
office.

2. The fact that the fluent name-on-street-sign will have the value
'Chestnut Street' at that point.

3. Facts giving the effects of action a expressed as predicates about
result(p,a,$) deducible from sentences about s.

4. An axiom schema of induction that allows us to deduce that the loop
of walking 17 blocks will terminate.
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5. A fact that says that Chestnut Street is a finite number of blocks to
the right after going 17 blocks south. This fact has nothing to do with
the possibility of walking. It may also have to be expressed as a
sentence schema or even as a sentence of second-order logic.

When we consider making a computer carry out the strategy, we must
distinguish the variable s from the other variables in the second form of the
program. The other variables are stored in the memory of the computer and
the assignments may be executed in the normal way. The variable s represents
the state of the world and the computer makes an assignment to it by per-
forming an action. Likewise the fluent name-on-street-sign requires an action,
of observation.

Knowledge and ability

In order to discuss the role of knowledge in one's ability to achieve goals let
us return to the example of the safe. There we had

1. has (p,k,$) A fits (k,sf) A at (p,sf,$)= open (sf,result (p,opens (sf,k),$)),

which expressed sufficient conditions for the ability of a person to open a
safe with a key. Now suppose we have a combination safe with a combination
c. Then we may write:

2. fits2(c,sf) A at (p,sf,$)= open (sf,result (p,opens2(sf,c),$)),

where we have used the predicate fits2 and the action opens2 to express the
distinction between a key fitting a safe and a combination fitting it, and also
the distinction between the acts of opening a safe with a key and a combination.
In particular, opens2(sf,c) is the act of manipulating the safe in accordance
with the combination c. We have left out a sentence of the form has2(p,c,$)
for two reasons. In the first place it is unnecessary: if you manipulate a safe
in accordance with its combination it will open; there is no need to have
anything. In the second place it is not clear what has2(p,c,$) means. Suppose,
for example, that the combination of a particular safe sf is the number
34125, thenfits(34125, sf) makes sense and so does the act opens2(sf, 34125).
(We assume that open (sf,result (p,opens2(s f ,34111),$)) would not be true.)
But what could has (p ,34125,$) mean? Thus, a direct parallel between the
rules for opening a safe with a key and opening it with a combination seems
impossible.

Nevertheless, we need some way of expressing the fact that one has to
know the combination of a safe in order to open it. First we introduce the
function combination (sf) and rewrite 2 as

3. at (p,sf,$) A csafe (sf)= open (sf,result (p ,opens2(sf,combination(sf),$)))

where csafe (sf) asserts that sf is a combination safe and combination (sf)
denotes the combination of sf. (We could not write key(sf) in the other case
unless we wished to restrict ourselves to the case of safes with only one key.)
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Next we introduce the notion of a feasible strategy for a person. The idea
is that a strategy that would achieve a certain goal might not be feasible for a
person because he lacks certain knowledge or abilities.
Our first approach is to regard the action opens2(sf,combination(sf)) as

infeasible because p might not know the combination. Therefore, weintroduce
a new function idea-of-combination(p,sf,$) which stands for person p's
idea of the combination of sf in situation s. The action opens2(sf,idea-of-
combination(p,sf,$)) is regarded as feasible for p, since p is assumed to know
his idea of the combination if this is defined. However, we leave sentence 3 as
it is so we cannot yet prove open(sf,result(p,opens2(sf,idea-of-combination
(p,sf,$)),$)). The assertion that p knows the combination of sf can now be
expressed as

5. idea-of-combination (p,sf,$)= combination (sf)

and with this, the possibility of opening the safe can be proved.
Another example of this approach is given by the following formalization

of getting into conversation with someone by looking up his number in the
telephone book and then dialling it.
The strategy for p in the first form is

begin
lookup(q,Phone-book);
dial(idea-of-phone-number(q,p))

end;

or in the second form

begin
s: = result (p,lookup (q,Phone-book),s o);
s: = result (p ,dial (idea-of-phone-number (q, p,$)),$)

end;

The prernisses to write down appear to be

I. has (p,Phone-book,s0)
2. listed(q,Phone-book,so)
3. Vs . Vp . Vq . has (p,Phone-book,$) A listed(q,Phone-book,$)=
phone-number (q)= idea-of-phone-number (p,q,result (p,lookup (q ,P hone-
book),$))

4. Vs . Vp . Vq . Vx . at (q,home (q) ,$) A has (p,x,$) A telephone (x)
in-conversation (p,q,result (p ,dial (phone-number (q)) ,$))

5. at(q,home (q) ,so)
6. telephone (Telephone)
7. has (p,Telephone,so)

Unfortunately, these premisses are not sufficient to allow one to conclude that

in-conversation(p,q,result(p,begin lookup (q,Phone-book); dial(idea-of-
phone-number(q,p)) end;, so)).
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The trouble is that one cannot show that the fluents at(q,home(q)) and
has (p,Telephone) still apply to the situation result (p,lookup (q,Phone-book),s0).
To make it come out right we shall revise the third hypothesis to read:

Vs . Vp . Vq . Vx . Vy. at(q,y,$) A has(p,x,$) A has(p ,Phone-book,$) A
listed(q,Phone-book)m[Ar.at(q,y,r) A has(p,x,r) A phone-number(q)=
idea-of-phone-number (p ,q,r)] (result(p,lookup (q,Phone-book),$)).

This works, but the additional hypotheses about what remains unchanged
when p looks up a telephone number are quite ad hoc. We shall treat this
problem in a later section.
The present approach has a major technical advantage for which, however,

we pay a high price. The advantage is that we preserve the ability to replace
any expression by an equal one in any expression of our language. Thus if
phone-number(John)= 3217580, any true statement of our language that
contains 3217580 or phone-number(John) will remain true if we replace one
by the other. This desirable property is termed referential transparency.
The price we pay for referential transparency is that we have to introduce

idea-of-phone-number(p,q,$) as a separate ad hoc entity and cannot use the
more natural idea-of(p,phone-number(q),$) where idea-of(p,O,$) is some
kind of operator applicable to the cOacept 0. Namely, the sentence idea-of
(p,phone-number (q) ,$) phone-number (q) would be supposed to express
that p knows q's phone-number, but idea-of(p,3217580,$)= 3217580 expresses
only that p understands that number. Yet with transparency and the fact that
phone-number(q) = 3217580 we could derive the former statement from the
latter.
A further consequence of our approach is that feasibility of a strategy is a

referentially opaque concept since a strategy containing idea-of-phone-
number(p,q,$) is regarded as feasible while one containing phone-number(q)
is not, even though these quantities may, be equal in a particular case. Even
so, our language is still referentially transparent since feasibility is a concept
of the metalanguage.
A classical poser for the reader who wants to solve these difficulties to

ponder is, 'George IV wondered whether the author of the Waverley novels
was Walter Scott' and 'Walter Scott is the author of the Waverley novels',
from which we do not wish to deduce, 'George IV wondered whether Walter
Scott was Walter Scott'. This example and others are discussed in the first
chapter of Church's Introduction to Mathematical Logic (1956).
In the long run it seems that we shall have to use a formalism with referential

opacity and formulate precisely the necessary restrictions on replacement of
equals by equals; the program must be able to reason about the feasibility of
its strategies, and users of natural language handle referential opacity without
disaster. In part 4 we give a brief account of the partly successful approach to
problems of referential opacity in modal logic.
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3. REMARKS AND OPEN PROBLEMS

The formalism presented in part 2 is, we think, an advance on previous
attempts, but it is far from epistemological adequacy. In the following sections
we discuss a number of problems that it raises. For some of them we have
proposals that might lead to solutions.

The approximate character of result (p, a, s).

Using the situational fluent result (p,a,$) in formulating the conditions under
which strategies have given effects has two advantages over the can(p,n,$) of
part 1. It permits more compact and transparent sentences, and it lends itself
to the application of the mathematical theory of computation to prove that
certain strategies achieve certain goals.
However, we must recognize that it is only an approximation to say that

an action, other than that which will actually occur, leads to a definite situation.
Thus if someone is asked, 'How would you feel tonight if you challenged him
to a duel tomorrow morning and he accepted?' he might well reply, 'I can't
imagine the mental state in which I would do it; if the words inexplicably
popped out of my mouth as though my voice were under someone else's
control that would be one thing; if you gave me a long-lasting belligerence
drug that would be another'.
From this we see that result(p,a,$) should not be regarded as being

defined in the world itself, but only in certain representations of the world;
albeit in representations that may have a preferred character as discussed in
part 1.
We regard this as a blemish on the smoothness of interpretation of the

formalism, which may also lead to difficulties in the formal development.
Perhaps another device can be found which has the advantages of result
without the disadvantages.

Possible meanings of 'can' for a computer program

A computer program can readily be given much more powerful means of
introspection than a person has, for we may make it inspect the whole of its
memory including program and data to answer certain introspective questions,
and it can even simulate (slowly) what it would do with given initial data. It
is interesting to list various notions of can(Program,n) for a program.

1. There is a sub-program a and room for it in memory which would
achieve n if it were in memory, and control were transferred to a. No
assertion is made that Program knows a or even knows that a exists.

2. a exists as above and that a will achieve it follows from information
in memory according to a proof that Program is capable of checking.

3. Program's standard problem-solving procedure will find a if achieving
it is ever accepted as a subgoal.
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The frame problem

In the last section of part 2, in proving that one person could get into
conversation with another, we were obliged to add the hypothesis that if a
person has a telephone he still has it after looking up a number in the telephone
book. If we had a number of actions to be performed in sequence, we would
have quite a number of conditions to write down that certain actions do not
change the values of certain fluents. In fact with n actions and m fluents we
might have to write down mn such conditions.
We see two ways out of this difficulty. The first is to introduce the notion of

frame, like the state vector in McCarthy (1962). A number of fluents are
declared as attached to the frame and the effect of an action is described by
telling which fluents are changed, all others being presumed unchanged.

This can be formalized by making use of yet more ALGOL notation,
perhaps in a somewhat generalized form. Consider a strategy in which p
performs the action of going from x toy. In the first form of writing strategies
we have go(x,y) as a program step. In the second form we have s:= result
(p,go(x,y),$). Now we may write

location (p): = tryfor (y,x)

and the fact that other variables are unchanged by this action follows from the
general properties of assignment statements. Among the conditions for
successful execution of the program will be sentences that enable us to show
that when this statement is executed, tryfor (y,x)= y. If we were willing to
consider that p could go anywhere we could write the assignment statement
simply as

location (p): =y.

The point of using tryfor here is that a program using this simpler assignment
is, on the face of it, not possible to execute, since p may be unable to go to y.
We may cover this case in the more complex assignment by agreeing that
when p is barred from y, tryfor(y,x)= x.
In general, restrictions on what could appear on the right side of an assign-

ment to a component of the situation would be included in the conditions for
the feasibility of the strategy. Since components of the situation that change
independently in some circumstances are dependent in others, it may be
worthwhile to make use of the block structure of ALGOL. We shall not
explore this approach further in this paper.

Another approach to the frame problem may follow from the methods of
the next section; and in part 4 we mention a third approach which may be
useful, although we have not investigated it at all fully.

Formal literatures

In this section we introduce the notion of formal literature which is to be
contrasted with the well-known notion of formal language. We shall mention
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some possible applications of this concept in constructing an epistemologic-
ally adequate system.
A formal literature is like a formal language with a history: we imagine

that up to a certain time a certain sequence of sentences have been said. The
literature then determines what sentences may be said next. The formal
definition is as follows.
Let A be a set of potential sentences, for example, the set of all finite

strings in some alphabet. Let Seq(A) be the set of finite sequences of elements
of A and let L:Seq(A)—* {true, false) be such that if a e Seq(A) and L(a),
that is, L(a)= true, and al is an initial segment of a then L(ai). The pair
(A,L) is termed a literature. The interpretation is that an may be said after
ali an_i, provided L((ai, ..., an)). We shall also write a e Land refer to a
as a string of the literature L.
From a literature L and a string a e L we introduce the derived literature

Ln. Namely, T e L. if and only if a * T E L, where a*T denotes the concatenation
of a and T.
We shall say that the language L is universal for the class ort• of literatures

if for every literature Me (I) there is a string a (M) e L such that M_—L(M);
that is, T e M if and only if a(M)* T e L.
We shall call a literature computable if its strings form a recursively

enumerable set. It is easy to see that there is a computable literature Uc
that is universal with respect to the set C of computable literatures. Namely,
let e be a computable literature and let c be the representation of the GOdel
number of the recursively enumerable set of e as a string of elements of A.
Then, we say c * T e Uc if and only if T e e.

It may be more convenient to describe natural languages as formal liter-
atures than as formal languages: if we allow the definition of new terms and
require that new terms be used in accordance with their definitions, then we
have restrictions on sentences that depend on what sentences have previously
been uttered. In a programming language, the restriction that an identifier
not be used until it has been declared, and then only consistently with the
declaration, is of this form.
Any natural language may be regarded as universal with respect to the set

of natural languages in the approximate sense that we might define French in
terms of English and then say 'From now on we shall speak only French'.

All the above is purely syntactic. The applications we envisage to artificial
intelligence come from a certain kind of interpreted literature. We are not
able to describe precisely the class of literatures that may prove useful, only
to sketch a class of examples.
Suppose we have an interpreted language such as first-order logic perhaps

including some modal operators. We introduce three additional operators:
consistent(0), normally(0), and probably (4). We start with a list of sen-
tences as hypotheses. A new sentence may be added to a string a- of sentences
according to the following rules:
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1. Any consequence of sentences of a may be added.
2. If a sentence 0 is consistent with a, then consistent( 4)) may be added.

Of course, this is a non-computable rule. It may be weakened to say
that consistent(0) may be added provided 0 can be shown to be
consistent with a by some particular proof procedure.

3. normally(0), consistent (4,) probably(0).
4. 0 F probably (0) is a possible deduction.
5. If 01, 4,,. 0,, F 0 is a possible deduction then probably(01),
probably(0) F probably(0) is also a possible deduction.

The intended application to our formalism is as follows:
In part 2 we considered the example of one person telephoning another,

and in this example we assumed that if p looks up q's phone-number in the
book, he will know it, and if he dials the number he will come into conversa-
tion with q. It is not hard to think of possible exceptions to these statements
such as:

1. The page with q's number may be torn out.
2. p may be blind.
3. Someone may have deliberately inked out q's number.
4. The telephone company may have made the entry incorrectly.
5. q may have got the telephone only recently.
6. The phone system may be out of order.
7. q may be incapacitated suddenly.

For each of these possibilities it is possible to add a term excluding the diffi-
culty in question to the condition on the result of performing the action.
But we can think of as many additional difficulties as we wish, so it is impracti-
cal to exclude each difficulty separately.
We hope to get out of this difficulty by writing such sentences as

Vp . Vq . Vs. at(q,home(q),$)= normally (in-conversation (p,g,
result (p,dials (phone-number (q)),$)))

We would then be able to deduce

probably (in-conversation(p,g,result (p,dials (phone-number (g)),s 0)))

provided there were no statements like

kaput (Phone-system,so)

and

Vs. kaput (Phone-system,$)= -i in-conversation (p,g,result (p,dials(phone-
number (g)),$))

present in the system.
Many of the problems that give rise to the introduction of frames might be

handled in a similar way.
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The operators normally, consistent and probably are all modal and refer-
entially opaque. We envisage systems in which probably(n) and probably
(—I a) and therefore probably(false) will arise. Such an event should give
rise to a search for a contradiction.
We hereby warn the reader, if it is not already clear to him, that these

ideas are very tentative and may prove useless, especially in their present
form. However, the problem they are intended to deal with, namely the
impossibility of naming every conceivable thing that may go wrong, is an
important one for artificial intelligence, and some formalism has to be
developed to deal with it.

Probabilities

On numerous occasions it has been suggested that the formalism take
uncertainty into account by attaching probabilities to its sentences. We agree
that the formalism will eventually have to allow statements about the prob-
abilities of events, but attaching probabilities to all statements has the fol-
lowing objections:

1. It is not clear how to attach probabilities to statements containing
quantifiers in a way that corresponds to the amount of conviction
people have.

2. The information necessary to assign numerical probabilities is not
ordinarily available. Therefore, a formalism that required numerical
probabilities would be epistemologically inadequate.

Parallel processing

Besides describing strategies by ALGOL-like programs we may also want to
describe the laws of change of the situation by such programs. In doing so we
must take into account the fact that many processes are going on simultane-
ously and that the single-activity-at-a-time ALGOL-like programs will have
to be replaced by programs in which processes take place in parallel, in order
to get an epistemologically adequate description. This suggests examining the
so-called simulation languages; but a quick survey indicates that they are
rather restricted in the kinds of processes they allow to take place in parallel and
in the types of interaction allowed. Moreover, at present there is no de-
veloped formalism that allows proofs of the correctness of parallel programs.

4. DISCUSSION OF LITERATURE

The plan for achieving a generally intelligent program outlined in this paper
will clearly be difficult to carry out. Therefore, it is natural to ask if some
simpler scheme will work, and we shall devote this section to criticising some
simpler schemes that have been proposed.

1. L. Fogel (1966) proposes to evolve intelligent automata by altering
their state transition diagrams so that they perform better on tasks Of greater
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and greater complexity. The experiments described by Fogel involve machines
with less than 10 states being evolved to predict the next symbol of a quite
simple sequence. We do not think this approach has much chance of achieving
interesting results because it seems limited to automata with small numbers
of states, say less than 100, whereas computer programs regarded as auto-
mata have 210 to 2107 states. This is a reflection of the fact that, while the
representation of behaviours by finite automata is metaphysically adequate —
in principle every behaviour of which a human or machine is capable can be
so represented — this representation is not epistemologically adequate; that
is, conditions we might wish to impose on a behaviour, or what is learned from
an experience, are not readily expressible as changes in the state diagram of
an automaton.

2. A number of investigators (Galanter 1956, Pivar and Finkelstein 1964)
have taken the view that intelligence may be regarded as the ability to predict
the future of a sequence from observation of its past. Presumably, the idea
is that the experience of a person can be regarded as a sequence of discrete
events and that intelligent people can predict the future. Artificial intelligence
is then studied by writing programs to predict sequences formed according
to some simple class of laws (sometimes probabilistic laws). Again the model
is metaphysically adequate but epistenfologically inadequate.
In other words, what we know about the world is divided into knowledge

about many aspects of it, taken separately and with rather weak interaction.
A machine that worked with the undifferentiated encoding of experience
into a sequence would first have to solve the encoding, a task more difficult
than any the sequence extrapolators are prepared to undertake. Moreover,
our knowledge is not usable to predict exact sequences of experience. Imagine
a person who is correctly predicting the course of a football game he is
watching; he is not predicting each visual sensation (the play of light and
shadow, the exact movements of the players and the crowd). Instead his
prediction is on the level of: team A is getting tired; they should start to
fumble or have their passes intercepted.

3. Friedberg (1958, 1959) has experimented with representing behaviour
by a computer program and evolving a program by random mutations to
perform a task. The epistemological inadequacy of the representation is
expressed by the fact that desired changes in behaviour are often not repre-
sentable by small changes in the machine language form of the program. In
particular, the effect on a reasoning program of learning a new fact is not so
representable.

4. Newell and Simon worked for a number of years with a program called
the General Problem Solver (Newell et al. 1959, Newell and Simon 1961).
This program represents problems as the task of transforming one symbolic
expression into another using a fixed set of transformation rules. They
succeeded in putting a fair variety of problems into this form, but for a number
of problems the representation was awkward enough so that GPS could only
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do small examples. The task of improving GPS was studied as a G PS task,
but we believe it was finally abandoned. The name, General Problem Solver,
suggests that its authors at one time believed that most problems could be
put in its terms, but their more recent publications have indicated other points
of view.

It is interesting to compare the point of view of the present paper with that
expressed in Newell and Ernst (1965) from which we quote the second
paragraph:

We may consider a problem solver to be a process that takes a-problem
as input and provides (when successful) the solution as output. The
problem consists of the problem statement, or what is immediately given;
and auxiliary information, which is potentially relevant to the problem
but available only as the result of processing. The problem solver has
available certain methods for attempting to solve the problem. These are
to be applied to an internal representation of the problem. For the
problem solver to be able to work on a problem it must first transform
the problem statement from its external form into the internal representa-
tion. Thus (roughly), the class of problems the problem solver can con-
vert into its internal representation determines how broad or general it is;
and its success in obtaining solutions to problems in internal form deter-
mines its power. Whether or not universal, such a decomposition fits well
the structure of present problem solving programs.

In a very approximate way their division of the problem solver into the
input program that converts problems into internal representation and the
problem solver proper corresponds to our division into the epistemological
and heuristic parts of the artificial intelligence problem. The difference is
that we are more concerned with the suitability of the internal representation
itself.
Newell (1965) poses the problem of how to get what we call heuristically

adequate representations of problems, and Simon (1966) discusses the
concept of 'can' in a way that should be compared with the present approach.

Modal logic

It is difficult to give a concise definition of modal logic. It was originally
invented by Lewis (1918) in an attempt to avoid the 'paradoxes' of implica-
tion (a false proposition implies any proposition). The idea was to distinguish
two sorts of truth: necessary truth and mere contingent truth. A contingently
true proposition is one which, though true, could be false. This is formalized
by introducing the modal operator 0 (read 'necessarily') which forms
propositions from propositions. Then p's being a necessary truth is expressed
by Dp's being true. More recently, modal logic has become a much-used
tool for analysing the logic of such various propositional operators as belief,
knowledge and tense.
There are very many possible axiomatizations of the logic of 0, none of
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which seem more intuitively plausible than many others. A full account
of the main classical systems is given by Feys (1965), who also includes an
excellent bibliography. We shall give here an axiomatization of a fairly
simple modal logic, the system M of Feys-Von Wright. One adds to any full
axiomatization of propositional calculus the following:

Ax. 1: Op= p
Ax. 2: ID (pp)= (Op= Elq)
Rule 1: from p and p= q, infer q

• Rule 2: from p, infer Op.
(This axiomatization is due to Godel).

There is also a dual modal operator 0 , defined as -i 0i. Its intuitive
meaning is 'possibly': Op is true when p is at least possible, although p may
be in fact false (or true). The reader will be able to see the intuitive corres-
pondence between —1 Op —p is impossible, and that is, p is necessarily
false.
M is a fairly weak modal logic. One can strengthen it by adding axioms, for

example, adding Ax . 3: Op= Op yields the system called S4; adding
Ax. 4: Op ElOp yields S5; and other additions are possible. However, one
can also weaken all these systems in various ways, for instance by changing
Ax .1 to Ax. Op. One easily sees that Ax. 1 implies Ax. l', but
the converse is not true. The systems obtained in this way are known as the
deontic versions of the systems. These modifications will be useful later when
we come to consider tense-logics as modal logics.
One should note that the truth or falsity of Op is not decided byp's being

true. Thus 0 is not a truth-functicinal operator (unlike the usual logical
connectives, for instance) and so there is no direct way of using truth-tables
to analyse propositions containing modal operators. In fact the decision
problem for modal propositional calculi has been quite nontrivial. It is just
this property which makes modal calculi so useful, as belief, tense, etc., when
interpreted as propositional operators, are all nontruthfunctional.
The proliferation of modal propositional calculi, with no clear means of

comparison, we shall call the first problem of modal logic. Other difficulties
arise when we consider modal predicate calculi, that is, when we attempt to
introduce quantifiers. This was first done by Barcan-Marcus (1946).

Unfortunately, all the early attempts at modal predicate calculi had
unintuitive theorems (see for instance ICripke 1963a), and, moreover, all of
them met with difficulties connected with the failure of Leibniz' law of
identity, which we shall try to outline.

Leibniz' law is

L:V x Vy. x=y= (4)(x)---r.•1(y))

where (I) is any open sentence. Now this law fails in modal contexts. For
instance, consider this instance of L:

Li:V x .Vy. x=y (0(x=x)----0(x=Y))
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By rule 2 of M (which is present in almost all modal logics), since x= x is a
theorem, so is 0 (x=x). Thus L1 yields

: VX Vy. x=y 0(x=y)

But, the argument goes, this is counterintuitive. For instance the morning
star is in fact the same individual as the evening star (the planet Venus).
However, they are not necessarily equal: one can easily imagine that they
might be distinct. This famous example is known as the 'morning star
paradox'.

This and related difficulties compel one to abandon Leibniz' law in modal
predicate calculi, or else to modify the laws of quantification (so that it is
impossible to obtain the undesirable instances of universal sentences such as
L2). This solves the purely formal problem, but leads to severe difficulties in
interpreting these calculi, as Quine has urged in several papers (cf. Quine
1964).
The difficulty is this. A sentence (I)(a) is usually thought of as ascribing

some property to a certain individual a. Now consider the morning star;
clearly, the morning star is necessarily equal to the morning star. However,
the evening star is not necessarily equal to the morning star. Thus, this one
individual — the planet Venus — both has and does not have the property of
being necessarily equal to the morning star. Even if we abandon proper
names the difficulty does not disappear: for how are we to interpret a state-
ment like 3x. 3y(x=y A (b(x) A —141(y)) ?
Barcan-Marcus has urged an unconventional reading of the quantifiers to

avoid this problem. The discussion between her and Quine in Barcan-Marcus
(1963) is very illuminating. However, this raises some difficulties — see Belnap
and Dunn (1968) — and the recent semantic theory of modal logic provides a

more satisfactory method of interpreting modal sentences.
This theory was developed by several authors (Hintikka 1963, 1967a;

Kanger 1957; Kripke 1963a, 1963b, 1965), but chiefly by Kripke. We shall try
to give an outline of this theory, but if the reader finds it inadequate he
should consult Kripke (1963a).
The idea is that modal calculi describe several possible worlds at once,

instead of just one. Statements are not assigned a single truth-value, but
rather a spectrum of truth-values, one in each possible world. Now, a state-
ment is necessary when it is true in all possible worlds — more or less. Actually,
in order to get different modal logics (and even then not all of them) one has
to be a bit more subtle, and have a binary relation on the set of possible
worlds — the alternativeness relation. Then a statement is necessary in a
world when it is true in all alternatives to that world. Now it turns out that
many common axioms of modal propositional logics correspond directly to
conditions on this relation of alternativeness. Thus for instance in the system
M above, Ax. 1 corresponds to the reflexiveness of the alternativeness
relation; Ax. 3 (Op= 0 Op) corresponds to its transitivity. If we make the
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alternativeness relation into an equivalence relation, then this is just like not
having one at all; and it corresponds to the axiom: Op= 00p.
This semantic theory already provides an answer to the first problem of

modal logic: a rational method is available for classifying the multitude of

propositional modal logics. More importantly, it also provides an intelligible
interpretation for modal predicate calculi. One has to imagine each possible

world as having a set of individuals and an assignment of individuals to

names of the language. Then each statement takes on its truthvalue in a world

s according to the particular set of individuals and assignment associated
with s. Thus, a possible world is an interpretation of the calculus, in the usual
sense.
Now, the failure of Leibniz' law is no longer puzzling, for in one world the

morning star.— for instance — may be equal to (the same individual as) the
evening star, but in another the two may be distinct.

There are still difficulties, both formal — the quantification rules have to be
modified to avoid unintuitive theorems (see Kripke, 1963a, for the details) —
and interpretative: it is not obvious what it means to have the same individual
existing in different worlds.

It is possible to gain the expressive power of modal logic without using
modal operators by constructing an-ordinary truth-functional logic which
describes the multiple-world semantics of modal logic directly. To do this we
give every predicate an extra argument (the world-variable; or in our termin-
ology the situation-variable) and instead of writing '0 (V, we write

Vt . A(s,t)=4)(t),

where A is the alternativeness relation between situations. Of course we must
provide appropriate axioms for A.

The resulting theory will be expressed in the notation of the situation
calculus; the proposition (I) has become a propositional fluent As . 413 (V), and

the 'possible worlds' of the modal semantics are precisely the situations.
Notice, however, that the theory we get is weaker than what would have
been obtained by adding modal operators directly to the situation calculus,
for we can give no translation of assertions such as On (s), where s is a
situation, which this enriched situation calculus would contain.

It is possible, in this way, to reconstruct within the situation calculus
subtheories corresponding to the tense-logics of Prior and to the knowledge-
logics of Hintikka, as we shall explain below. However, there is a qualifica-
tion here: so far we have only explained how to translate the propositional
modal logics into the situation calculus. In order to translate quantified
modal logic, with its difficulties of referential opacity, we must complicate
the situation calculus to a degree which makes it rather clumsy. There is a
special predicate on individuals and situation — exists (i,$) — which is regarded
as true when i names an individual existing in the situations. This is necessary
because situations may contain different individuals. Then quantified
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assertions of the modal logic are translated according to the following
scheme:

V x .11)(x) V x exists(x,$)=0(X,S)

where s is the introduced situation variable.
We shall not go into the details of this extra translation in the examples

below, but shall be content to define the translations of the propositional
tense and knowledge logics into the situation calculus.

Logic of knowledge

The logic of knowledge was first investigated as a modal logic by Hintikka
in his book Knowledge and belief (1962). We shall only describe the know-
ledge calculus. He introduces the modal operator Ka (read 'a knows that'),
and its dual Pa, defined as -i Kam The semantics is obtained by the analogous
reading of Ka as: 'it is true in all possible worlds compatible with a's know-
ledge that'. The propositional logic of Ka (similar to 0) turns out to be S4,
that is, M+Ax . 3; but there are some complexities over quantification. (The
last chapter of the book contains another excellent account of the overall
problem of quantification in modal contexts.) This analysis of knowledge has
been criticized in various ways (Chisholm 1963, Follesdal 1967) and Hintikka
has replied in several important papers (1967b, 1967c, 1969). The last paper
contains a review of the different senses of 'know' and the extent to which
they have been adequately formalized. It appears that two senses have re-
sisted capture. First, the idea of 'knowing how', which appears related to our
'can'; and secondly, the concept of knowing a person (place, etc.), when this
means 'being acquainted with' as opposed to simply knowing who a person is.
In order to translate the (propositional) knowledge calculus into 'situation'

language, we introduce a three-place predicate into the situation calculus
termed 'shrug'. Shrug(p,si,s2), wherep is a person and Si and s2 are situations,
is true when, if p is in fact in situation s2, then for all he knows he might be
in situation Si. That is to say, Si is an epistemic alternative to s2, as far as the
individual p is concerned — this is Hintikka's term for his alternative worlds
(he calls them model-sets).

Then we translate Kpq, where q is a proposition of Hintikka's calculus, as
Vt . shrug(p,t,$)= q(t), where As . q(s) is the fluent which translates q. Of
course we have to supply axioms for shrug, and in fact so far as the pure
knowledge-calculus is concerned, the only two necessary are

Kl: Vs . Vp . shrug(p,s,$)

and K2: Vp . Vs . V . Vr. (shrug(p,t,$) A shrug(p,r,t))=shrug(p,r,$)

that is, reflexivity and transitivity.
Others of course may be needed when we add tenses and other machinery

to the situation calculus, in order to relate knowledge to them.
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Tense logics

This is one of the largest and most active areas of philosophic logic. Prior's
book Past, present and future (1968) is an extremely thorough and lucid
account of what has been done in the field. We have already mentioned the
four propositional operators F, G, P, H which Prior discusses. He regards
these as modal operators; then the alternativeness relation of the semantic
theory is simply the time-ordering relation. Various axiomatizations are
given, corresponding to deterministic and nondeterministic tenses, ending
and nonending times, etc; and the problems of quantification turn up again
here with renewed intensity. To attempt a summary of Prior's book is a
hopeless task, and we simply urge the reader to consult it. More recently
several papers have appeared (see, for instance, Bull 1968) which illustrate
the technical sophistication tense-logic has reached, in that full completeness
proofs for various axiom systems are now available.
As indicated above, the situation calculus contains a tense-logic (or rather

several tense-logics), in that we can define Prior's four operators in our
system and by suitable axioms reconstruct various axiomatizations of these
four operators (in particular, all the axioms in Bull (1968) can be translated
into the situation calculus).
Only one extra nonlogical predicate Ts necessary to do this: it is a binary

predicate of situations called cohistorical, and is intuitively meant to assert
of its arguments that one is in the other's future. This is necessary because
we want to consider some pairs of situations as being not temporally related
at all. We now define F(for instance) thus:

F(n,$):=- 3t cohistorical (t,$) A time (t)> time (s) A n(t).

The other operators are defined analogously.
Of course we have to supply axioms for ̀cohistorical' and time: this is not

difficult. For instance, consider one of Bull's axioms, say Gp= GGp, which is
better (for us) expressed in the form FFp= Fp. Using the definition, this
translates into:

(2t. cohistorical(t,$) A time(t)>tirne(s) A 2r. cohistorical(r,t)

A time(r)>time(t) A n(r))= (3r .cohistorical(r,$)

A time(r)>time(s) A n(r))

which simplifies (using the transitivity of ' >') to

Vt . Vr. (cohistorical(r,t) A cohistorical(t,$))=cohistorical(r,$)

that is, the transitivity of ̀cohistorican This axiom is precisely analogous to
the S4 axiom Op PO p, which corresponded to transitivity of the alternative-
ness relation in the modal semantics. Bull's other axioms translate into
conditions on ̀ cohistoricar and time in a similar way; we shall not bother
here with the rather tedious details.

Rather more interesting would be axioms relating 'shrug' to ̀ cohistoricar
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and time; unfortunately we have been unable to think of any intuitively
plausible ones. Thus, if two situations are epistemic alternatives (that is,
shrug(p,si,s2)) then they may or may not have the same time value (since we
want to allow that p may not know what the time is), and they may or may
not be cohistorical.

Logics and theories of actions

The most fully developed theory in this area is von Wright's action logic
described in his book Norm and Action (1963). Von Wright builds his logic
on a rather unusual tense-logic of his own. The basis is a binary modal con-
nective T, so that pTq, where p and q are propositions, means ̀p,then q'. Thus
the action, for instance, of opening the window is: (the window is closed)T(the
window is open). The formal development of the calculus was taken a long
way in the book cited above, but some problems of interpretation remained
as Castafieda points out in his review (1965). In a more recent paper von
Wright (1967) has altered and extended his formalism so as to answer these
and other criticisms, and also has provided a sort of semantic theory based
on the notion of a life-tree.
We know of no other attempts at constructing a single theory of actions

which have reached such a degree of development, but there are several
discussions of difficulties and surveys which seem important. Rescher (1967)
discusses several topics very neatly, and Davidson (1967) also makes some
cogent points. Davidson's main thesis is that, in order to translate statements
involving actions into the predicate calculus, it appears necessary to allow
actions as values of bound variables, that is (by Quine's test) as real indi-
viduals. The situation calculus of course follows this advice in that we allow
quantification over strategies, which have actions as a special case. Also
important are Simon's papers (1965, 1967) on command-logics. Simon's
main purpose is to show that a special logic of commands is unnecessary,
ordinary logic serving as the only deductive machinery; but this need not
detain us here. He makes several points, most notably perhaps that agents
are most of the time not performing actions, and that in fact they only stir
to action when forced to by some outside interference. He has the particularly
interesting example of a serial processor operating in a parallel-demand
environment, and the resulting need for interrupts. Action logics such as von
Wright's and ours do not distinguish between action and inaction, and we
are not aware of any action-logic which has reached a stage of sophistication
adequate to meet Simon's implied criticism.
There is a large body of purely philosophical writings on action, time,

determinism, etc., most of which is irrelevant for present purposes. However,
we mention two which have recently appeared and which seem interesting: a
paper by Chisholm (1967) and another paper by Evans (1967), summarizing
the recent discussion on the distinctions between states, performances and
activities.
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Other topics

There are two other areas where some analysis of actions has been necessary:
command-logics and logics and theories of obligation. For the former the best
reference is Rescher's book (1966) which has an excellent bibliography. Note
also Simon's counterarguments to some of Rescher's theses (Simon 1965,
1967). Simon proposes that no special logic of commands is necessary, com-
mands being analysed in the form 'bring it about that p!' for some proposition
p, or, more generally, in the form 'bring it about that P(x) by changing x!',
where x is a command variable, that is, under the agent's control. The trans-
lations between commands and statements take place only in the context of
a 'complete model', which specifies environmental constraints and defines the
command variables. Rescher argues that these schemas for commands are
inadequate to handle the conditional command 'when p, do q', which becomes
'bring it about that (pq)!': this, unlike the former, is satisfied by making
p false.

There are many papers on the logic of obligation and permission. Von
Wright's work is oriented in this direction; Castalieda has many papers on
the subject and Anderson also has written extensively (his early influential
report (1956) is especially worth reading). The review pages of the Journal of
Symbolic Logic provide many other-references. Until fairly recently these
theories did not seem of very much relevance to logics of action, but in their
new maturity they are beginning to be so.

Counterfactuals

There is, of course, a large literature on this ancient philosophical problem,
almost none of which seems directly relevant to us. However, there is one
recent theory, developed by Rescher (1964), which may be of use. Rescher's
book is so clearly written that we shall not attempt a description of his theory
here. The reader should be aware of Sosa's critical review (1967) which
suggests some minor alterations.
The importance of this theory for us is that it suggests an alternative

approach to the difficulty which we have referred to as the frame problem.
In outline, this is as follows. One assumes, as a rule of procedure (or perhaps
as a rule of inference), that when actions are performed, all propositional
fluents which applied to the previous situation also apply to the new situation.
This will often yield an inconsistent set of statements about the new situation;
Rescher's theory provides a mechanism for restoring consistency in a rational
way, and giving as a by-product those fluents which change in value as a
result of performing the action. However, we have not investigated this in
detail.

The communication process

We have not considered the problems of formally describing the process of
communication in this paper, but it seems clear that they will have to be
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tackled eventually. Philosophical logicians have been spontaneously active
here. The major work is Harrah's book (1963) ; Cresswell has written several
papers on 'the logic of interrogatives', see for instance Cresswell (1965).
Among other authors we may mention Aqvist (1965) and Belnap (1963);
again the review pages of the Journal of Symbolic Logic will provide other
references.

Acknowledgements

The research reported here was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (sD-183), and in part by the Science
Research Council (u/s R/ 2299)

REFERENCES

Anderson, A.R. (1956) The formal analysis of normative systems. Reprinted in The
Logic of decision and action (ed. Rescher, N.). Pittsburgh: University of Pittsburgh
Press.

Aqvist, L. (1965) A new approach to the logical theory of interrogatives, part!. Uppsala:
Uppsala Philosophical Association.

Barcan-Marcus, R. C. (1946) A functional calculus of the first order based on strict
implication. Journal of Symbolic Logic,11, 1-16.

Barcan-Marcus, R.C. (1963) Modalities and intensional languages. Boston studies in the
Philosophy of Science. (ed. Wartofsky, W.). Dordrecht, Holland.

Belnap, N.D. (1963) An analysis of questions. Santa Monica.
Belnap, N.D. & Dunn, J. M. (1968) The substitution interpretation of the quantifiers.

Nofis, 2, 177-85.
Bull, R.A. (1968) An algebraic study of tense logics with linear time. Journal of Symbolic
Logic, 33, 27-39

Castafieda, H.N. (1965) The logic of change, action and norms. Journal of Philosophy,
62, 333-4.

Chisholm, R.M. (1963) The logic of knowing. Journal of Philosophy, 60, 773-95.
Chisholm, R.M. (1967) He could have done otherwise. Journal of Philosophy, 64, 409-17.
Church, A. (1956) Introduction to Mathematical Logic. Princeton: Princeton University

Press.
Cresswell, M. J. (1965). The logic of interrogatives:Forma/systems and recursive fundions.
(ed. Crossley, J.N. & Durnmett, M. A.E.). Amsterdam: North-Holland.

Davidson, D. (1967) The logical form of action sentences. The logic of decision and action.
(ed. Rescher, N.). Pittsburgh: University of Pittsburgh Press.

Evans, C. 0. (1967) States, activities and performances. Australasian Journal of Philosophy,
45,293-308.

Feys, R. (1965) Modal Logics. (ed. Dopp, J.). Louvain: Coll. de Logique Math. serie B.
Fogel, L.J., Owens, A.J. & Walsh, M.J. (1966) Artificial Intelligence through simulated

evolution. New York: John Wiley.
Follesdal, D. (1967) Knowledge, identity and existence. Theoria, 33, 1-27.
Friedberg, R. M. (1958) A learning machine, parts. MM./. Res. Dev., 2,2-13.
Friedberg, R.M., Dunham, B., & North, J.H. (1959) A learning machine, part is. IBM
J. Res. Dev., 3,282-7.

Galanter, E. & Gerstenhaber, M. (1956). On thought: the extrinsic theory. Psychological
Review, 63, 218-27

Green, C. (1969) Theorem-proving by resolution as a basis for question-answering
systems. Machine Intelligence 4, pp.183-205 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

500



MCCARTHY AND HAYES

Harrah, D. (1963) Communication: a logical model. Cambridge, Massachusetts: Nur press.
Hintikka, J. (1962) Knowledge and belief: an introduction to the logic of the two notions.
New York: Cornell University Press.

Hintikka, J. (1963) The modes of modality. Acta Philosophica Fennica, 16, 65-82.
Hintikka, J. (1967a) A program and a set of concepts for philosophical logic. The Monist,
51, 69-72.

Hintikka, J. (1967b) Existence and identity in epistemic contexts. Theoria, 32, 138-47.
Hintikka, J. (1967c) Individuals, possible worlds and epistemic logic. Noils, 1,33-62.
Hintikka, J. (1969) Alternative constructions in terms of the basic epistemological attitudes

Contemporary philosophy in Scandinavia (ed. Olsen, R.E.) (to appear).
Kanger, S. (1957) A note on quantification and modalities. Theoria, 23,133-4.
Kripke, S. (1963a) Semantical considerations on modal logic. Acta Philosophica Fennica,
16, 83-94.

Kripke, S. (1963b) Semantical analysis of modal logics. Zeitschrift fir math. Logik und
Grundlagen der Mathematik, 9,67-96.

Kripke, S. (1965) Semantical analysis of modal logic II. The theory of models (eds
Addison, Henkin & Tarski). Amsterdam: North-Holland.

Lewis, C.I. (1918) A survey of symbolic logic. Berkeley: University of California Press.
Manna, Z. (1968a) Termination of algorithms. Ph.D Thesis, Carnegie-Mellon University.
Manna, Z. (1968b) Formalization of properties of programs. Stanford Artificial Intelligence
Report: Project Memo A1-64.

McCarthy, J. (1959) Programs with common sense. Mechanization of thought processes,
Vol. 1. London: moo

McCarthy, J. (1962) Towards a mathematical science of computation. Proc. IFIP
Congress 62. Amsterdam: North-Holland Press.

McCarthy, J. (1963) Situations, actions and causal laws. Stanford Artificial Intelligence
Project: Memo 2.

Minsky, M. (1961) Steps towards artificial intelligence. Proceedings of the LR.E., 49,8-30.
Newell, A., Shaw, V.C. & Simon, H.A. (1959) Report on a general problem-solving
program. Proceedings ICIP. Paris: UNESCO House.

Newell, A. & Simon H.A. (1961) GPs - a program that simulates human problem-
solving. Proceedings of a conference in learning automata. Munich: Oldenbourgh.

Newell, A. (1965) Limitations of the current stock of ideas about problem-solving.
Proceedings of a conference on Electronic Information Handling, pp. 195-208 (eds Kent, A.
&Taulbee, 0.). New York: Spartan.

Newell, A. & Ernst, C. (1965) The search for generality. Proc. IFIP Congress 65.
Pivar, M. & Finkelstein, M. (1964). The Programming Language LISP: its operation and

applications (eds Berkely, E.C. & Bobrow, D.G.). Cambridge, Massachusetts: Myr
Press.

Prior, A.N. (1957) Time and modality. Oxford: Clarenden Press.
Prior, A.N. (1968)Past, present and future. Oxford: Clarendon Press.
Quine, W. V.O. (1964) Reference and modality. From a logical point of view. Cambridge,

Massachusetts: Harvard University Press.
Rescher, N. (1964) Hypothetical reasoning. Amsterdam: North-Holland.
Rescher, N. (1966) The logic of commands. London: Routledge.
Rescher, N. (1967) Aspects of action. The logic of decision and action (ed. Rescher, N.).

Pittsburgh: University of Pittsburgh Press.
Shannon, C. (1950) Programming a computer for playing chess. Philosophical Magazine,
41,

Simon, H.A. (1965) The logic of rational decision. British Journal for the Philosophy of
Science, 16, 169-86.

Simon, H.A. (1966) On Reasoning about actions. Carnegie Institute of Technology:
Complex Information Processing Paper 87.

501



PRINCIPLES FOR DESIGNING INTELLIGENT ROBOTS

Simon, H. A. (1967) The logic of heuristic decision making. The logic of decision and action
(ed. Rescher, N.). Pittsburgh: University of Pittsburgh Press.

Sosa, E. (1967) Hypothetical reasoning. Journal of Philosophy, 64, 293-305.
Turing, A. M. (1950) Computing machinery and intelligence. Mind, 59, 433-60.
von Wright, C.H. (1963) Norm and action: a logical enquiry. London: Routledge.
von Wright, C.H. (1967) The Logic of Action—a sketch. The logic of decision and action
(ed. Rescher, N.). Pittsburgh: University of Pittsburgh Press.

502



INDEX





INDEX

Absys-1 423
adaline 395-96, 398
advice-taker 184, 452, 468
algebra 17-42
1-algebra 19-37

ALGOL 3, 50, 361, 481, 487, 490
alpha-beta heuristic 258, 261
Anderson 499,500
Andreae 433, 451-4
answer statement 192-9
application 151-68
Aqvist 500
Arbib 23, 39, 43
Arrow 289, 310
assertions 423-9
Atkinson 263
ATLAS-AUTOCODE 99
automaton 23, 285-7, 291, 298-310, 433-54,

463,470-5

Backer, 175, 181
Balzer 290, 310
Barcan-Marcus 493-4,500
Bar-Hillel 468
Belnap 494,500
Beth 62,70
Bharucha-Reid 321, 335
bint 367
Black 203
Blum 403,420
Bohnert 175, 181
Booth, A. D. 337, 348
Booth, K. H. V. 337, 348
Boring 379, 381
Borovikov 285, 310
Bousfield 320,335
Bratley 273, 280, 284
Bryzgalov 285, 310
Buchanan 461, 462
Bull 497,500
Bullock 318, 335
Burks 290,310
Burstall 27, 29, 43, 176, 179, 181, 335, 446,

454, 457, 462

Cahn 420
caltrop 392-6, 398
Carson 86, 95, 144-5, 181, 205
Cartwright 321, 336
Cashin 452,454
Castafieda 498-500
c D C 6600 computer 81
Chambers 287, 310, 433, 454
character recognition 385, 396, 413
chess 255, 258, 262-3, 267,464
Chinlund 64,70

_... Chisholm 496, 498, 500
choice-tree 457-9,461
Chomsky 184, 205, 361-2, 364-5, 380-3
chromosome 403-4, 413-14, 417-19
Church 142, 144, 485, 500
clash 87, 89,92-8, 123-5
Clowes 362, 371, 381
Cohen 326, 336
Cohn 19, 28, 33, 43
Coles, L. S. 183, 203,204
Coles, W. 403,420
Colin 263
Collier 349, 357
Cooper, D. C. 29, 43, 62, 70, 186,205
Cooper, W. S. 203,205
Copi 174, 175, 181
Cox 335
Craik 335
Cresswell 500

Dakin 273,284
Darlington 100, 139, 144, 174, 175, 181
Davidson 498,500
Davis 62, 64, 68-70, 140, 144, 186, 205
Deese 324, 329, 336
DENDRAL 209, 211, 221, 227-8, 234-5,

249-51, 254, 461, 462
algorithm 252
notation 246

dependency theory 272-81
Deutsch 403,420
Dewar 280,284
Djerassi 211

505



INDEX

Doran 433, 450, 454, 456-7, 462
Duffield 211
Dunham 62, 64, 70, 500
Dunn 494,500

Elcock 423,429
Elliot 4120 computer 423
Elliot 4130 computer 448
equality 100, 103ff, 125, 135-6, 139-42,

4,158, 173
Ernst 492, 501
Evans, C. 0. 498, 500
Evans, T. G. 377, 381
Everett 395

factor 90,92-5, 141, 150, 177, 199,201
Fatt 318, 336
Feigerbaum 254,462
Feys 493, 500
Finkelstein 491,501
Floyd 3, 4, 7, 15, 29, 43
fluent 477-87, 495
Fogel 490-1, 500
Follesdal 496, 500
FORTRAN 257
Foster 423,429
Freddy 455, 456, 459, 460
Frick 371, 381
Fridsal 62, 64, 70
Friedberg 491, 500
Frischkopf 318, 338

Gaifman 272,284
Galanter 491, 500
Gel'fand 286, 310
Gentzen sequents 62
Gerstenhaber 500
Gilmore 61,70
Ginzburg 285,310
Godel 493
Goore game 285-7, 310
grammar 272, 321, 361-7, 381, 455
graph 45-50, 52, 54, 211, 251, 321, 324-6

centre of 47-50
chemical 235
molecular 209
spanning tree of, see tree

Graph Traverser program 450,456-7
Greanias 376, 381
Green, B. F. jnr. 184, 205, 381
Green, C. C. 175, 179, 181, 185, 186,

205, 452, 454, 463, 500
Greenblatt 267
group theory 80, 140-1, 145
Grundfest 318, 336
Guzman 377, 381

Hall 145

Harary 321, 325, 336
hare and hounds 337-46
Harrah 500,501
Harris 321, 322, 336
Hart 202,205
Hasenjaeger 181
Hayes 100, 176-8, 181, 199,205
Hays 272

153- Henkin 161, 170
Henkin's theorem 160, 161
Herbrand's theorem 74, 87, 89, 90, 103, 107,

122
Herbrand Universe 60, 63, 74, 88, 105, 107,

122, 135, 192
Hinman 64,70
Hintikka 494-6, 501
holograph 349, 352-3, 356-7
holophone 349-57
Hormann 452,454
Hurwicz 289,310
hyper-resolution 87, 97-9, 177, 181

Ianov 4, 15
IBM 7090 computer 181,420
ICL-1900 computer 256, 267
information retrieval 173-5, 179, 184, 187,

281,315,316,334
information theory 388
interaction

in automata collectives 285-7, 290, 305,
308, 310

man-machine 151, 162, 169, 199,256
Izzo 403,420

Jenkins 323, 336

Kamentsky, 388, 395
Kanger 62, 63, 70,494, 501
Kaplan 29,43
Karlgxen 68
Katz 318, 336
ic.DF 9 computer 50, 99, 274
Kirsch 362, 381, 403,420
Kiss 315, 324-6, 329, 330, 336,453
Klemmer 371, 381
Konig's infinity lemma 61,90, 161
Kowalski 176-8, 181
Kripke 493-5, 501

202, lambda-calculus 151, 165, 167, 169
lambda-expressions 425-7, 478
Lance 381
Landin 24,43, 169, 170
Langridge 370, 381
Laughery 184, 205, 381
Lederberg 211, 220, 250, 254
Ledley 376, 381

506



Levenstein 290-1, 296,310
Levien 173, 178, 181
Levinson 348
Lewis 492, 501
Lindsay 184, 205
LISP 21, 23, 186, 200, 211, 222, 226, 228,

232, 235, 238, 501
Liu 388,395
logic

first-order 3-10, 13-15, 59, 73, 103ff.,
135-6, 141-2, 169, 183-6, 196, 199, 202-3,
482
higher-order 18, 151ff., 168-9, 468
modal 485, 492ff.
second-order 3,7-9, 14,483

Longuet-Higgins 349, 357
Loveland 64,73, 77, 80, 82, 83, 86
Luce 317,336 '
Luckham 4, 15, 82-4, 86, 97, 99

Manna 3, 4, 7, 8, 15,482, 501
Maralchovskii 290, 310, 311
Maron 173, 178, 181
mass spectrometry 209-13, 218, 220, 223-7,

230, 232, 234, 239, 245-9, 251, 464
mathematical induction 165
matrix 65-8, 73, 103, 192, 290, 325, 330,

332, 389-96, 404
matrix reduction, principle of 66-8,70
McCarthy 29, 43, 100, 184, 199, 203-5, 452,

454, 463, 468, 477, 487, 501
McCormick 403,420
McGill 320-1, 336
Mdlroy 64
Meagher 381
Meinwald 211
Meleshina 287, 311
Meltzer 87, 99, 175, 178, 181
Meyer 132
Michie 257, 263, 287, 335, 348, 433, 438, 442,

454
Miller 371, 381
Minsky 362, 381, 452, 454, 464
model elimination procedure 73,77-86
Moore 290-1, 304,310
Murray 429
Myhill 291

Narasimhan 362-3, 381, 403,420
Naur 3, 15
von Neumann 290,310
Newell 452, 454, 464, 491-2, 501
Nilsson 389, 396
Nimzowitch 268
Norman 321, 336
North 500
Notley 462
numerical taxonomy 456

INDEX

Obruca 51-4
organic chemistry 209ff.
Ovsievich 310
Owens 500

Pi-deduction 95-9, 175-81
Painter 29,43
Palermo 323, 336
Paley 393, 396
paramodulation 135, 139-47
Park 4, 15
Parris 55
Paterson 4, 5, 10, 11, 15
P D P-6 computer 211
P D P-10 computer 267
Percival 51,55
Perekrest 287, 311
Peschanskii 290, 310, 311
Peterson 395
Petri 181
Pfalz 403, 405, 420
Philbrick 403,420
phrase structure 272, 275, 277, 361, 367,

455, 456
Pittel' 286, 310
Pivar 491, 501
PLAN-3 256
planning tree 438-41, 449, 451-3
Pollis 324-6, 336
pop-2 27, 43, 274, 354, 446, 454, 457-9, 462
Popplestone 27, 43, 335, 438, 442, 446, 454,

457,462
Prawitz, D. 61, 62, 66, 68-71
Prawitz, H. 61, 62, 71
predicate calculus, see logic, first-order
Preston 403,420
Prior 479, 480, 495, 497, 501
program scheme 3-15
proof procedure 59, 103, 151, 159-61, 168,

195
Putnam 62, 64, 68, 70, 140, 144
Pyatetskii-Shapiro 286, 310

question-answering system 183-5
Quine 142, 144, 494, 501

Raphael 175, 179, 181, 185, 186, 202-5
Ray 420
Read 50, 51, 55
renaming 87, 95,99, 175-7
Rescher 498, 499, 501
resolution 67, 73, 77-86, 89, 92, 94, 95, 122,

137, 141-4, 145, 147, 173, 176, 177-86,
189, 193, 195, 198-9, 201, 205, 454

Roberts 392, 396,461-2
Robertson 211
Robinson G. A. 86, 95, 141-5, 150, 181,

205

507



INDEX

Robinson J. A. 64, 71-4, 86-7, 90-5, 100,
103-7, 114, 122-7, 132-3, 141, 143-4,
169, 170, 173, 175, 177, 181, 185-6, 192,
205

Rosenberg 326, 336
Rosenblatt 386, 396
Rosenblith 318, 336
Rosenfeld 403, 405, 420
Ross 450
Russell 323, 336
Rutledge 4, 15
Rutovitz 420

Sabidussi 49, 55
Safier 185, 203, 205
Sandewall 452,454
Saraga 388, 396
Schlosberg 328, 336
Scoins 46, 55
Scott 267
SDS 940 computer 186
Sedgewick 320, 335
semantic partition 159-63, 165, 168
semantic trees 87-91, 181
set of support strategy 83, 95-6, 99, 100, 131,

139, 143, 174-5, 178, 180-1, 200, 202,
205

extended 186
Shalla 145,205
Shannon 321, 464, 501
Shaw 362-3, 382, 452, 454, 501
Sibert 100-1
Simon 203, 205, 452, 454, 491-2, 498-9,

501-2
skeleton 403,407-20
Skolem 59, 61,71
Skolem function 60,97, 167, 189, 191-4

functional form 60, 73, 77, 173
Skolem-Lowenheim-Godel theorem 192
Slagle 87, 95-8, 103, 123, 133, 143-4, 176,

181, 185, 203, 205
Smith 100
Sneath 456,462
SNorsoL 23
Sokal 456,462
Sosa 499,502
Stanton 381
Storey 348
subsumption 91,92, 125-30, 199-201
Sutherland, G. 254,462
Sutherland,!. E. 362, 382
Sward 62, 64, 70
synchronisation problem 290, 296, 298-302,

305, 310

Taylor 386, 396
Thorne 280,284
time-sharing 78, 186,256
travelling salesman problem 287, 289-90
Travis 452,454
tree 46, 53-4, 88, 161, 361

centre of 253
free 47
height representation of 46, 51
mushrooming 53-4
planning, see planning tree
rooted 46-7
semantic, see semantic tree
sentence 278
spanning, of a graph 46-7, 49, 51-4

Treisman 317, 327,336
Tsetlin 285-6,289, 310-11
Turing 464-5, 502
type 151-3, 161-2, 169,424
type theory 170

Uffelman 389, 396
Ulam 290, 311
unit preference strategy 86, 174, 181, 200,

201,205
Urban 420
Urquhart 273
Uzawa 289,310

Varshavsky 285, 287, 289-91, 311
Verveen 318, 336
Vigor 281, 284
Voghera 61, 62, 71
Volkonskii 286,311
Vorontsova 285, 289,311

Waksman 290,311
Walsh 500
Wang 61, 62, 71, 103, 133
Weaver 396 "
Weiher 211
White 211
Widrow 395-6
Wolf 184, 205, 381
Woodward 361, 382
Woodworth 328, 336
Woollons 396
word-association networks 323-30
word store 315-21, 329
Wos 79, 82, 83, 86, 95, 122, 131, 133, 139,

141-5, 150, 174, 181, 186, 202,205
von Wright 493, 498-9, 502

Yates 204
Yule 346-8

508



~




